1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 typedef struct SessionHook SessionHook; 29 struct SessionHook { 30 void *pCtx; 31 int (*xOld)(void*,int,sqlite3_value**); 32 int (*xNew)(void*,int,sqlite3_value**); 33 int (*xCount)(void*); 34 int (*xDepth)(void*); 35 }; 36 37 /* 38 ** Session handle structure. 39 */ 40 struct sqlite3_session { 41 sqlite3 *db; /* Database handle session is attached to */ 42 char *zDb; /* Name of database session is attached to */ 43 int bEnable; /* True if currently recording */ 44 int bIndirect; /* True if all changes are indirect */ 45 int bAutoAttach; /* True to auto-attach tables */ 46 int rc; /* Non-zero if an error has occurred */ 47 void *pFilterCtx; /* First argument to pass to xTableFilter */ 48 int (*xTableFilter)(void *pCtx, const char *zTab); 49 sqlite3_value *pZeroBlob; /* Value containing X'' */ 50 sqlite3_session *pNext; /* Next session object on same db. */ 51 SessionTable *pTable; /* List of attached tables */ 52 SessionHook hook; /* APIs to grab new and old data with */ 53 }; 54 55 /* 56 ** Instances of this structure are used to build strings or binary records. 57 */ 58 struct SessionBuffer { 59 u8 *aBuf; /* Pointer to changeset buffer */ 60 int nBuf; /* Size of buffer aBuf */ 61 int nAlloc; /* Size of allocation containing aBuf */ 62 }; 63 64 /* 65 ** An object of this type is used internally as an abstraction for 66 ** input data. Input data may be supplied either as a single large buffer 67 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 68 ** sqlite3changeset_start_strm()). 69 */ 70 struct SessionInput { 71 int bNoDiscard; /* If true, do not discard in InputBuffer() */ 72 int iCurrent; /* Offset in aData[] of current change */ 73 int iNext; /* Offset in aData[] of next change */ 74 u8 *aData; /* Pointer to buffer containing changeset */ 75 int nData; /* Number of bytes in aData */ 76 77 SessionBuffer buf; /* Current read buffer */ 78 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 79 void *pIn; /* First argument to xInput */ 80 int bEof; /* Set to true after xInput finished */ 81 }; 82 83 /* 84 ** Structure for changeset iterators. 85 */ 86 struct sqlite3_changeset_iter { 87 SessionInput in; /* Input buffer or stream */ 88 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 89 int bPatchset; /* True if this is a patchset */ 90 int rc; /* Iterator error code */ 91 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 92 char *zTab; /* Current table */ 93 int nCol; /* Number of columns in zTab */ 94 int op; /* Current operation */ 95 int bIndirect; /* True if current change was indirect */ 96 u8 *abPK; /* Primary key array */ 97 sqlite3_value **apValue; /* old.* and new.* values */ 98 }; 99 100 /* 101 ** Each session object maintains a set of the following structures, one 102 ** for each table the session object is monitoring. The structures are 103 ** stored in a linked list starting at sqlite3_session.pTable. 104 ** 105 ** The keys of the SessionTable.aChange[] hash table are all rows that have 106 ** been modified in any way since the session object was attached to the 107 ** table. 108 ** 109 ** The data associated with each hash-table entry is a structure containing 110 ** a subset of the initial values that the modified row contained at the 111 ** start of the session. Or no initial values if the row was inserted. 112 */ 113 struct SessionTable { 114 SessionTable *pNext; 115 char *zName; /* Local name of table */ 116 int nCol; /* Number of columns in table zName */ 117 int bStat1; /* True if this is sqlite_stat1 */ 118 const char **azCol; /* Column names */ 119 u8 *abPK; /* Array of primary key flags */ 120 int nEntry; /* Total number of entries in hash table */ 121 int nChange; /* Size of apChange[] array */ 122 SessionChange **apChange; /* Hash table buckets */ 123 }; 124 125 /* 126 ** RECORD FORMAT: 127 ** 128 ** The following record format is similar to (but not compatible with) that 129 ** used in SQLite database files. This format is used as part of the 130 ** change-set binary format, and so must be architecture independent. 131 ** 132 ** Unlike the SQLite database record format, each field is self-contained - 133 ** there is no separation of header and data. Each field begins with a 134 ** single byte describing its type, as follows: 135 ** 136 ** 0x00: Undefined value. 137 ** 0x01: Integer value. 138 ** 0x02: Real value. 139 ** 0x03: Text value. 140 ** 0x04: Blob value. 141 ** 0x05: SQL NULL value. 142 ** 143 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 144 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 145 ** only of the single type byte. For other types of values, the type byte 146 ** is followed by: 147 ** 148 ** Text values: 149 ** A varint containing the number of bytes in the value (encoded using 150 ** UTF-8). Followed by a buffer containing the UTF-8 representation 151 ** of the text value. There is no nul terminator. 152 ** 153 ** Blob values: 154 ** A varint containing the number of bytes in the value, followed by 155 ** a buffer containing the value itself. 156 ** 157 ** Integer values: 158 ** An 8-byte big-endian integer value. 159 ** 160 ** Real values: 161 ** An 8-byte big-endian IEEE 754-2008 real value. 162 ** 163 ** Varint values are encoded in the same way as varints in the SQLite 164 ** record format. 165 ** 166 ** CHANGESET FORMAT: 167 ** 168 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 169 ** one or more tables. Operations on a single table are grouped together, 170 ** but may occur in any order (i.e. deletes, updates and inserts are all 171 ** mixed together). 172 ** 173 ** Each group of changes begins with a table header: 174 ** 175 ** 1 byte: Constant 0x54 (capital 'T') 176 ** Varint: Number of columns in the table. 177 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 178 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 179 ** 180 ** Followed by one or more changes to the table. 181 ** 182 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 183 ** 1 byte: The "indirect-change" flag. 184 ** old.* record: (delete and update only) 185 ** new.* record: (insert and update only) 186 ** 187 ** The "old.*" and "new.*" records, if present, are N field records in the 188 ** format described above under "RECORD FORMAT", where N is the number of 189 ** columns in the table. The i'th field of each record is associated with 190 ** the i'th column of the table, counting from left to right in the order 191 ** in which columns were declared in the CREATE TABLE statement. 192 ** 193 ** The new.* record that is part of each INSERT change contains the values 194 ** that make up the new row. Similarly, the old.* record that is part of each 195 ** DELETE change contains the values that made up the row that was deleted 196 ** from the database. In the changeset format, the records that are part 197 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 198 ** fields. 199 ** 200 ** Within the old.* record associated with an UPDATE change, all fields 201 ** associated with table columns that are not PRIMARY KEY columns and are 202 ** not modified by the UPDATE change are set to "undefined". Other fields 203 ** are set to the values that made up the row before the UPDATE that the 204 ** change records took place. Within the new.* record, fields associated 205 ** with table columns modified by the UPDATE change contain the new 206 ** values. Fields associated with table columns that are not modified 207 ** are set to "undefined". 208 ** 209 ** PATCHSET FORMAT: 210 ** 211 ** A patchset is also a collection of changes. It is similar to a changeset, 212 ** but leaves undefined those fields that are not useful if no conflict 213 ** resolution is required when applying the changeset. 214 ** 215 ** Each group of changes begins with a table header: 216 ** 217 ** 1 byte: Constant 0x50 (capital 'P') 218 ** Varint: Number of columns in the table. 219 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 220 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 221 ** 222 ** Followed by one or more changes to the table. 223 ** 224 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 225 ** 1 byte: The "indirect-change" flag. 226 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 227 ** full record for INSERT). 228 ** 229 ** As in the changeset format, each field of the single record that is part 230 ** of a patchset change is associated with the correspondingly positioned 231 ** table column, counting from left to right within the CREATE TABLE 232 ** statement. 233 ** 234 ** For a DELETE change, all fields within the record except those associated 235 ** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the 236 ** values identifying the row to delete. 237 ** 238 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 239 ** columns and columns that are modified by the UPDATE are set to "undefined". 240 ** PRIMARY KEY fields contain the values identifying the table row to update, 241 ** and fields associated with modified columns contain the new column values. 242 ** 243 ** The records associated with INSERT changes are in the same format as for 244 ** changesets. It is not possible for a record associated with an INSERT 245 ** change to contain a field set to "undefined". 246 */ 247 248 /* 249 ** For each row modified during a session, there exists a single instance of 250 ** this structure stored in a SessionTable.aChange[] hash table. 251 */ 252 struct SessionChange { 253 int op; /* One of UPDATE, DELETE, INSERT */ 254 int bIndirect; /* True if this change is "indirect" */ 255 int nRecord; /* Number of bytes in buffer aRecord[] */ 256 u8 *aRecord; /* Buffer containing old.* record */ 257 SessionChange *pNext; /* For hash-table collisions */ 258 }; 259 260 /* 261 ** Write a varint with value iVal into the buffer at aBuf. Return the 262 ** number of bytes written. 263 */ 264 static int sessionVarintPut(u8 *aBuf, int iVal){ 265 return putVarint32(aBuf, iVal); 266 } 267 268 /* 269 ** Return the number of bytes required to store value iVal as a varint. 270 */ 271 static int sessionVarintLen(int iVal){ 272 return sqlite3VarintLen(iVal); 273 } 274 275 /* 276 ** Read a varint value from aBuf[] into *piVal. Return the number of 277 ** bytes read. 278 */ 279 static int sessionVarintGet(u8 *aBuf, int *piVal){ 280 return getVarint32(aBuf, *piVal); 281 } 282 283 /* Load an unaligned and unsigned 32-bit integer */ 284 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 285 286 /* 287 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 288 ** the value read. 289 */ 290 static sqlite3_int64 sessionGetI64(u8 *aRec){ 291 u64 x = SESSION_UINT32(aRec); 292 u32 y = SESSION_UINT32(aRec+4); 293 x = (x<<32) + y; 294 return (sqlite3_int64)x; 295 } 296 297 /* 298 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 299 */ 300 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 301 aBuf[0] = (i>>56) & 0xFF; 302 aBuf[1] = (i>>48) & 0xFF; 303 aBuf[2] = (i>>40) & 0xFF; 304 aBuf[3] = (i>>32) & 0xFF; 305 aBuf[4] = (i>>24) & 0xFF; 306 aBuf[5] = (i>>16) & 0xFF; 307 aBuf[6] = (i>> 8) & 0xFF; 308 aBuf[7] = (i>> 0) & 0xFF; 309 } 310 311 /* 312 ** This function is used to serialize the contents of value pValue (see 313 ** comment titled "RECORD FORMAT" above). 314 ** 315 ** If it is non-NULL, the serialized form of the value is written to 316 ** buffer aBuf. *pnWrite is set to the number of bytes written before 317 ** returning. Or, if aBuf is NULL, the only thing this function does is 318 ** set *pnWrite. 319 ** 320 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 321 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 322 ** SQLITE_NOMEM is returned. 323 */ 324 static int sessionSerializeValue( 325 u8 *aBuf, /* If non-NULL, write serialized value here */ 326 sqlite3_value *pValue, /* Value to serialize */ 327 int *pnWrite /* IN/OUT: Increment by bytes written */ 328 ){ 329 int nByte; /* Size of serialized value in bytes */ 330 331 if( pValue ){ 332 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 333 334 eType = sqlite3_value_type(pValue); 335 if( aBuf ) aBuf[0] = eType; 336 337 switch( eType ){ 338 case SQLITE_NULL: 339 nByte = 1; 340 break; 341 342 case SQLITE_INTEGER: 343 case SQLITE_FLOAT: 344 if( aBuf ){ 345 /* TODO: SQLite does something special to deal with mixed-endian 346 ** floating point values (e.g. ARM7). This code probably should 347 ** too. */ 348 u64 i; 349 if( eType==SQLITE_INTEGER ){ 350 i = (u64)sqlite3_value_int64(pValue); 351 }else{ 352 double r; 353 assert( sizeof(double)==8 && sizeof(u64)==8 ); 354 r = sqlite3_value_double(pValue); 355 memcpy(&i, &r, 8); 356 } 357 sessionPutI64(&aBuf[1], i); 358 } 359 nByte = 9; 360 break; 361 362 default: { 363 u8 *z; 364 int n; 365 int nVarint; 366 367 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 368 if( eType==SQLITE_TEXT ){ 369 z = (u8 *)sqlite3_value_text(pValue); 370 }else{ 371 z = (u8 *)sqlite3_value_blob(pValue); 372 } 373 n = sqlite3_value_bytes(pValue); 374 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 375 nVarint = sessionVarintLen(n); 376 377 if( aBuf ){ 378 sessionVarintPut(&aBuf[1], n); 379 if( n ) memcpy(&aBuf[nVarint + 1], z, n); 380 } 381 382 nByte = 1 + nVarint + n; 383 break; 384 } 385 } 386 }else{ 387 nByte = 1; 388 if( aBuf ) aBuf[0] = '\0'; 389 } 390 391 if( pnWrite ) *pnWrite += nByte; 392 return SQLITE_OK; 393 } 394 395 396 /* 397 ** This macro is used to calculate hash key values for data structures. In 398 ** order to use this macro, the entire data structure must be represented 399 ** as a series of unsigned integers. In order to calculate a hash-key value 400 ** for a data structure represented as three such integers, the macro may 401 ** then be used as follows: 402 ** 403 ** int hash_key_value; 404 ** hash_key_value = HASH_APPEND(0, <value 1>); 405 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 406 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 407 ** 408 ** In practice, the data structures this macro is used for are the primary 409 ** key values of modified rows. 410 */ 411 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 412 413 /* 414 ** Append the hash of the 64-bit integer passed as the second argument to the 415 ** hash-key value passed as the first. Return the new hash-key value. 416 */ 417 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 418 h = HASH_APPEND(h, i & 0xFFFFFFFF); 419 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 420 } 421 422 /* 423 ** Append the hash of the blob passed via the second and third arguments to 424 ** the hash-key value passed as the first. Return the new hash-key value. 425 */ 426 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 427 int i; 428 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 429 return h; 430 } 431 432 /* 433 ** Append the hash of the data type passed as the second argument to the 434 ** hash-key value passed as the first. Return the new hash-key value. 435 */ 436 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 437 return HASH_APPEND(h, eType); 438 } 439 440 /* 441 ** This function may only be called from within a pre-update callback. 442 ** It calculates a hash based on the primary key values of the old.* or 443 ** new.* row currently available and, assuming no error occurs, writes it to 444 ** *piHash before returning. If the primary key contains one or more NULL 445 ** values, *pbNullPK is set to true before returning. 446 ** 447 ** If an error occurs, an SQLite error code is returned and the final values 448 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 449 ** and the output variables are set as described above. 450 */ 451 static int sessionPreupdateHash( 452 sqlite3_session *pSession, /* Session object that owns pTab */ 453 SessionTable *pTab, /* Session table handle */ 454 int bNew, /* True to hash the new.* PK */ 455 int *piHash, /* OUT: Hash value */ 456 int *pbNullPK /* OUT: True if there are NULL values in PK */ 457 ){ 458 unsigned int h = 0; /* Hash value to return */ 459 int i; /* Used to iterate through columns */ 460 461 assert( *pbNullPK==0 ); 462 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 463 for(i=0; i<pTab->nCol; i++){ 464 if( pTab->abPK[i] ){ 465 int rc; 466 int eType; 467 sqlite3_value *pVal; 468 469 if( bNew ){ 470 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 471 }else{ 472 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 473 } 474 if( rc!=SQLITE_OK ) return rc; 475 476 eType = sqlite3_value_type(pVal); 477 h = sessionHashAppendType(h, eType); 478 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 479 i64 iVal; 480 if( eType==SQLITE_INTEGER ){ 481 iVal = sqlite3_value_int64(pVal); 482 }else{ 483 double rVal = sqlite3_value_double(pVal); 484 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 485 memcpy(&iVal, &rVal, 8); 486 } 487 h = sessionHashAppendI64(h, iVal); 488 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 489 const u8 *z; 490 int n; 491 if( eType==SQLITE_TEXT ){ 492 z = (const u8 *)sqlite3_value_text(pVal); 493 }else{ 494 z = (const u8 *)sqlite3_value_blob(pVal); 495 } 496 n = sqlite3_value_bytes(pVal); 497 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 498 h = sessionHashAppendBlob(h, n, z); 499 }else{ 500 assert( eType==SQLITE_NULL ); 501 assert( pTab->bStat1==0 || i!=1 ); 502 *pbNullPK = 1; 503 } 504 } 505 } 506 507 *piHash = (h % pTab->nChange); 508 return SQLITE_OK; 509 } 510 511 /* 512 ** The buffer that the argument points to contains a serialized SQL value. 513 ** Return the number of bytes of space occupied by the value (including 514 ** the type byte). 515 */ 516 static int sessionSerialLen(u8 *a){ 517 int e = *a; 518 int n; 519 if( e==0 || e==0xFF ) return 1; 520 if( e==SQLITE_NULL ) return 1; 521 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 522 return sessionVarintGet(&a[1], &n) + 1 + n; 523 } 524 525 /* 526 ** Based on the primary key values stored in change aRecord, calculate a 527 ** hash key. Assume the has table has nBucket buckets. The hash keys 528 ** calculated by this function are compatible with those calculated by 529 ** sessionPreupdateHash(). 530 ** 531 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 532 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 533 */ 534 static unsigned int sessionChangeHash( 535 SessionTable *pTab, /* Table handle */ 536 int bPkOnly, /* Record consists of PK fields only */ 537 u8 *aRecord, /* Change record */ 538 int nBucket /* Assume this many buckets in hash table */ 539 ){ 540 unsigned int h = 0; /* Value to return */ 541 int i; /* Used to iterate through columns */ 542 u8 *a = aRecord; /* Used to iterate through change record */ 543 544 for(i=0; i<pTab->nCol; i++){ 545 int eType = *a; 546 int isPK = pTab->abPK[i]; 547 if( bPkOnly && isPK==0 ) continue; 548 549 /* It is not possible for eType to be SQLITE_NULL here. The session 550 ** module does not record changes for rows with NULL values stored in 551 ** primary key columns. */ 552 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 553 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 554 || eType==SQLITE_NULL || eType==0 555 ); 556 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 557 558 if( isPK ){ 559 a++; 560 h = sessionHashAppendType(h, eType); 561 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 562 h = sessionHashAppendI64(h, sessionGetI64(a)); 563 a += 8; 564 }else{ 565 int n; 566 a += sessionVarintGet(a, &n); 567 h = sessionHashAppendBlob(h, n, a); 568 a += n; 569 } 570 }else{ 571 a += sessionSerialLen(a); 572 } 573 } 574 return (h % nBucket); 575 } 576 577 /* 578 ** Arguments aLeft and aRight are pointers to change records for table pTab. 579 ** This function returns true if the two records apply to the same row (i.e. 580 ** have the same values stored in the primary key columns), or false 581 ** otherwise. 582 */ 583 static int sessionChangeEqual( 584 SessionTable *pTab, /* Table used for PK definition */ 585 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 586 u8 *aLeft, /* Change record */ 587 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 588 u8 *aRight /* Change record */ 589 ){ 590 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 591 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 592 int iCol; /* Used to iterate through table columns */ 593 594 for(iCol=0; iCol<pTab->nCol; iCol++){ 595 if( pTab->abPK[iCol] ){ 596 int n1 = sessionSerialLen(a1); 597 int n2 = sessionSerialLen(a2); 598 599 if( n1!=n2 || memcmp(a1, a2, n1) ){ 600 return 0; 601 } 602 a1 += n1; 603 a2 += n2; 604 }else{ 605 if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1); 606 if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2); 607 } 608 } 609 610 return 1; 611 } 612 613 /* 614 ** Arguments aLeft and aRight both point to buffers containing change 615 ** records with nCol columns. This function "merges" the two records into 616 ** a single records which is written to the buffer at *paOut. *paOut is 617 ** then set to point to one byte after the last byte written before 618 ** returning. 619 ** 620 ** The merging of records is done as follows: For each column, if the 621 ** aRight record contains a value for the column, copy the value from 622 ** their. Otherwise, if aLeft contains a value, copy it. If neither 623 ** record contains a value for a given column, then neither does the 624 ** output record. 625 */ 626 static void sessionMergeRecord( 627 u8 **paOut, 628 int nCol, 629 u8 *aLeft, 630 u8 *aRight 631 ){ 632 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 633 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 634 u8 *aOut = *paOut; /* Output cursor */ 635 int iCol; /* Used to iterate from 0 to nCol */ 636 637 for(iCol=0; iCol<nCol; iCol++){ 638 int n1 = sessionSerialLen(a1); 639 int n2 = sessionSerialLen(a2); 640 if( *a2 ){ 641 memcpy(aOut, a2, n2); 642 aOut += n2; 643 }else{ 644 memcpy(aOut, a1, n1); 645 aOut += n1; 646 } 647 a1 += n1; 648 a2 += n2; 649 } 650 651 *paOut = aOut; 652 } 653 654 /* 655 ** This is a helper function used by sessionMergeUpdate(). 656 ** 657 ** When this function is called, both *paOne and *paTwo point to a value 658 ** within a change record. Before it returns, both have been advanced so 659 ** as to point to the next value in the record. 660 ** 661 ** If, when this function is called, *paTwo points to a valid value (i.e. 662 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 663 ** pointer is returned and *pnVal is set to the number of bytes in the 664 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 665 ** set to the number of bytes in the value at *paOne. If *paOne points 666 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 667 ** 668 ** if( *paTwo is valid ) return *paTwo; 669 ** return *paOne; 670 ** 671 */ 672 static u8 *sessionMergeValue( 673 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 674 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 675 int *pnVal /* OUT: Bytes in returned value */ 676 ){ 677 u8 *a1 = *paOne; 678 u8 *a2 = *paTwo; 679 u8 *pRet = 0; 680 int n1; 681 682 assert( a1 ); 683 if( a2 ){ 684 int n2 = sessionSerialLen(a2); 685 if( *a2 ){ 686 *pnVal = n2; 687 pRet = a2; 688 } 689 *paTwo = &a2[n2]; 690 } 691 692 n1 = sessionSerialLen(a1); 693 if( pRet==0 ){ 694 *pnVal = n1; 695 pRet = a1; 696 } 697 *paOne = &a1[n1]; 698 699 return pRet; 700 } 701 702 /* 703 ** This function is used by changeset_concat() to merge two UPDATE changes 704 ** on the same row. 705 */ 706 static int sessionMergeUpdate( 707 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 708 SessionTable *pTab, /* Table change pertains to */ 709 int bPatchset, /* True if records are patchset records */ 710 u8 *aOldRecord1, /* old.* record for first change */ 711 u8 *aOldRecord2, /* old.* record for second change */ 712 u8 *aNewRecord1, /* new.* record for first change */ 713 u8 *aNewRecord2 /* new.* record for second change */ 714 ){ 715 u8 *aOld1 = aOldRecord1; 716 u8 *aOld2 = aOldRecord2; 717 u8 *aNew1 = aNewRecord1; 718 u8 *aNew2 = aNewRecord2; 719 720 u8 *aOut = *paOut; 721 int i; 722 723 if( bPatchset==0 ){ 724 int bRequired = 0; 725 726 assert( aOldRecord1 && aNewRecord1 ); 727 728 /* Write the old.* vector first. */ 729 for(i=0; i<pTab->nCol; i++){ 730 int nOld; 731 u8 *aOld; 732 int nNew; 733 u8 *aNew; 734 735 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 736 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 737 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 738 if( pTab->abPK[i]==0 ) bRequired = 1; 739 memcpy(aOut, aOld, nOld); 740 aOut += nOld; 741 }else{ 742 *(aOut++) = '\0'; 743 } 744 } 745 746 if( !bRequired ) return 0; 747 } 748 749 /* Write the new.* vector */ 750 aOld1 = aOldRecord1; 751 aOld2 = aOldRecord2; 752 aNew1 = aNewRecord1; 753 aNew2 = aNewRecord2; 754 for(i=0; i<pTab->nCol; i++){ 755 int nOld; 756 u8 *aOld; 757 int nNew; 758 u8 *aNew; 759 760 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 761 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 762 if( bPatchset==0 763 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 764 ){ 765 *(aOut++) = '\0'; 766 }else{ 767 memcpy(aOut, aNew, nNew); 768 aOut += nNew; 769 } 770 } 771 772 *paOut = aOut; 773 return 1; 774 } 775 776 /* 777 ** This function is only called from within a pre-update-hook callback. 778 ** It determines if the current pre-update-hook change affects the same row 779 ** as the change stored in argument pChange. If so, it returns true. Otherwise 780 ** if the pre-update-hook does not affect the same row as pChange, it returns 781 ** false. 782 */ 783 static int sessionPreupdateEqual( 784 sqlite3_session *pSession, /* Session object that owns SessionTable */ 785 SessionTable *pTab, /* Table associated with change */ 786 SessionChange *pChange, /* Change to compare to */ 787 int op /* Current pre-update operation */ 788 ){ 789 int iCol; /* Used to iterate through columns */ 790 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 791 792 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 793 for(iCol=0; iCol<pTab->nCol; iCol++){ 794 if( !pTab->abPK[iCol] ){ 795 a += sessionSerialLen(a); 796 }else{ 797 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 798 int rc; /* Error code from preupdate_new/old */ 799 int eType = *a++; /* Type of value from change record */ 800 801 /* The following calls to preupdate_new() and preupdate_old() can not 802 ** fail. This is because they cache their return values, and by the 803 ** time control flows to here they have already been called once from 804 ** within sessionPreupdateHash(). The first two asserts below verify 805 ** this (that the method has already been called). */ 806 if( op==SQLITE_INSERT ){ 807 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 808 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 809 }else{ 810 /* assert( db->pPreUpdate->pUnpacked ); */ 811 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 812 } 813 assert( rc==SQLITE_OK ); 814 if( sqlite3_value_type(pVal)!=eType ) return 0; 815 816 /* A SessionChange object never has a NULL value in a PK column */ 817 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 818 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 819 ); 820 821 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 822 i64 iVal = sessionGetI64(a); 823 a += 8; 824 if( eType==SQLITE_INTEGER ){ 825 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 826 }else{ 827 double rVal; 828 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 829 memcpy(&rVal, &iVal, 8); 830 if( sqlite3_value_double(pVal)!=rVal ) return 0; 831 } 832 }else{ 833 int n; 834 const u8 *z; 835 a += sessionVarintGet(a, &n); 836 if( sqlite3_value_bytes(pVal)!=n ) return 0; 837 if( eType==SQLITE_TEXT ){ 838 z = sqlite3_value_text(pVal); 839 }else{ 840 z = sqlite3_value_blob(pVal); 841 } 842 if( n>0 && memcmp(a, z, n) ) return 0; 843 a += n; 844 } 845 } 846 } 847 848 return 1; 849 } 850 851 /* 852 ** If required, grow the hash table used to store changes on table pTab 853 ** (part of the session pSession). If a fatal OOM error occurs, set the 854 ** session object to failed and return SQLITE_ERROR. Otherwise, return 855 ** SQLITE_OK. 856 ** 857 ** It is possible that a non-fatal OOM error occurs in this function. In 858 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 859 ** Growing the hash table in this case is a performance optimization only, 860 ** it is not required for correct operation. 861 */ 862 static int sessionGrowHash(int bPatchset, SessionTable *pTab){ 863 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 864 int i; 865 SessionChange **apNew; 866 int nNew = (pTab->nChange ? pTab->nChange : 128) * 2; 867 868 apNew = (SessionChange **)sqlite3_malloc(sizeof(SessionChange *) * nNew); 869 if( apNew==0 ){ 870 if( pTab->nChange==0 ){ 871 return SQLITE_ERROR; 872 } 873 return SQLITE_OK; 874 } 875 memset(apNew, 0, sizeof(SessionChange *) * nNew); 876 877 for(i=0; i<pTab->nChange; i++){ 878 SessionChange *p; 879 SessionChange *pNext; 880 for(p=pTab->apChange[i]; p; p=pNext){ 881 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 882 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 883 pNext = p->pNext; 884 p->pNext = apNew[iHash]; 885 apNew[iHash] = p; 886 } 887 } 888 889 sqlite3_free(pTab->apChange); 890 pTab->nChange = nNew; 891 pTab->apChange = apNew; 892 } 893 894 return SQLITE_OK; 895 } 896 897 /* 898 ** This function queries the database for the names of the columns of table 899 ** zThis, in schema zDb. 900 ** 901 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 902 ** of columns in the database table and variable *pzTab is set to point to a 903 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 904 ** point to an array of pointers to column names. And *pabPK (again, if not 905 ** NULL) is set to point to an array of booleans - true if the corresponding 906 ** column is part of the primary key. 907 ** 908 ** For example, if the table is declared as: 909 ** 910 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 911 ** 912 ** Then the four output variables are populated as follows: 913 ** 914 ** *pnCol = 4 915 ** *pzTab = "tbl1" 916 ** *pazCol = {"w", "x", "y", "z"} 917 ** *pabPK = {1, 0, 0, 1} 918 ** 919 ** All returned buffers are part of the same single allocation, which must 920 ** be freed using sqlite3_free() by the caller 921 */ 922 static int sessionTableInfo( 923 sqlite3 *db, /* Database connection */ 924 const char *zDb, /* Name of attached database (e.g. "main") */ 925 const char *zThis, /* Table name */ 926 int *pnCol, /* OUT: number of columns */ 927 const char **pzTab, /* OUT: Copy of zThis */ 928 const char ***pazCol, /* OUT: Array of column names for table */ 929 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 930 ){ 931 char *zPragma; 932 sqlite3_stmt *pStmt; 933 int rc; 934 int nByte; 935 int nDbCol = 0; 936 int nThis; 937 int i; 938 u8 *pAlloc = 0; 939 char **azCol = 0; 940 u8 *abPK = 0; 941 942 assert( pazCol && pabPK ); 943 944 nThis = sqlite3Strlen30(zThis); 945 if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){ 946 rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0); 947 if( rc==SQLITE_OK ){ 948 /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */ 949 zPragma = sqlite3_mprintf( 950 "SELECT 0, 'tbl', '', 0, '', 1 UNION ALL " 951 "SELECT 1, 'idx', '', 0, '', 2 UNION ALL " 952 "SELECT 2, 'stat', '', 0, '', 0" 953 ); 954 }else if( rc==SQLITE_ERROR ){ 955 zPragma = sqlite3_mprintf(""); 956 }else{ 957 return rc; 958 } 959 }else{ 960 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 961 } 962 if( !zPragma ) return SQLITE_NOMEM; 963 964 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 965 sqlite3_free(zPragma); 966 if( rc!=SQLITE_OK ) return rc; 967 968 nByte = nThis + 1; 969 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 970 nByte += sqlite3_column_bytes(pStmt, 1); 971 nDbCol++; 972 } 973 rc = sqlite3_reset(pStmt); 974 975 if( rc==SQLITE_OK ){ 976 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 977 pAlloc = sqlite3_malloc(nByte); 978 if( pAlloc==0 ){ 979 rc = SQLITE_NOMEM; 980 } 981 } 982 if( rc==SQLITE_OK ){ 983 azCol = (char **)pAlloc; 984 pAlloc = (u8 *)&azCol[nDbCol]; 985 abPK = (u8 *)pAlloc; 986 pAlloc = &abPK[nDbCol]; 987 if( pzTab ){ 988 memcpy(pAlloc, zThis, nThis+1); 989 *pzTab = (char *)pAlloc; 990 pAlloc += nThis+1; 991 } 992 993 i = 0; 994 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 995 int nName = sqlite3_column_bytes(pStmt, 1); 996 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 997 if( zName==0 ) break; 998 memcpy(pAlloc, zName, nName+1); 999 azCol[i] = (char *)pAlloc; 1000 pAlloc += nName+1; 1001 abPK[i] = sqlite3_column_int(pStmt, 5); 1002 i++; 1003 } 1004 rc = sqlite3_reset(pStmt); 1005 1006 } 1007 1008 /* If successful, populate the output variables. Otherwise, zero them and 1009 ** free any allocation made. An error code will be returned in this case. 1010 */ 1011 if( rc==SQLITE_OK ){ 1012 *pazCol = (const char **)azCol; 1013 *pabPK = abPK; 1014 *pnCol = nDbCol; 1015 }else{ 1016 *pazCol = 0; 1017 *pabPK = 0; 1018 *pnCol = 0; 1019 if( pzTab ) *pzTab = 0; 1020 sqlite3_free(azCol); 1021 } 1022 sqlite3_finalize(pStmt); 1023 return rc; 1024 } 1025 1026 /* 1027 ** This function is only called from within a pre-update handler for a 1028 ** write to table pTab, part of session pSession. If this is the first 1029 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1030 ** abPK[] arrays accordingly. 1031 ** 1032 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1033 ** non-zero returned. Or, if no error occurs but the table has no primary 1034 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1035 ** indicate that updates on this table should be ignored. SessionTable.abPK 1036 ** is set to NULL in this case. 1037 */ 1038 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1039 if( pTab->nCol==0 ){ 1040 u8 *abPK; 1041 assert( pTab->azCol==0 || pTab->abPK==0 ); 1042 pSession->rc = sessionTableInfo(pSession->db, pSession->zDb, 1043 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1044 ); 1045 if( pSession->rc==SQLITE_OK ){ 1046 int i; 1047 for(i=0; i<pTab->nCol; i++){ 1048 if( abPK[i] ){ 1049 pTab->abPK = abPK; 1050 break; 1051 } 1052 } 1053 if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){ 1054 pTab->bStat1 = 1; 1055 } 1056 } 1057 } 1058 return (pSession->rc || pTab->abPK==0); 1059 } 1060 1061 /* 1062 ** Versions of the four methods in object SessionHook for use with the 1063 ** sqlite_stat1 table. The purpose of this is to substitute a zero-length 1064 ** blob each time a NULL value is read from the "idx" column of the 1065 ** sqlite_stat1 table. 1066 */ 1067 typedef struct SessionStat1Ctx SessionStat1Ctx; 1068 struct SessionStat1Ctx { 1069 SessionHook hook; 1070 sqlite3_session *pSession; 1071 }; 1072 static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){ 1073 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1074 sqlite3_value *pVal = 0; 1075 int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal); 1076 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1077 pVal = p->pSession->pZeroBlob; 1078 } 1079 *ppVal = pVal; 1080 return rc; 1081 } 1082 static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){ 1083 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1084 sqlite3_value *pVal = 0; 1085 int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal); 1086 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1087 pVal = p->pSession->pZeroBlob; 1088 } 1089 *ppVal = pVal; 1090 return rc; 1091 } 1092 static int sessionStat1Count(void *pCtx){ 1093 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1094 return p->hook.xCount(p->hook.pCtx); 1095 } 1096 static int sessionStat1Depth(void *pCtx){ 1097 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1098 return p->hook.xDepth(p->hook.pCtx); 1099 } 1100 1101 1102 /* 1103 ** This function is only called from with a pre-update-hook reporting a 1104 ** change on table pTab (attached to session pSession). The type of change 1105 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1106 ** 1107 ** Unless one is already present or an error occurs, an entry is added 1108 ** to the changed-rows hash table associated with table pTab. 1109 */ 1110 static void sessionPreupdateOneChange( 1111 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1112 sqlite3_session *pSession, /* Session object pTab is attached to */ 1113 SessionTable *pTab /* Table that change applies to */ 1114 ){ 1115 int iHash; 1116 int bNull = 0; 1117 int rc = SQLITE_OK; 1118 SessionStat1Ctx stat1 = {0}; 1119 1120 if( pSession->rc ) return; 1121 1122 /* Load table details if required */ 1123 if( sessionInitTable(pSession, pTab) ) return; 1124 1125 /* Check the number of columns in this xPreUpdate call matches the 1126 ** number of columns in the table. */ 1127 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1128 pSession->rc = SQLITE_SCHEMA; 1129 return; 1130 } 1131 1132 /* Grow the hash table if required */ 1133 if( sessionGrowHash(0, pTab) ){ 1134 pSession->rc = SQLITE_NOMEM; 1135 return; 1136 } 1137 1138 if( pTab->bStat1 ){ 1139 stat1.hook = pSession->hook; 1140 stat1.pSession = pSession; 1141 pSession->hook.pCtx = (void*)&stat1; 1142 pSession->hook.xNew = sessionStat1New; 1143 pSession->hook.xOld = sessionStat1Old; 1144 pSession->hook.xCount = sessionStat1Count; 1145 pSession->hook.xDepth = sessionStat1Depth; 1146 if( pSession->pZeroBlob==0 ){ 1147 sqlite3_value *p = sqlite3ValueNew(0); 1148 if( p==0 ){ 1149 rc = SQLITE_NOMEM; 1150 goto error_out; 1151 } 1152 sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC); 1153 pSession->pZeroBlob = p; 1154 } 1155 } 1156 1157 /* Calculate the hash-key for this change. If the primary key of the row 1158 ** includes a NULL value, exit early. Such changes are ignored by the 1159 ** session module. */ 1160 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1161 if( rc!=SQLITE_OK ) goto error_out; 1162 1163 if( bNull==0 ){ 1164 /* Search the hash table for an existing record for this row. */ 1165 SessionChange *pC; 1166 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1167 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1168 } 1169 1170 if( pC==0 ){ 1171 /* Create a new change object containing all the old values (if 1172 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1173 ** values (if this is an INSERT). */ 1174 SessionChange *pChange; /* New change object */ 1175 int nByte; /* Number of bytes to allocate */ 1176 int i; /* Used to iterate through columns */ 1177 1178 assert( rc==SQLITE_OK ); 1179 pTab->nEntry++; 1180 1181 /* Figure out how large an allocation is required */ 1182 nByte = sizeof(SessionChange); 1183 for(i=0; i<pTab->nCol; i++){ 1184 sqlite3_value *p = 0; 1185 if( op!=SQLITE_INSERT ){ 1186 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1187 assert( trc==SQLITE_OK ); 1188 }else if( pTab->abPK[i] ){ 1189 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1190 assert( trc==SQLITE_OK ); 1191 } 1192 1193 /* This may fail if SQLite value p contains a utf-16 string that must 1194 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1195 rc = sessionSerializeValue(0, p, &nByte); 1196 if( rc!=SQLITE_OK ) goto error_out; 1197 } 1198 1199 /* Allocate the change object */ 1200 pChange = (SessionChange *)sqlite3_malloc(nByte); 1201 if( !pChange ){ 1202 rc = SQLITE_NOMEM; 1203 goto error_out; 1204 }else{ 1205 memset(pChange, 0, sizeof(SessionChange)); 1206 pChange->aRecord = (u8 *)&pChange[1]; 1207 } 1208 1209 /* Populate the change object. None of the preupdate_old(), 1210 ** preupdate_new() or SerializeValue() calls below may fail as all 1211 ** required values and encodings have already been cached in memory. 1212 ** It is not possible for an OOM to occur in this block. */ 1213 nByte = 0; 1214 for(i=0; i<pTab->nCol; i++){ 1215 sqlite3_value *p = 0; 1216 if( op!=SQLITE_INSERT ){ 1217 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1218 }else if( pTab->abPK[i] ){ 1219 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1220 } 1221 sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte); 1222 } 1223 1224 /* Add the change to the hash-table */ 1225 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1226 pChange->bIndirect = 1; 1227 } 1228 pChange->nRecord = nByte; 1229 pChange->op = op; 1230 pChange->pNext = pTab->apChange[iHash]; 1231 pTab->apChange[iHash] = pChange; 1232 1233 }else if( pC->bIndirect ){ 1234 /* If the existing change is considered "indirect", but this current 1235 ** change is "direct", mark the change object as direct. */ 1236 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1237 && pSession->bIndirect==0 1238 ){ 1239 pC->bIndirect = 0; 1240 } 1241 } 1242 } 1243 1244 /* If an error has occurred, mark the session object as failed. */ 1245 error_out: 1246 if( pTab->bStat1 ){ 1247 pSession->hook = stat1.hook; 1248 } 1249 if( rc!=SQLITE_OK ){ 1250 pSession->rc = rc; 1251 } 1252 } 1253 1254 static int sessionFindTable( 1255 sqlite3_session *pSession, 1256 const char *zName, 1257 SessionTable **ppTab 1258 ){ 1259 int rc = SQLITE_OK; 1260 int nName = sqlite3Strlen30(zName); 1261 SessionTable *pRet; 1262 1263 /* Search for an existing table */ 1264 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1265 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1266 } 1267 1268 if( pRet==0 && pSession->bAutoAttach ){ 1269 /* If there is a table-filter configured, invoke it. If it returns 0, 1270 ** do not automatically add the new table. */ 1271 if( pSession->xTableFilter==0 1272 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1273 ){ 1274 rc = sqlite3session_attach(pSession, zName); 1275 if( rc==SQLITE_OK ){ 1276 for(pRet=pSession->pTable; pRet->pNext; pRet=pRet->pNext); 1277 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1278 } 1279 } 1280 } 1281 1282 assert( rc==SQLITE_OK || pRet==0 ); 1283 *ppTab = pRet; 1284 return rc; 1285 } 1286 1287 /* 1288 ** The 'pre-update' hook registered by this module with SQLite databases. 1289 */ 1290 static void xPreUpdate( 1291 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1292 sqlite3 *db, /* Database handle */ 1293 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1294 char const *zDb, /* Database name */ 1295 char const *zName, /* Table name */ 1296 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1297 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1298 ){ 1299 sqlite3_session *pSession; 1300 int nDb = sqlite3Strlen30(zDb); 1301 1302 assert( sqlite3_mutex_held(db->mutex) ); 1303 1304 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1305 SessionTable *pTab; 1306 1307 /* If this session is attached to a different database ("main", "temp" 1308 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1309 ** to the next session object attached to this database. */ 1310 if( pSession->bEnable==0 ) continue; 1311 if( pSession->rc ) continue; 1312 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1313 1314 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1315 if( pTab ){ 1316 assert( pSession->rc==SQLITE_OK ); 1317 sessionPreupdateOneChange(op, pSession, pTab); 1318 if( op==SQLITE_UPDATE ){ 1319 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1320 } 1321 } 1322 } 1323 } 1324 1325 /* 1326 ** The pre-update hook implementations. 1327 */ 1328 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1329 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1330 } 1331 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1332 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1333 } 1334 static int sessionPreupdateCount(void *pCtx){ 1335 return sqlite3_preupdate_count((sqlite3*)pCtx); 1336 } 1337 static int sessionPreupdateDepth(void *pCtx){ 1338 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1339 } 1340 1341 /* 1342 ** Install the pre-update hooks on the session object passed as the only 1343 ** argument. 1344 */ 1345 static void sessionPreupdateHooks( 1346 sqlite3_session *pSession 1347 ){ 1348 pSession->hook.pCtx = (void*)pSession->db; 1349 pSession->hook.xOld = sessionPreupdateOld; 1350 pSession->hook.xNew = sessionPreupdateNew; 1351 pSession->hook.xCount = sessionPreupdateCount; 1352 pSession->hook.xDepth = sessionPreupdateDepth; 1353 } 1354 1355 typedef struct SessionDiffCtx SessionDiffCtx; 1356 struct SessionDiffCtx { 1357 sqlite3_stmt *pStmt; 1358 int nOldOff; 1359 }; 1360 1361 /* 1362 ** The diff hook implementations. 1363 */ 1364 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1365 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1366 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1367 return SQLITE_OK; 1368 } 1369 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1370 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1371 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1372 return SQLITE_OK; 1373 } 1374 static int sessionDiffCount(void *pCtx){ 1375 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1376 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1377 } 1378 static int sessionDiffDepth(void *pCtx){ 1379 return 0; 1380 } 1381 1382 /* 1383 ** Install the diff hooks on the session object passed as the only 1384 ** argument. 1385 */ 1386 static void sessionDiffHooks( 1387 sqlite3_session *pSession, 1388 SessionDiffCtx *pDiffCtx 1389 ){ 1390 pSession->hook.pCtx = (void*)pDiffCtx; 1391 pSession->hook.xOld = sessionDiffOld; 1392 pSession->hook.xNew = sessionDiffNew; 1393 pSession->hook.xCount = sessionDiffCount; 1394 pSession->hook.xDepth = sessionDiffDepth; 1395 } 1396 1397 static char *sessionExprComparePK( 1398 int nCol, 1399 const char *zDb1, const char *zDb2, 1400 const char *zTab, 1401 const char **azCol, u8 *abPK 1402 ){ 1403 int i; 1404 const char *zSep = ""; 1405 char *zRet = 0; 1406 1407 for(i=0; i<nCol; i++){ 1408 if( abPK[i] ){ 1409 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1410 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1411 ); 1412 zSep = " AND "; 1413 if( zRet==0 ) break; 1414 } 1415 } 1416 1417 return zRet; 1418 } 1419 1420 static char *sessionExprCompareOther( 1421 int nCol, 1422 const char *zDb1, const char *zDb2, 1423 const char *zTab, 1424 const char **azCol, u8 *abPK 1425 ){ 1426 int i; 1427 const char *zSep = ""; 1428 char *zRet = 0; 1429 int bHave = 0; 1430 1431 for(i=0; i<nCol; i++){ 1432 if( abPK[i]==0 ){ 1433 bHave = 1; 1434 zRet = sqlite3_mprintf( 1435 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1436 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1437 ); 1438 zSep = " OR "; 1439 if( zRet==0 ) break; 1440 } 1441 } 1442 1443 if( bHave==0 ){ 1444 assert( zRet==0 ); 1445 zRet = sqlite3_mprintf("0"); 1446 } 1447 1448 return zRet; 1449 } 1450 1451 static char *sessionSelectFindNew( 1452 int nCol, 1453 const char *zDb1, /* Pick rows in this db only */ 1454 const char *zDb2, /* But not in this one */ 1455 const char *zTbl, /* Table name */ 1456 const char *zExpr 1457 ){ 1458 char *zRet = sqlite3_mprintf( 1459 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1460 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1461 ")", 1462 zDb1, zTbl, zDb2, zTbl, zExpr 1463 ); 1464 return zRet; 1465 } 1466 1467 static int sessionDiffFindNew( 1468 int op, 1469 sqlite3_session *pSession, 1470 SessionTable *pTab, 1471 const char *zDb1, 1472 const char *zDb2, 1473 char *zExpr 1474 ){ 1475 int rc = SQLITE_OK; 1476 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1477 1478 if( zStmt==0 ){ 1479 rc = SQLITE_NOMEM; 1480 }else{ 1481 sqlite3_stmt *pStmt; 1482 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1483 if( rc==SQLITE_OK ){ 1484 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1485 pDiffCtx->pStmt = pStmt; 1486 pDiffCtx->nOldOff = 0; 1487 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1488 sessionPreupdateOneChange(op, pSession, pTab); 1489 } 1490 rc = sqlite3_finalize(pStmt); 1491 } 1492 sqlite3_free(zStmt); 1493 } 1494 1495 return rc; 1496 } 1497 1498 static int sessionDiffFindModified( 1499 sqlite3_session *pSession, 1500 SessionTable *pTab, 1501 const char *zFrom, 1502 const char *zExpr 1503 ){ 1504 int rc = SQLITE_OK; 1505 1506 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1507 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1508 ); 1509 if( zExpr2==0 ){ 1510 rc = SQLITE_NOMEM; 1511 }else{ 1512 char *zStmt = sqlite3_mprintf( 1513 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1514 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1515 ); 1516 if( zStmt==0 ){ 1517 rc = SQLITE_NOMEM; 1518 }else{ 1519 sqlite3_stmt *pStmt; 1520 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1521 1522 if( rc==SQLITE_OK ){ 1523 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1524 pDiffCtx->pStmt = pStmt; 1525 pDiffCtx->nOldOff = pTab->nCol; 1526 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1527 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1528 } 1529 rc = sqlite3_finalize(pStmt); 1530 } 1531 sqlite3_free(zStmt); 1532 } 1533 } 1534 1535 return rc; 1536 } 1537 1538 int sqlite3session_diff( 1539 sqlite3_session *pSession, 1540 const char *zFrom, 1541 const char *zTbl, 1542 char **pzErrMsg 1543 ){ 1544 const char *zDb = pSession->zDb; 1545 int rc = pSession->rc; 1546 SessionDiffCtx d; 1547 1548 memset(&d, 0, sizeof(d)); 1549 sessionDiffHooks(pSession, &d); 1550 1551 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1552 if( pzErrMsg ) *pzErrMsg = 0; 1553 if( rc==SQLITE_OK ){ 1554 char *zExpr = 0; 1555 sqlite3 *db = pSession->db; 1556 SessionTable *pTo; /* Table zTbl */ 1557 1558 /* Locate and if necessary initialize the target table object */ 1559 rc = sessionFindTable(pSession, zTbl, &pTo); 1560 if( pTo==0 ) goto diff_out; 1561 if( sessionInitTable(pSession, pTo) ){ 1562 rc = pSession->rc; 1563 goto diff_out; 1564 } 1565 1566 /* Check the table schemas match */ 1567 if( rc==SQLITE_OK ){ 1568 int bHasPk = 0; 1569 int bMismatch = 0; 1570 int nCol; /* Columns in zFrom.zTbl */ 1571 u8 *abPK; 1572 const char **azCol = 0; 1573 rc = sessionTableInfo(db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1574 if( rc==SQLITE_OK ){ 1575 if( pTo->nCol!=nCol ){ 1576 bMismatch = 1; 1577 }else{ 1578 int i; 1579 for(i=0; i<nCol; i++){ 1580 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1581 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1582 if( abPK[i] ) bHasPk = 1; 1583 } 1584 } 1585 } 1586 sqlite3_free((char*)azCol); 1587 if( bMismatch ){ 1588 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1589 rc = SQLITE_SCHEMA; 1590 } 1591 if( bHasPk==0 ){ 1592 /* Ignore tables with no primary keys */ 1593 goto diff_out; 1594 } 1595 } 1596 1597 if( rc==SQLITE_OK ){ 1598 zExpr = sessionExprComparePK(pTo->nCol, 1599 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1600 ); 1601 } 1602 1603 /* Find new rows */ 1604 if( rc==SQLITE_OK ){ 1605 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1606 } 1607 1608 /* Find old rows */ 1609 if( rc==SQLITE_OK ){ 1610 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1611 } 1612 1613 /* Find modified rows */ 1614 if( rc==SQLITE_OK ){ 1615 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1616 } 1617 1618 sqlite3_free(zExpr); 1619 } 1620 1621 diff_out: 1622 sessionPreupdateHooks(pSession); 1623 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1624 return rc; 1625 } 1626 1627 /* 1628 ** Create a session object. This session object will record changes to 1629 ** database zDb attached to connection db. 1630 */ 1631 int sqlite3session_create( 1632 sqlite3 *db, /* Database handle */ 1633 const char *zDb, /* Name of db (e.g. "main") */ 1634 sqlite3_session **ppSession /* OUT: New session object */ 1635 ){ 1636 sqlite3_session *pNew; /* Newly allocated session object */ 1637 sqlite3_session *pOld; /* Session object already attached to db */ 1638 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1639 1640 /* Zero the output value in case an error occurs. */ 1641 *ppSession = 0; 1642 1643 /* Allocate and populate the new session object. */ 1644 pNew = (sqlite3_session *)sqlite3_malloc(sizeof(sqlite3_session) + nDb + 1); 1645 if( !pNew ) return SQLITE_NOMEM; 1646 memset(pNew, 0, sizeof(sqlite3_session)); 1647 pNew->db = db; 1648 pNew->zDb = (char *)&pNew[1]; 1649 pNew->bEnable = 1; 1650 memcpy(pNew->zDb, zDb, nDb+1); 1651 sessionPreupdateHooks(pNew); 1652 1653 /* Add the new session object to the linked list of session objects 1654 ** attached to database handle $db. Do this under the cover of the db 1655 ** handle mutex. */ 1656 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1657 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1658 pNew->pNext = pOld; 1659 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1660 1661 *ppSession = pNew; 1662 return SQLITE_OK; 1663 } 1664 1665 /* 1666 ** Free the list of table objects passed as the first argument. The contents 1667 ** of the changed-rows hash tables are also deleted. 1668 */ 1669 static void sessionDeleteTable(SessionTable *pList){ 1670 SessionTable *pNext; 1671 SessionTable *pTab; 1672 1673 for(pTab=pList; pTab; pTab=pNext){ 1674 int i; 1675 pNext = pTab->pNext; 1676 for(i=0; i<pTab->nChange; i++){ 1677 SessionChange *p; 1678 SessionChange *pNextChange; 1679 for(p=pTab->apChange[i]; p; p=pNextChange){ 1680 pNextChange = p->pNext; 1681 sqlite3_free(p); 1682 } 1683 } 1684 sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */ 1685 sqlite3_free(pTab->apChange); 1686 sqlite3_free(pTab); 1687 } 1688 } 1689 1690 /* 1691 ** Delete a session object previously allocated using sqlite3session_create(). 1692 */ 1693 void sqlite3session_delete(sqlite3_session *pSession){ 1694 sqlite3 *db = pSession->db; 1695 sqlite3_session *pHead; 1696 sqlite3_session **pp; 1697 1698 /* Unlink the session from the linked list of sessions attached to the 1699 ** database handle. Hold the db mutex while doing so. */ 1700 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1701 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1702 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1703 if( (*pp)==pSession ){ 1704 *pp = (*pp)->pNext; 1705 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1706 break; 1707 } 1708 } 1709 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1710 sqlite3ValueFree(pSession->pZeroBlob); 1711 1712 /* Delete all attached table objects. And the contents of their 1713 ** associated hash-tables. */ 1714 sessionDeleteTable(pSession->pTable); 1715 1716 /* Free the session object itself. */ 1717 sqlite3_free(pSession); 1718 } 1719 1720 /* 1721 ** Set a table filter on a Session Object. 1722 */ 1723 void sqlite3session_table_filter( 1724 sqlite3_session *pSession, 1725 int(*xFilter)(void*, const char*), 1726 void *pCtx /* First argument passed to xFilter */ 1727 ){ 1728 pSession->bAutoAttach = 1; 1729 pSession->pFilterCtx = pCtx; 1730 pSession->xTableFilter = xFilter; 1731 } 1732 1733 /* 1734 ** Attach a table to a session. All subsequent changes made to the table 1735 ** while the session object is enabled will be recorded. 1736 ** 1737 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1738 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1739 ** or not. 1740 */ 1741 int sqlite3session_attach( 1742 sqlite3_session *pSession, /* Session object */ 1743 const char *zName /* Table name */ 1744 ){ 1745 int rc = SQLITE_OK; 1746 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1747 1748 if( !zName ){ 1749 pSession->bAutoAttach = 1; 1750 }else{ 1751 SessionTable *pTab; /* New table object (if required) */ 1752 int nName; /* Number of bytes in string zName */ 1753 1754 /* First search for an existing entry. If one is found, this call is 1755 ** a no-op. Return early. */ 1756 nName = sqlite3Strlen30(zName); 1757 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1758 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1759 } 1760 1761 if( !pTab ){ 1762 /* Allocate new SessionTable object. */ 1763 pTab = (SessionTable *)sqlite3_malloc(sizeof(SessionTable) + nName + 1); 1764 if( !pTab ){ 1765 rc = SQLITE_NOMEM; 1766 }else{ 1767 /* Populate the new SessionTable object and link it into the list. 1768 ** The new object must be linked onto the end of the list, not 1769 ** simply added to the start of it in order to ensure that tables 1770 ** appear in the correct order when a changeset or patchset is 1771 ** eventually generated. */ 1772 SessionTable **ppTab; 1773 memset(pTab, 0, sizeof(SessionTable)); 1774 pTab->zName = (char *)&pTab[1]; 1775 memcpy(pTab->zName, zName, nName+1); 1776 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1777 *ppTab = pTab; 1778 } 1779 } 1780 } 1781 1782 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1783 return rc; 1784 } 1785 1786 /* 1787 ** Ensure that there is room in the buffer to append nByte bytes of data. 1788 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1789 ** 1790 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1791 ** set *pRc to SQLITE_NOMEM and return non-zero. 1792 */ 1793 static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ 1794 if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ 1795 u8 *aNew; 1796 int nNew = p->nAlloc ? p->nAlloc : 128; 1797 do { 1798 nNew = nNew*2; 1799 }while( nNew<(p->nBuf+nByte) ); 1800 1801 aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew); 1802 if( 0==aNew ){ 1803 *pRc = SQLITE_NOMEM; 1804 }else{ 1805 p->aBuf = aNew; 1806 p->nAlloc = nNew; 1807 } 1808 } 1809 return (*pRc!=SQLITE_OK); 1810 } 1811 1812 /* 1813 ** Append the value passed as the second argument to the buffer passed 1814 ** as the first. 1815 ** 1816 ** This function is a no-op if *pRc is non-zero when it is called. 1817 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 1818 ** before returning. 1819 */ 1820 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 1821 int rc = *pRc; 1822 if( rc==SQLITE_OK ){ 1823 int nByte = 0; 1824 rc = sessionSerializeValue(0, pVal, &nByte); 1825 sessionBufferGrow(p, nByte, &rc); 1826 if( rc==SQLITE_OK ){ 1827 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 1828 p->nBuf += nByte; 1829 }else{ 1830 *pRc = rc; 1831 } 1832 } 1833 } 1834 1835 /* 1836 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1837 ** called. Otherwise, append a single byte to the buffer. 1838 ** 1839 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1840 ** returning. 1841 */ 1842 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 1843 if( 0==sessionBufferGrow(p, 1, pRc) ){ 1844 p->aBuf[p->nBuf++] = v; 1845 } 1846 } 1847 1848 /* 1849 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1850 ** called. Otherwise, append a single varint to the buffer. 1851 ** 1852 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1853 ** returning. 1854 */ 1855 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 1856 if( 0==sessionBufferGrow(p, 9, pRc) ){ 1857 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 1858 } 1859 } 1860 1861 /* 1862 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1863 ** called. Otherwise, append a blob of data to the buffer. 1864 ** 1865 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1866 ** returning. 1867 */ 1868 static void sessionAppendBlob( 1869 SessionBuffer *p, 1870 const u8 *aBlob, 1871 int nBlob, 1872 int *pRc 1873 ){ 1874 if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){ 1875 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 1876 p->nBuf += nBlob; 1877 } 1878 } 1879 1880 /* 1881 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1882 ** called. Otherwise, append a string to the buffer. All bytes in the string 1883 ** up to (but not including) the nul-terminator are written to the buffer. 1884 ** 1885 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1886 ** returning. 1887 */ 1888 static void sessionAppendStr( 1889 SessionBuffer *p, 1890 const char *zStr, 1891 int *pRc 1892 ){ 1893 int nStr = sqlite3Strlen30(zStr); 1894 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1895 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 1896 p->nBuf += nStr; 1897 } 1898 } 1899 1900 /* 1901 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1902 ** called. Otherwise, append the string representation of integer iVal 1903 ** to the buffer. No nul-terminator is written. 1904 ** 1905 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1906 ** returning. 1907 */ 1908 static void sessionAppendInteger( 1909 SessionBuffer *p, /* Buffer to append to */ 1910 int iVal, /* Value to write the string rep. of */ 1911 int *pRc /* IN/OUT: Error code */ 1912 ){ 1913 char aBuf[24]; 1914 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 1915 sessionAppendStr(p, aBuf, pRc); 1916 } 1917 1918 /* 1919 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1920 ** called. Otherwise, append the string zStr enclosed in quotes (") and 1921 ** with any embedded quote characters escaped to the buffer. No 1922 ** nul-terminator byte is written. 1923 ** 1924 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1925 ** returning. 1926 */ 1927 static void sessionAppendIdent( 1928 SessionBuffer *p, /* Buffer to a append to */ 1929 const char *zStr, /* String to quote, escape and append */ 1930 int *pRc /* IN/OUT: Error code */ 1931 ){ 1932 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 1933 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1934 char *zOut = (char *)&p->aBuf[p->nBuf]; 1935 const char *zIn = zStr; 1936 *zOut++ = '"'; 1937 while( *zIn ){ 1938 if( *zIn=='"' ) *zOut++ = '"'; 1939 *zOut++ = *(zIn++); 1940 } 1941 *zOut++ = '"'; 1942 p->nBuf = (int)((u8 *)zOut - p->aBuf); 1943 } 1944 } 1945 1946 /* 1947 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1948 ** called. Otherwse, it appends the serialized version of the value stored 1949 ** in column iCol of the row that SQL statement pStmt currently points 1950 ** to to the buffer. 1951 */ 1952 static void sessionAppendCol( 1953 SessionBuffer *p, /* Buffer to append to */ 1954 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 1955 int iCol, /* Column to read value from */ 1956 int *pRc /* IN/OUT: Error code */ 1957 ){ 1958 if( *pRc==SQLITE_OK ){ 1959 int eType = sqlite3_column_type(pStmt, iCol); 1960 sessionAppendByte(p, (u8)eType, pRc); 1961 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1962 sqlite3_int64 i; 1963 u8 aBuf[8]; 1964 if( eType==SQLITE_INTEGER ){ 1965 i = sqlite3_column_int64(pStmt, iCol); 1966 }else{ 1967 double r = sqlite3_column_double(pStmt, iCol); 1968 memcpy(&i, &r, 8); 1969 } 1970 sessionPutI64(aBuf, i); 1971 sessionAppendBlob(p, aBuf, 8, pRc); 1972 } 1973 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 1974 u8 *z; 1975 int nByte; 1976 if( eType==SQLITE_BLOB ){ 1977 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 1978 }else{ 1979 z = (u8 *)sqlite3_column_text(pStmt, iCol); 1980 } 1981 nByte = sqlite3_column_bytes(pStmt, iCol); 1982 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 1983 sessionAppendVarint(p, nByte, pRc); 1984 sessionAppendBlob(p, z, nByte, pRc); 1985 }else{ 1986 *pRc = SQLITE_NOMEM; 1987 } 1988 } 1989 } 1990 } 1991 1992 /* 1993 ** 1994 ** This function appends an update change to the buffer (see the comments 1995 ** under "CHANGESET FORMAT" at the top of the file). An update change 1996 ** consists of: 1997 ** 1998 ** 1 byte: SQLITE_UPDATE (0x17) 1999 ** n bytes: old.* record (see RECORD FORMAT) 2000 ** m bytes: new.* record (see RECORD FORMAT) 2001 ** 2002 ** The SessionChange object passed as the third argument contains the 2003 ** values that were stored in the row when the session began (the old.* 2004 ** values). The statement handle passed as the second argument points 2005 ** at the current version of the row (the new.* values). 2006 ** 2007 ** If all of the old.* values are equal to their corresponding new.* value 2008 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 2009 ** 2010 ** Otherwise, the old.* record contains all primary key values and the 2011 ** original values of any fields that have been modified. The new.* record 2012 ** contains the new values of only those fields that have been modified. 2013 */ 2014 static int sessionAppendUpdate( 2015 SessionBuffer *pBuf, /* Buffer to append to */ 2016 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2017 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 2018 SessionChange *p, /* Object containing old values */ 2019 u8 *abPK /* Boolean array - true for PK columns */ 2020 ){ 2021 int rc = SQLITE_OK; 2022 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 2023 int bNoop = 1; /* Set to zero if any values are modified */ 2024 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 2025 int i; /* Used to iterate through columns */ 2026 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 2027 2028 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 2029 sessionAppendByte(pBuf, p->bIndirect, &rc); 2030 for(i=0; i<sqlite3_column_count(pStmt); i++){ 2031 int bChanged = 0; 2032 int nAdvance; 2033 int eType = *pCsr; 2034 switch( eType ){ 2035 case SQLITE_NULL: 2036 nAdvance = 1; 2037 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 2038 bChanged = 1; 2039 } 2040 break; 2041 2042 case SQLITE_FLOAT: 2043 case SQLITE_INTEGER: { 2044 nAdvance = 9; 2045 if( eType==sqlite3_column_type(pStmt, i) ){ 2046 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 2047 if( eType==SQLITE_INTEGER ){ 2048 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 2049 }else{ 2050 double dVal; 2051 memcpy(&dVal, &iVal, 8); 2052 if( dVal==sqlite3_column_double(pStmt, i) ) break; 2053 } 2054 } 2055 bChanged = 1; 2056 break; 2057 } 2058 2059 default: { 2060 int n; 2061 int nHdr = 1 + sessionVarintGet(&pCsr[1], &n); 2062 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2063 nAdvance = nHdr + n; 2064 if( eType==sqlite3_column_type(pStmt, i) 2065 && n==sqlite3_column_bytes(pStmt, i) 2066 && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n)) 2067 ){ 2068 break; 2069 } 2070 bChanged = 1; 2071 } 2072 } 2073 2074 /* If at least one field has been modified, this is not a no-op. */ 2075 if( bChanged ) bNoop = 0; 2076 2077 /* Add a field to the old.* record. This is omitted if this modules is 2078 ** currently generating a patchset. */ 2079 if( bPatchset==0 ){ 2080 if( bChanged || abPK[i] ){ 2081 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 2082 }else{ 2083 sessionAppendByte(pBuf, 0, &rc); 2084 } 2085 } 2086 2087 /* Add a field to the new.* record. Or the only record if currently 2088 ** generating a patchset. */ 2089 if( bChanged || (bPatchset && abPK[i]) ){ 2090 sessionAppendCol(&buf2, pStmt, i, &rc); 2091 }else{ 2092 sessionAppendByte(&buf2, 0, &rc); 2093 } 2094 2095 pCsr += nAdvance; 2096 } 2097 2098 if( bNoop ){ 2099 pBuf->nBuf = nRewind; 2100 }else{ 2101 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2102 } 2103 sqlite3_free(buf2.aBuf); 2104 2105 return rc; 2106 } 2107 2108 /* 2109 ** Append a DELETE change to the buffer passed as the first argument. Use 2110 ** the changeset format if argument bPatchset is zero, or the patchset 2111 ** format otherwise. 2112 */ 2113 static int sessionAppendDelete( 2114 SessionBuffer *pBuf, /* Buffer to append to */ 2115 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2116 SessionChange *p, /* Object containing old values */ 2117 int nCol, /* Number of columns in table */ 2118 u8 *abPK /* Boolean array - true for PK columns */ 2119 ){ 2120 int rc = SQLITE_OK; 2121 2122 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2123 sessionAppendByte(pBuf, p->bIndirect, &rc); 2124 2125 if( bPatchset==0 ){ 2126 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2127 }else{ 2128 int i; 2129 u8 *a = p->aRecord; 2130 for(i=0; i<nCol; i++){ 2131 u8 *pStart = a; 2132 int eType = *a++; 2133 2134 switch( eType ){ 2135 case 0: 2136 case SQLITE_NULL: 2137 assert( abPK[i]==0 ); 2138 break; 2139 2140 case SQLITE_FLOAT: 2141 case SQLITE_INTEGER: 2142 a += 8; 2143 break; 2144 2145 default: { 2146 int n; 2147 a += sessionVarintGet(a, &n); 2148 a += n; 2149 break; 2150 } 2151 } 2152 if( abPK[i] ){ 2153 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2154 } 2155 } 2156 assert( (a - p->aRecord)==p->nRecord ); 2157 } 2158 2159 return rc; 2160 } 2161 2162 /* 2163 ** Formulate and prepare a SELECT statement to retrieve a row from table 2164 ** zTab in database zDb based on its primary key. i.e. 2165 ** 2166 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2167 */ 2168 static int sessionSelectStmt( 2169 sqlite3 *db, /* Database handle */ 2170 const char *zDb, /* Database name */ 2171 const char *zTab, /* Table name */ 2172 int nCol, /* Number of columns in table */ 2173 const char **azCol, /* Names of table columns */ 2174 u8 *abPK, /* PRIMARY KEY array */ 2175 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2176 ){ 2177 int rc = SQLITE_OK; 2178 char *zSql = 0; 2179 int nSql = -1; 2180 2181 if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){ 2182 zSql = sqlite3_mprintf( 2183 "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND " 2184 "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb 2185 ); 2186 if( zSql==0 ) rc = SQLITE_NOMEM; 2187 }else{ 2188 int i; 2189 const char *zSep = ""; 2190 SessionBuffer buf = {0, 0, 0}; 2191 2192 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2193 sessionAppendIdent(&buf, zDb, &rc); 2194 sessionAppendStr(&buf, ".", &rc); 2195 sessionAppendIdent(&buf, zTab, &rc); 2196 sessionAppendStr(&buf, " WHERE ", &rc); 2197 for(i=0; i<nCol; i++){ 2198 if( abPK[i] ){ 2199 sessionAppendStr(&buf, zSep, &rc); 2200 sessionAppendIdent(&buf, azCol[i], &rc); 2201 sessionAppendStr(&buf, " IS ?", &rc); 2202 sessionAppendInteger(&buf, i+1, &rc); 2203 zSep = " AND "; 2204 } 2205 } 2206 zSql = (char*)buf.aBuf; 2207 nSql = buf.nBuf; 2208 } 2209 2210 if( rc==SQLITE_OK ){ 2211 rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0); 2212 } 2213 sqlite3_free(zSql); 2214 return rc; 2215 } 2216 2217 /* 2218 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2219 ** to the SELECT statement passed as the first argument. The SELECT statement 2220 ** is as prepared by function sessionSelectStmt(). 2221 ** 2222 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2223 ** error code (e.g. SQLITE_NOMEM) otherwise. 2224 */ 2225 static int sessionSelectBind( 2226 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2227 int nCol, /* Number of columns in table */ 2228 u8 *abPK, /* PRIMARY KEY array */ 2229 SessionChange *pChange /* Change structure */ 2230 ){ 2231 int i; 2232 int rc = SQLITE_OK; 2233 u8 *a = pChange->aRecord; 2234 2235 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2236 int eType = *a++; 2237 2238 switch( eType ){ 2239 case 0: 2240 case SQLITE_NULL: 2241 assert( abPK[i]==0 ); 2242 break; 2243 2244 case SQLITE_INTEGER: { 2245 if( abPK[i] ){ 2246 i64 iVal = sessionGetI64(a); 2247 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2248 } 2249 a += 8; 2250 break; 2251 } 2252 2253 case SQLITE_FLOAT: { 2254 if( abPK[i] ){ 2255 double rVal; 2256 i64 iVal = sessionGetI64(a); 2257 memcpy(&rVal, &iVal, 8); 2258 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2259 } 2260 a += 8; 2261 break; 2262 } 2263 2264 case SQLITE_TEXT: { 2265 int n; 2266 a += sessionVarintGet(a, &n); 2267 if( abPK[i] ){ 2268 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2269 } 2270 a += n; 2271 break; 2272 } 2273 2274 default: { 2275 int n; 2276 assert( eType==SQLITE_BLOB ); 2277 a += sessionVarintGet(a, &n); 2278 if( abPK[i] ){ 2279 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2280 } 2281 a += n; 2282 break; 2283 } 2284 } 2285 } 2286 2287 return rc; 2288 } 2289 2290 /* 2291 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2292 ** is called. Otherwise, append a serialized table header (part of the binary 2293 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2294 ** SQLite error code before returning. 2295 */ 2296 static void sessionAppendTableHdr( 2297 SessionBuffer *pBuf, /* Append header to this buffer */ 2298 int bPatchset, /* Use the patchset format if true */ 2299 SessionTable *pTab, /* Table object to append header for */ 2300 int *pRc /* IN/OUT: Error code */ 2301 ){ 2302 /* Write a table header */ 2303 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2304 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2305 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2306 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2307 } 2308 2309 /* 2310 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2311 ** (if it is non-zero) based on the current contents of the session object 2312 ** passed as the first argument. 2313 ** 2314 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2315 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2316 ** occurs, an SQLite error code is returned and both output variables set 2317 ** to 0. 2318 */ 2319 static int sessionGenerateChangeset( 2320 sqlite3_session *pSession, /* Session object */ 2321 int bPatchset, /* True for patchset, false for changeset */ 2322 int (*xOutput)(void *pOut, const void *pData, int nData), 2323 void *pOut, /* First argument for xOutput */ 2324 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2325 void **ppChangeset /* OUT: Buffer containing changeset */ 2326 ){ 2327 sqlite3 *db = pSession->db; /* Source database handle */ 2328 SessionTable *pTab; /* Used to iterate through attached tables */ 2329 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2330 int rc; /* Return code */ 2331 2332 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0 ) ); 2333 2334 /* Zero the output variables in case an error occurs. If this session 2335 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2336 ** this call will be a no-op. */ 2337 if( xOutput==0 ){ 2338 *pnChangeset = 0; 2339 *ppChangeset = 0; 2340 } 2341 2342 if( pSession->rc ) return pSession->rc; 2343 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2344 if( rc!=SQLITE_OK ) return rc; 2345 2346 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2347 2348 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2349 if( pTab->nEntry ){ 2350 const char *zName = pTab->zName; 2351 int nCol; /* Number of columns in table */ 2352 u8 *abPK; /* Primary key array */ 2353 const char **azCol = 0; /* Table columns */ 2354 int i; /* Used to iterate through hash buckets */ 2355 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2356 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2357 int nNoop; /* Size of buffer after writing tbl header */ 2358 2359 /* Check the table schema is still Ok. */ 2360 rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK); 2361 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2362 rc = SQLITE_SCHEMA; 2363 } 2364 2365 /* Write a table header */ 2366 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2367 2368 /* Build and compile a statement to execute: */ 2369 if( rc==SQLITE_OK ){ 2370 rc = sessionSelectStmt( 2371 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2372 } 2373 2374 nNoop = buf.nBuf; 2375 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2376 SessionChange *p; /* Used to iterate through changes */ 2377 2378 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2379 rc = sessionSelectBind(pSel, nCol, abPK, p); 2380 if( rc!=SQLITE_OK ) continue; 2381 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2382 if( p->op==SQLITE_INSERT ){ 2383 int iCol; 2384 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2385 sessionAppendByte(&buf, p->bIndirect, &rc); 2386 for(iCol=0; iCol<nCol; iCol++){ 2387 sessionAppendCol(&buf, pSel, iCol, &rc); 2388 } 2389 }else{ 2390 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2391 } 2392 }else if( p->op!=SQLITE_INSERT ){ 2393 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2394 } 2395 if( rc==SQLITE_OK ){ 2396 rc = sqlite3_reset(pSel); 2397 } 2398 2399 /* If the buffer is now larger than SESSIONS_STRM_CHUNK_SIZE, pass 2400 ** its contents to the xOutput() callback. */ 2401 if( xOutput 2402 && rc==SQLITE_OK 2403 && buf.nBuf>nNoop 2404 && buf.nBuf>SESSIONS_STRM_CHUNK_SIZE 2405 ){ 2406 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2407 nNoop = -1; 2408 buf.nBuf = 0; 2409 } 2410 2411 } 2412 } 2413 2414 sqlite3_finalize(pSel); 2415 if( buf.nBuf==nNoop ){ 2416 buf.nBuf = nRewind; 2417 } 2418 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2419 } 2420 } 2421 2422 if( rc==SQLITE_OK ){ 2423 if( xOutput==0 ){ 2424 *pnChangeset = buf.nBuf; 2425 *ppChangeset = buf.aBuf; 2426 buf.aBuf = 0; 2427 }else if( buf.nBuf>0 ){ 2428 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2429 } 2430 } 2431 2432 sqlite3_free(buf.aBuf); 2433 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2434 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2435 return rc; 2436 } 2437 2438 /* 2439 ** Obtain a changeset object containing all changes recorded by the 2440 ** session object passed as the first argument. 2441 ** 2442 ** It is the responsibility of the caller to eventually free the buffer 2443 ** using sqlite3_free(). 2444 */ 2445 int sqlite3session_changeset( 2446 sqlite3_session *pSession, /* Session object */ 2447 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2448 void **ppChangeset /* OUT: Buffer containing changeset */ 2449 ){ 2450 return sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset); 2451 } 2452 2453 /* 2454 ** Streaming version of sqlite3session_changeset(). 2455 */ 2456 int sqlite3session_changeset_strm( 2457 sqlite3_session *pSession, 2458 int (*xOutput)(void *pOut, const void *pData, int nData), 2459 void *pOut 2460 ){ 2461 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2462 } 2463 2464 /* 2465 ** Streaming version of sqlite3session_patchset(). 2466 */ 2467 int sqlite3session_patchset_strm( 2468 sqlite3_session *pSession, 2469 int (*xOutput)(void *pOut, const void *pData, int nData), 2470 void *pOut 2471 ){ 2472 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2473 } 2474 2475 /* 2476 ** Obtain a patchset object containing all changes recorded by the 2477 ** session object passed as the first argument. 2478 ** 2479 ** It is the responsibility of the caller to eventually free the buffer 2480 ** using sqlite3_free(). 2481 */ 2482 int sqlite3session_patchset( 2483 sqlite3_session *pSession, /* Session object */ 2484 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2485 void **ppPatchset /* OUT: Buffer containing changeset */ 2486 ){ 2487 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2488 } 2489 2490 /* 2491 ** Enable or disable the session object passed as the first argument. 2492 */ 2493 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2494 int ret; 2495 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2496 if( bEnable>=0 ){ 2497 pSession->bEnable = bEnable; 2498 } 2499 ret = pSession->bEnable; 2500 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2501 return ret; 2502 } 2503 2504 /* 2505 ** Enable or disable the session object passed as the first argument. 2506 */ 2507 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2508 int ret; 2509 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2510 if( bIndirect>=0 ){ 2511 pSession->bIndirect = bIndirect; 2512 } 2513 ret = pSession->bIndirect; 2514 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2515 return ret; 2516 } 2517 2518 /* 2519 ** Return true if there have been no changes to monitored tables recorded 2520 ** by the session object passed as the only argument. 2521 */ 2522 int sqlite3session_isempty(sqlite3_session *pSession){ 2523 int ret = 0; 2524 SessionTable *pTab; 2525 2526 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2527 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2528 ret = (pTab->nEntry>0); 2529 } 2530 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2531 2532 return (ret==0); 2533 } 2534 2535 /* 2536 ** Do the work for either sqlite3changeset_start() or start_strm(). 2537 */ 2538 static int sessionChangesetStart( 2539 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2540 int (*xInput)(void *pIn, void *pData, int *pnData), 2541 void *pIn, 2542 int nChangeset, /* Size of buffer pChangeset in bytes */ 2543 void *pChangeset /* Pointer to buffer containing changeset */ 2544 ){ 2545 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2546 int nByte; /* Number of bytes to allocate for iterator */ 2547 2548 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2549 2550 /* Zero the output variable in case an error occurs. */ 2551 *pp = 0; 2552 2553 /* Allocate and initialize the iterator structure. */ 2554 nByte = sizeof(sqlite3_changeset_iter); 2555 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2556 if( !pRet ) return SQLITE_NOMEM; 2557 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2558 pRet->in.aData = (u8 *)pChangeset; 2559 pRet->in.nData = nChangeset; 2560 pRet->in.xInput = xInput; 2561 pRet->in.pIn = pIn; 2562 pRet->in.bEof = (xInput ? 0 : 1); 2563 2564 /* Populate the output variable and return success. */ 2565 *pp = pRet; 2566 return SQLITE_OK; 2567 } 2568 2569 /* 2570 ** Create an iterator used to iterate through the contents of a changeset. 2571 */ 2572 int sqlite3changeset_start( 2573 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2574 int nChangeset, /* Size of buffer pChangeset in bytes */ 2575 void *pChangeset /* Pointer to buffer containing changeset */ 2576 ){ 2577 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset); 2578 } 2579 2580 /* 2581 ** Streaming version of sqlite3changeset_start(). 2582 */ 2583 int sqlite3changeset_start_strm( 2584 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2585 int (*xInput)(void *pIn, void *pData, int *pnData), 2586 void *pIn 2587 ){ 2588 return sessionChangesetStart(pp, xInput, pIn, 0, 0); 2589 } 2590 2591 /* 2592 ** If the SessionInput object passed as the only argument is a streaming 2593 ** object and the buffer is full, discard some data to free up space. 2594 */ 2595 static void sessionDiscardData(SessionInput *pIn){ 2596 if( pIn->xInput && pIn->iNext>=SESSIONS_STRM_CHUNK_SIZE ){ 2597 int nMove = pIn->buf.nBuf - pIn->iNext; 2598 assert( nMove>=0 ); 2599 if( nMove>0 ){ 2600 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2601 } 2602 pIn->buf.nBuf -= pIn->iNext; 2603 pIn->iNext = 0; 2604 pIn->nData = pIn->buf.nBuf; 2605 } 2606 } 2607 2608 /* 2609 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2610 ** if there are not nByte bytes remaining in the input, that all available 2611 ** data is in the buffer. 2612 ** 2613 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2614 */ 2615 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2616 int rc = SQLITE_OK; 2617 if( pIn->xInput ){ 2618 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2619 int nNew = SESSIONS_STRM_CHUNK_SIZE; 2620 2621 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2622 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2623 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2624 if( nNew==0 ){ 2625 pIn->bEof = 1; 2626 }else{ 2627 pIn->buf.nBuf += nNew; 2628 } 2629 } 2630 2631 pIn->aData = pIn->buf.aBuf; 2632 pIn->nData = pIn->buf.nBuf; 2633 } 2634 } 2635 return rc; 2636 } 2637 2638 /* 2639 ** When this function is called, *ppRec points to the start of a record 2640 ** that contains nCol values. This function advances the pointer *ppRec 2641 ** until it points to the byte immediately following that record. 2642 */ 2643 static void sessionSkipRecord( 2644 u8 **ppRec, /* IN/OUT: Record pointer */ 2645 int nCol /* Number of values in record */ 2646 ){ 2647 u8 *aRec = *ppRec; 2648 int i; 2649 for(i=0; i<nCol; i++){ 2650 int eType = *aRec++; 2651 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2652 int nByte; 2653 aRec += sessionVarintGet((u8*)aRec, &nByte); 2654 aRec += nByte; 2655 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2656 aRec += 8; 2657 } 2658 } 2659 2660 *ppRec = aRec; 2661 } 2662 2663 /* 2664 ** This function sets the value of the sqlite3_value object passed as the 2665 ** first argument to a copy of the string or blob held in the aData[] 2666 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2667 ** error occurs. 2668 */ 2669 static int sessionValueSetStr( 2670 sqlite3_value *pVal, /* Set the value of this object */ 2671 u8 *aData, /* Buffer containing string or blob data */ 2672 int nData, /* Size of buffer aData[] in bytes */ 2673 u8 enc /* String encoding (0 for blobs) */ 2674 ){ 2675 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2676 ** argument to sqlite3ValueSetStr() and have the copy created 2677 ** automatically. But doing so makes it difficult to detect any OOM 2678 ** error. Hence the code to create the copy externally. */ 2679 u8 *aCopy = sqlite3_malloc(nData+1); 2680 if( aCopy==0 ) return SQLITE_NOMEM; 2681 memcpy(aCopy, aData, nData); 2682 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2683 return SQLITE_OK; 2684 } 2685 2686 /* 2687 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2688 ** for details. 2689 ** 2690 ** When this function is called, *paChange points to the start of the record 2691 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2692 ** one byte after the end of the same record before this function returns. 2693 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2694 ** if abPK is other than NULL, then the record contains only the PK fields 2695 ** (in other words, it is a patchset DELETE record). 2696 ** 2697 ** If successful, each element of the apOut[] array (allocated by the caller) 2698 ** is set to point to an sqlite3_value object containing the value read 2699 ** from the corresponding position in the record. If that value is not 2700 ** included in the record (i.e. because the record is part of an UPDATE change 2701 ** and the field was not modified), the corresponding element of apOut[] is 2702 ** set to NULL. 2703 ** 2704 ** It is the responsibility of the caller to free all sqlite_value structures 2705 ** using sqlite3_free(). 2706 ** 2707 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 2708 ** The apOut[] array may have been partially populated in this case. 2709 */ 2710 static int sessionReadRecord( 2711 SessionInput *pIn, /* Input data */ 2712 int nCol, /* Number of values in record */ 2713 u8 *abPK, /* Array of primary key flags, or NULL */ 2714 sqlite3_value **apOut /* Write values to this array */ 2715 ){ 2716 int i; /* Used to iterate through columns */ 2717 int rc = SQLITE_OK; 2718 2719 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2720 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 2721 if( abPK && abPK[i]==0 ) continue; 2722 rc = sessionInputBuffer(pIn, 9); 2723 if( rc==SQLITE_OK ){ 2724 if( pIn->iNext>=pIn->nData ){ 2725 rc = SQLITE_CORRUPT_BKPT; 2726 }else{ 2727 eType = pIn->aData[pIn->iNext++]; 2728 assert( apOut[i]==0 ); 2729 if( eType ){ 2730 apOut[i] = sqlite3ValueNew(0); 2731 if( !apOut[i] ) rc = SQLITE_NOMEM; 2732 } 2733 } 2734 } 2735 2736 if( rc==SQLITE_OK ){ 2737 u8 *aVal = &pIn->aData[pIn->iNext]; 2738 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2739 int nByte; 2740 pIn->iNext += sessionVarintGet(aVal, &nByte); 2741 rc = sessionInputBuffer(pIn, nByte); 2742 if( rc==SQLITE_OK ){ 2743 if( nByte<0 || nByte>pIn->nData-pIn->iNext ){ 2744 rc = SQLITE_CORRUPT_BKPT; 2745 }else{ 2746 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 2747 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 2748 pIn->iNext += nByte; 2749 } 2750 } 2751 } 2752 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2753 sqlite3_int64 v = sessionGetI64(aVal); 2754 if( eType==SQLITE_INTEGER ){ 2755 sqlite3VdbeMemSetInt64(apOut[i], v); 2756 }else{ 2757 double d; 2758 memcpy(&d, &v, 8); 2759 sqlite3VdbeMemSetDouble(apOut[i], d); 2760 } 2761 pIn->iNext += 8; 2762 } 2763 } 2764 } 2765 2766 return rc; 2767 } 2768 2769 /* 2770 ** The input pointer currently points to the second byte of a table-header. 2771 ** Specifically, to the following: 2772 ** 2773 ** + number of columns in table (varint) 2774 ** + array of PK flags (1 byte per column), 2775 ** + table name (nul terminated). 2776 ** 2777 ** This function ensures that all of the above is present in the input 2778 ** buffer (i.e. that it can be accessed without any calls to xInput()). 2779 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2780 ** The input pointer is not moved. 2781 */ 2782 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 2783 int rc = SQLITE_OK; 2784 int nCol = 0; 2785 int nRead = 0; 2786 2787 rc = sessionInputBuffer(pIn, 9); 2788 if( rc==SQLITE_OK ){ 2789 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 2790 /* The hard upper limit for the number of columns in an SQLite 2791 ** database table is, according to sqliteLimit.h, 32676. So 2792 ** consider any table-header that purports to have more than 65536 2793 ** columns to be corrupt. This is convenient because otherwise, 2794 ** if the (nCol>65536) condition below were omitted, a sufficiently 2795 ** large value for nCol may cause nRead to wrap around and become 2796 ** negative. Leading to a crash. */ 2797 if( nCol<0 || nCol>65536 ){ 2798 rc = SQLITE_CORRUPT_BKPT; 2799 }else{ 2800 rc = sessionInputBuffer(pIn, nRead+nCol+100); 2801 nRead += nCol; 2802 } 2803 } 2804 2805 while( rc==SQLITE_OK ){ 2806 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 2807 nRead++; 2808 } 2809 if( (pIn->iNext + nRead)<pIn->nData ) break; 2810 rc = sessionInputBuffer(pIn, nRead + 100); 2811 } 2812 *pnByte = nRead+1; 2813 return rc; 2814 } 2815 2816 /* 2817 ** The input pointer currently points to the first byte of the first field 2818 ** of a record consisting of nCol columns. This function ensures the entire 2819 ** record is buffered. It does not move the input pointer. 2820 ** 2821 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 2822 ** the record in bytes. Otherwise, an SQLite error code is returned. The 2823 ** final value of *pnByte is undefined in this case. 2824 */ 2825 static int sessionChangesetBufferRecord( 2826 SessionInput *pIn, /* Input data */ 2827 int nCol, /* Number of columns in record */ 2828 int *pnByte /* OUT: Size of record in bytes */ 2829 ){ 2830 int rc = SQLITE_OK; 2831 int nByte = 0; 2832 int i; 2833 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 2834 int eType; 2835 rc = sessionInputBuffer(pIn, nByte + 10); 2836 if( rc==SQLITE_OK ){ 2837 eType = pIn->aData[pIn->iNext + nByte++]; 2838 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2839 int n; 2840 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 2841 nByte += n; 2842 rc = sessionInputBuffer(pIn, nByte); 2843 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2844 nByte += 8; 2845 } 2846 } 2847 } 2848 *pnByte = nByte; 2849 return rc; 2850 } 2851 2852 /* 2853 ** The input pointer currently points to the second byte of a table-header. 2854 ** Specifically, to the following: 2855 ** 2856 ** + number of columns in table (varint) 2857 ** + array of PK flags (1 byte per column), 2858 ** + table name (nul terminated). 2859 ** 2860 ** This function decodes the table-header and populates the p->nCol, 2861 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 2862 ** also allocated or resized according to the new value of p->nCol. The 2863 ** input pointer is left pointing to the byte following the table header. 2864 ** 2865 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 2866 ** is returned and the final values of the various fields enumerated above 2867 ** are undefined. 2868 */ 2869 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 2870 int rc; 2871 int nCopy; 2872 assert( p->rc==SQLITE_OK ); 2873 2874 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 2875 if( rc==SQLITE_OK ){ 2876 int nByte; 2877 int nVarint; 2878 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 2879 if( p->nCol>0 ){ 2880 nCopy -= nVarint; 2881 p->in.iNext += nVarint; 2882 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 2883 p->tblhdr.nBuf = 0; 2884 sessionBufferGrow(&p->tblhdr, nByte, &rc); 2885 }else{ 2886 rc = SQLITE_CORRUPT_BKPT; 2887 } 2888 } 2889 2890 if( rc==SQLITE_OK ){ 2891 int iPK = sizeof(sqlite3_value*)*p->nCol*2; 2892 memset(p->tblhdr.aBuf, 0, iPK); 2893 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 2894 p->in.iNext += nCopy; 2895 } 2896 2897 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 2898 p->abPK = (u8*)&p->apValue[p->nCol*2]; 2899 p->zTab = (char*)&p->abPK[p->nCol]; 2900 return (p->rc = rc); 2901 } 2902 2903 /* 2904 ** Advance the changeset iterator to the next change. 2905 ** 2906 ** If both paRec and pnRec are NULL, then this function works like the public 2907 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 2908 ** sqlite3changeset_new() and old() APIs may be used to query for values. 2909 ** 2910 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 2911 ** record is written to *paRec before returning and the number of bytes in 2912 ** the record to *pnRec. 2913 ** 2914 ** Either way, this function returns SQLITE_ROW if the iterator is 2915 ** successfully advanced to the next change in the changeset, an SQLite 2916 ** error code if an error occurs, or SQLITE_DONE if there are no further 2917 ** changes in the changeset. 2918 */ 2919 static int sessionChangesetNext( 2920 sqlite3_changeset_iter *p, /* Changeset iterator */ 2921 u8 **paRec, /* If non-NULL, store record pointer here */ 2922 int *pnRec, /* If non-NULL, store size of record here */ 2923 int *pbNew /* If non-NULL, true if new table */ 2924 ){ 2925 int i; 2926 u8 op; 2927 2928 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 2929 2930 /* If the iterator is in the error-state, return immediately. */ 2931 if( p->rc!=SQLITE_OK ) return p->rc; 2932 2933 /* Free the current contents of p->apValue[], if any. */ 2934 if( p->apValue ){ 2935 for(i=0; i<p->nCol*2; i++){ 2936 sqlite3ValueFree(p->apValue[i]); 2937 } 2938 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 2939 } 2940 2941 /* Make sure the buffer contains at least 10 bytes of input data, or all 2942 ** remaining data if there are less than 10 bytes available. This is 2943 ** sufficient either for the 'T' or 'P' byte and the varint that follows 2944 ** it, or for the two single byte values otherwise. */ 2945 p->rc = sessionInputBuffer(&p->in, 2); 2946 if( p->rc!=SQLITE_OK ) return p->rc; 2947 2948 /* If the iterator is already at the end of the changeset, return DONE. */ 2949 if( p->in.iNext>=p->in.nData ){ 2950 return SQLITE_DONE; 2951 } 2952 2953 sessionDiscardData(&p->in); 2954 p->in.iCurrent = p->in.iNext; 2955 2956 op = p->in.aData[p->in.iNext++]; 2957 while( op=='T' || op=='P' ){ 2958 if( pbNew ) *pbNew = 1; 2959 p->bPatchset = (op=='P'); 2960 if( sessionChangesetReadTblhdr(p) ) return p->rc; 2961 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 2962 p->in.iCurrent = p->in.iNext; 2963 if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; 2964 op = p->in.aData[p->in.iNext++]; 2965 } 2966 2967 if( p->zTab==0 ){ 2968 /* The first record in the changeset is not a table header. Must be a 2969 ** corrupt changeset. */ 2970 assert( p->in.iNext==1 ); 2971 return (p->rc = SQLITE_CORRUPT_BKPT); 2972 } 2973 2974 p->op = op; 2975 p->bIndirect = p->in.aData[p->in.iNext++]; 2976 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 2977 return (p->rc = SQLITE_CORRUPT_BKPT); 2978 } 2979 2980 if( paRec ){ 2981 int nVal; /* Number of values to buffer */ 2982 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 2983 nVal = p->nCol * 2; 2984 }else if( p->bPatchset && op==SQLITE_DELETE ){ 2985 nVal = 0; 2986 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 2987 }else{ 2988 nVal = p->nCol; 2989 } 2990 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 2991 if( p->rc!=SQLITE_OK ) return p->rc; 2992 *paRec = &p->in.aData[p->in.iNext]; 2993 p->in.iNext += *pnRec; 2994 }else{ 2995 2996 /* If this is an UPDATE or DELETE, read the old.* record. */ 2997 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 2998 u8 *abPK = p->bPatchset ? p->abPK : 0; 2999 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, p->apValue); 3000 if( p->rc!=SQLITE_OK ) return p->rc; 3001 } 3002 3003 /* If this is an INSERT or UPDATE, read the new.* record. */ 3004 if( p->op!=SQLITE_DELETE ){ 3005 p->rc = sessionReadRecord(&p->in, p->nCol, 0, &p->apValue[p->nCol]); 3006 if( p->rc!=SQLITE_OK ) return p->rc; 3007 } 3008 3009 if( p->bPatchset && p->op==SQLITE_UPDATE ){ 3010 /* If this is an UPDATE that is part of a patchset, then all PK and 3011 ** modified fields are present in the new.* record. The old.* record 3012 ** is currently completely empty. This block shifts the PK fields from 3013 ** new.* to old.*, to accommodate the code that reads these arrays. */ 3014 for(i=0; i<p->nCol; i++){ 3015 assert( p->apValue[i]==0 ); 3016 if( p->abPK[i] ){ 3017 p->apValue[i] = p->apValue[i+p->nCol]; 3018 if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT); 3019 p->apValue[i+p->nCol] = 0; 3020 } 3021 } 3022 } 3023 } 3024 3025 return SQLITE_ROW; 3026 } 3027 3028 /* 3029 ** Advance an iterator created by sqlite3changeset_start() to the next 3030 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 3031 ** or SQLITE_CORRUPT. 3032 ** 3033 ** This function may not be called on iterators passed to a conflict handler 3034 ** callback by changeset_apply(). 3035 */ 3036 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 3037 return sessionChangesetNext(p, 0, 0, 0); 3038 } 3039 3040 /* 3041 ** The following function extracts information on the current change 3042 ** from a changeset iterator. It may only be called after changeset_next() 3043 ** has returned SQLITE_ROW. 3044 */ 3045 int sqlite3changeset_op( 3046 sqlite3_changeset_iter *pIter, /* Iterator handle */ 3047 const char **pzTab, /* OUT: Pointer to table name */ 3048 int *pnCol, /* OUT: Number of columns in table */ 3049 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 3050 int *pbIndirect /* OUT: True if change is indirect */ 3051 ){ 3052 *pOp = pIter->op; 3053 *pnCol = pIter->nCol; 3054 *pzTab = pIter->zTab; 3055 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 3056 return SQLITE_OK; 3057 } 3058 3059 /* 3060 ** Return information regarding the PRIMARY KEY and number of columns in 3061 ** the database table affected by the change that pIter currently points 3062 ** to. This function may only be called after changeset_next() returns 3063 ** SQLITE_ROW. 3064 */ 3065 int sqlite3changeset_pk( 3066 sqlite3_changeset_iter *pIter, /* Iterator object */ 3067 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 3068 int *pnCol /* OUT: Number of entries in output array */ 3069 ){ 3070 *pabPK = pIter->abPK; 3071 if( pnCol ) *pnCol = pIter->nCol; 3072 return SQLITE_OK; 3073 } 3074 3075 /* 3076 ** This function may only be called while the iterator is pointing to an 3077 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 3078 ** Otherwise, SQLITE_MISUSE is returned. 3079 ** 3080 ** It sets *ppValue to point to an sqlite3_value structure containing the 3081 ** iVal'th value in the old.* record. Or, if that particular value is not 3082 ** included in the record (because the change is an UPDATE and the field 3083 ** was not modified and is not a PK column), set *ppValue to NULL. 3084 ** 3085 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3086 ** not modified. Otherwise, SQLITE_OK. 3087 */ 3088 int sqlite3changeset_old( 3089 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3090 int iVal, /* Index of old.* value to retrieve */ 3091 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 3092 ){ 3093 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 3094 return SQLITE_MISUSE; 3095 } 3096 if( iVal<0 || iVal>=pIter->nCol ){ 3097 return SQLITE_RANGE; 3098 } 3099 *ppValue = pIter->apValue[iVal]; 3100 return SQLITE_OK; 3101 } 3102 3103 /* 3104 ** This function may only be called while the iterator is pointing to an 3105 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 3106 ** Otherwise, SQLITE_MISUSE is returned. 3107 ** 3108 ** It sets *ppValue to point to an sqlite3_value structure containing the 3109 ** iVal'th value in the new.* record. Or, if that particular value is not 3110 ** included in the record (because the change is an UPDATE and the field 3111 ** was not modified), set *ppValue to NULL. 3112 ** 3113 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3114 ** not modified. Otherwise, SQLITE_OK. 3115 */ 3116 int sqlite3changeset_new( 3117 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3118 int iVal, /* Index of new.* value to retrieve */ 3119 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 3120 ){ 3121 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 3122 return SQLITE_MISUSE; 3123 } 3124 if( iVal<0 || iVal>=pIter->nCol ){ 3125 return SQLITE_RANGE; 3126 } 3127 *ppValue = pIter->apValue[pIter->nCol+iVal]; 3128 return SQLITE_OK; 3129 } 3130 3131 /* 3132 ** The following two macros are used internally. They are similar to the 3133 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3134 ** they omit all error checking and return a pointer to the requested value. 3135 */ 3136 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3137 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3138 3139 /* 3140 ** This function may only be called with a changeset iterator that has been 3141 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3142 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3143 ** 3144 ** If successful, *ppValue is set to point to an sqlite3_value structure 3145 ** containing the iVal'th value of the conflicting record. 3146 ** 3147 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3148 ** code is returned. Otherwise, SQLITE_OK. 3149 */ 3150 int sqlite3changeset_conflict( 3151 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3152 int iVal, /* Index of conflict record value to fetch */ 3153 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3154 ){ 3155 if( !pIter->pConflict ){ 3156 return SQLITE_MISUSE; 3157 } 3158 if( iVal<0 || iVal>=pIter->nCol ){ 3159 return SQLITE_RANGE; 3160 } 3161 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3162 return SQLITE_OK; 3163 } 3164 3165 /* 3166 ** This function may only be called with an iterator passed to an 3167 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3168 ** it sets the output variable to the total number of known foreign key 3169 ** violations in the destination database and returns SQLITE_OK. 3170 ** 3171 ** In all other cases this function returns SQLITE_MISUSE. 3172 */ 3173 int sqlite3changeset_fk_conflicts( 3174 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3175 int *pnOut /* OUT: Number of FK violations */ 3176 ){ 3177 if( pIter->pConflict || pIter->apValue ){ 3178 return SQLITE_MISUSE; 3179 } 3180 *pnOut = pIter->nCol; 3181 return SQLITE_OK; 3182 } 3183 3184 3185 /* 3186 ** Finalize an iterator allocated with sqlite3changeset_start(). 3187 ** 3188 ** This function may not be called on iterators passed to a conflict handler 3189 ** callback by changeset_apply(). 3190 */ 3191 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3192 int rc = SQLITE_OK; 3193 if( p ){ 3194 int i; /* Used to iterate through p->apValue[] */ 3195 rc = p->rc; 3196 if( p->apValue ){ 3197 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3198 } 3199 sqlite3_free(p->tblhdr.aBuf); 3200 sqlite3_free(p->in.buf.aBuf); 3201 sqlite3_free(p); 3202 } 3203 return rc; 3204 } 3205 3206 static int sessionChangesetInvert( 3207 SessionInput *pInput, /* Input changeset */ 3208 int (*xOutput)(void *pOut, const void *pData, int nData), 3209 void *pOut, 3210 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3211 void **ppInverted /* OUT: Inverse of pChangeset */ 3212 ){ 3213 int rc = SQLITE_OK; /* Return value */ 3214 SessionBuffer sOut; /* Output buffer */ 3215 int nCol = 0; /* Number of cols in current table */ 3216 u8 *abPK = 0; /* PK array for current table */ 3217 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3218 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3219 3220 /* Initialize the output buffer */ 3221 memset(&sOut, 0, sizeof(SessionBuffer)); 3222 3223 /* Zero the output variables in case an error occurs. */ 3224 if( ppInverted ){ 3225 *ppInverted = 0; 3226 *pnInverted = 0; 3227 } 3228 3229 while( 1 ){ 3230 u8 eType; 3231 3232 /* Test for EOF. */ 3233 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3234 if( pInput->iNext>=pInput->nData ) break; 3235 eType = pInput->aData[pInput->iNext]; 3236 3237 switch( eType ){ 3238 case 'T': { 3239 /* A 'table' record consists of: 3240 ** 3241 ** * A constant 'T' character, 3242 ** * Number of columns in said table (a varint), 3243 ** * An array of nCol bytes (sPK), 3244 ** * A nul-terminated table name. 3245 */ 3246 int nByte; 3247 int nVar; 3248 pInput->iNext++; 3249 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3250 goto finished_invert; 3251 } 3252 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3253 sPK.nBuf = 0; 3254 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3255 sessionAppendByte(&sOut, eType, &rc); 3256 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3257 if( rc ) goto finished_invert; 3258 3259 pInput->iNext += nByte; 3260 sqlite3_free(apVal); 3261 apVal = 0; 3262 abPK = sPK.aBuf; 3263 break; 3264 } 3265 3266 case SQLITE_INSERT: 3267 case SQLITE_DELETE: { 3268 int nByte; 3269 int bIndirect = pInput->aData[pInput->iNext+1]; 3270 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3271 pInput->iNext += 2; 3272 assert( rc==SQLITE_OK ); 3273 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3274 sessionAppendByte(&sOut, eType2, &rc); 3275 sessionAppendByte(&sOut, bIndirect, &rc); 3276 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3277 pInput->iNext += nByte; 3278 if( rc ) goto finished_invert; 3279 break; 3280 } 3281 3282 case SQLITE_UPDATE: { 3283 int iCol; 3284 3285 if( 0==apVal ){ 3286 apVal = (sqlite3_value **)sqlite3_malloc(sizeof(apVal[0])*nCol*2); 3287 if( 0==apVal ){ 3288 rc = SQLITE_NOMEM; 3289 goto finished_invert; 3290 } 3291 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3292 } 3293 3294 /* Write the header for the new UPDATE change. Same as the original. */ 3295 sessionAppendByte(&sOut, eType, &rc); 3296 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3297 3298 /* Read the old.* and new.* records for the update change. */ 3299 pInput->iNext += 2; 3300 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0]); 3301 if( rc==SQLITE_OK ){ 3302 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol]); 3303 } 3304 3305 /* Write the new old.* record. Consists of the PK columns from the 3306 ** original old.* record, and the other values from the original 3307 ** new.* record. */ 3308 for(iCol=0; iCol<nCol; iCol++){ 3309 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3310 sessionAppendValue(&sOut, pVal, &rc); 3311 } 3312 3313 /* Write the new new.* record. Consists of a copy of all values 3314 ** from the original old.* record, except for the PK columns, which 3315 ** are set to "undefined". */ 3316 for(iCol=0; iCol<nCol; iCol++){ 3317 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3318 sessionAppendValue(&sOut, pVal, &rc); 3319 } 3320 3321 for(iCol=0; iCol<nCol*2; iCol++){ 3322 sqlite3ValueFree(apVal[iCol]); 3323 } 3324 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3325 if( rc!=SQLITE_OK ){ 3326 goto finished_invert; 3327 } 3328 3329 break; 3330 } 3331 3332 default: 3333 rc = SQLITE_CORRUPT_BKPT; 3334 goto finished_invert; 3335 } 3336 3337 assert( rc==SQLITE_OK ); 3338 if( xOutput && sOut.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 3339 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3340 sOut.nBuf = 0; 3341 if( rc!=SQLITE_OK ) goto finished_invert; 3342 } 3343 } 3344 3345 assert( rc==SQLITE_OK ); 3346 if( pnInverted ){ 3347 *pnInverted = sOut.nBuf; 3348 *ppInverted = sOut.aBuf; 3349 sOut.aBuf = 0; 3350 }else if( sOut.nBuf>0 ){ 3351 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3352 } 3353 3354 finished_invert: 3355 sqlite3_free(sOut.aBuf); 3356 sqlite3_free(apVal); 3357 sqlite3_free(sPK.aBuf); 3358 return rc; 3359 } 3360 3361 3362 /* 3363 ** Invert a changeset object. 3364 */ 3365 int sqlite3changeset_invert( 3366 int nChangeset, /* Number of bytes in input */ 3367 const void *pChangeset, /* Input changeset */ 3368 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3369 void **ppInverted /* OUT: Inverse of pChangeset */ 3370 ){ 3371 SessionInput sInput; 3372 3373 /* Set up the input stream */ 3374 memset(&sInput, 0, sizeof(SessionInput)); 3375 sInput.nData = nChangeset; 3376 sInput.aData = (u8*)pChangeset; 3377 3378 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3379 } 3380 3381 /* 3382 ** Streaming version of sqlite3changeset_invert(). 3383 */ 3384 int sqlite3changeset_invert_strm( 3385 int (*xInput)(void *pIn, void *pData, int *pnData), 3386 void *pIn, 3387 int (*xOutput)(void *pOut, const void *pData, int nData), 3388 void *pOut 3389 ){ 3390 SessionInput sInput; 3391 int rc; 3392 3393 /* Set up the input stream */ 3394 memset(&sInput, 0, sizeof(SessionInput)); 3395 sInput.xInput = xInput; 3396 sInput.pIn = pIn; 3397 3398 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3399 sqlite3_free(sInput.buf.aBuf); 3400 return rc; 3401 } 3402 3403 typedef struct SessionApplyCtx SessionApplyCtx; 3404 struct SessionApplyCtx { 3405 sqlite3 *db; 3406 sqlite3_stmt *pDelete; /* DELETE statement */ 3407 sqlite3_stmt *pUpdate; /* UPDATE statement */ 3408 sqlite3_stmt *pInsert; /* INSERT statement */ 3409 sqlite3_stmt *pSelect; /* SELECT statement */ 3410 int nCol; /* Size of azCol[] and abPK[] arrays */ 3411 const char **azCol; /* Array of column names */ 3412 u8 *abPK; /* Boolean array - true if column is in PK */ 3413 int bStat1; /* True if table is sqlite_stat1 */ 3414 int bDeferConstraints; /* True to defer constraints */ 3415 SessionBuffer constraints; /* Deferred constraints are stored here */ 3416 SessionBuffer rebase; /* Rebase information (if any) here */ 3417 int bRebaseStarted; /* If table header is already in rebase */ 3418 }; 3419 3420 /* 3421 ** Formulate a statement to DELETE a row from database db. Assuming a table 3422 ** structure like this: 3423 ** 3424 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3425 ** 3426 ** The DELETE statement looks like this: 3427 ** 3428 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3429 ** 3430 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3431 ** matching b and d values, or 1 otherwise. The second case comes up if the 3432 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3433 ** 3434 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3435 ** pointing to the prepared version of the SQL statement. 3436 */ 3437 static int sessionDeleteRow( 3438 sqlite3 *db, /* Database handle */ 3439 const char *zTab, /* Table name */ 3440 SessionApplyCtx *p /* Session changeset-apply context */ 3441 ){ 3442 int i; 3443 const char *zSep = ""; 3444 int rc = SQLITE_OK; 3445 SessionBuffer buf = {0, 0, 0}; 3446 int nPk = 0; 3447 3448 sessionAppendStr(&buf, "DELETE FROM ", &rc); 3449 sessionAppendIdent(&buf, zTab, &rc); 3450 sessionAppendStr(&buf, " WHERE ", &rc); 3451 3452 for(i=0; i<p->nCol; i++){ 3453 if( p->abPK[i] ){ 3454 nPk++; 3455 sessionAppendStr(&buf, zSep, &rc); 3456 sessionAppendIdent(&buf, p->azCol[i], &rc); 3457 sessionAppendStr(&buf, " = ?", &rc); 3458 sessionAppendInteger(&buf, i+1, &rc); 3459 zSep = " AND "; 3460 } 3461 } 3462 3463 if( nPk<p->nCol ){ 3464 sessionAppendStr(&buf, " AND (?", &rc); 3465 sessionAppendInteger(&buf, p->nCol+1, &rc); 3466 sessionAppendStr(&buf, " OR ", &rc); 3467 3468 zSep = ""; 3469 for(i=0; i<p->nCol; i++){ 3470 if( !p->abPK[i] ){ 3471 sessionAppendStr(&buf, zSep, &rc); 3472 sessionAppendIdent(&buf, p->azCol[i], &rc); 3473 sessionAppendStr(&buf, " IS ?", &rc); 3474 sessionAppendInteger(&buf, i+1, &rc); 3475 zSep = "AND "; 3476 } 3477 } 3478 sessionAppendStr(&buf, ")", &rc); 3479 } 3480 3481 if( rc==SQLITE_OK ){ 3482 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3483 } 3484 sqlite3_free(buf.aBuf); 3485 3486 return rc; 3487 } 3488 3489 /* 3490 ** Formulate and prepare a statement to UPDATE a row from database db. 3491 ** Assuming a table structure like this: 3492 ** 3493 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3494 ** 3495 ** The UPDATE statement looks like this: 3496 ** 3497 ** UPDATE x SET 3498 ** a = CASE WHEN ?2 THEN ?3 ELSE a END, 3499 ** b = CASE WHEN ?5 THEN ?6 ELSE b END, 3500 ** c = CASE WHEN ?8 THEN ?9 ELSE c END, 3501 ** d = CASE WHEN ?11 THEN ?12 ELSE d END 3502 ** WHERE a = ?1 AND c = ?7 AND (?13 OR 3503 ** (?5==0 OR b IS ?4) AND (?11==0 OR d IS ?10) AND 3504 ** ) 3505 ** 3506 ** For each column in the table, there are three variables to bind: 3507 ** 3508 ** ?(i*3+1) The old.* value of the column, if any. 3509 ** ?(i*3+2) A boolean flag indicating that the value is being modified. 3510 ** ?(i*3+3) The new.* value of the column, if any. 3511 ** 3512 ** Also, a boolean flag that, if set to true, causes the statement to update 3513 ** a row even if the non-PK values do not match. This is required if the 3514 ** conflict-handler is invoked with CHANGESET_DATA and returns 3515 ** CHANGESET_REPLACE. This is variable "?(nCol*3+1)". 3516 ** 3517 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left 3518 ** pointing to the prepared version of the SQL statement. 3519 */ 3520 static int sessionUpdateRow( 3521 sqlite3 *db, /* Database handle */ 3522 const char *zTab, /* Table name */ 3523 SessionApplyCtx *p /* Session changeset-apply context */ 3524 ){ 3525 int rc = SQLITE_OK; 3526 int i; 3527 const char *zSep = ""; 3528 SessionBuffer buf = {0, 0, 0}; 3529 3530 /* Append "UPDATE tbl SET " */ 3531 sessionAppendStr(&buf, "UPDATE ", &rc); 3532 sessionAppendIdent(&buf, zTab, &rc); 3533 sessionAppendStr(&buf, " SET ", &rc); 3534 3535 /* Append the assignments */ 3536 for(i=0; i<p->nCol; i++){ 3537 sessionAppendStr(&buf, zSep, &rc); 3538 sessionAppendIdent(&buf, p->azCol[i], &rc); 3539 sessionAppendStr(&buf, " = CASE WHEN ?", &rc); 3540 sessionAppendInteger(&buf, i*3+2, &rc); 3541 sessionAppendStr(&buf, " THEN ?", &rc); 3542 sessionAppendInteger(&buf, i*3+3, &rc); 3543 sessionAppendStr(&buf, " ELSE ", &rc); 3544 sessionAppendIdent(&buf, p->azCol[i], &rc); 3545 sessionAppendStr(&buf, " END", &rc); 3546 zSep = ", "; 3547 } 3548 3549 /* Append the PK part of the WHERE clause */ 3550 sessionAppendStr(&buf, " WHERE ", &rc); 3551 for(i=0; i<p->nCol; i++){ 3552 if( p->abPK[i] ){ 3553 sessionAppendIdent(&buf, p->azCol[i], &rc); 3554 sessionAppendStr(&buf, " = ?", &rc); 3555 sessionAppendInteger(&buf, i*3+1, &rc); 3556 sessionAppendStr(&buf, " AND ", &rc); 3557 } 3558 } 3559 3560 /* Append the non-PK part of the WHERE clause */ 3561 sessionAppendStr(&buf, " (?", &rc); 3562 sessionAppendInteger(&buf, p->nCol*3+1, &rc); 3563 sessionAppendStr(&buf, " OR 1", &rc); 3564 for(i=0; i<p->nCol; i++){ 3565 if( !p->abPK[i] ){ 3566 sessionAppendStr(&buf, " AND (?", &rc); 3567 sessionAppendInteger(&buf, i*3+2, &rc); 3568 sessionAppendStr(&buf, "=0 OR ", &rc); 3569 sessionAppendIdent(&buf, p->azCol[i], &rc); 3570 sessionAppendStr(&buf, " IS ?", &rc); 3571 sessionAppendInteger(&buf, i*3+1, &rc); 3572 sessionAppendStr(&buf, ")", &rc); 3573 } 3574 } 3575 sessionAppendStr(&buf, ")", &rc); 3576 3577 if( rc==SQLITE_OK ){ 3578 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0); 3579 } 3580 sqlite3_free(buf.aBuf); 3581 3582 return rc; 3583 } 3584 3585 3586 /* 3587 ** Formulate and prepare an SQL statement to query table zTab by primary 3588 ** key. Assuming the following table structure: 3589 ** 3590 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3591 ** 3592 ** The SELECT statement looks like this: 3593 ** 3594 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 3595 ** 3596 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 3597 ** pointing to the prepared version of the SQL statement. 3598 */ 3599 static int sessionSelectRow( 3600 sqlite3 *db, /* Database handle */ 3601 const char *zTab, /* Table name */ 3602 SessionApplyCtx *p /* Session changeset-apply context */ 3603 ){ 3604 return sessionSelectStmt( 3605 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 3606 } 3607 3608 /* 3609 ** Formulate and prepare an INSERT statement to add a record to table zTab. 3610 ** For example: 3611 ** 3612 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 3613 ** 3614 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 3615 ** pointing to the prepared version of the SQL statement. 3616 */ 3617 static int sessionInsertRow( 3618 sqlite3 *db, /* Database handle */ 3619 const char *zTab, /* Table name */ 3620 SessionApplyCtx *p /* Session changeset-apply context */ 3621 ){ 3622 int rc = SQLITE_OK; 3623 int i; 3624 SessionBuffer buf = {0, 0, 0}; 3625 3626 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 3627 sessionAppendIdent(&buf, zTab, &rc); 3628 sessionAppendStr(&buf, "(", &rc); 3629 for(i=0; i<p->nCol; i++){ 3630 if( i!=0 ) sessionAppendStr(&buf, ", ", &rc); 3631 sessionAppendIdent(&buf, p->azCol[i], &rc); 3632 } 3633 3634 sessionAppendStr(&buf, ") VALUES(?", &rc); 3635 for(i=1; i<p->nCol; i++){ 3636 sessionAppendStr(&buf, ", ?", &rc); 3637 } 3638 sessionAppendStr(&buf, ")", &rc); 3639 3640 if( rc==SQLITE_OK ){ 3641 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 3642 } 3643 sqlite3_free(buf.aBuf); 3644 return rc; 3645 } 3646 3647 static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){ 3648 return sqlite3_prepare_v2(db, zSql, -1, pp, 0); 3649 } 3650 3651 /* 3652 ** Prepare statements for applying changes to the sqlite_stat1 table. 3653 ** These are similar to those created by sessionSelectRow(), 3654 ** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for 3655 ** other tables. 3656 */ 3657 static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){ 3658 int rc = sessionSelectRow(db, "sqlite_stat1", p); 3659 if( rc==SQLITE_OK ){ 3660 rc = sessionPrepare(db, &p->pInsert, 3661 "INSERT INTO main.sqlite_stat1 VALUES(?1, " 3662 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, " 3663 "?3)" 3664 ); 3665 } 3666 if( rc==SQLITE_OK ){ 3667 rc = sessionPrepare(db, &p->pUpdate, 3668 "UPDATE main.sqlite_stat1 SET " 3669 "tbl = CASE WHEN ?2 THEN ?3 ELSE tbl END, " 3670 "idx = CASE WHEN ?5 THEN ?6 ELSE idx END, " 3671 "stat = CASE WHEN ?8 THEN ?9 ELSE stat END " 3672 "WHERE tbl=?1 AND idx IS " 3673 "CASE WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL ELSE ?4 END " 3674 "AND (?10 OR ?8=0 OR stat IS ?7)" 3675 ); 3676 } 3677 if( rc==SQLITE_OK ){ 3678 rc = sessionPrepare(db, &p->pDelete, 3679 "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS " 3680 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END " 3681 "AND (?4 OR stat IS ?3)" 3682 ); 3683 } 3684 return rc; 3685 } 3686 3687 /* 3688 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 3689 ** See comments in the body of this function for details. 3690 */ 3691 static int sessionBindValue( 3692 sqlite3_stmt *pStmt, /* Statement to bind value to */ 3693 int i, /* Parameter number to bind to */ 3694 sqlite3_value *pVal /* Value to bind */ 3695 ){ 3696 int eType = sqlite3_value_type(pVal); 3697 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 3698 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 3699 ** the (pVal->z) variable remains as it was or the type of the value is 3700 ** set to SQLITE_NULL. */ 3701 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 3702 /* This condition occurs when an earlier OOM in a call to 3703 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 3704 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 3705 return SQLITE_NOMEM; 3706 } 3707 return sqlite3_bind_value(pStmt, i, pVal); 3708 } 3709 3710 /* 3711 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 3712 ** transfers new.* values from the current iterator entry to statement 3713 ** pStmt. The table being inserted into has nCol columns. 3714 ** 3715 ** New.* value $i from the iterator is bound to variable ($i+1) of 3716 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 3717 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 3718 ** to an array nCol elements in size. In this case only those values for 3719 ** which abPK[$i] is true are read from the iterator and bound to the 3720 ** statement. 3721 ** 3722 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 3723 */ 3724 static int sessionBindRow( 3725 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 3726 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 3727 int nCol, /* Number of columns */ 3728 u8 *abPK, /* If not NULL, bind only if true */ 3729 sqlite3_stmt *pStmt /* Bind values to this statement */ 3730 ){ 3731 int i; 3732 int rc = SQLITE_OK; 3733 3734 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 3735 ** argument iterator points to a suitable entry. Make sure that xValue 3736 ** is one of these to guarantee that it is safe to ignore the return 3737 ** in the code below. */ 3738 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 3739 3740 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3741 if( !abPK || abPK[i] ){ 3742 sqlite3_value *pVal; 3743 (void)xValue(pIter, i, &pVal); 3744 if( pVal==0 ){ 3745 /* The value in the changeset was "undefined". This indicates a 3746 ** corrupt changeset blob. */ 3747 rc = SQLITE_CORRUPT_BKPT; 3748 }else{ 3749 rc = sessionBindValue(pStmt, i+1, pVal); 3750 } 3751 } 3752 } 3753 return rc; 3754 } 3755 3756 /* 3757 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 3758 ** This function binds the primary key values from the change that changeset 3759 ** iterator pIter points to to the SELECT and attempts to seek to the table 3760 ** entry. If a row is found, the SELECT statement left pointing at the row 3761 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 3762 ** has occured, the statement is reset and SQLITE_OK is returned. If an 3763 ** error occurs, the statement is reset and an SQLite error code is returned. 3764 ** 3765 ** If this function returns SQLITE_ROW, the caller must eventually reset() 3766 ** statement pSelect. If any other value is returned, the statement does 3767 ** not require a reset(). 3768 ** 3769 ** If the iterator currently points to an INSERT record, bind values from the 3770 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 3771 ** UPDATE, bind values from the old.* record. 3772 */ 3773 static int sessionSeekToRow( 3774 sqlite3 *db, /* Database handle */ 3775 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3776 u8 *abPK, /* Primary key flags array */ 3777 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 3778 ){ 3779 int rc; /* Return code */ 3780 int nCol; /* Number of columns in table */ 3781 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 3782 const char *zDummy; /* Unused */ 3783 3784 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3785 rc = sessionBindRow(pIter, 3786 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 3787 nCol, abPK, pSelect 3788 ); 3789 3790 if( rc==SQLITE_OK ){ 3791 rc = sqlite3_step(pSelect); 3792 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 3793 } 3794 3795 return rc; 3796 } 3797 3798 /* 3799 ** This function is called from within sqlite3changset_apply_v2() when 3800 ** a conflict is encountered and resolved using conflict resolution 3801 ** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE).. 3802 ** It adds a conflict resolution record to the buffer in 3803 ** SessionApplyCtx.rebase, which will eventually be returned to the caller 3804 ** of apply_v2() as the "rebase" buffer. 3805 ** 3806 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. 3807 */ 3808 static int sessionRebaseAdd( 3809 SessionApplyCtx *p, /* Apply context */ 3810 int eType, /* Conflict resolution (OMIT or REPLACE) */ 3811 sqlite3_changeset_iter *pIter /* Iterator pointing at current change */ 3812 ){ 3813 int rc = SQLITE_OK; 3814 int i; 3815 int eOp = pIter->op; 3816 if( p->bRebaseStarted==0 ){ 3817 /* Append a table-header to the rebase buffer */ 3818 const char *zTab = pIter->zTab; 3819 sessionAppendByte(&p->rebase, 'T', &rc); 3820 sessionAppendVarint(&p->rebase, p->nCol, &rc); 3821 sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc); 3822 sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc); 3823 p->bRebaseStarted = 1; 3824 } 3825 3826 assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT ); 3827 assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE ); 3828 3829 sessionAppendByte(&p->rebase, 3830 (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc 3831 ); 3832 sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc); 3833 for(i=0; i<p->nCol; i++){ 3834 sqlite3_value *pVal = 0; 3835 if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){ 3836 sqlite3changeset_old(pIter, i, &pVal); 3837 }else{ 3838 sqlite3changeset_new(pIter, i, &pVal); 3839 } 3840 sessionAppendValue(&p->rebase, pVal, &rc); 3841 } 3842 3843 return rc; 3844 } 3845 3846 /* 3847 ** Invoke the conflict handler for the change that the changeset iterator 3848 ** currently points to. 3849 ** 3850 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 3851 ** If argument pbReplace is NULL, then the type of conflict handler invoked 3852 ** depends solely on eType, as follows: 3853 ** 3854 ** eType value Value passed to xConflict 3855 ** ------------------------------------------------- 3856 ** CHANGESET_DATA CHANGESET_NOTFOUND 3857 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 3858 ** 3859 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 3860 ** record with the same primary key as the record about to be deleted, updated 3861 ** or inserted. If such a record can be found, it is available to the conflict 3862 ** handler as the "conflicting" record. In this case the type of conflict 3863 ** handler invoked is as follows: 3864 ** 3865 ** eType value PK Record found? Value passed to xConflict 3866 ** ---------------------------------------------------------------- 3867 ** CHANGESET_DATA Yes CHANGESET_DATA 3868 ** CHANGESET_DATA No CHANGESET_NOTFOUND 3869 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 3870 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 3871 ** 3872 ** If pbReplace is not NULL, and a record with a matching PK is found, and 3873 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 3874 ** is set to non-zero before returning SQLITE_OK. 3875 ** 3876 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 3877 ** returned. Or, if the conflict handler returns an invalid value, 3878 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 3879 ** this function returns SQLITE_OK. 3880 */ 3881 static int sessionConflictHandler( 3882 int eType, /* Either CHANGESET_DATA or CONFLICT */ 3883 SessionApplyCtx *p, /* changeset_apply() context */ 3884 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3885 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 3886 void *pCtx, /* First argument for conflict handler */ 3887 int *pbReplace /* OUT: Set to true if PK row is found */ 3888 ){ 3889 int res = 0; /* Value returned by conflict handler */ 3890 int rc; 3891 int nCol; 3892 int op; 3893 const char *zDummy; 3894 3895 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3896 3897 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 3898 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 3899 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 3900 3901 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 3902 if( pbReplace ){ 3903 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 3904 }else{ 3905 rc = SQLITE_OK; 3906 } 3907 3908 if( rc==SQLITE_ROW ){ 3909 /* There exists another row with the new.* primary key. */ 3910 pIter->pConflict = p->pSelect; 3911 res = xConflict(pCtx, eType, pIter); 3912 pIter->pConflict = 0; 3913 rc = sqlite3_reset(p->pSelect); 3914 }else if( rc==SQLITE_OK ){ 3915 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 3916 /* Instead of invoking the conflict handler, append the change blob 3917 ** to the SessionApplyCtx.constraints buffer. */ 3918 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 3919 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 3920 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 3921 return SQLITE_OK; 3922 }else{ 3923 /* No other row with the new.* primary key. */ 3924 res = xConflict(pCtx, eType+1, pIter); 3925 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 3926 } 3927 } 3928 3929 if( rc==SQLITE_OK ){ 3930 switch( res ){ 3931 case SQLITE_CHANGESET_REPLACE: 3932 assert( pbReplace ); 3933 *pbReplace = 1; 3934 break; 3935 3936 case SQLITE_CHANGESET_OMIT: 3937 break; 3938 3939 case SQLITE_CHANGESET_ABORT: 3940 rc = SQLITE_ABORT; 3941 break; 3942 3943 default: 3944 rc = SQLITE_MISUSE; 3945 break; 3946 } 3947 if( rc==SQLITE_OK ){ 3948 rc = sessionRebaseAdd(p, res, pIter); 3949 } 3950 } 3951 3952 return rc; 3953 } 3954 3955 /* 3956 ** Attempt to apply the change that the iterator passed as the first argument 3957 ** currently points to to the database. If a conflict is encountered, invoke 3958 ** the conflict handler callback. 3959 ** 3960 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 3961 ** one is encountered, update or delete the row with the matching primary key 3962 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 3963 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 3964 ** to true before returning. In this case the caller will invoke this function 3965 ** again, this time with pbRetry set to NULL. 3966 ** 3967 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 3968 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 3969 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 3970 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 3971 ** before retrying. In this case the caller attempts to remove the conflicting 3972 ** row before invoking this function again, this time with pbReplace set 3973 ** to NULL. 3974 ** 3975 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 3976 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 3977 ** returned. 3978 */ 3979 static int sessionApplyOneOp( 3980 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3981 SessionApplyCtx *p, /* changeset_apply() context */ 3982 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 3983 void *pCtx, /* First argument for the conflict handler */ 3984 int *pbReplace, /* OUT: True to remove PK row and retry */ 3985 int *pbRetry /* OUT: True to retry. */ 3986 ){ 3987 const char *zDummy; 3988 int op; 3989 int nCol; 3990 int rc = SQLITE_OK; 3991 3992 assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect ); 3993 assert( p->azCol && p->abPK ); 3994 assert( !pbReplace || *pbReplace==0 ); 3995 3996 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3997 3998 if( op==SQLITE_DELETE ){ 3999 4000 /* Bind values to the DELETE statement. If conflict handling is required, 4001 ** bind values for all columns and set bound variable (nCol+1) to true. 4002 ** Or, if conflict handling is not required, bind just the PK column 4003 ** values and, if it exists, set (nCol+1) to false. Conflict handling 4004 ** is not required if: 4005 ** 4006 ** * this is a patchset, or 4007 ** * (pbRetry==0), or 4008 ** * all columns of the table are PK columns (in this case there is 4009 ** no (nCol+1) variable to bind to). 4010 */ 4011 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 4012 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 4013 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 4014 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 4015 } 4016 if( rc!=SQLITE_OK ) return rc; 4017 4018 sqlite3_step(p->pDelete); 4019 rc = sqlite3_reset(p->pDelete); 4020 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4021 rc = sessionConflictHandler( 4022 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4023 ); 4024 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4025 rc = sessionConflictHandler( 4026 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4027 ); 4028 } 4029 4030 }else if( op==SQLITE_UPDATE ){ 4031 int i; 4032 4033 /* Bind values to the UPDATE statement. */ 4034 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 4035 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 4036 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 4037 4038 sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew); 4039 if( pOld ){ 4040 rc = sessionBindValue(p->pUpdate, i*3+1, pOld); 4041 } 4042 if( rc==SQLITE_OK && pNew ){ 4043 rc = sessionBindValue(p->pUpdate, i*3+3, pNew); 4044 } 4045 } 4046 if( rc==SQLITE_OK ){ 4047 sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0 || pIter->bPatchset); 4048 } 4049 if( rc!=SQLITE_OK ) return rc; 4050 4051 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 4052 ** the result will be SQLITE_OK with 0 rows modified. */ 4053 sqlite3_step(p->pUpdate); 4054 rc = sqlite3_reset(p->pUpdate); 4055 4056 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4057 /* A NOTFOUND or DATA error. Search the table to see if it contains 4058 ** a row with a matching primary key. If so, this is a DATA conflict. 4059 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 4060 4061 rc = sessionConflictHandler( 4062 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4063 ); 4064 4065 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4066 /* This is always a CONSTRAINT conflict. */ 4067 rc = sessionConflictHandler( 4068 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4069 ); 4070 } 4071 4072 }else{ 4073 assert( op==SQLITE_INSERT ); 4074 if( p->bStat1 ){ 4075 /* Check if there is a conflicting row. For sqlite_stat1, this needs 4076 ** to be done using a SELECT, as there is no PRIMARY KEY in the 4077 ** database schema to throw an exception if a duplicate is inserted. */ 4078 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 4079 if( rc==SQLITE_ROW ){ 4080 rc = SQLITE_CONSTRAINT; 4081 sqlite3_reset(p->pSelect); 4082 } 4083 } 4084 4085 if( rc==SQLITE_OK ){ 4086 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 4087 if( rc!=SQLITE_OK ) return rc; 4088 4089 sqlite3_step(p->pInsert); 4090 rc = sqlite3_reset(p->pInsert); 4091 } 4092 4093 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4094 rc = sessionConflictHandler( 4095 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 4096 ); 4097 } 4098 } 4099 4100 return rc; 4101 } 4102 4103 /* 4104 ** Attempt to apply the change that the iterator passed as the first argument 4105 ** currently points to to the database. If a conflict is encountered, invoke 4106 ** the conflict handler callback. 4107 ** 4108 ** The difference between this function and sessionApplyOne() is that this 4109 ** function handles the case where the conflict-handler is invoked and 4110 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 4111 ** retried in some manner. 4112 */ 4113 static int sessionApplyOneWithRetry( 4114 sqlite3 *db, /* Apply change to "main" db of this handle */ 4115 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 4116 SessionApplyCtx *pApply, /* Apply context */ 4117 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4118 void *pCtx /* First argument passed to xConflict */ 4119 ){ 4120 int bReplace = 0; 4121 int bRetry = 0; 4122 int rc; 4123 4124 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 4125 if( rc==SQLITE_OK ){ 4126 /* If the bRetry flag is set, the change has not been applied due to an 4127 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 4128 ** a row with the correct PK is present in the db, but one or more other 4129 ** fields do not contain the expected values) and the conflict handler 4130 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 4131 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 4132 ** the SQLITE_CHANGESET_DATA problem. */ 4133 if( bRetry ){ 4134 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 4135 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4136 } 4137 4138 /* If the bReplace flag is set, the change is an INSERT that has not 4139 ** been performed because the database already contains a row with the 4140 ** specified primary key and the conflict handler returned 4141 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 4142 ** before reattempting the INSERT. */ 4143 else if( bReplace ){ 4144 assert( pIter->op==SQLITE_INSERT ); 4145 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 4146 if( rc==SQLITE_OK ){ 4147 rc = sessionBindRow(pIter, 4148 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 4149 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 4150 } 4151 if( rc==SQLITE_OK ){ 4152 sqlite3_step(pApply->pDelete); 4153 rc = sqlite3_reset(pApply->pDelete); 4154 } 4155 if( rc==SQLITE_OK ){ 4156 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4157 } 4158 if( rc==SQLITE_OK ){ 4159 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 4160 } 4161 } 4162 } 4163 4164 return rc; 4165 } 4166 4167 /* 4168 ** Retry the changes accumulated in the pApply->constraints buffer. 4169 */ 4170 static int sessionRetryConstraints( 4171 sqlite3 *db, 4172 int bPatchset, 4173 const char *zTab, 4174 SessionApplyCtx *pApply, 4175 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4176 void *pCtx /* First argument passed to xConflict */ 4177 ){ 4178 int rc = SQLITE_OK; 4179 4180 while( pApply->constraints.nBuf ){ 4181 sqlite3_changeset_iter *pIter2 = 0; 4182 SessionBuffer cons = pApply->constraints; 4183 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 4184 4185 rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf); 4186 if( rc==SQLITE_OK ){ 4187 int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 4188 int rc2; 4189 pIter2->bPatchset = bPatchset; 4190 pIter2->zTab = (char*)zTab; 4191 pIter2->nCol = pApply->nCol; 4192 pIter2->abPK = pApply->abPK; 4193 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 4194 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 4195 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 4196 4197 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 4198 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 4199 } 4200 4201 rc2 = sqlite3changeset_finalize(pIter2); 4202 if( rc==SQLITE_OK ) rc = rc2; 4203 } 4204 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 4205 4206 sqlite3_free(cons.aBuf); 4207 if( rc!=SQLITE_OK ) break; 4208 if( pApply->constraints.nBuf>=cons.nBuf ){ 4209 /* No progress was made on the last round. */ 4210 pApply->bDeferConstraints = 0; 4211 } 4212 } 4213 4214 return rc; 4215 } 4216 4217 /* 4218 ** Argument pIter is a changeset iterator that has been initialized, but 4219 ** not yet passed to sqlite3changeset_next(). This function applies the 4220 ** changeset to the main database attached to handle "db". The supplied 4221 ** conflict handler callback is invoked to resolve any conflicts encountered 4222 ** while applying the change. 4223 */ 4224 static int sessionChangesetApply( 4225 sqlite3 *db, /* Apply change to "main" db of this handle */ 4226 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 4227 int(*xFilter)( 4228 void *pCtx, /* Copy of sixth arg to _apply() */ 4229 const char *zTab /* Table name */ 4230 ), 4231 int(*xConflict)( 4232 void *pCtx, /* Copy of fifth arg to _apply() */ 4233 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4234 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4235 ), 4236 void *pCtx, /* First argument passed to xConflict */ 4237 void **ppRebase, int *pnRebase, /* OUT: Rebase information */ 4238 int flags /* SESSION_APPLY_XXX flags */ 4239 ){ 4240 int schemaMismatch = 0; 4241 int rc = SQLITE_OK; /* Return code */ 4242 const char *zTab = 0; /* Name of current table */ 4243 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 4244 SessionApplyCtx sApply; /* changeset_apply() context object */ 4245 int bPatchset; 4246 4247 assert( xConflict!=0 ); 4248 4249 pIter->in.bNoDiscard = 1; 4250 memset(&sApply, 0, sizeof(sApply)); 4251 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4252 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4253 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4254 } 4255 if( rc==SQLITE_OK ){ 4256 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4257 } 4258 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4259 int nCol; 4260 int op; 4261 const char *zNew; 4262 4263 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4264 4265 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4266 u8 *abPK; 4267 4268 rc = sessionRetryConstraints( 4269 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4270 ); 4271 if( rc!=SQLITE_OK ) break; 4272 4273 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4274 sqlite3_finalize(sApply.pDelete); 4275 sqlite3_finalize(sApply.pUpdate); 4276 sqlite3_finalize(sApply.pInsert); 4277 sqlite3_finalize(sApply.pSelect); 4278 sApply.db = db; 4279 sApply.pDelete = 0; 4280 sApply.pUpdate = 0; 4281 sApply.pInsert = 0; 4282 sApply.pSelect = 0; 4283 sApply.nCol = 0; 4284 sApply.azCol = 0; 4285 sApply.abPK = 0; 4286 sApply.bStat1 = 0; 4287 sApply.bDeferConstraints = 1; 4288 sApply.bRebaseStarted = 0; 4289 memset(&sApply.constraints, 0, sizeof(SessionBuffer)); 4290 4291 /* If an xFilter() callback was specified, invoke it now. If the 4292 ** xFilter callback returns zero, skip this table. If it returns 4293 ** non-zero, proceed. */ 4294 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4295 if( schemaMismatch ){ 4296 zTab = sqlite3_mprintf("%s", zNew); 4297 if( zTab==0 ){ 4298 rc = SQLITE_NOMEM; 4299 break; 4300 } 4301 nTab = (int)strlen(zTab); 4302 sApply.azCol = (const char **)zTab; 4303 }else{ 4304 int nMinCol = 0; 4305 int i; 4306 4307 sqlite3changeset_pk(pIter, &abPK, 0); 4308 rc = sessionTableInfo( 4309 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4310 ); 4311 if( rc!=SQLITE_OK ) break; 4312 for(i=0; i<sApply.nCol; i++){ 4313 if( sApply.abPK[i] ) nMinCol = i+1; 4314 } 4315 4316 if( sApply.nCol==0 ){ 4317 schemaMismatch = 1; 4318 sqlite3_log(SQLITE_SCHEMA, 4319 "sqlite3changeset_apply(): no such table: %s", zTab 4320 ); 4321 } 4322 else if( sApply.nCol<nCol ){ 4323 schemaMismatch = 1; 4324 sqlite3_log(SQLITE_SCHEMA, 4325 "sqlite3changeset_apply(): table %s has %d columns, " 4326 "expected %d or more", 4327 zTab, sApply.nCol, nCol 4328 ); 4329 } 4330 else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4331 schemaMismatch = 1; 4332 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4333 "primary key mismatch for table %s", zTab 4334 ); 4335 } 4336 else{ 4337 sApply.nCol = nCol; 4338 if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){ 4339 if( (rc = sessionStat1Sql(db, &sApply) ) ){ 4340 break; 4341 } 4342 sApply.bStat1 = 1; 4343 }else{ 4344 if((rc = sessionSelectRow(db, zTab, &sApply)) 4345 || (rc = sessionUpdateRow(db, zTab, &sApply)) 4346 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4347 || (rc = sessionInsertRow(db, zTab, &sApply)) 4348 ){ 4349 break; 4350 } 4351 sApply.bStat1 = 0; 4352 } 4353 } 4354 nTab = sqlite3Strlen30(zTab); 4355 } 4356 } 4357 4358 /* If there is a schema mismatch on the current table, proceed to the 4359 ** next change. A log message has already been issued. */ 4360 if( schemaMismatch ) continue; 4361 4362 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4363 } 4364 4365 bPatchset = pIter->bPatchset; 4366 if( rc==SQLITE_OK ){ 4367 rc = sqlite3changeset_finalize(pIter); 4368 }else{ 4369 sqlite3changeset_finalize(pIter); 4370 } 4371 4372 if( rc==SQLITE_OK ){ 4373 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4374 } 4375 4376 if( rc==SQLITE_OK ){ 4377 int nFk, notUsed; 4378 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4379 if( nFk!=0 ){ 4380 int res = SQLITE_CHANGESET_ABORT; 4381 sqlite3_changeset_iter sIter; 4382 memset(&sIter, 0, sizeof(sIter)); 4383 sIter.nCol = nFk; 4384 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4385 if( res!=SQLITE_CHANGESET_OMIT ){ 4386 rc = SQLITE_CONSTRAINT; 4387 } 4388 } 4389 } 4390 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4391 4392 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4393 if( rc==SQLITE_OK ){ 4394 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4395 }else{ 4396 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4397 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4398 } 4399 } 4400 4401 if( rc==SQLITE_OK && bPatchset==0 && ppRebase && pnRebase ){ 4402 *ppRebase = (void*)sApply.rebase.aBuf; 4403 *pnRebase = sApply.rebase.nBuf; 4404 sApply.rebase.aBuf = 0; 4405 } 4406 sqlite3_finalize(sApply.pInsert); 4407 sqlite3_finalize(sApply.pDelete); 4408 sqlite3_finalize(sApply.pUpdate); 4409 sqlite3_finalize(sApply.pSelect); 4410 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4411 sqlite3_free((char*)sApply.constraints.aBuf); 4412 sqlite3_free((char*)sApply.rebase.aBuf); 4413 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4414 return rc; 4415 } 4416 4417 /* 4418 ** Apply the changeset passed via pChangeset/nChangeset to the main 4419 ** database attached to handle "db". 4420 */ 4421 int sqlite3changeset_apply_v2( 4422 sqlite3 *db, /* Apply change to "main" db of this handle */ 4423 int nChangeset, /* Size of changeset in bytes */ 4424 void *pChangeset, /* Changeset blob */ 4425 int(*xFilter)( 4426 void *pCtx, /* Copy of sixth arg to _apply() */ 4427 const char *zTab /* Table name */ 4428 ), 4429 int(*xConflict)( 4430 void *pCtx, /* Copy of sixth arg to _apply() */ 4431 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4432 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4433 ), 4434 void *pCtx, /* First argument passed to xConflict */ 4435 void **ppRebase, int *pnRebase, 4436 int flags 4437 ){ 4438 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4439 int rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset); 4440 if( rc==SQLITE_OK ){ 4441 rc = sessionChangesetApply( 4442 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4443 ); 4444 } 4445 return rc; 4446 } 4447 4448 /* 4449 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4450 ** attached to handle "db". Invoke the supplied conflict handler callback 4451 ** to resolve any conflicts encountered while applying the change. 4452 */ 4453 int sqlite3changeset_apply( 4454 sqlite3 *db, /* Apply change to "main" db of this handle */ 4455 int nChangeset, /* Size of changeset in bytes */ 4456 void *pChangeset, /* Changeset blob */ 4457 int(*xFilter)( 4458 void *pCtx, /* Copy of sixth arg to _apply() */ 4459 const char *zTab /* Table name */ 4460 ), 4461 int(*xConflict)( 4462 void *pCtx, /* Copy of fifth arg to _apply() */ 4463 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4464 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4465 ), 4466 void *pCtx /* First argument passed to xConflict */ 4467 ){ 4468 return sqlite3changeset_apply_v2( 4469 db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0 4470 ); 4471 } 4472 4473 /* 4474 ** Apply the changeset passed via xInput/pIn to the main database 4475 ** attached to handle "db". Invoke the supplied conflict handler callback 4476 ** to resolve any conflicts encountered while applying the change. 4477 */ 4478 int sqlite3changeset_apply_v2_strm( 4479 sqlite3 *db, /* Apply change to "main" db of this handle */ 4480 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4481 void *pIn, /* First arg for xInput */ 4482 int(*xFilter)( 4483 void *pCtx, /* Copy of sixth arg to _apply() */ 4484 const char *zTab /* Table name */ 4485 ), 4486 int(*xConflict)( 4487 void *pCtx, /* Copy of sixth arg to _apply() */ 4488 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4489 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4490 ), 4491 void *pCtx, /* First argument passed to xConflict */ 4492 void **ppRebase, int *pnRebase, 4493 int flags 4494 ){ 4495 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4496 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4497 if( rc==SQLITE_OK ){ 4498 rc = sessionChangesetApply( 4499 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4500 ); 4501 } 4502 return rc; 4503 } 4504 int sqlite3changeset_apply_strm( 4505 sqlite3 *db, /* Apply change to "main" db of this handle */ 4506 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4507 void *pIn, /* First arg for xInput */ 4508 int(*xFilter)( 4509 void *pCtx, /* Copy of sixth arg to _apply() */ 4510 const char *zTab /* Table name */ 4511 ), 4512 int(*xConflict)( 4513 void *pCtx, /* Copy of sixth arg to _apply() */ 4514 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4515 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4516 ), 4517 void *pCtx /* First argument passed to xConflict */ 4518 ){ 4519 return sqlite3changeset_apply_v2_strm( 4520 db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0 4521 ); 4522 } 4523 4524 /* 4525 ** sqlite3_changegroup handle. 4526 */ 4527 struct sqlite3_changegroup { 4528 int rc; /* Error code */ 4529 int bPatch; /* True to accumulate patchsets */ 4530 SessionTable *pList; /* List of tables in current patch */ 4531 }; 4532 4533 /* 4534 ** This function is called to merge two changes to the same row together as 4535 ** part of an sqlite3changeset_concat() operation. A new change object is 4536 ** allocated and a pointer to it stored in *ppNew. 4537 */ 4538 static int sessionChangeMerge( 4539 SessionTable *pTab, /* Table structure */ 4540 int bRebase, /* True for a rebase hash-table */ 4541 int bPatchset, /* True for patchsets */ 4542 SessionChange *pExist, /* Existing change */ 4543 int op2, /* Second change operation */ 4544 int bIndirect, /* True if second change is indirect */ 4545 u8 *aRec, /* Second change record */ 4546 int nRec, /* Number of bytes in aRec */ 4547 SessionChange **ppNew /* OUT: Merged change */ 4548 ){ 4549 SessionChange *pNew = 0; 4550 int rc = SQLITE_OK; 4551 4552 if( !pExist ){ 4553 pNew = (SessionChange *)sqlite3_malloc(sizeof(SessionChange) + nRec); 4554 if( !pNew ){ 4555 return SQLITE_NOMEM; 4556 } 4557 memset(pNew, 0, sizeof(SessionChange)); 4558 pNew->op = op2; 4559 pNew->bIndirect = bIndirect; 4560 pNew->aRecord = (u8*)&pNew[1]; 4561 if( bIndirect==0 || bRebase==0 ){ 4562 pNew->nRecord = nRec; 4563 memcpy(pNew->aRecord, aRec, nRec); 4564 }else{ 4565 int i; 4566 u8 *pIn = aRec; 4567 u8 *pOut = pNew->aRecord; 4568 for(i=0; i<pTab->nCol; i++){ 4569 int nIn = sessionSerialLen(pIn); 4570 if( *pIn==0 ){ 4571 *pOut++ = 0; 4572 }else if( pTab->abPK[i]==0 ){ 4573 *pOut++ = 0xFF; 4574 }else{ 4575 memcpy(pOut, pIn, nIn); 4576 pOut += nIn; 4577 } 4578 pIn += nIn; 4579 } 4580 pNew->nRecord = pOut - pNew->aRecord; 4581 } 4582 }else if( bRebase ){ 4583 if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){ 4584 *ppNew = pExist; 4585 }else{ 4586 int nByte = nRec + pExist->nRecord + sizeof(SessionChange); 4587 pNew = (SessionChange*)sqlite3_malloc(nByte); 4588 if( pNew==0 ){ 4589 rc = SQLITE_NOMEM; 4590 }else{ 4591 int i; 4592 u8 *a1 = pExist->aRecord; 4593 u8 *a2 = aRec; 4594 u8 *pOut; 4595 4596 memset(pNew, 0, nByte); 4597 pNew->bIndirect = bIndirect || pExist->bIndirect; 4598 pNew->op = op2; 4599 pOut = pNew->aRecord = (u8*)&pNew[1]; 4600 4601 for(i=0; i<pTab->nCol; i++){ 4602 int n1 = sessionSerialLen(a1); 4603 int n2 = sessionSerialLen(a2); 4604 if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){ 4605 *pOut++ = 0xFF; 4606 }else if( *a2==0 ){ 4607 memcpy(pOut, a1, n1); 4608 pOut += n1; 4609 }else{ 4610 memcpy(pOut, a2, n2); 4611 pOut += n2; 4612 } 4613 a1 += n1; 4614 a2 += n2; 4615 } 4616 pNew->nRecord = pOut - pNew->aRecord; 4617 } 4618 sqlite3_free(pExist); 4619 } 4620 }else{ 4621 int op1 = pExist->op; 4622 4623 /* 4624 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 4625 ** op1=INSERT, op2=UPDATE -> INSERT. 4626 ** op1=INSERT, op2=DELETE -> (none) 4627 ** 4628 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 4629 ** op1=UPDATE, op2=UPDATE -> UPDATE. 4630 ** op1=UPDATE, op2=DELETE -> DELETE. 4631 ** 4632 ** op1=DELETE, op2=INSERT -> UPDATE. 4633 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 4634 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 4635 */ 4636 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 4637 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 4638 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 4639 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 4640 ){ 4641 pNew = pExist; 4642 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 4643 sqlite3_free(pExist); 4644 assert( pNew==0 ); 4645 }else{ 4646 u8 *aExist = pExist->aRecord; 4647 int nByte; 4648 u8 *aCsr; 4649 4650 /* Allocate a new SessionChange object. Ensure that the aRecord[] 4651 ** buffer of the new object is large enough to hold any record that 4652 ** may be generated by combining the input records. */ 4653 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 4654 pNew = (SessionChange *)sqlite3_malloc(nByte); 4655 if( !pNew ){ 4656 sqlite3_free(pExist); 4657 return SQLITE_NOMEM; 4658 } 4659 memset(pNew, 0, sizeof(SessionChange)); 4660 pNew->bIndirect = (bIndirect && pExist->bIndirect); 4661 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 4662 4663 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 4664 u8 *a1 = aRec; 4665 assert( op2==SQLITE_UPDATE ); 4666 pNew->op = SQLITE_INSERT; 4667 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 4668 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 4669 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 4670 assert( op2==SQLITE_INSERT ); 4671 pNew->op = SQLITE_UPDATE; 4672 if( bPatchset ){ 4673 memcpy(aCsr, aRec, nRec); 4674 aCsr += nRec; 4675 }else{ 4676 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 4677 sqlite3_free(pNew); 4678 pNew = 0; 4679 } 4680 } 4681 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 4682 u8 *a1 = aExist; 4683 u8 *a2 = aRec; 4684 assert( op1==SQLITE_UPDATE ); 4685 if( bPatchset==0 ){ 4686 sessionSkipRecord(&a1, pTab->nCol); 4687 sessionSkipRecord(&a2, pTab->nCol); 4688 } 4689 pNew->op = SQLITE_UPDATE; 4690 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 4691 sqlite3_free(pNew); 4692 pNew = 0; 4693 } 4694 }else{ /* UPDATE + DELETE */ 4695 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 4696 pNew->op = SQLITE_DELETE; 4697 if( bPatchset ){ 4698 memcpy(aCsr, aRec, nRec); 4699 aCsr += nRec; 4700 }else{ 4701 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 4702 } 4703 } 4704 4705 if( pNew ){ 4706 pNew->nRecord = (int)(aCsr - pNew->aRecord); 4707 } 4708 sqlite3_free(pExist); 4709 } 4710 } 4711 4712 *ppNew = pNew; 4713 return rc; 4714 } 4715 4716 /* 4717 ** Add all changes in the changeset traversed by the iterator passed as 4718 ** the first argument to the changegroup hash tables. 4719 */ 4720 static int sessionChangesetToHash( 4721 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 4722 sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */ 4723 int bRebase /* True if hash table is for rebasing */ 4724 ){ 4725 u8 *aRec; 4726 int nRec; 4727 int rc = SQLITE_OK; 4728 SessionTable *pTab = 0; 4729 4730 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){ 4731 const char *zNew; 4732 int nCol; 4733 int op; 4734 int iHash; 4735 int bIndirect; 4736 SessionChange *pChange; 4737 SessionChange *pExist = 0; 4738 SessionChange **pp; 4739 4740 if( pGrp->pList==0 ){ 4741 pGrp->bPatch = pIter->bPatchset; 4742 }else if( pIter->bPatchset!=pGrp->bPatch ){ 4743 rc = SQLITE_ERROR; 4744 break; 4745 } 4746 4747 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 4748 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 4749 /* Search the list for a matching table */ 4750 int nNew = (int)strlen(zNew); 4751 u8 *abPK; 4752 4753 sqlite3changeset_pk(pIter, &abPK, 0); 4754 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 4755 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 4756 } 4757 if( !pTab ){ 4758 SessionTable **ppTab; 4759 4760 pTab = sqlite3_malloc(sizeof(SessionTable) + nCol + nNew+1); 4761 if( !pTab ){ 4762 rc = SQLITE_NOMEM; 4763 break; 4764 } 4765 memset(pTab, 0, sizeof(SessionTable)); 4766 pTab->nCol = nCol; 4767 pTab->abPK = (u8*)&pTab[1]; 4768 memcpy(pTab->abPK, abPK, nCol); 4769 pTab->zName = (char*)&pTab->abPK[nCol]; 4770 memcpy(pTab->zName, zNew, nNew+1); 4771 4772 /* The new object must be linked on to the end of the list, not 4773 ** simply added to the start of it. This is to ensure that the 4774 ** tables within the output of sqlite3changegroup_output() are in 4775 ** the right order. */ 4776 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 4777 *ppTab = pTab; 4778 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 4779 rc = SQLITE_SCHEMA; 4780 break; 4781 } 4782 } 4783 4784 if( sessionGrowHash(pIter->bPatchset, pTab) ){ 4785 rc = SQLITE_NOMEM; 4786 break; 4787 } 4788 iHash = sessionChangeHash( 4789 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 4790 ); 4791 4792 /* Search for existing entry. If found, remove it from the hash table. 4793 ** Code below may link it back in. 4794 */ 4795 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 4796 int bPkOnly1 = 0; 4797 int bPkOnly2 = 0; 4798 if( pIter->bPatchset ){ 4799 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 4800 bPkOnly2 = op==SQLITE_DELETE; 4801 } 4802 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 4803 pExist = *pp; 4804 *pp = (*pp)->pNext; 4805 pTab->nEntry--; 4806 break; 4807 } 4808 } 4809 4810 rc = sessionChangeMerge(pTab, bRebase, 4811 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 4812 ); 4813 if( rc ) break; 4814 if( pChange ){ 4815 pChange->pNext = pTab->apChange[iHash]; 4816 pTab->apChange[iHash] = pChange; 4817 pTab->nEntry++; 4818 } 4819 } 4820 4821 if( rc==SQLITE_OK ) rc = pIter->rc; 4822 return rc; 4823 } 4824 4825 /* 4826 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 4827 ** added to the changegroup object passed as the first argument. 4828 ** 4829 ** If xOutput is not NULL, then the changeset/patchset is returned to the 4830 ** user via one or more calls to xOutput, as with the other streaming 4831 ** interfaces. 4832 ** 4833 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 4834 ** buffer containing the output changeset before this function returns. In 4835 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 4836 ** is the responsibility of the caller to free the output buffer using 4837 ** sqlite3_free() when it is no longer required. 4838 ** 4839 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 4840 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 4841 ** are both set to 0 before returning. 4842 */ 4843 static int sessionChangegroupOutput( 4844 sqlite3_changegroup *pGrp, 4845 int (*xOutput)(void *pOut, const void *pData, int nData), 4846 void *pOut, 4847 int *pnOut, 4848 void **ppOut 4849 ){ 4850 int rc = SQLITE_OK; 4851 SessionBuffer buf = {0, 0, 0}; 4852 SessionTable *pTab; 4853 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 4854 4855 /* Create the serialized output changeset based on the contents of the 4856 ** hash tables attached to the SessionTable objects in list p->pList. 4857 */ 4858 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 4859 int i; 4860 if( pTab->nEntry==0 ) continue; 4861 4862 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 4863 for(i=0; i<pTab->nChange; i++){ 4864 SessionChange *p; 4865 for(p=pTab->apChange[i]; p; p=p->pNext){ 4866 sessionAppendByte(&buf, p->op, &rc); 4867 sessionAppendByte(&buf, p->bIndirect, &rc); 4868 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 4869 } 4870 } 4871 4872 if( rc==SQLITE_OK && xOutput && buf.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 4873 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4874 buf.nBuf = 0; 4875 } 4876 } 4877 4878 if( rc==SQLITE_OK ){ 4879 if( xOutput ){ 4880 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4881 }else{ 4882 *ppOut = buf.aBuf; 4883 *pnOut = buf.nBuf; 4884 buf.aBuf = 0; 4885 } 4886 } 4887 sqlite3_free(buf.aBuf); 4888 4889 return rc; 4890 } 4891 4892 /* 4893 ** Allocate a new, empty, sqlite3_changegroup. 4894 */ 4895 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 4896 int rc = SQLITE_OK; /* Return code */ 4897 sqlite3_changegroup *p; /* New object */ 4898 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 4899 if( p==0 ){ 4900 rc = SQLITE_NOMEM; 4901 }else{ 4902 memset(p, 0, sizeof(sqlite3_changegroup)); 4903 } 4904 *pp = p; 4905 return rc; 4906 } 4907 4908 /* 4909 ** Add the changeset currently stored in buffer pData, size nData bytes, 4910 ** to changeset-group p. 4911 */ 4912 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 4913 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4914 int rc; /* Return code */ 4915 4916 rc = sqlite3changeset_start(&pIter, nData, pData); 4917 if( rc==SQLITE_OK ){ 4918 rc = sessionChangesetToHash(pIter, pGrp, 0); 4919 } 4920 sqlite3changeset_finalize(pIter); 4921 return rc; 4922 } 4923 4924 /* 4925 ** Obtain a buffer containing a changeset representing the concatenation 4926 ** of all changesets added to the group so far. 4927 */ 4928 int sqlite3changegroup_output( 4929 sqlite3_changegroup *pGrp, 4930 int *pnData, 4931 void **ppData 4932 ){ 4933 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 4934 } 4935 4936 /* 4937 ** Streaming versions of changegroup_add(). 4938 */ 4939 int sqlite3changegroup_add_strm( 4940 sqlite3_changegroup *pGrp, 4941 int (*xInput)(void *pIn, void *pData, int *pnData), 4942 void *pIn 4943 ){ 4944 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4945 int rc; /* Return code */ 4946 4947 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4948 if( rc==SQLITE_OK ){ 4949 rc = sessionChangesetToHash(pIter, pGrp, 0); 4950 } 4951 sqlite3changeset_finalize(pIter); 4952 return rc; 4953 } 4954 4955 /* 4956 ** Streaming versions of changegroup_output(). 4957 */ 4958 int sqlite3changegroup_output_strm( 4959 sqlite3_changegroup *pGrp, 4960 int (*xOutput)(void *pOut, const void *pData, int nData), 4961 void *pOut 4962 ){ 4963 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 4964 } 4965 4966 /* 4967 ** Delete a changegroup object. 4968 */ 4969 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 4970 if( pGrp ){ 4971 sessionDeleteTable(pGrp->pList); 4972 sqlite3_free(pGrp); 4973 } 4974 } 4975 4976 /* 4977 ** Combine two changesets together. 4978 */ 4979 int sqlite3changeset_concat( 4980 int nLeft, /* Number of bytes in lhs input */ 4981 void *pLeft, /* Lhs input changeset */ 4982 int nRight /* Number of bytes in rhs input */, 4983 void *pRight, /* Rhs input changeset */ 4984 int *pnOut, /* OUT: Number of bytes in output changeset */ 4985 void **ppOut /* OUT: changeset (left <concat> right) */ 4986 ){ 4987 sqlite3_changegroup *pGrp; 4988 int rc; 4989 4990 rc = sqlite3changegroup_new(&pGrp); 4991 if( rc==SQLITE_OK ){ 4992 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 4993 } 4994 if( rc==SQLITE_OK ){ 4995 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 4996 } 4997 if( rc==SQLITE_OK ){ 4998 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 4999 } 5000 sqlite3changegroup_delete(pGrp); 5001 5002 return rc; 5003 } 5004 5005 /* 5006 ** Streaming version of sqlite3changeset_concat(). 5007 */ 5008 int sqlite3changeset_concat_strm( 5009 int (*xInputA)(void *pIn, void *pData, int *pnData), 5010 void *pInA, 5011 int (*xInputB)(void *pIn, void *pData, int *pnData), 5012 void *pInB, 5013 int (*xOutput)(void *pOut, const void *pData, int nData), 5014 void *pOut 5015 ){ 5016 sqlite3_changegroup *pGrp; 5017 int rc; 5018 5019 rc = sqlite3changegroup_new(&pGrp); 5020 if( rc==SQLITE_OK ){ 5021 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 5022 } 5023 if( rc==SQLITE_OK ){ 5024 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 5025 } 5026 if( rc==SQLITE_OK ){ 5027 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 5028 } 5029 sqlite3changegroup_delete(pGrp); 5030 5031 return rc; 5032 } 5033 5034 /* 5035 ** Changeset rebaser handle. 5036 */ 5037 struct sqlite3_rebaser { 5038 sqlite3_changegroup grp; /* Hash table */ 5039 }; 5040 5041 /* 5042 ** Buffers a1 and a2 must both contain a sessions module record nCol 5043 ** fields in size. This function appends an nCol sessions module 5044 ** record to buffer pBuf that is a copy of a1, except that for 5045 ** each field that is undefined in a1[], swap in the field from a2[]. 5046 */ 5047 static void sessionAppendRecordMerge( 5048 SessionBuffer *pBuf, /* Buffer to append to */ 5049 int nCol, /* Number of columns in each record */ 5050 u8 *a1, int n1, /* Record 1 */ 5051 u8 *a2, int n2, /* Record 2 */ 5052 int *pRc /* IN/OUT: error code */ 5053 ){ 5054 sessionBufferGrow(pBuf, n1+n2, pRc); 5055 if( *pRc==SQLITE_OK ){ 5056 int i; 5057 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5058 for(i=0; i<nCol; i++){ 5059 int nn1 = sessionSerialLen(a1); 5060 int nn2 = sessionSerialLen(a2); 5061 if( *a1==0 || *a1==0xFF ){ 5062 memcpy(pOut, a2, nn2); 5063 pOut += nn2; 5064 }else{ 5065 memcpy(pOut, a1, nn1); 5066 pOut += nn1; 5067 } 5068 a1 += nn1; 5069 a2 += nn2; 5070 } 5071 5072 pBuf->nBuf = pOut-pBuf->aBuf; 5073 assert( pBuf->nBuf<=pBuf->nAlloc ); 5074 } 5075 } 5076 5077 /* 5078 ** This function is called when rebasing a local UPDATE change against one 5079 ** or more remote UPDATE changes. The aRec/nRec buffer contains the current 5080 ** old.* and new.* records for the change. The rebase buffer (a single 5081 ** record) is in aChange/nChange. The rebased change is appended to buffer 5082 ** pBuf. 5083 ** 5084 ** Rebasing the UPDATE involves: 5085 ** 5086 ** * Removing any changes to fields for which the corresponding field 5087 ** in the rebase buffer is set to "replaced" (type 0xFF). If this 5088 ** means the UPDATE change updates no fields, nothing is appended 5089 ** to the output buffer. 5090 ** 5091 ** * For each field modified by the local change for which the 5092 ** corresponding field in the rebase buffer is not "undefined" (0x00) 5093 ** or "replaced" (0xFF), the old.* value is replaced by the value 5094 ** in the rebase buffer. 5095 */ 5096 static void sessionAppendPartialUpdate( 5097 SessionBuffer *pBuf, /* Append record here */ 5098 sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */ 5099 u8 *aRec, int nRec, /* Local change */ 5100 u8 *aChange, int nChange, /* Record to rebase against */ 5101 int *pRc /* IN/OUT: Return Code */ 5102 ){ 5103 sessionBufferGrow(pBuf, 2+nRec+nChange, pRc); 5104 if( *pRc==SQLITE_OK ){ 5105 int bData = 0; 5106 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5107 int i; 5108 u8 *a1 = aRec; 5109 u8 *a2 = aChange; 5110 5111 *pOut++ = SQLITE_UPDATE; 5112 *pOut++ = pIter->bIndirect; 5113 for(i=0; i<pIter->nCol; i++){ 5114 int n1 = sessionSerialLen(a1); 5115 int n2 = sessionSerialLen(a2); 5116 if( pIter->abPK[i] || a2[0]==0 ){ 5117 if( !pIter->abPK[i] ) bData = 1; 5118 memcpy(pOut, a1, n1); 5119 pOut += n1; 5120 }else if( a2[0]!=0xFF ){ 5121 bData = 1; 5122 memcpy(pOut, a2, n2); 5123 pOut += n2; 5124 }else{ 5125 *pOut++ = '\0'; 5126 } 5127 a1 += n1; 5128 a2 += n2; 5129 } 5130 if( bData ){ 5131 a2 = aChange; 5132 for(i=0; i<pIter->nCol; i++){ 5133 int n1 = sessionSerialLen(a1); 5134 int n2 = sessionSerialLen(a2); 5135 if( pIter->abPK[i] || a2[0]!=0xFF ){ 5136 memcpy(pOut, a1, n1); 5137 pOut += n1; 5138 }else{ 5139 *pOut++ = '\0'; 5140 } 5141 a1 += n1; 5142 a2 += n2; 5143 } 5144 pBuf->nBuf = (pOut - pBuf->aBuf); 5145 } 5146 } 5147 } 5148 5149 /* 5150 ** pIter is configured to iterate through a changeset. This function rebases 5151 ** that changeset according to the current configuration of the rebaser 5152 ** object passed as the first argument. If no error occurs and argument xOutput 5153 ** is not NULL, then the changeset is returned to the caller by invoking 5154 ** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL, 5155 ** then (*ppOut) is set to point to a buffer containing the rebased changeset 5156 ** before this function returns. In this case (*pnOut) is set to the size of 5157 ** the buffer in bytes. It is the responsibility of the caller to eventually 5158 ** free the (*ppOut) buffer using sqlite3_free(). 5159 ** 5160 ** If an error occurs, an SQLite error code is returned. If ppOut and 5161 ** pnOut are not NULL, then the two output parameters are set to 0 before 5162 ** returning. 5163 */ 5164 static int sessionRebase( 5165 sqlite3_rebaser *p, /* Rebaser hash table */ 5166 sqlite3_changeset_iter *pIter, /* Input data */ 5167 int (*xOutput)(void *pOut, const void *pData, int nData), 5168 void *pOut, /* Context for xOutput callback */ 5169 int *pnOut, /* OUT: Number of bytes in output changeset */ 5170 void **ppOut /* OUT: Inverse of pChangeset */ 5171 ){ 5172 int rc = SQLITE_OK; 5173 u8 *aRec = 0; 5174 int nRec = 0; 5175 int bNew = 0; 5176 SessionTable *pTab = 0; 5177 SessionBuffer sOut = {0,0,0}; 5178 5179 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){ 5180 SessionChange *pChange = 0; 5181 int bDone = 0; 5182 5183 if( bNew ){ 5184 const char *zTab = pIter->zTab; 5185 for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){ 5186 if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break; 5187 } 5188 bNew = 0; 5189 5190 /* A patchset may not be rebased */ 5191 if( pIter->bPatchset ){ 5192 rc = SQLITE_ERROR; 5193 } 5194 5195 /* Append a table header to the output for this new table */ 5196 sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc); 5197 sessionAppendVarint(&sOut, pIter->nCol, &rc); 5198 sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc); 5199 sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc); 5200 } 5201 5202 if( pTab && rc==SQLITE_OK ){ 5203 int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange); 5204 5205 for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){ 5206 if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){ 5207 break; 5208 } 5209 } 5210 } 5211 5212 if( pChange ){ 5213 assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT ); 5214 switch( pIter->op ){ 5215 case SQLITE_INSERT: 5216 if( pChange->op==SQLITE_INSERT ){ 5217 bDone = 1; 5218 if( pChange->bIndirect==0 ){ 5219 sessionAppendByte(&sOut, SQLITE_UPDATE, &rc); 5220 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5221 sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc); 5222 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5223 } 5224 } 5225 break; 5226 5227 case SQLITE_UPDATE: 5228 bDone = 1; 5229 if( pChange->op==SQLITE_DELETE ){ 5230 if( pChange->bIndirect==0 ){ 5231 u8 *pCsr = aRec; 5232 sessionSkipRecord(&pCsr, pIter->nCol); 5233 sessionAppendByte(&sOut, SQLITE_INSERT, &rc); 5234 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5235 sessionAppendRecordMerge(&sOut, pIter->nCol, 5236 pCsr, nRec-(pCsr-aRec), 5237 pChange->aRecord, pChange->nRecord, &rc 5238 ); 5239 } 5240 }else{ 5241 sessionAppendPartialUpdate(&sOut, pIter, 5242 aRec, nRec, pChange->aRecord, pChange->nRecord, &rc 5243 ); 5244 } 5245 break; 5246 5247 default: 5248 assert( pIter->op==SQLITE_DELETE ); 5249 bDone = 1; 5250 if( pChange->op==SQLITE_INSERT ){ 5251 sessionAppendByte(&sOut, SQLITE_DELETE, &rc); 5252 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5253 sessionAppendRecordMerge(&sOut, pIter->nCol, 5254 pChange->aRecord, pChange->nRecord, aRec, nRec, &rc 5255 ); 5256 } 5257 break; 5258 } 5259 } 5260 5261 if( bDone==0 ){ 5262 sessionAppendByte(&sOut, pIter->op, &rc); 5263 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5264 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5265 } 5266 if( rc==SQLITE_OK && xOutput && sOut.nBuf>SESSIONS_STRM_CHUNK_SIZE ){ 5267 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5268 sOut.nBuf = 0; 5269 } 5270 if( rc ) break; 5271 } 5272 5273 if( rc!=SQLITE_OK ){ 5274 sqlite3_free(sOut.aBuf); 5275 memset(&sOut, 0, sizeof(sOut)); 5276 } 5277 5278 if( rc==SQLITE_OK ){ 5279 if( xOutput ){ 5280 if( sOut.nBuf>0 ){ 5281 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5282 } 5283 }else{ 5284 *ppOut = (void*)sOut.aBuf; 5285 *pnOut = sOut.nBuf; 5286 sOut.aBuf = 0; 5287 } 5288 } 5289 sqlite3_free(sOut.aBuf); 5290 return rc; 5291 } 5292 5293 /* 5294 ** Create a new rebaser object. 5295 */ 5296 int sqlite3rebaser_create(sqlite3_rebaser **ppNew){ 5297 int rc = SQLITE_OK; 5298 sqlite3_rebaser *pNew; 5299 5300 pNew = sqlite3_malloc(sizeof(sqlite3_rebaser)); 5301 if( pNew==0 ){ 5302 rc = SQLITE_NOMEM; 5303 }else{ 5304 memset(pNew, 0, sizeof(sqlite3_rebaser)); 5305 } 5306 *ppNew = pNew; 5307 return rc; 5308 } 5309 5310 /* 5311 ** Call this one or more times to configure a rebaser. 5312 */ 5313 int sqlite3rebaser_configure( 5314 sqlite3_rebaser *p, 5315 int nRebase, const void *pRebase 5316 ){ 5317 sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */ 5318 int rc; /* Return code */ 5319 rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase); 5320 if( rc==SQLITE_OK ){ 5321 rc = sessionChangesetToHash(pIter, &p->grp, 1); 5322 } 5323 sqlite3changeset_finalize(pIter); 5324 return rc; 5325 } 5326 5327 /* 5328 ** Rebase a changeset according to current rebaser configuration 5329 */ 5330 int sqlite3rebaser_rebase( 5331 sqlite3_rebaser *p, 5332 int nIn, const void *pIn, 5333 int *pnOut, void **ppOut 5334 ){ 5335 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5336 int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn); 5337 5338 if( rc==SQLITE_OK ){ 5339 rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut); 5340 sqlite3changeset_finalize(pIter); 5341 } 5342 5343 return rc; 5344 } 5345 5346 /* 5347 ** Rebase a changeset according to current rebaser configuration 5348 */ 5349 int sqlite3rebaser_rebase_strm( 5350 sqlite3_rebaser *p, 5351 int (*xInput)(void *pIn, void *pData, int *pnData), 5352 void *pIn, 5353 int (*xOutput)(void *pOut, const void *pData, int nData), 5354 void *pOut 5355 ){ 5356 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5357 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 5358 5359 if( rc==SQLITE_OK ){ 5360 rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0); 5361 sqlite3changeset_finalize(pIter); 5362 } 5363 5364 return rc; 5365 } 5366 5367 /* 5368 ** Destroy a rebaser object 5369 */ 5370 void sqlite3rebaser_delete(sqlite3_rebaser *p){ 5371 if( p ){ 5372 sessionDeleteTable(p->grp.pList); 5373 sqlite3_free(p); 5374 } 5375 } 5376 5377 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 5378