1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 typedef struct SessionHook SessionHook; 29 struct SessionHook { 30 void *pCtx; 31 int (*xOld)(void*,int,sqlite3_value**); 32 int (*xNew)(void*,int,sqlite3_value**); 33 int (*xCount)(void*); 34 int (*xDepth)(void*); 35 }; 36 37 /* 38 ** Session handle structure. 39 */ 40 struct sqlite3_session { 41 sqlite3 *db; /* Database handle session is attached to */ 42 char *zDb; /* Name of database session is attached to */ 43 int bEnable; /* True if currently recording */ 44 int bIndirect; /* True if all changes are indirect */ 45 int bAutoAttach; /* True to auto-attach tables */ 46 int rc; /* Non-zero if an error has occurred */ 47 void *pFilterCtx; /* First argument to pass to xTableFilter */ 48 int (*xTableFilter)(void *pCtx, const char *zTab); 49 sqlite3_session *pNext; /* Next session object on same db. */ 50 SessionTable *pTable; /* List of attached tables */ 51 SessionHook hook; /* APIs to grab new and old data with */ 52 }; 53 54 /* 55 ** Instances of this structure are used to build strings or binary records. 56 */ 57 struct SessionBuffer { 58 u8 *aBuf; /* Pointer to changeset buffer */ 59 int nBuf; /* Size of buffer aBuf */ 60 int nAlloc; /* Size of allocation containing aBuf */ 61 }; 62 63 /* 64 ** An object of this type is used internally as an abstraction for 65 ** input data. Input data may be supplied either as a single large buffer 66 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 67 ** sqlite3changeset_start_strm()). 68 */ 69 struct SessionInput { 70 int bNoDiscard; /* If true, discard no data */ 71 int iCurrent; /* Offset in aData[] of current change */ 72 int iNext; /* Offset in aData[] of next change */ 73 u8 *aData; /* Pointer to buffer containing changeset */ 74 int nData; /* Number of bytes in aData */ 75 76 SessionBuffer buf; /* Current read buffer */ 77 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 78 void *pIn; /* First argument to xInput */ 79 int bEof; /* Set to true after xInput finished */ 80 }; 81 82 /* 83 ** Structure for changeset iterators. 84 */ 85 struct sqlite3_changeset_iter { 86 SessionInput in; /* Input buffer or stream */ 87 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 88 int bPatchset; /* True if this is a patchset */ 89 int rc; /* Iterator error code */ 90 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 91 char *zTab; /* Current table */ 92 int nCol; /* Number of columns in zTab */ 93 int op; /* Current operation */ 94 int bIndirect; /* True if current change was indirect */ 95 u8 *abPK; /* Primary key array */ 96 sqlite3_value **apValue; /* old.* and new.* values */ 97 }; 98 99 /* 100 ** Each session object maintains a set of the following structures, one 101 ** for each table the session object is monitoring. The structures are 102 ** stored in a linked list starting at sqlite3_session.pTable. 103 ** 104 ** The keys of the SessionTable.aChange[] hash table are all rows that have 105 ** been modified in any way since the session object was attached to the 106 ** table. 107 ** 108 ** The data associated with each hash-table entry is a structure containing 109 ** a subset of the initial values that the modified row contained at the 110 ** start of the session. Or no initial values if the row was inserted. 111 */ 112 struct SessionTable { 113 SessionTable *pNext; 114 char *zName; /* Local name of table */ 115 int nCol; /* Number of columns in table zName */ 116 const char **azCol; /* Column names */ 117 u8 *abPK; /* Array of primary key flags */ 118 int nEntry; /* Total number of entries in hash table */ 119 int nChange; /* Size of apChange[] array */ 120 SessionChange **apChange; /* Hash table buckets */ 121 }; 122 123 /* 124 ** RECORD FORMAT: 125 ** 126 ** The following record format is similar to (but not compatible with) that 127 ** used in SQLite database files. This format is used as part of the 128 ** change-set binary format, and so must be architecture independent. 129 ** 130 ** Unlike the SQLite database record format, each field is self-contained - 131 ** there is no separation of header and data. Each field begins with a 132 ** single byte describing its type, as follows: 133 ** 134 ** 0x00: Undefined value. 135 ** 0x01: Integer value. 136 ** 0x02: Real value. 137 ** 0x03: Text value. 138 ** 0x04: Blob value. 139 ** 0x05: SQL NULL value. 140 ** 141 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 142 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 143 ** only of the single type byte. For other types of values, the type byte 144 ** is followed by: 145 ** 146 ** Text values: 147 ** A varint containing the number of bytes in the value (encoded using 148 ** UTF-8). Followed by a buffer containing the UTF-8 representation 149 ** of the text value. There is no nul terminator. 150 ** 151 ** Blob values: 152 ** A varint containing the number of bytes in the value, followed by 153 ** a buffer containing the value itself. 154 ** 155 ** Integer values: 156 ** An 8-byte big-endian integer value. 157 ** 158 ** Real values: 159 ** An 8-byte big-endian IEEE 754-2008 real value. 160 ** 161 ** Varint values are encoded in the same way as varints in the SQLite 162 ** record format. 163 ** 164 ** CHANGESET FORMAT: 165 ** 166 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 167 ** one or more tables. Operations on a single table are grouped together, 168 ** but may occur in any order (i.e. deletes, updates and inserts are all 169 ** mixed together). 170 ** 171 ** Each group of changes begins with a table header: 172 ** 173 ** 1 byte: Constant 0x54 (capital 'T') 174 ** Varint: Number of columns in the table. 175 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 176 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 177 ** 178 ** Followed by one or more changes to the table. 179 ** 180 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 181 ** 1 byte: The "indirect-change" flag. 182 ** old.* record: (delete and update only) 183 ** new.* record: (insert and update only) 184 ** 185 ** The "old.*" and "new.*" records, if present, are N field records in the 186 ** format described above under "RECORD FORMAT", where N is the number of 187 ** columns in the table. The i'th field of each record is associated with 188 ** the i'th column of the table, counting from left to right in the order 189 ** in which columns were declared in the CREATE TABLE statement. 190 ** 191 ** The new.* record that is part of each INSERT change contains the values 192 ** that make up the new row. Similarly, the old.* record that is part of each 193 ** DELETE change contains the values that made up the row that was deleted 194 ** from the database. In the changeset format, the records that are part 195 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 196 ** fields. 197 ** 198 ** Within the old.* record associated with an UPDATE change, all fields 199 ** associated with table columns that are not PRIMARY KEY columns and are 200 ** not modified by the UPDATE change are set to "undefined". Other fields 201 ** are set to the values that made up the row before the UPDATE that the 202 ** change records took place. Within the new.* record, fields associated 203 ** with table columns modified by the UPDATE change contain the new 204 ** values. Fields associated with table columns that are not modified 205 ** are set to "undefined". 206 ** 207 ** PATCHSET FORMAT: 208 ** 209 ** A patchset is also a collection of changes. It is similar to a changeset, 210 ** but leaves undefined those fields that are not useful if no conflict 211 ** resolution is required when applying the changeset. 212 ** 213 ** Each group of changes begins with a table header: 214 ** 215 ** 1 byte: Constant 0x50 (capital 'P') 216 ** Varint: Number of columns in the table. 217 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 218 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 219 ** 220 ** Followed by one or more changes to the table. 221 ** 222 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 223 ** 1 byte: The "indirect-change" flag. 224 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 225 ** full record for INSERT). 226 ** 227 ** As in the changeset format, each field of the single record that is part 228 ** of a patchset change is associated with the correspondingly positioned 229 ** table column, counting from left to right within the CREATE TABLE 230 ** statement. 231 ** 232 ** For a DELETE change, all fields within the record except those associated 233 ** with PRIMARY KEY columns are set to "undefined". The PRIMARY KEY fields 234 ** contain the values identifying the row to delete. 235 ** 236 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 237 ** columns and columns that are modified by the UPDATE are set to "undefined". 238 ** PRIMARY KEY fields contain the values identifying the table row to update, 239 ** and fields associated with modified columns contain the new column values. 240 ** 241 ** The records associated with INSERT changes are in the same format as for 242 ** changesets. It is not possible for a record associated with an INSERT 243 ** change to contain a field set to "undefined". 244 */ 245 246 /* 247 ** For each row modified during a session, there exists a single instance of 248 ** this structure stored in a SessionTable.aChange[] hash table. 249 */ 250 struct SessionChange { 251 int op; /* One of UPDATE, DELETE, INSERT */ 252 int bIndirect; /* True if this change is "indirect" */ 253 int nRecord; /* Number of bytes in buffer aRecord[] */ 254 u8 *aRecord; /* Buffer containing old.* record */ 255 SessionChange *pNext; /* For hash-table collisions */ 256 }; 257 258 /* 259 ** Write a varint with value iVal into the buffer at aBuf. Return the 260 ** number of bytes written. 261 */ 262 static int sessionVarintPut(u8 *aBuf, int iVal){ 263 return putVarint32(aBuf, iVal); 264 } 265 266 /* 267 ** Return the number of bytes required to store value iVal as a varint. 268 */ 269 static int sessionVarintLen(int iVal){ 270 return sqlite3VarintLen(iVal); 271 } 272 273 /* 274 ** Read a varint value from aBuf[] into *piVal. Return the number of 275 ** bytes read. 276 */ 277 static int sessionVarintGet(u8 *aBuf, int *piVal){ 278 return getVarint32(aBuf, *piVal); 279 } 280 281 /* Load an unaligned and unsigned 32-bit integer */ 282 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 283 284 /* 285 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 286 ** the value read. 287 */ 288 static sqlite3_int64 sessionGetI64(u8 *aRec){ 289 u64 x = SESSION_UINT32(aRec); 290 u32 y = SESSION_UINT32(aRec+4); 291 x = (x<<32) + y; 292 return (sqlite3_int64)x; 293 } 294 295 /* 296 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 297 */ 298 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 299 aBuf[0] = (i>>56) & 0xFF; 300 aBuf[1] = (i>>48) & 0xFF; 301 aBuf[2] = (i>>40) & 0xFF; 302 aBuf[3] = (i>>32) & 0xFF; 303 aBuf[4] = (i>>24) & 0xFF; 304 aBuf[5] = (i>>16) & 0xFF; 305 aBuf[6] = (i>> 8) & 0xFF; 306 aBuf[7] = (i>> 0) & 0xFF; 307 } 308 309 /* 310 ** This function is used to serialize the contents of value pValue (see 311 ** comment titled "RECORD FORMAT" above). 312 ** 313 ** If it is non-NULL, the serialized form of the value is written to 314 ** buffer aBuf. *pnWrite is set to the number of bytes written before 315 ** returning. Or, if aBuf is NULL, the only thing this function does is 316 ** set *pnWrite. 317 ** 318 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 319 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 320 ** SQLITE_NOMEM is returned. 321 */ 322 static int sessionSerializeValue( 323 u8 *aBuf, /* If non-NULL, write serialized value here */ 324 sqlite3_value *pValue, /* Value to serialize */ 325 int *pnWrite /* IN/OUT: Increment by bytes written */ 326 ){ 327 int nByte; /* Size of serialized value in bytes */ 328 329 if( pValue ){ 330 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 331 332 eType = sqlite3_value_type(pValue); 333 if( aBuf ) aBuf[0] = eType; 334 335 switch( eType ){ 336 case SQLITE_NULL: 337 nByte = 1; 338 break; 339 340 case SQLITE_INTEGER: 341 case SQLITE_FLOAT: 342 if( aBuf ){ 343 /* TODO: SQLite does something special to deal with mixed-endian 344 ** floating point values (e.g. ARM7). This code probably should 345 ** too. */ 346 u64 i; 347 if( eType==SQLITE_INTEGER ){ 348 i = (u64)sqlite3_value_int64(pValue); 349 }else{ 350 double r; 351 assert( sizeof(double)==8 && sizeof(u64)==8 ); 352 r = sqlite3_value_double(pValue); 353 memcpy(&i, &r, 8); 354 } 355 sessionPutI64(&aBuf[1], i); 356 } 357 nByte = 9; 358 break; 359 360 default: { 361 u8 *z; 362 int n; 363 int nVarint; 364 365 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 366 if( eType==SQLITE_TEXT ){ 367 z = (u8 *)sqlite3_value_text(pValue); 368 }else{ 369 z = (u8 *)sqlite3_value_blob(pValue); 370 } 371 n = sqlite3_value_bytes(pValue); 372 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 373 nVarint = sessionVarintLen(n); 374 375 if( aBuf ){ 376 sessionVarintPut(&aBuf[1], n); 377 memcpy(&aBuf[nVarint + 1], eType==SQLITE_TEXT ? 378 sqlite3_value_text(pValue) : sqlite3_value_blob(pValue), n 379 ); 380 } 381 382 nByte = 1 + nVarint + n; 383 break; 384 } 385 } 386 }else{ 387 nByte = 1; 388 if( aBuf ) aBuf[0] = '\0'; 389 } 390 391 if( pnWrite ) *pnWrite += nByte; 392 return SQLITE_OK; 393 } 394 395 396 /* 397 ** This macro is used to calculate hash key values for data structures. In 398 ** order to use this macro, the entire data structure must be represented 399 ** as a series of unsigned integers. In order to calculate a hash-key value 400 ** for a data structure represented as three such integers, the macro may 401 ** then be used as follows: 402 ** 403 ** int hash_key_value; 404 ** hash_key_value = HASH_APPEND(0, <value 1>); 405 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 406 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 407 ** 408 ** In practice, the data structures this macro is used for are the primary 409 ** key values of modified rows. 410 */ 411 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 412 413 /* 414 ** Append the hash of the 64-bit integer passed as the second argument to the 415 ** hash-key value passed as the first. Return the new hash-key value. 416 */ 417 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 418 h = HASH_APPEND(h, i & 0xFFFFFFFF); 419 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 420 } 421 422 /* 423 ** Append the hash of the blob passed via the second and third arguments to 424 ** the hash-key value passed as the first. Return the new hash-key value. 425 */ 426 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 427 int i; 428 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 429 return h; 430 } 431 432 /* 433 ** Append the hash of the data type passed as the second argument to the 434 ** hash-key value passed as the first. Return the new hash-key value. 435 */ 436 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 437 return HASH_APPEND(h, eType); 438 } 439 440 /* 441 ** This function may only be called from within a pre-update callback. 442 ** It calculates a hash based on the primary key values of the old.* or 443 ** new.* row currently available and, assuming no error occurs, writes it to 444 ** *piHash before returning. If the primary key contains one or more NULL 445 ** values, *pbNullPK is set to true before returning. 446 ** 447 ** If an error occurs, an SQLite error code is returned and the final values 448 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 449 ** and the output variables are set as described above. 450 */ 451 static int sessionPreupdateHash( 452 sqlite3_session *pSession, /* Session object that owns pTab */ 453 SessionTable *pTab, /* Session table handle */ 454 int bNew, /* True to hash the new.* PK */ 455 int *piHash, /* OUT: Hash value */ 456 int *pbNullPK /* OUT: True if there are NULL values in PK */ 457 ){ 458 unsigned int h = 0; /* Hash value to return */ 459 int i; /* Used to iterate through columns */ 460 461 assert( *pbNullPK==0 ); 462 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 463 for(i=0; i<pTab->nCol; i++){ 464 if( pTab->abPK[i] ){ 465 int rc; 466 int eType; 467 sqlite3_value *pVal; 468 469 if( bNew ){ 470 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 471 }else{ 472 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 473 } 474 if( rc!=SQLITE_OK ) return rc; 475 476 eType = sqlite3_value_type(pVal); 477 h = sessionHashAppendType(h, eType); 478 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 479 i64 iVal; 480 if( eType==SQLITE_INTEGER ){ 481 iVal = sqlite3_value_int64(pVal); 482 }else{ 483 double rVal = sqlite3_value_double(pVal); 484 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 485 memcpy(&iVal, &rVal, 8); 486 } 487 h = sessionHashAppendI64(h, iVal); 488 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 489 const u8 *z; 490 int n; 491 if( eType==SQLITE_TEXT ){ 492 z = (const u8 *)sqlite3_value_text(pVal); 493 }else{ 494 z = (const u8 *)sqlite3_value_blob(pVal); 495 } 496 n = sqlite3_value_bytes(pVal); 497 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 498 h = sessionHashAppendBlob(h, n, z); 499 }else{ 500 assert( eType==SQLITE_NULL ); 501 *pbNullPK = 1; 502 } 503 } 504 } 505 506 *piHash = (h % pTab->nChange); 507 return SQLITE_OK; 508 } 509 510 /* 511 ** The buffer that the argument points to contains a serialized SQL value. 512 ** Return the number of bytes of space occupied by the value (including 513 ** the type byte). 514 */ 515 static int sessionSerialLen(u8 *a){ 516 int e = *a; 517 int n; 518 if( e==0 ) return 1; 519 if( e==SQLITE_NULL ) return 1; 520 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 521 return sessionVarintGet(&a[1], &n) + 1 + n; 522 } 523 524 /* 525 ** Based on the primary key values stored in change aRecord, calculate a 526 ** hash key. Assume the has table has nBucket buckets. The hash keys 527 ** calculated by this function are compatible with those calculated by 528 ** sessionPreupdateHash(). 529 ** 530 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 531 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 532 */ 533 static unsigned int sessionChangeHash( 534 SessionTable *pTab, /* Table handle */ 535 int bPkOnly, /* Record consists of PK fields only */ 536 u8 *aRecord, /* Change record */ 537 int nBucket /* Assume this many buckets in hash table */ 538 ){ 539 unsigned int h = 0; /* Value to return */ 540 int i; /* Used to iterate through columns */ 541 u8 *a = aRecord; /* Used to iterate through change record */ 542 543 for(i=0; i<pTab->nCol; i++){ 544 int eType = *a; 545 int isPK = pTab->abPK[i]; 546 if( bPkOnly && isPK==0 ) continue; 547 548 /* It is not possible for eType to be SQLITE_NULL here. The session 549 ** module does not record changes for rows with NULL values stored in 550 ** primary key columns. */ 551 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 552 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 553 || eType==SQLITE_NULL || eType==0 554 ); 555 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 556 557 if( isPK ){ 558 a++; 559 h = sessionHashAppendType(h, eType); 560 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 561 h = sessionHashAppendI64(h, sessionGetI64(a)); 562 a += 8; 563 }else{ 564 int n; 565 a += sessionVarintGet(a, &n); 566 h = sessionHashAppendBlob(h, n, a); 567 a += n; 568 } 569 }else{ 570 a += sessionSerialLen(a); 571 } 572 } 573 return (h % nBucket); 574 } 575 576 /* 577 ** Arguments aLeft and aRight are pointers to change records for table pTab. 578 ** This function returns true if the two records apply to the same row (i.e. 579 ** have the same values stored in the primary key columns), or false 580 ** otherwise. 581 */ 582 static int sessionChangeEqual( 583 SessionTable *pTab, /* Table used for PK definition */ 584 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 585 u8 *aLeft, /* Change record */ 586 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 587 u8 *aRight /* Change record */ 588 ){ 589 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 590 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 591 int iCol; /* Used to iterate through table columns */ 592 593 for(iCol=0; iCol<pTab->nCol; iCol++){ 594 if( pTab->abPK[iCol] ){ 595 int n1 = sessionSerialLen(a1); 596 int n2 = sessionSerialLen(a2); 597 598 if( pTab->abPK[iCol] && (n1!=n2 || memcmp(a1, a2, n1)) ){ 599 return 0; 600 } 601 a1 += n1; 602 a2 += n2; 603 }else{ 604 if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1); 605 if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2); 606 } 607 } 608 609 return 1; 610 } 611 612 /* 613 ** Arguments aLeft and aRight both point to buffers containing change 614 ** records with nCol columns. This function "merges" the two records into 615 ** a single records which is written to the buffer at *paOut. *paOut is 616 ** then set to point to one byte after the last byte written before 617 ** returning. 618 ** 619 ** The merging of records is done as follows: For each column, if the 620 ** aRight record contains a value for the column, copy the value from 621 ** their. Otherwise, if aLeft contains a value, copy it. If neither 622 ** record contains a value for a given column, then neither does the 623 ** output record. 624 */ 625 static void sessionMergeRecord( 626 u8 **paOut, 627 int nCol, 628 u8 *aLeft, 629 u8 *aRight 630 ){ 631 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 632 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 633 u8 *aOut = *paOut; /* Output cursor */ 634 int iCol; /* Used to iterate from 0 to nCol */ 635 636 for(iCol=0; iCol<nCol; iCol++){ 637 int n1 = sessionSerialLen(a1); 638 int n2 = sessionSerialLen(a2); 639 if( *a2 ){ 640 memcpy(aOut, a2, n2); 641 aOut += n2; 642 }else{ 643 memcpy(aOut, a1, n1); 644 aOut += n1; 645 } 646 a1 += n1; 647 a2 += n2; 648 } 649 650 *paOut = aOut; 651 } 652 653 /* 654 ** This is a helper function used by sessionMergeUpdate(). 655 ** 656 ** When this function is called, both *paOne and *paTwo point to a value 657 ** within a change record. Before it returns, both have been advanced so 658 ** as to point to the next value in the record. 659 ** 660 ** If, when this function is called, *paTwo points to a valid value (i.e. 661 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 662 ** pointer is returned and *pnVal is set to the number of bytes in the 663 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 664 ** set to the number of bytes in the value at *paOne. If *paOne points 665 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 666 ** 667 ** if( *paTwo is valid ) return *paTwo; 668 ** return *paOne; 669 ** 670 */ 671 static u8 *sessionMergeValue( 672 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 673 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 674 int *pnVal /* OUT: Bytes in returned value */ 675 ){ 676 u8 *a1 = *paOne; 677 u8 *a2 = *paTwo; 678 u8 *pRet = 0; 679 int n1; 680 681 assert( a1 ); 682 if( a2 ){ 683 int n2 = sessionSerialLen(a2); 684 if( *a2 ){ 685 *pnVal = n2; 686 pRet = a2; 687 } 688 *paTwo = &a2[n2]; 689 } 690 691 n1 = sessionSerialLen(a1); 692 if( pRet==0 ){ 693 *pnVal = n1; 694 pRet = a1; 695 } 696 *paOne = &a1[n1]; 697 698 return pRet; 699 } 700 701 /* 702 ** This function is used by changeset_concat() to merge two UPDATE changes 703 ** on the same row. 704 */ 705 static int sessionMergeUpdate( 706 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 707 SessionTable *pTab, /* Table change pertains to */ 708 int bPatchset, /* True if records are patchset records */ 709 u8 *aOldRecord1, /* old.* record for first change */ 710 u8 *aOldRecord2, /* old.* record for second change */ 711 u8 *aNewRecord1, /* new.* record for first change */ 712 u8 *aNewRecord2 /* new.* record for second change */ 713 ){ 714 u8 *aOld1 = aOldRecord1; 715 u8 *aOld2 = aOldRecord2; 716 u8 *aNew1 = aNewRecord1; 717 u8 *aNew2 = aNewRecord2; 718 719 u8 *aOut = *paOut; 720 int i; 721 722 if( bPatchset==0 ){ 723 int bRequired = 0; 724 725 assert( aOldRecord1 && aNewRecord1 ); 726 727 /* Write the old.* vector first. */ 728 for(i=0; i<pTab->nCol; i++){ 729 int nOld; 730 u8 *aOld; 731 int nNew; 732 u8 *aNew; 733 734 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 735 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 736 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 737 if( pTab->abPK[i]==0 ) bRequired = 1; 738 memcpy(aOut, aOld, nOld); 739 aOut += nOld; 740 }else{ 741 *(aOut++) = '\0'; 742 } 743 } 744 745 if( !bRequired ) return 0; 746 } 747 748 /* Write the new.* vector */ 749 aOld1 = aOldRecord1; 750 aOld2 = aOldRecord2; 751 aNew1 = aNewRecord1; 752 aNew2 = aNewRecord2; 753 for(i=0; i<pTab->nCol; i++){ 754 int nOld; 755 u8 *aOld; 756 int nNew; 757 u8 *aNew; 758 759 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 760 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 761 if( bPatchset==0 762 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 763 ){ 764 *(aOut++) = '\0'; 765 }else{ 766 memcpy(aOut, aNew, nNew); 767 aOut += nNew; 768 } 769 } 770 771 *paOut = aOut; 772 return 1; 773 } 774 775 /* 776 ** This function is only called from within a pre-update-hook callback. 777 ** It determines if the current pre-update-hook change affects the same row 778 ** as the change stored in argument pChange. If so, it returns true. Otherwise 779 ** if the pre-update-hook does not affect the same row as pChange, it returns 780 ** false. 781 */ 782 static int sessionPreupdateEqual( 783 sqlite3_session *pSession, /* Session object that owns SessionTable */ 784 SessionTable *pTab, /* Table associated with change */ 785 SessionChange *pChange, /* Change to compare to */ 786 int op /* Current pre-update operation */ 787 ){ 788 int iCol; /* Used to iterate through columns */ 789 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 790 791 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 792 for(iCol=0; iCol<pTab->nCol; iCol++){ 793 if( !pTab->abPK[iCol] ){ 794 a += sessionSerialLen(a); 795 }else{ 796 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 797 int rc; /* Error code from preupdate_new/old */ 798 int eType = *a++; /* Type of value from change record */ 799 800 /* The following calls to preupdate_new() and preupdate_old() can not 801 ** fail. This is because they cache their return values, and by the 802 ** time control flows to here they have already been called once from 803 ** within sessionPreupdateHash(). The first two asserts below verify 804 ** this (that the method has already been called). */ 805 if( op==SQLITE_INSERT ){ 806 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 807 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 808 }else{ 809 /* assert( db->pPreUpdate->pUnpacked ); */ 810 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 811 } 812 assert( rc==SQLITE_OK ); 813 if( sqlite3_value_type(pVal)!=eType ) return 0; 814 815 /* A SessionChange object never has a NULL value in a PK column */ 816 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 817 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 818 ); 819 820 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 821 i64 iVal = sessionGetI64(a); 822 a += 8; 823 if( eType==SQLITE_INTEGER ){ 824 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 825 }else{ 826 double rVal; 827 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 828 memcpy(&rVal, &iVal, 8); 829 if( sqlite3_value_double(pVal)!=rVal ) return 0; 830 } 831 }else{ 832 int n; 833 const u8 *z; 834 a += sessionVarintGet(a, &n); 835 if( sqlite3_value_bytes(pVal)!=n ) return 0; 836 if( eType==SQLITE_TEXT ){ 837 z = sqlite3_value_text(pVal); 838 }else{ 839 z = sqlite3_value_blob(pVal); 840 } 841 if( memcmp(a, z, n) ) return 0; 842 a += n; 843 break; 844 } 845 } 846 } 847 848 return 1; 849 } 850 851 /* 852 ** If required, grow the hash table used to store changes on table pTab 853 ** (part of the session pSession). If a fatal OOM error occurs, set the 854 ** session object to failed and return SQLITE_ERROR. Otherwise, return 855 ** SQLITE_OK. 856 ** 857 ** It is possible that a non-fatal OOM error occurs in this function. In 858 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 859 ** Growing the hash table in this case is a performance optimization only, 860 ** it is not required for correct operation. 861 */ 862 static int sessionGrowHash(int bPatchset, SessionTable *pTab){ 863 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 864 int i; 865 SessionChange **apNew; 866 int nNew = (pTab->nChange ? pTab->nChange : 128) * 2; 867 868 apNew = (SessionChange **)sqlite3_malloc(sizeof(SessionChange *) * nNew); 869 if( apNew==0 ){ 870 if( pTab->nChange==0 ){ 871 return SQLITE_ERROR; 872 } 873 return SQLITE_OK; 874 } 875 memset(apNew, 0, sizeof(SessionChange *) * nNew); 876 877 for(i=0; i<pTab->nChange; i++){ 878 SessionChange *p; 879 SessionChange *pNext; 880 for(p=pTab->apChange[i]; p; p=pNext){ 881 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 882 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 883 pNext = p->pNext; 884 p->pNext = apNew[iHash]; 885 apNew[iHash] = p; 886 } 887 } 888 889 sqlite3_free(pTab->apChange); 890 pTab->nChange = nNew; 891 pTab->apChange = apNew; 892 } 893 894 return SQLITE_OK; 895 } 896 897 /* 898 ** This function queries the database for the names of the columns of table 899 ** zThis, in schema zDb. It is expected that the table has nCol columns. If 900 ** not, SQLITE_SCHEMA is returned and none of the output variables are 901 ** populated. 902 ** 903 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 904 ** of columns in the database table and variable *pzTab is set to point to a 905 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 906 ** point to an array of pointers to column names. And *pabPK (again, if not 907 ** NULL) is set to point to an array of booleans - true if the corresponding 908 ** column is part of the primary key. 909 ** 910 ** For example, if the table is declared as: 911 ** 912 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 913 ** 914 ** Then the four output variables are populated as follows: 915 ** 916 ** *pnCol = 4 917 ** *pzTab = "tbl1" 918 ** *pazCol = {"w", "x", "y", "z"} 919 ** *pabPK = {1, 0, 0, 1} 920 ** 921 ** All returned buffers are part of the same single allocation, which must 922 ** be freed using sqlite3_free() by the caller. If pazCol was not NULL, then 923 ** pointer *pazCol should be freed to release all memory. Otherwise, pointer 924 ** *pabPK. It is illegal for both pazCol and pabPK to be NULL. 925 */ 926 static int sessionTableInfo( 927 sqlite3 *db, /* Database connection */ 928 const char *zDb, /* Name of attached database (e.g. "main") */ 929 const char *zThis, /* Table name */ 930 int *pnCol, /* OUT: number of columns */ 931 const char **pzTab, /* OUT: Copy of zThis */ 932 const char ***pazCol, /* OUT: Array of column names for table */ 933 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 934 ){ 935 char *zPragma; 936 sqlite3_stmt *pStmt; 937 int rc; 938 int nByte; 939 int nDbCol = 0; 940 int nThis; 941 int i; 942 u8 *pAlloc = 0; 943 char **azCol = 0; 944 u8 *abPK = 0; 945 946 assert( pazCol && pabPK ); 947 948 nThis = sqlite3Strlen30(zThis); 949 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 950 if( !zPragma ) return SQLITE_NOMEM; 951 952 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 953 sqlite3_free(zPragma); 954 if( rc!=SQLITE_OK ) return rc; 955 956 nByte = nThis + 1; 957 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 958 nByte += sqlite3_column_bytes(pStmt, 1); 959 nDbCol++; 960 } 961 rc = sqlite3_reset(pStmt); 962 963 if( rc==SQLITE_OK ){ 964 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 965 pAlloc = sqlite3_malloc(nByte); 966 if( pAlloc==0 ){ 967 rc = SQLITE_NOMEM; 968 } 969 } 970 if( rc==SQLITE_OK ){ 971 azCol = (char **)pAlloc; 972 pAlloc = (u8 *)&azCol[nDbCol]; 973 abPK = (u8 *)pAlloc; 974 pAlloc = &abPK[nDbCol]; 975 if( pzTab ){ 976 memcpy(pAlloc, zThis, nThis+1); 977 *pzTab = (char *)pAlloc; 978 pAlloc += nThis+1; 979 } 980 981 i = 0; 982 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 983 int nName = sqlite3_column_bytes(pStmt, 1); 984 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 985 if( zName==0 ) break; 986 memcpy(pAlloc, zName, nName+1); 987 azCol[i] = (char *)pAlloc; 988 pAlloc += nName+1; 989 abPK[i] = sqlite3_column_int(pStmt, 5); 990 i++; 991 } 992 rc = sqlite3_reset(pStmt); 993 994 } 995 996 /* If successful, populate the output variables. Otherwise, zero them and 997 ** free any allocation made. An error code will be returned in this case. 998 */ 999 if( rc==SQLITE_OK ){ 1000 *pazCol = (const char **)azCol; 1001 *pabPK = abPK; 1002 *pnCol = nDbCol; 1003 }else{ 1004 *pazCol = 0; 1005 *pabPK = 0; 1006 *pnCol = 0; 1007 if( pzTab ) *pzTab = 0; 1008 sqlite3_free(azCol); 1009 } 1010 sqlite3_finalize(pStmt); 1011 return rc; 1012 } 1013 1014 /* 1015 ** This function is only called from within a pre-update handler for a 1016 ** write to table pTab, part of session pSession. If this is the first 1017 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1018 ** abPK[] arrays accordingly. 1019 ** 1020 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1021 ** non-zero returned. Or, if no error occurs but the table has no primary 1022 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1023 ** indicate that updates on this table should be ignored. SessionTable.abPK 1024 ** is set to NULL in this case. 1025 */ 1026 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1027 if( pTab->nCol==0 ){ 1028 u8 *abPK; 1029 assert( pTab->azCol==0 || pTab->abPK==0 ); 1030 pSession->rc = sessionTableInfo(pSession->db, pSession->zDb, 1031 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1032 ); 1033 if( pSession->rc==SQLITE_OK ){ 1034 int i; 1035 for(i=0; i<pTab->nCol; i++){ 1036 if( abPK[i] ){ 1037 pTab->abPK = abPK; 1038 break; 1039 } 1040 } 1041 } 1042 } 1043 return (pSession->rc || pTab->abPK==0); 1044 } 1045 1046 /* 1047 ** This function is only called from with a pre-update-hook reporting a 1048 ** change on table pTab (attached to session pSession). The type of change 1049 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1050 ** 1051 ** Unless one is already present or an error occurs, an entry is added 1052 ** to the changed-rows hash table associated with table pTab. 1053 */ 1054 static void sessionPreupdateOneChange( 1055 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1056 sqlite3_session *pSession, /* Session object pTab is attached to */ 1057 SessionTable *pTab /* Table that change applies to */ 1058 ){ 1059 int iHash; 1060 int bNull = 0; 1061 int rc = SQLITE_OK; 1062 1063 if( pSession->rc ) return; 1064 1065 /* Load table details if required */ 1066 if( sessionInitTable(pSession, pTab) ) return; 1067 1068 /* Check the number of columns in this xPreUpdate call matches the 1069 ** number of columns in the table. */ 1070 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1071 pSession->rc = SQLITE_SCHEMA; 1072 return; 1073 } 1074 1075 /* Grow the hash table if required */ 1076 if( sessionGrowHash(0, pTab) ){ 1077 pSession->rc = SQLITE_NOMEM; 1078 return; 1079 } 1080 1081 /* Calculate the hash-key for this change. If the primary key of the row 1082 ** includes a NULL value, exit early. Such changes are ignored by the 1083 ** session module. */ 1084 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1085 if( rc!=SQLITE_OK ) goto error_out; 1086 1087 if( bNull==0 ){ 1088 /* Search the hash table for an existing record for this row. */ 1089 SessionChange *pC; 1090 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1091 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1092 } 1093 1094 if( pC==0 ){ 1095 /* Create a new change object containing all the old values (if 1096 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1097 ** values (if this is an INSERT). */ 1098 SessionChange *pChange; /* New change object */ 1099 int nByte; /* Number of bytes to allocate */ 1100 int i; /* Used to iterate through columns */ 1101 1102 assert( rc==SQLITE_OK ); 1103 pTab->nEntry++; 1104 1105 /* Figure out how large an allocation is required */ 1106 nByte = sizeof(SessionChange); 1107 for(i=0; i<pTab->nCol; i++){ 1108 sqlite3_value *p = 0; 1109 if( op!=SQLITE_INSERT ){ 1110 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1111 assert( trc==SQLITE_OK ); 1112 }else if( pTab->abPK[i] ){ 1113 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1114 assert( trc==SQLITE_OK ); 1115 } 1116 1117 /* This may fail if SQLite value p contains a utf-16 string that must 1118 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1119 rc = sessionSerializeValue(0, p, &nByte); 1120 if( rc!=SQLITE_OK ) goto error_out; 1121 } 1122 1123 /* Allocate the change object */ 1124 pChange = (SessionChange *)sqlite3_malloc(nByte); 1125 if( !pChange ){ 1126 rc = SQLITE_NOMEM; 1127 goto error_out; 1128 }else{ 1129 memset(pChange, 0, sizeof(SessionChange)); 1130 pChange->aRecord = (u8 *)&pChange[1]; 1131 } 1132 1133 /* Populate the change object. None of the preupdate_old(), 1134 ** preupdate_new() or SerializeValue() calls below may fail as all 1135 ** required values and encodings have already been cached in memory. 1136 ** It is not possible for an OOM to occur in this block. */ 1137 nByte = 0; 1138 for(i=0; i<pTab->nCol; i++){ 1139 sqlite3_value *p = 0; 1140 if( op!=SQLITE_INSERT ){ 1141 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1142 }else if( pTab->abPK[i] ){ 1143 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1144 } 1145 sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte); 1146 } 1147 1148 /* Add the change to the hash-table */ 1149 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1150 pChange->bIndirect = 1; 1151 } 1152 pChange->nRecord = nByte; 1153 pChange->op = op; 1154 pChange->pNext = pTab->apChange[iHash]; 1155 pTab->apChange[iHash] = pChange; 1156 1157 }else if( pC->bIndirect ){ 1158 /* If the existing change is considered "indirect", but this current 1159 ** change is "direct", mark the change object as direct. */ 1160 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1161 && pSession->bIndirect==0 1162 ){ 1163 pC->bIndirect = 0; 1164 } 1165 } 1166 } 1167 1168 /* If an error has occurred, mark the session object as failed. */ 1169 error_out: 1170 if( rc!=SQLITE_OK ){ 1171 pSession->rc = rc; 1172 } 1173 } 1174 1175 static int sessionFindTable( 1176 sqlite3_session *pSession, 1177 const char *zName, 1178 SessionTable **ppTab 1179 ){ 1180 int rc = SQLITE_OK; 1181 int nName = sqlite3Strlen30(zName); 1182 SessionTable *pRet; 1183 1184 /* Search for an existing table */ 1185 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1186 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1187 } 1188 1189 if( pRet==0 && pSession->bAutoAttach ){ 1190 /* If there is a table-filter configured, invoke it. If it returns 0, 1191 ** do not automatically add the new table. */ 1192 if( pSession->xTableFilter==0 1193 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1194 ){ 1195 rc = sqlite3session_attach(pSession, zName); 1196 if( rc==SQLITE_OK ){ 1197 for(pRet=pSession->pTable; pRet->pNext; pRet=pRet->pNext); 1198 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1199 } 1200 } 1201 } 1202 1203 assert( rc==SQLITE_OK || pRet==0 ); 1204 *ppTab = pRet; 1205 return rc; 1206 } 1207 1208 /* 1209 ** The 'pre-update' hook registered by this module with SQLite databases. 1210 */ 1211 static void xPreUpdate( 1212 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1213 sqlite3 *db, /* Database handle */ 1214 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1215 char const *zDb, /* Database name */ 1216 char const *zName, /* Table name */ 1217 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1218 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1219 ){ 1220 sqlite3_session *pSession; 1221 int nDb = sqlite3Strlen30(zDb); 1222 1223 assert( sqlite3_mutex_held(db->mutex) ); 1224 1225 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1226 SessionTable *pTab; 1227 1228 /* If this session is attached to a different database ("main", "temp" 1229 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1230 ** to the next session object attached to this database. */ 1231 if( pSession->bEnable==0 ) continue; 1232 if( pSession->rc ) continue; 1233 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1234 1235 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1236 if( pTab ){ 1237 assert( pSession->rc==SQLITE_OK ); 1238 sessionPreupdateOneChange(op, pSession, pTab); 1239 if( op==SQLITE_UPDATE ){ 1240 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1241 } 1242 } 1243 } 1244 } 1245 1246 /* 1247 ** The pre-update hook implementations. 1248 */ 1249 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1250 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1251 } 1252 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1253 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1254 } 1255 static int sessionPreupdateCount(void *pCtx){ 1256 return sqlite3_preupdate_count((sqlite3*)pCtx); 1257 } 1258 static int sessionPreupdateDepth(void *pCtx){ 1259 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1260 } 1261 1262 /* 1263 ** Install the pre-update hooks on the session object passed as the only 1264 ** argument. 1265 */ 1266 static void sessionPreupdateHooks( 1267 sqlite3_session *pSession 1268 ){ 1269 pSession->hook.pCtx = (void*)pSession->db; 1270 pSession->hook.xOld = sessionPreupdateOld; 1271 pSession->hook.xNew = sessionPreupdateNew; 1272 pSession->hook.xCount = sessionPreupdateCount; 1273 pSession->hook.xDepth = sessionPreupdateDepth; 1274 } 1275 1276 typedef struct SessionDiffCtx SessionDiffCtx; 1277 struct SessionDiffCtx { 1278 sqlite3_stmt *pStmt; 1279 int nOldOff; 1280 }; 1281 1282 /* 1283 ** The diff hook implementations. 1284 */ 1285 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1286 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1287 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1288 return SQLITE_OK; 1289 } 1290 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1291 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1292 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1293 return SQLITE_OK; 1294 } 1295 static int sessionDiffCount(void *pCtx){ 1296 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1297 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1298 } 1299 static int sessionDiffDepth(void *pCtx){ 1300 return 0; 1301 } 1302 1303 /* 1304 ** Install the diff hooks on the session object passed as the only 1305 ** argument. 1306 */ 1307 static void sessionDiffHooks( 1308 sqlite3_session *pSession, 1309 SessionDiffCtx *pDiffCtx 1310 ){ 1311 pSession->hook.pCtx = (void*)pDiffCtx; 1312 pSession->hook.xOld = sessionDiffOld; 1313 pSession->hook.xNew = sessionDiffNew; 1314 pSession->hook.xCount = sessionDiffCount; 1315 pSession->hook.xDepth = sessionDiffDepth; 1316 } 1317 1318 static char *sessionExprComparePK( 1319 int nCol, 1320 const char *zDb1, const char *zDb2, 1321 const char *zTab, 1322 const char **azCol, u8 *abPK 1323 ){ 1324 int i; 1325 const char *zSep = ""; 1326 char *zRet = 0; 1327 1328 for(i=0; i<nCol; i++){ 1329 if( abPK[i] ){ 1330 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1331 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1332 ); 1333 zSep = " AND "; 1334 if( zRet==0 ) break; 1335 } 1336 } 1337 1338 return zRet; 1339 } 1340 1341 static char *sessionExprCompareOther( 1342 int nCol, 1343 const char *zDb1, const char *zDb2, 1344 const char *zTab, 1345 const char **azCol, u8 *abPK 1346 ){ 1347 int i; 1348 const char *zSep = ""; 1349 char *zRet = 0; 1350 int bHave = 0; 1351 1352 for(i=0; i<nCol; i++){ 1353 if( abPK[i]==0 ){ 1354 bHave = 1; 1355 zRet = sqlite3_mprintf( 1356 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1357 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1358 ); 1359 zSep = " OR "; 1360 if( zRet==0 ) break; 1361 } 1362 } 1363 1364 if( bHave==0 ){ 1365 assert( zRet==0 ); 1366 zRet = sqlite3_mprintf("0"); 1367 } 1368 1369 return zRet; 1370 } 1371 1372 static char *sessionSelectFindNew( 1373 int nCol, 1374 const char *zDb1, /* Pick rows in this db only */ 1375 const char *zDb2, /* But not in this one */ 1376 const char *zTbl, /* Table name */ 1377 const char *zExpr 1378 ){ 1379 char *zRet = sqlite3_mprintf( 1380 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1381 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1382 ")", 1383 zDb1, zTbl, zDb2, zTbl, zExpr 1384 ); 1385 return zRet; 1386 } 1387 1388 static int sessionDiffFindNew( 1389 int op, 1390 sqlite3_session *pSession, 1391 SessionTable *pTab, 1392 const char *zDb1, 1393 const char *zDb2, 1394 char *zExpr 1395 ){ 1396 int rc = SQLITE_OK; 1397 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1398 1399 if( zStmt==0 ){ 1400 rc = SQLITE_NOMEM; 1401 }else{ 1402 sqlite3_stmt *pStmt; 1403 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1404 if( rc==SQLITE_OK ){ 1405 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1406 pDiffCtx->pStmt = pStmt; 1407 pDiffCtx->nOldOff = 0; 1408 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1409 sessionPreupdateOneChange(op, pSession, pTab); 1410 } 1411 rc = sqlite3_finalize(pStmt); 1412 } 1413 sqlite3_free(zStmt); 1414 } 1415 1416 return rc; 1417 } 1418 1419 static int sessionDiffFindModified( 1420 sqlite3_session *pSession, 1421 SessionTable *pTab, 1422 const char *zFrom, 1423 const char *zExpr 1424 ){ 1425 int rc = SQLITE_OK; 1426 1427 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1428 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1429 ); 1430 if( zExpr2==0 ){ 1431 rc = SQLITE_NOMEM; 1432 }else{ 1433 char *zStmt = sqlite3_mprintf( 1434 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1435 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1436 ); 1437 if( zStmt==0 ){ 1438 rc = SQLITE_NOMEM; 1439 }else{ 1440 sqlite3_stmt *pStmt; 1441 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1442 1443 if( rc==SQLITE_OK ){ 1444 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1445 pDiffCtx->pStmt = pStmt; 1446 pDiffCtx->nOldOff = pTab->nCol; 1447 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1448 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1449 } 1450 rc = sqlite3_finalize(pStmt); 1451 } 1452 sqlite3_free(zStmt); 1453 } 1454 } 1455 1456 return rc; 1457 } 1458 1459 int sqlite3session_diff( 1460 sqlite3_session *pSession, 1461 const char *zFrom, 1462 const char *zTbl, 1463 char **pzErrMsg 1464 ){ 1465 const char *zDb = pSession->zDb; 1466 int rc = pSession->rc; 1467 SessionDiffCtx d; 1468 1469 memset(&d, 0, sizeof(d)); 1470 sessionDiffHooks(pSession, &d); 1471 1472 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1473 if( pzErrMsg ) *pzErrMsg = 0; 1474 if( rc==SQLITE_OK ){ 1475 char *zExpr = 0; 1476 sqlite3 *db = pSession->db; 1477 SessionTable *pTo; /* Table zTbl */ 1478 1479 /* Locate and if necessary initialize the target table object */ 1480 rc = sessionFindTable(pSession, zTbl, &pTo); 1481 if( pTo==0 ) goto diff_out; 1482 if( sessionInitTable(pSession, pTo) ){ 1483 rc = pSession->rc; 1484 goto diff_out; 1485 } 1486 1487 /* Check the table schemas match */ 1488 if( rc==SQLITE_OK ){ 1489 int bHasPk = 0; 1490 int bMismatch = 0; 1491 int nCol; /* Columns in zFrom.zTbl */ 1492 u8 *abPK; 1493 const char **azCol = 0; 1494 rc = sessionTableInfo(db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1495 if( rc==SQLITE_OK ){ 1496 if( pTo->nCol!=nCol ){ 1497 bMismatch = 1; 1498 }else{ 1499 int i; 1500 for(i=0; i<nCol; i++){ 1501 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1502 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1503 if( abPK[i] ) bHasPk = 1; 1504 } 1505 } 1506 1507 } 1508 sqlite3_free((char*)azCol); 1509 if( bMismatch ){ 1510 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1511 rc = SQLITE_SCHEMA; 1512 } 1513 if( bHasPk==0 ){ 1514 /* Ignore tables with no primary keys */ 1515 goto diff_out; 1516 } 1517 } 1518 1519 if( rc==SQLITE_OK ){ 1520 zExpr = sessionExprComparePK(pTo->nCol, 1521 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1522 ); 1523 } 1524 1525 /* Find new rows */ 1526 if( rc==SQLITE_OK ){ 1527 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1528 } 1529 1530 /* Find old rows */ 1531 if( rc==SQLITE_OK ){ 1532 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1533 } 1534 1535 /* Find modified rows */ 1536 if( rc==SQLITE_OK ){ 1537 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1538 } 1539 1540 sqlite3_free(zExpr); 1541 } 1542 1543 diff_out: 1544 sessionPreupdateHooks(pSession); 1545 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1546 return rc; 1547 } 1548 1549 /* 1550 ** Create a session object. This session object will record changes to 1551 ** database zDb attached to connection db. 1552 */ 1553 int sqlite3session_create( 1554 sqlite3 *db, /* Database handle */ 1555 const char *zDb, /* Name of db (e.g. "main") */ 1556 sqlite3_session **ppSession /* OUT: New session object */ 1557 ){ 1558 sqlite3_session *pNew; /* Newly allocated session object */ 1559 sqlite3_session *pOld; /* Session object already attached to db */ 1560 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1561 1562 /* Zero the output value in case an error occurs. */ 1563 *ppSession = 0; 1564 1565 /* Allocate and populate the new session object. */ 1566 pNew = (sqlite3_session *)sqlite3_malloc(sizeof(sqlite3_session) + nDb + 1); 1567 if( !pNew ) return SQLITE_NOMEM; 1568 memset(pNew, 0, sizeof(sqlite3_session)); 1569 pNew->db = db; 1570 pNew->zDb = (char *)&pNew[1]; 1571 pNew->bEnable = 1; 1572 memcpy(pNew->zDb, zDb, nDb+1); 1573 sessionPreupdateHooks(pNew); 1574 1575 /* Add the new session object to the linked list of session objects 1576 ** attached to database handle $db. Do this under the cover of the db 1577 ** handle mutex. */ 1578 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1579 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1580 pNew->pNext = pOld; 1581 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1582 1583 *ppSession = pNew; 1584 return SQLITE_OK; 1585 } 1586 1587 /* 1588 ** Free the list of table objects passed as the first argument. The contents 1589 ** of the changed-rows hash tables are also deleted. 1590 */ 1591 static void sessionDeleteTable(SessionTable *pList){ 1592 SessionTable *pNext; 1593 SessionTable *pTab; 1594 1595 for(pTab=pList; pTab; pTab=pNext){ 1596 int i; 1597 pNext = pTab->pNext; 1598 for(i=0; i<pTab->nChange; i++){ 1599 SessionChange *p; 1600 SessionChange *pNextChange; 1601 for(p=pTab->apChange[i]; p; p=pNextChange){ 1602 pNextChange = p->pNext; 1603 sqlite3_free(p); 1604 } 1605 } 1606 sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */ 1607 sqlite3_free(pTab->apChange); 1608 sqlite3_free(pTab); 1609 } 1610 } 1611 1612 /* 1613 ** Delete a session object previously allocated using sqlite3session_create(). 1614 */ 1615 void sqlite3session_delete(sqlite3_session *pSession){ 1616 sqlite3 *db = pSession->db; 1617 sqlite3_session *pHead; 1618 sqlite3_session **pp; 1619 1620 /* Unlink the session from the linked list of sessions attached to the 1621 ** database handle. Hold the db mutex while doing so. */ 1622 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1623 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1624 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1625 if( (*pp)==pSession ){ 1626 *pp = (*pp)->pNext; 1627 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1628 break; 1629 } 1630 } 1631 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1632 1633 /* Delete all attached table objects. And the contents of their 1634 ** associated hash-tables. */ 1635 sessionDeleteTable(pSession->pTable); 1636 1637 /* Free the session object itself. */ 1638 sqlite3_free(pSession); 1639 } 1640 1641 /* 1642 ** Set a table filter on a Session Object. 1643 */ 1644 void sqlite3session_table_filter( 1645 sqlite3_session *pSession, 1646 int(*xFilter)(void*, const char*), 1647 void *pCtx /* First argument passed to xFilter */ 1648 ){ 1649 pSession->bAutoAttach = 1; 1650 pSession->pFilterCtx = pCtx; 1651 pSession->xTableFilter = xFilter; 1652 } 1653 1654 /* 1655 ** Attach a table to a session. All subsequent changes made to the table 1656 ** while the session object is enabled will be recorded. 1657 ** 1658 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1659 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1660 ** or not. 1661 */ 1662 int sqlite3session_attach( 1663 sqlite3_session *pSession, /* Session object */ 1664 const char *zName /* Table name */ 1665 ){ 1666 int rc = SQLITE_OK; 1667 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1668 1669 if( !zName ){ 1670 pSession->bAutoAttach = 1; 1671 }else{ 1672 SessionTable *pTab; /* New table object (if required) */ 1673 int nName; /* Number of bytes in string zName */ 1674 1675 /* First search for an existing entry. If one is found, this call is 1676 ** a no-op. Return early. */ 1677 nName = sqlite3Strlen30(zName); 1678 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1679 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1680 } 1681 1682 if( !pTab ){ 1683 /* Allocate new SessionTable object. */ 1684 pTab = (SessionTable *)sqlite3_malloc(sizeof(SessionTable) + nName + 1); 1685 if( !pTab ){ 1686 rc = SQLITE_NOMEM; 1687 }else{ 1688 /* Populate the new SessionTable object and link it into the list. 1689 ** The new object must be linked onto the end of the list, not 1690 ** simply added to the start of it in order to ensure that tables 1691 ** appear in the correct order when a changeset or patchset is 1692 ** eventually generated. */ 1693 SessionTable **ppTab; 1694 memset(pTab, 0, sizeof(SessionTable)); 1695 pTab->zName = (char *)&pTab[1]; 1696 memcpy(pTab->zName, zName, nName+1); 1697 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1698 *ppTab = pTab; 1699 } 1700 } 1701 } 1702 1703 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1704 return rc; 1705 } 1706 1707 /* 1708 ** Ensure that there is room in the buffer to append nByte bytes of data. 1709 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1710 ** 1711 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1712 ** set *pRc to SQLITE_NOMEM and return non-zero. 1713 */ 1714 static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ 1715 if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ 1716 u8 *aNew; 1717 int nNew = p->nAlloc ? p->nAlloc : 128; 1718 do { 1719 nNew = nNew*2; 1720 }while( nNew<(p->nBuf+nByte) ); 1721 1722 aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew); 1723 if( 0==aNew ){ 1724 *pRc = SQLITE_NOMEM; 1725 }else{ 1726 p->aBuf = aNew; 1727 p->nAlloc = nNew; 1728 } 1729 } 1730 return (*pRc!=SQLITE_OK); 1731 } 1732 1733 /* 1734 ** Append the value passed as the second argument to the buffer passed 1735 ** as the first. 1736 ** 1737 ** This function is a no-op if *pRc is non-zero when it is called. 1738 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 1739 ** before returning. 1740 */ 1741 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 1742 int rc = *pRc; 1743 if( rc==SQLITE_OK ){ 1744 int nByte = 0; 1745 rc = sessionSerializeValue(0, pVal, &nByte); 1746 sessionBufferGrow(p, nByte, &rc); 1747 if( rc==SQLITE_OK ){ 1748 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 1749 p->nBuf += nByte; 1750 }else{ 1751 *pRc = rc; 1752 } 1753 } 1754 } 1755 1756 /* 1757 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1758 ** called. Otherwise, append a single byte to the buffer. 1759 ** 1760 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1761 ** returning. 1762 */ 1763 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 1764 if( 0==sessionBufferGrow(p, 1, pRc) ){ 1765 p->aBuf[p->nBuf++] = v; 1766 } 1767 } 1768 1769 /* 1770 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1771 ** called. Otherwise, append a single varint to the buffer. 1772 ** 1773 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1774 ** returning. 1775 */ 1776 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 1777 if( 0==sessionBufferGrow(p, 9, pRc) ){ 1778 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 1779 } 1780 } 1781 1782 /* 1783 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1784 ** called. Otherwise, append a blob of data to the buffer. 1785 ** 1786 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1787 ** returning. 1788 */ 1789 static void sessionAppendBlob( 1790 SessionBuffer *p, 1791 const u8 *aBlob, 1792 int nBlob, 1793 int *pRc 1794 ){ 1795 if( 0==sessionBufferGrow(p, nBlob, pRc) ){ 1796 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 1797 p->nBuf += nBlob; 1798 } 1799 } 1800 1801 /* 1802 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1803 ** called. Otherwise, append a string to the buffer. All bytes in the string 1804 ** up to (but not including) the nul-terminator are written to the buffer. 1805 ** 1806 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1807 ** returning. 1808 */ 1809 static void sessionAppendStr( 1810 SessionBuffer *p, 1811 const char *zStr, 1812 int *pRc 1813 ){ 1814 int nStr = sqlite3Strlen30(zStr); 1815 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1816 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 1817 p->nBuf += nStr; 1818 } 1819 } 1820 1821 /* 1822 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1823 ** called. Otherwise, append the string representation of integer iVal 1824 ** to the buffer. No nul-terminator is written. 1825 ** 1826 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1827 ** returning. 1828 */ 1829 static void sessionAppendInteger( 1830 SessionBuffer *p, /* Buffer to append to */ 1831 int iVal, /* Value to write the string rep. of */ 1832 int *pRc /* IN/OUT: Error code */ 1833 ){ 1834 char aBuf[24]; 1835 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 1836 sessionAppendStr(p, aBuf, pRc); 1837 } 1838 1839 /* 1840 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1841 ** called. Otherwise, append the string zStr enclosed in quotes (") and 1842 ** with any embedded quote characters escaped to the buffer. No 1843 ** nul-terminator byte is written. 1844 ** 1845 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1846 ** returning. 1847 */ 1848 static void sessionAppendIdent( 1849 SessionBuffer *p, /* Buffer to a append to */ 1850 const char *zStr, /* String to quote, escape and append */ 1851 int *pRc /* IN/OUT: Error code */ 1852 ){ 1853 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 1854 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1855 char *zOut = (char *)&p->aBuf[p->nBuf]; 1856 const char *zIn = zStr; 1857 *zOut++ = '"'; 1858 while( *zIn ){ 1859 if( *zIn=='"' ) *zOut++ = '"'; 1860 *zOut++ = *(zIn++); 1861 } 1862 *zOut++ = '"'; 1863 p->nBuf = (int)((u8 *)zOut - p->aBuf); 1864 } 1865 } 1866 1867 /* 1868 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1869 ** called. Otherwse, it appends the serialized version of the value stored 1870 ** in column iCol of the row that SQL statement pStmt currently points 1871 ** to to the buffer. 1872 */ 1873 static void sessionAppendCol( 1874 SessionBuffer *p, /* Buffer to append to */ 1875 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 1876 int iCol, /* Column to read value from */ 1877 int *pRc /* IN/OUT: Error code */ 1878 ){ 1879 if( *pRc==SQLITE_OK ){ 1880 int eType = sqlite3_column_type(pStmt, iCol); 1881 sessionAppendByte(p, (u8)eType, pRc); 1882 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1883 sqlite3_int64 i; 1884 u8 aBuf[8]; 1885 if( eType==SQLITE_INTEGER ){ 1886 i = sqlite3_column_int64(pStmt, iCol); 1887 }else{ 1888 double r = sqlite3_column_double(pStmt, iCol); 1889 memcpy(&i, &r, 8); 1890 } 1891 sessionPutI64(aBuf, i); 1892 sessionAppendBlob(p, aBuf, 8, pRc); 1893 } 1894 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 1895 u8 *z; 1896 int nByte; 1897 if( eType==SQLITE_BLOB ){ 1898 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 1899 }else{ 1900 z = (u8 *)sqlite3_column_text(pStmt, iCol); 1901 } 1902 nByte = sqlite3_column_bytes(pStmt, iCol); 1903 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 1904 sessionAppendVarint(p, nByte, pRc); 1905 sessionAppendBlob(p, z, nByte, pRc); 1906 }else{ 1907 *pRc = SQLITE_NOMEM; 1908 } 1909 } 1910 } 1911 } 1912 1913 /* 1914 ** 1915 ** This function appends an update change to the buffer (see the comments 1916 ** under "CHANGESET FORMAT" at the top of the file). An update change 1917 ** consists of: 1918 ** 1919 ** 1 byte: SQLITE_UPDATE (0x17) 1920 ** n bytes: old.* record (see RECORD FORMAT) 1921 ** m bytes: new.* record (see RECORD FORMAT) 1922 ** 1923 ** The SessionChange object passed as the third argument contains the 1924 ** values that were stored in the row when the session began (the old.* 1925 ** values). The statement handle passed as the second argument points 1926 ** at the current version of the row (the new.* values). 1927 ** 1928 ** If all of the old.* values are equal to their corresponding new.* value 1929 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 1930 ** 1931 ** Otherwise, the old.* record contains all primary key values and the 1932 ** original values of any fields that have been modified. The new.* record 1933 ** contains the new values of only those fields that have been modified. 1934 */ 1935 static int sessionAppendUpdate( 1936 SessionBuffer *pBuf, /* Buffer to append to */ 1937 int bPatchset, /* True for "patchset", 0 for "changeset" */ 1938 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 1939 SessionChange *p, /* Object containing old values */ 1940 u8 *abPK /* Boolean array - true for PK columns */ 1941 ){ 1942 int rc = SQLITE_OK; 1943 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 1944 int bNoop = 1; /* Set to zero if any values are modified */ 1945 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 1946 int i; /* Used to iterate through columns */ 1947 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 1948 1949 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 1950 sessionAppendByte(pBuf, p->bIndirect, &rc); 1951 for(i=0; i<sqlite3_column_count(pStmt); i++){ 1952 int bChanged = 0; 1953 int nAdvance; 1954 int eType = *pCsr; 1955 switch( eType ){ 1956 case SQLITE_NULL: 1957 nAdvance = 1; 1958 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 1959 bChanged = 1; 1960 } 1961 break; 1962 1963 case SQLITE_FLOAT: 1964 case SQLITE_INTEGER: { 1965 nAdvance = 9; 1966 if( eType==sqlite3_column_type(pStmt, i) ){ 1967 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 1968 if( eType==SQLITE_INTEGER ){ 1969 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 1970 }else{ 1971 double dVal; 1972 memcpy(&dVal, &iVal, 8); 1973 if( dVal==sqlite3_column_double(pStmt, i) ) break; 1974 } 1975 } 1976 bChanged = 1; 1977 break; 1978 } 1979 1980 default: { 1981 int nByte; 1982 int nHdr = 1 + sessionVarintGet(&pCsr[1], &nByte); 1983 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 1984 nAdvance = nHdr + nByte; 1985 if( eType==sqlite3_column_type(pStmt, i) 1986 && nByte==sqlite3_column_bytes(pStmt, i) 1987 && 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), nByte) 1988 ){ 1989 break; 1990 } 1991 bChanged = 1; 1992 } 1993 } 1994 1995 /* If at least one field has been modified, this is not a no-op. */ 1996 if( bChanged ) bNoop = 0; 1997 1998 /* Add a field to the old.* record. This is omitted if this modules is 1999 ** currently generating a patchset. */ 2000 if( bPatchset==0 ){ 2001 if( bChanged || abPK[i] ){ 2002 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 2003 }else{ 2004 sessionAppendByte(pBuf, 0, &rc); 2005 } 2006 } 2007 2008 /* Add a field to the new.* record. Or the only record if currently 2009 ** generating a patchset. */ 2010 if( bChanged || (bPatchset && abPK[i]) ){ 2011 sessionAppendCol(&buf2, pStmt, i, &rc); 2012 }else{ 2013 sessionAppendByte(&buf2, 0, &rc); 2014 } 2015 2016 pCsr += nAdvance; 2017 } 2018 2019 if( bNoop ){ 2020 pBuf->nBuf = nRewind; 2021 }else{ 2022 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2023 } 2024 sqlite3_free(buf2.aBuf); 2025 2026 return rc; 2027 } 2028 2029 /* 2030 ** Append a DELETE change to the buffer passed as the first argument. Use 2031 ** the changeset format if argument bPatchset is zero, or the patchset 2032 ** format otherwise. 2033 */ 2034 static int sessionAppendDelete( 2035 SessionBuffer *pBuf, /* Buffer to append to */ 2036 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2037 SessionChange *p, /* Object containing old values */ 2038 int nCol, /* Number of columns in table */ 2039 u8 *abPK /* Boolean array - true for PK columns */ 2040 ){ 2041 int rc = SQLITE_OK; 2042 2043 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2044 sessionAppendByte(pBuf, p->bIndirect, &rc); 2045 2046 if( bPatchset==0 ){ 2047 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2048 }else{ 2049 int i; 2050 u8 *a = p->aRecord; 2051 for(i=0; i<nCol; i++){ 2052 u8 *pStart = a; 2053 int eType = *a++; 2054 2055 switch( eType ){ 2056 case 0: 2057 case SQLITE_NULL: 2058 assert( abPK[i]==0 ); 2059 break; 2060 2061 case SQLITE_FLOAT: 2062 case SQLITE_INTEGER: 2063 a += 8; 2064 break; 2065 2066 default: { 2067 int n; 2068 a += sessionVarintGet(a, &n); 2069 a += n; 2070 break; 2071 } 2072 } 2073 if( abPK[i] ){ 2074 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2075 } 2076 } 2077 assert( (a - p->aRecord)==p->nRecord ); 2078 } 2079 2080 return rc; 2081 } 2082 2083 /* 2084 ** Formulate and prepare a SELECT statement to retrieve a row from table 2085 ** zTab in database zDb based on its primary key. i.e. 2086 ** 2087 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2088 */ 2089 static int sessionSelectStmt( 2090 sqlite3 *db, /* Database handle */ 2091 const char *zDb, /* Database name */ 2092 const char *zTab, /* Table name */ 2093 int nCol, /* Number of columns in table */ 2094 const char **azCol, /* Names of table columns */ 2095 u8 *abPK, /* PRIMARY KEY array */ 2096 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2097 ){ 2098 int rc = SQLITE_OK; 2099 int i; 2100 const char *zSep = ""; 2101 SessionBuffer buf = {0, 0, 0}; 2102 2103 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2104 sessionAppendIdent(&buf, zDb, &rc); 2105 sessionAppendStr(&buf, ".", &rc); 2106 sessionAppendIdent(&buf, zTab, &rc); 2107 sessionAppendStr(&buf, " WHERE ", &rc); 2108 for(i=0; i<nCol; i++){ 2109 if( abPK[i] ){ 2110 sessionAppendStr(&buf, zSep, &rc); 2111 sessionAppendIdent(&buf, azCol[i], &rc); 2112 sessionAppendStr(&buf, " = ?", &rc); 2113 sessionAppendInteger(&buf, i+1, &rc); 2114 zSep = " AND "; 2115 } 2116 } 2117 if( rc==SQLITE_OK ){ 2118 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, ppStmt, 0); 2119 } 2120 sqlite3_free(buf.aBuf); 2121 return rc; 2122 } 2123 2124 /* 2125 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2126 ** to the SELECT statement passed as the first argument. The SELECT statement 2127 ** is as prepared by function sessionSelectStmt(). 2128 ** 2129 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2130 ** error code (e.g. SQLITE_NOMEM) otherwise. 2131 */ 2132 static int sessionSelectBind( 2133 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2134 int nCol, /* Number of columns in table */ 2135 u8 *abPK, /* PRIMARY KEY array */ 2136 SessionChange *pChange /* Change structure */ 2137 ){ 2138 int i; 2139 int rc = SQLITE_OK; 2140 u8 *a = pChange->aRecord; 2141 2142 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2143 int eType = *a++; 2144 2145 switch( eType ){ 2146 case 0: 2147 case SQLITE_NULL: 2148 assert( abPK[i]==0 ); 2149 break; 2150 2151 case SQLITE_INTEGER: { 2152 if( abPK[i] ){ 2153 i64 iVal = sessionGetI64(a); 2154 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2155 } 2156 a += 8; 2157 break; 2158 } 2159 2160 case SQLITE_FLOAT: { 2161 if( abPK[i] ){ 2162 double rVal; 2163 i64 iVal = sessionGetI64(a); 2164 memcpy(&rVal, &iVal, 8); 2165 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2166 } 2167 a += 8; 2168 break; 2169 } 2170 2171 case SQLITE_TEXT: { 2172 int n; 2173 a += sessionVarintGet(a, &n); 2174 if( abPK[i] ){ 2175 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2176 } 2177 a += n; 2178 break; 2179 } 2180 2181 default: { 2182 int n; 2183 assert( eType==SQLITE_BLOB ); 2184 a += sessionVarintGet(a, &n); 2185 if( abPK[i] ){ 2186 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2187 } 2188 a += n; 2189 break; 2190 } 2191 } 2192 } 2193 2194 return rc; 2195 } 2196 2197 /* 2198 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2199 ** is called. Otherwise, append a serialized table header (part of the binary 2200 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2201 ** SQLite error code before returning. 2202 */ 2203 static void sessionAppendTableHdr( 2204 SessionBuffer *pBuf, /* Append header to this buffer */ 2205 int bPatchset, /* Use the patchset format if true */ 2206 SessionTable *pTab, /* Table object to append header for */ 2207 int *pRc /* IN/OUT: Error code */ 2208 ){ 2209 /* Write a table header */ 2210 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2211 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2212 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2213 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2214 } 2215 2216 /* 2217 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2218 ** (if it is non-zero) based on the current contents of the session object 2219 ** passed as the first argument. 2220 ** 2221 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2222 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2223 ** occurs, an SQLite error code is returned and both output variables set 2224 ** to 0. 2225 */ 2226 static int sessionGenerateChangeset( 2227 sqlite3_session *pSession, /* Session object */ 2228 int bPatchset, /* True for patchset, false for changeset */ 2229 int (*xOutput)(void *pOut, const void *pData, int nData), 2230 void *pOut, /* First argument for xOutput */ 2231 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2232 void **ppChangeset /* OUT: Buffer containing changeset */ 2233 ){ 2234 sqlite3 *db = pSession->db; /* Source database handle */ 2235 SessionTable *pTab; /* Used to iterate through attached tables */ 2236 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2237 int rc; /* Return code */ 2238 2239 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0 ) ); 2240 2241 /* Zero the output variables in case an error occurs. If this session 2242 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2243 ** this call will be a no-op. */ 2244 if( xOutput==0 ){ 2245 *pnChangeset = 0; 2246 *ppChangeset = 0; 2247 } 2248 2249 if( pSession->rc ) return pSession->rc; 2250 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2251 if( rc!=SQLITE_OK ) return rc; 2252 2253 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2254 2255 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2256 if( pTab->nEntry ){ 2257 const char *zName = pTab->zName; 2258 int nCol; /* Number of columns in table */ 2259 u8 *abPK; /* Primary key array */ 2260 const char **azCol = 0; /* Table columns */ 2261 int i; /* Used to iterate through hash buckets */ 2262 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2263 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2264 int nNoop; /* Size of buffer after writing tbl header */ 2265 2266 /* Check the table schema is still Ok. */ 2267 rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK); 2268 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2269 rc = SQLITE_SCHEMA; 2270 } 2271 2272 /* Write a table header */ 2273 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2274 2275 /* Build and compile a statement to execute: */ 2276 if( rc==SQLITE_OK ){ 2277 rc = sessionSelectStmt( 2278 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2279 } 2280 2281 nNoop = buf.nBuf; 2282 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2283 SessionChange *p; /* Used to iterate through changes */ 2284 2285 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2286 rc = sessionSelectBind(pSel, nCol, abPK, p); 2287 if( rc!=SQLITE_OK ) continue; 2288 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2289 if( p->op==SQLITE_INSERT ){ 2290 int iCol; 2291 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2292 sessionAppendByte(&buf, p->bIndirect, &rc); 2293 for(iCol=0; iCol<nCol; iCol++){ 2294 sessionAppendCol(&buf, pSel, iCol, &rc); 2295 } 2296 }else{ 2297 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2298 } 2299 }else if( p->op!=SQLITE_INSERT ){ 2300 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2301 } 2302 if( rc==SQLITE_OK ){ 2303 rc = sqlite3_reset(pSel); 2304 } 2305 2306 /* If the buffer is now larger than SESSIONS_STRM_CHUNK_SIZE, pass 2307 ** its contents to the xOutput() callback. */ 2308 if( xOutput 2309 && rc==SQLITE_OK 2310 && buf.nBuf>nNoop 2311 && buf.nBuf>SESSIONS_STRM_CHUNK_SIZE 2312 ){ 2313 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2314 nNoop = -1; 2315 buf.nBuf = 0; 2316 } 2317 2318 } 2319 } 2320 2321 sqlite3_finalize(pSel); 2322 if( buf.nBuf==nNoop ){ 2323 buf.nBuf = nRewind; 2324 } 2325 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2326 } 2327 } 2328 2329 if( rc==SQLITE_OK ){ 2330 if( xOutput==0 ){ 2331 *pnChangeset = buf.nBuf; 2332 *ppChangeset = buf.aBuf; 2333 buf.aBuf = 0; 2334 }else if( buf.nBuf>0 ){ 2335 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2336 } 2337 } 2338 2339 sqlite3_free(buf.aBuf); 2340 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2341 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2342 return rc; 2343 } 2344 2345 /* 2346 ** Obtain a changeset object containing all changes recorded by the 2347 ** session object passed as the first argument. 2348 ** 2349 ** It is the responsibility of the caller to eventually free the buffer 2350 ** using sqlite3_free(). 2351 */ 2352 int sqlite3session_changeset( 2353 sqlite3_session *pSession, /* Session object */ 2354 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2355 void **ppChangeset /* OUT: Buffer containing changeset */ 2356 ){ 2357 return sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset); 2358 } 2359 2360 /* 2361 ** Streaming version of sqlite3session_changeset(). 2362 */ 2363 int sqlite3session_changeset_strm( 2364 sqlite3_session *pSession, 2365 int (*xOutput)(void *pOut, const void *pData, int nData), 2366 void *pOut 2367 ){ 2368 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2369 } 2370 2371 /* 2372 ** Streaming version of sqlite3session_patchset(). 2373 */ 2374 int sqlite3session_patchset_strm( 2375 sqlite3_session *pSession, 2376 int (*xOutput)(void *pOut, const void *pData, int nData), 2377 void *pOut 2378 ){ 2379 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2380 } 2381 2382 /* 2383 ** Obtain a patchset object containing all changes recorded by the 2384 ** session object passed as the first argument. 2385 ** 2386 ** It is the responsibility of the caller to eventually free the buffer 2387 ** using sqlite3_free(). 2388 */ 2389 int sqlite3session_patchset( 2390 sqlite3_session *pSession, /* Session object */ 2391 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2392 void **ppPatchset /* OUT: Buffer containing changeset */ 2393 ){ 2394 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2395 } 2396 2397 /* 2398 ** Enable or disable the session object passed as the first argument. 2399 */ 2400 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2401 int ret; 2402 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2403 if( bEnable>=0 ){ 2404 pSession->bEnable = bEnable; 2405 } 2406 ret = pSession->bEnable; 2407 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2408 return ret; 2409 } 2410 2411 /* 2412 ** Enable or disable the session object passed as the first argument. 2413 */ 2414 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2415 int ret; 2416 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2417 if( bIndirect>=0 ){ 2418 pSession->bIndirect = bIndirect; 2419 } 2420 ret = pSession->bIndirect; 2421 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2422 return ret; 2423 } 2424 2425 /* 2426 ** Return true if there have been no changes to monitored tables recorded 2427 ** by the session object passed as the only argument. 2428 */ 2429 int sqlite3session_isempty(sqlite3_session *pSession){ 2430 int ret = 0; 2431 SessionTable *pTab; 2432 2433 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2434 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2435 ret = (pTab->nEntry>0); 2436 } 2437 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2438 2439 return (ret==0); 2440 } 2441 2442 /* 2443 ** Do the work for either sqlite3changeset_start() or start_strm(). 2444 */ 2445 static int sessionChangesetStart( 2446 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2447 int (*xInput)(void *pIn, void *pData, int *pnData), 2448 void *pIn, 2449 int nChangeset, /* Size of buffer pChangeset in bytes */ 2450 void *pChangeset /* Pointer to buffer containing changeset */ 2451 ){ 2452 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2453 int nByte; /* Number of bytes to allocate for iterator */ 2454 2455 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2456 2457 /* Zero the output variable in case an error occurs. */ 2458 *pp = 0; 2459 2460 /* Allocate and initialize the iterator structure. */ 2461 nByte = sizeof(sqlite3_changeset_iter); 2462 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2463 if( !pRet ) return SQLITE_NOMEM; 2464 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2465 pRet->in.aData = (u8 *)pChangeset; 2466 pRet->in.nData = nChangeset; 2467 pRet->in.xInput = xInput; 2468 pRet->in.pIn = pIn; 2469 pRet->in.bEof = (xInput ? 0 : 1); 2470 2471 /* Populate the output variable and return success. */ 2472 *pp = pRet; 2473 return SQLITE_OK; 2474 } 2475 2476 /* 2477 ** Create an iterator used to iterate through the contents of a changeset. 2478 */ 2479 int sqlite3changeset_start( 2480 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2481 int nChangeset, /* Size of buffer pChangeset in bytes */ 2482 void *pChangeset /* Pointer to buffer containing changeset */ 2483 ){ 2484 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset); 2485 } 2486 2487 /* 2488 ** Streaming version of sqlite3changeset_start(). 2489 */ 2490 int sqlite3changeset_start_strm( 2491 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2492 int (*xInput)(void *pIn, void *pData, int *pnData), 2493 void *pIn 2494 ){ 2495 return sessionChangesetStart(pp, xInput, pIn, 0, 0); 2496 } 2497 2498 /* 2499 ** If the SessionInput object passed as the only argument is a streaming 2500 ** object and the buffer is full, discard some data to free up space. 2501 */ 2502 static void sessionDiscardData(SessionInput *pIn){ 2503 if( pIn->bEof && pIn->xInput && pIn->iNext>=SESSIONS_STRM_CHUNK_SIZE ){ 2504 int nMove = pIn->buf.nBuf - pIn->iNext; 2505 assert( nMove>=0 ); 2506 if( nMove>0 ){ 2507 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2508 } 2509 pIn->buf.nBuf -= pIn->iNext; 2510 pIn->iNext = 0; 2511 pIn->nData = pIn->buf.nBuf; 2512 } 2513 } 2514 2515 /* 2516 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2517 ** if there are not nByte bytes remaining in the input, that all available 2518 ** data is in the buffer. 2519 ** 2520 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2521 */ 2522 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2523 int rc = SQLITE_OK; 2524 if( pIn->xInput ){ 2525 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2526 int nNew = SESSIONS_STRM_CHUNK_SIZE; 2527 2528 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2529 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2530 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2531 if( nNew==0 ){ 2532 pIn->bEof = 1; 2533 }else{ 2534 pIn->buf.nBuf += nNew; 2535 } 2536 } 2537 2538 pIn->aData = pIn->buf.aBuf; 2539 pIn->nData = pIn->buf.nBuf; 2540 } 2541 } 2542 return rc; 2543 } 2544 2545 /* 2546 ** When this function is called, *ppRec points to the start of a record 2547 ** that contains nCol values. This function advances the pointer *ppRec 2548 ** until it points to the byte immediately following that record. 2549 */ 2550 static void sessionSkipRecord( 2551 u8 **ppRec, /* IN/OUT: Record pointer */ 2552 int nCol /* Number of values in record */ 2553 ){ 2554 u8 *aRec = *ppRec; 2555 int i; 2556 for(i=0; i<nCol; i++){ 2557 int eType = *aRec++; 2558 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2559 int nByte; 2560 aRec += sessionVarintGet((u8*)aRec, &nByte); 2561 aRec += nByte; 2562 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2563 aRec += 8; 2564 } 2565 } 2566 2567 *ppRec = aRec; 2568 } 2569 2570 /* 2571 ** This function sets the value of the sqlite3_value object passed as the 2572 ** first argument to a copy of the string or blob held in the aData[] 2573 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2574 ** error occurs. 2575 */ 2576 static int sessionValueSetStr( 2577 sqlite3_value *pVal, /* Set the value of this object */ 2578 u8 *aData, /* Buffer containing string or blob data */ 2579 int nData, /* Size of buffer aData[] in bytes */ 2580 u8 enc /* String encoding (0 for blobs) */ 2581 ){ 2582 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2583 ** argument to sqlite3ValueSetStr() and have the copy created 2584 ** automatically. But doing so makes it difficult to detect any OOM 2585 ** error. Hence the code to create the copy externally. */ 2586 u8 *aCopy = sqlite3_malloc(nData+1); 2587 if( aCopy==0 ) return SQLITE_NOMEM; 2588 memcpy(aCopy, aData, nData); 2589 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2590 return SQLITE_OK; 2591 } 2592 2593 /* 2594 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2595 ** for details. 2596 ** 2597 ** When this function is called, *paChange points to the start of the record 2598 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2599 ** one byte after the end of the same record before this function returns. 2600 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2601 ** if abPK is other than NULL, then the record contains only the PK fields 2602 ** (in other words, it is a patchset DELETE record). 2603 ** 2604 ** If successful, each element of the apOut[] array (allocated by the caller) 2605 ** is set to point to an sqlite3_value object containing the value read 2606 ** from the corresponding position in the record. If that value is not 2607 ** included in the record (i.e. because the record is part of an UPDATE change 2608 ** and the field was not modified), the corresponding element of apOut[] is 2609 ** set to NULL. 2610 ** 2611 ** It is the responsibility of the caller to free all sqlite_value structures 2612 ** using sqlite3_free(). 2613 ** 2614 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 2615 ** The apOut[] array may have been partially populated in this case. 2616 */ 2617 static int sessionReadRecord( 2618 SessionInput *pIn, /* Input data */ 2619 int nCol, /* Number of values in record */ 2620 u8 *abPK, /* Array of primary key flags, or NULL */ 2621 sqlite3_value **apOut /* Write values to this array */ 2622 ){ 2623 int i; /* Used to iterate through columns */ 2624 int rc = SQLITE_OK; 2625 2626 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2627 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 2628 if( abPK && abPK[i]==0 ) continue; 2629 rc = sessionInputBuffer(pIn, 9); 2630 if( rc==SQLITE_OK ){ 2631 eType = pIn->aData[pIn->iNext++]; 2632 } 2633 2634 assert( apOut[i]==0 ); 2635 if( eType ){ 2636 apOut[i] = sqlite3ValueNew(0); 2637 if( !apOut[i] ) rc = SQLITE_NOMEM; 2638 } 2639 2640 if( rc==SQLITE_OK ){ 2641 u8 *aVal = &pIn->aData[pIn->iNext]; 2642 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2643 int nByte; 2644 pIn->iNext += sessionVarintGet(aVal, &nByte); 2645 rc = sessionInputBuffer(pIn, nByte); 2646 if( rc==SQLITE_OK ){ 2647 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 2648 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 2649 } 2650 pIn->iNext += nByte; 2651 } 2652 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2653 sqlite3_int64 v = sessionGetI64(aVal); 2654 if( eType==SQLITE_INTEGER ){ 2655 sqlite3VdbeMemSetInt64(apOut[i], v); 2656 }else{ 2657 double d; 2658 memcpy(&d, &v, 8); 2659 sqlite3VdbeMemSetDouble(apOut[i], d); 2660 } 2661 pIn->iNext += 8; 2662 } 2663 } 2664 } 2665 2666 return rc; 2667 } 2668 2669 /* 2670 ** The input pointer currently points to the second byte of a table-header. 2671 ** Specifically, to the following: 2672 ** 2673 ** + number of columns in table (varint) 2674 ** + array of PK flags (1 byte per column), 2675 ** + table name (nul terminated). 2676 ** 2677 ** This function ensures that all of the above is present in the input 2678 ** buffer (i.e. that it can be accessed without any calls to xInput()). 2679 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2680 ** The input pointer is not moved. 2681 */ 2682 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 2683 int rc = SQLITE_OK; 2684 int nCol = 0; 2685 int nRead = 0; 2686 2687 rc = sessionInputBuffer(pIn, 9); 2688 if( rc==SQLITE_OK ){ 2689 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 2690 rc = sessionInputBuffer(pIn, nRead+nCol+100); 2691 nRead += nCol; 2692 } 2693 2694 while( rc==SQLITE_OK ){ 2695 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 2696 nRead++; 2697 } 2698 if( (pIn->iNext + nRead)<pIn->nData ) break; 2699 rc = sessionInputBuffer(pIn, nRead + 100); 2700 } 2701 *pnByte = nRead+1; 2702 return rc; 2703 } 2704 2705 /* 2706 ** The input pointer currently points to the first byte of the first field 2707 ** of a record consisting of nCol columns. This function ensures the entire 2708 ** record is buffered. It does not move the input pointer. 2709 ** 2710 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 2711 ** the record in bytes. Otherwise, an SQLite error code is returned. The 2712 ** final value of *pnByte is undefined in this case. 2713 */ 2714 static int sessionChangesetBufferRecord( 2715 SessionInput *pIn, /* Input data */ 2716 int nCol, /* Number of columns in record */ 2717 int *pnByte /* OUT: Size of record in bytes */ 2718 ){ 2719 int rc = SQLITE_OK; 2720 int nByte = 0; 2721 int i; 2722 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 2723 int eType; 2724 rc = sessionInputBuffer(pIn, nByte + 10); 2725 if( rc==SQLITE_OK ){ 2726 eType = pIn->aData[pIn->iNext + nByte++]; 2727 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2728 int n; 2729 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 2730 nByte += n; 2731 rc = sessionInputBuffer(pIn, nByte); 2732 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2733 nByte += 8; 2734 } 2735 } 2736 } 2737 *pnByte = nByte; 2738 return rc; 2739 } 2740 2741 /* 2742 ** The input pointer currently points to the second byte of a table-header. 2743 ** Specifically, to the following: 2744 ** 2745 ** + number of columns in table (varint) 2746 ** + array of PK flags (1 byte per column), 2747 ** + table name (nul terminated). 2748 ** 2749 ** This function decodes the table-header and populates the p->nCol, 2750 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 2751 ** also allocated or resized according to the new value of p->nCol. The 2752 ** input pointer is left pointing to the byte following the table header. 2753 ** 2754 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 2755 ** is returned and the final values of the various fields enumerated above 2756 ** are undefined. 2757 */ 2758 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 2759 int rc; 2760 int nCopy; 2761 assert( p->rc==SQLITE_OK ); 2762 2763 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 2764 if( rc==SQLITE_OK ){ 2765 int nByte; 2766 int nVarint; 2767 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 2768 nCopy -= nVarint; 2769 p->in.iNext += nVarint; 2770 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 2771 p->tblhdr.nBuf = 0; 2772 sessionBufferGrow(&p->tblhdr, nByte, &rc); 2773 } 2774 2775 if( rc==SQLITE_OK ){ 2776 int iPK = sizeof(sqlite3_value*)*p->nCol*2; 2777 memset(p->tblhdr.aBuf, 0, iPK); 2778 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 2779 p->in.iNext += nCopy; 2780 } 2781 2782 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 2783 p->abPK = (u8*)&p->apValue[p->nCol*2]; 2784 p->zTab = (char*)&p->abPK[p->nCol]; 2785 return (p->rc = rc); 2786 } 2787 2788 /* 2789 ** Advance the changeset iterator to the next change. 2790 ** 2791 ** If both paRec and pnRec are NULL, then this function works like the public 2792 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 2793 ** sqlite3changeset_new() and old() APIs may be used to query for values. 2794 ** 2795 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 2796 ** record is written to *paRec before returning and the number of bytes in 2797 ** the record to *pnRec. 2798 ** 2799 ** Either way, this function returns SQLITE_ROW if the iterator is 2800 ** successfully advanced to the next change in the changeset, an SQLite 2801 ** error code if an error occurs, or SQLITE_DONE if there are no further 2802 ** changes in the changeset. 2803 */ 2804 static int sessionChangesetNext( 2805 sqlite3_changeset_iter *p, /* Changeset iterator */ 2806 u8 **paRec, /* If non-NULL, store record pointer here */ 2807 int *pnRec /* If non-NULL, store size of record here */ 2808 ){ 2809 int i; 2810 u8 op; 2811 2812 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 2813 2814 /* If the iterator is in the error-state, return immediately. */ 2815 if( p->rc!=SQLITE_OK ) return p->rc; 2816 2817 /* Free the current contents of p->apValue[], if any. */ 2818 if( p->apValue ){ 2819 for(i=0; i<p->nCol*2; i++){ 2820 sqlite3ValueFree(p->apValue[i]); 2821 } 2822 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 2823 } 2824 2825 /* Make sure the buffer contains at least 10 bytes of input data, or all 2826 ** remaining data if there are less than 10 bytes available. This is 2827 ** sufficient either for the 'T' or 'P' byte and the varint that follows 2828 ** it, or for the two single byte values otherwise. */ 2829 p->rc = sessionInputBuffer(&p->in, 2); 2830 if( p->rc!=SQLITE_OK ) return p->rc; 2831 2832 /* If the iterator is already at the end of the changeset, return DONE. */ 2833 if( p->in.iNext>=p->in.nData ){ 2834 return SQLITE_DONE; 2835 } 2836 2837 sessionDiscardData(&p->in); 2838 p->in.iCurrent = p->in.iNext; 2839 2840 op = p->in.aData[p->in.iNext++]; 2841 if( op=='T' || op=='P' ){ 2842 p->bPatchset = (op=='P'); 2843 if( sessionChangesetReadTblhdr(p) ) return p->rc; 2844 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 2845 p->in.iCurrent = p->in.iNext; 2846 op = p->in.aData[p->in.iNext++]; 2847 } 2848 2849 p->op = op; 2850 p->bIndirect = p->in.aData[p->in.iNext++]; 2851 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 2852 return (p->rc = SQLITE_CORRUPT_BKPT); 2853 } 2854 2855 if( paRec ){ 2856 int nVal; /* Number of values to buffer */ 2857 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 2858 nVal = p->nCol * 2; 2859 }else if( p->bPatchset && op==SQLITE_DELETE ){ 2860 nVal = 0; 2861 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 2862 }else{ 2863 nVal = p->nCol; 2864 } 2865 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 2866 if( p->rc!=SQLITE_OK ) return p->rc; 2867 *paRec = &p->in.aData[p->in.iNext]; 2868 p->in.iNext += *pnRec; 2869 }else{ 2870 2871 /* If this is an UPDATE or DELETE, read the old.* record. */ 2872 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 2873 u8 *abPK = p->bPatchset ? p->abPK : 0; 2874 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, p->apValue); 2875 if( p->rc!=SQLITE_OK ) return p->rc; 2876 } 2877 2878 /* If this is an INSERT or UPDATE, read the new.* record. */ 2879 if( p->op!=SQLITE_DELETE ){ 2880 p->rc = sessionReadRecord(&p->in, p->nCol, 0, &p->apValue[p->nCol]); 2881 if( p->rc!=SQLITE_OK ) return p->rc; 2882 } 2883 2884 if( p->bPatchset && p->op==SQLITE_UPDATE ){ 2885 /* If this is an UPDATE that is part of a patchset, then all PK and 2886 ** modified fields are present in the new.* record. The old.* record 2887 ** is currently completely empty. This block shifts the PK fields from 2888 ** new.* to old.*, to accommodate the code that reads these arrays. */ 2889 for(i=0; i<p->nCol; i++){ 2890 assert( p->apValue[i]==0 ); 2891 assert( p->abPK[i]==0 || p->apValue[i+p->nCol] ); 2892 if( p->abPK[i] ){ 2893 p->apValue[i] = p->apValue[i+p->nCol]; 2894 p->apValue[i+p->nCol] = 0; 2895 } 2896 } 2897 } 2898 } 2899 2900 return SQLITE_ROW; 2901 } 2902 2903 /* 2904 ** Advance an iterator created by sqlite3changeset_start() to the next 2905 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 2906 ** or SQLITE_CORRUPT. 2907 ** 2908 ** This function may not be called on iterators passed to a conflict handler 2909 ** callback by changeset_apply(). 2910 */ 2911 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 2912 return sessionChangesetNext(p, 0, 0); 2913 } 2914 2915 /* 2916 ** The following function extracts information on the current change 2917 ** from a changeset iterator. It may only be called after changeset_next() 2918 ** has returned SQLITE_ROW. 2919 */ 2920 int sqlite3changeset_op( 2921 sqlite3_changeset_iter *pIter, /* Iterator handle */ 2922 const char **pzTab, /* OUT: Pointer to table name */ 2923 int *pnCol, /* OUT: Number of columns in table */ 2924 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 2925 int *pbIndirect /* OUT: True if change is indirect */ 2926 ){ 2927 *pOp = pIter->op; 2928 *pnCol = pIter->nCol; 2929 *pzTab = pIter->zTab; 2930 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 2931 return SQLITE_OK; 2932 } 2933 2934 /* 2935 ** Return information regarding the PRIMARY KEY and number of columns in 2936 ** the database table affected by the change that pIter currently points 2937 ** to. This function may only be called after changeset_next() returns 2938 ** SQLITE_ROW. 2939 */ 2940 int sqlite3changeset_pk( 2941 sqlite3_changeset_iter *pIter, /* Iterator object */ 2942 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 2943 int *pnCol /* OUT: Number of entries in output array */ 2944 ){ 2945 *pabPK = pIter->abPK; 2946 if( pnCol ) *pnCol = pIter->nCol; 2947 return SQLITE_OK; 2948 } 2949 2950 /* 2951 ** This function may only be called while the iterator is pointing to an 2952 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 2953 ** Otherwise, SQLITE_MISUSE is returned. 2954 ** 2955 ** It sets *ppValue to point to an sqlite3_value structure containing the 2956 ** iVal'th value in the old.* record. Or, if that particular value is not 2957 ** included in the record (because the change is an UPDATE and the field 2958 ** was not modified and is not a PK column), set *ppValue to NULL. 2959 ** 2960 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2961 ** not modified. Otherwise, SQLITE_OK. 2962 */ 2963 int sqlite3changeset_old( 2964 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2965 int iVal, /* Index of old.* value to retrieve */ 2966 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 2967 ){ 2968 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 2969 return SQLITE_MISUSE; 2970 } 2971 if( iVal<0 || iVal>=pIter->nCol ){ 2972 return SQLITE_RANGE; 2973 } 2974 *ppValue = pIter->apValue[iVal]; 2975 return SQLITE_OK; 2976 } 2977 2978 /* 2979 ** This function may only be called while the iterator is pointing to an 2980 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 2981 ** Otherwise, SQLITE_MISUSE is returned. 2982 ** 2983 ** It sets *ppValue to point to an sqlite3_value structure containing the 2984 ** iVal'th value in the new.* record. Or, if that particular value is not 2985 ** included in the record (because the change is an UPDATE and the field 2986 ** was not modified), set *ppValue to NULL. 2987 ** 2988 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2989 ** not modified. Otherwise, SQLITE_OK. 2990 */ 2991 int sqlite3changeset_new( 2992 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2993 int iVal, /* Index of new.* value to retrieve */ 2994 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 2995 ){ 2996 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 2997 return SQLITE_MISUSE; 2998 } 2999 if( iVal<0 || iVal>=pIter->nCol ){ 3000 return SQLITE_RANGE; 3001 } 3002 *ppValue = pIter->apValue[pIter->nCol+iVal]; 3003 return SQLITE_OK; 3004 } 3005 3006 /* 3007 ** The following two macros are used internally. They are similar to the 3008 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3009 ** they omit all error checking and return a pointer to the requested value. 3010 */ 3011 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3012 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3013 3014 /* 3015 ** This function may only be called with a changeset iterator that has been 3016 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3017 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3018 ** 3019 ** If successful, *ppValue is set to point to an sqlite3_value structure 3020 ** containing the iVal'th value of the conflicting record. 3021 ** 3022 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3023 ** code is returned. Otherwise, SQLITE_OK. 3024 */ 3025 int sqlite3changeset_conflict( 3026 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3027 int iVal, /* Index of conflict record value to fetch */ 3028 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3029 ){ 3030 if( !pIter->pConflict ){ 3031 return SQLITE_MISUSE; 3032 } 3033 if( iVal<0 || iVal>=sqlite3_column_count(pIter->pConflict) ){ 3034 return SQLITE_RANGE; 3035 } 3036 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3037 return SQLITE_OK; 3038 } 3039 3040 /* 3041 ** This function may only be called with an iterator passed to an 3042 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3043 ** it sets the output variable to the total number of known foreign key 3044 ** violations in the destination database and returns SQLITE_OK. 3045 ** 3046 ** In all other cases this function returns SQLITE_MISUSE. 3047 */ 3048 int sqlite3changeset_fk_conflicts( 3049 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3050 int *pnOut /* OUT: Number of FK violations */ 3051 ){ 3052 if( pIter->pConflict || pIter->apValue ){ 3053 return SQLITE_MISUSE; 3054 } 3055 *pnOut = pIter->nCol; 3056 return SQLITE_OK; 3057 } 3058 3059 3060 /* 3061 ** Finalize an iterator allocated with sqlite3changeset_start(). 3062 ** 3063 ** This function may not be called on iterators passed to a conflict handler 3064 ** callback by changeset_apply(). 3065 */ 3066 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3067 int rc = SQLITE_OK; 3068 if( p ){ 3069 int i; /* Used to iterate through p->apValue[] */ 3070 rc = p->rc; 3071 if( p->apValue ){ 3072 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3073 } 3074 sqlite3_free(p->tblhdr.aBuf); 3075 sqlite3_free(p->in.buf.aBuf); 3076 sqlite3_free(p); 3077 } 3078 return rc; 3079 } 3080 3081 static int sessionChangesetInvert( 3082 SessionInput *pInput, /* Input changeset */ 3083 int (*xOutput)(void *pOut, const void *pData, int nData), 3084 void *pOut, 3085 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3086 void **ppInverted /* OUT: Inverse of pChangeset */ 3087 ){ 3088 int rc = SQLITE_OK; /* Return value */ 3089 SessionBuffer sOut; /* Output buffer */ 3090 int nCol = 0; /* Number of cols in current table */ 3091 u8 *abPK = 0; /* PK array for current table */ 3092 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3093 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3094 3095 /* Initialize the output buffer */ 3096 memset(&sOut, 0, sizeof(SessionBuffer)); 3097 3098 /* Zero the output variables in case an error occurs. */ 3099 if( ppInverted ){ 3100 *ppInverted = 0; 3101 *pnInverted = 0; 3102 } 3103 3104 while( 1 ){ 3105 u8 eType; 3106 3107 /* Test for EOF. */ 3108 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3109 if( pInput->iNext>=pInput->nData ) break; 3110 eType = pInput->aData[pInput->iNext]; 3111 3112 switch( eType ){ 3113 case 'T': { 3114 /* A 'table' record consists of: 3115 ** 3116 ** * A constant 'T' character, 3117 ** * Number of columns in said table (a varint), 3118 ** * An array of nCol bytes (sPK), 3119 ** * A nul-terminated table name. 3120 */ 3121 int nByte; 3122 int nVar; 3123 pInput->iNext++; 3124 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3125 goto finished_invert; 3126 } 3127 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3128 sPK.nBuf = 0; 3129 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3130 sessionAppendByte(&sOut, eType, &rc); 3131 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3132 if( rc ) goto finished_invert; 3133 3134 pInput->iNext += nByte; 3135 sqlite3_free(apVal); 3136 apVal = 0; 3137 abPK = sPK.aBuf; 3138 break; 3139 } 3140 3141 case SQLITE_INSERT: 3142 case SQLITE_DELETE: { 3143 int nByte; 3144 int bIndirect = pInput->aData[pInput->iNext+1]; 3145 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3146 pInput->iNext += 2; 3147 assert( rc==SQLITE_OK ); 3148 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3149 sessionAppendByte(&sOut, eType2, &rc); 3150 sessionAppendByte(&sOut, bIndirect, &rc); 3151 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3152 pInput->iNext += nByte; 3153 if( rc ) goto finished_invert; 3154 break; 3155 } 3156 3157 case SQLITE_UPDATE: { 3158 int iCol; 3159 3160 if( 0==apVal ){ 3161 apVal = (sqlite3_value **)sqlite3_malloc(sizeof(apVal[0])*nCol*2); 3162 if( 0==apVal ){ 3163 rc = SQLITE_NOMEM; 3164 goto finished_invert; 3165 } 3166 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3167 } 3168 3169 /* Write the header for the new UPDATE change. Same as the original. */ 3170 sessionAppendByte(&sOut, eType, &rc); 3171 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3172 3173 /* Read the old.* and new.* records for the update change. */ 3174 pInput->iNext += 2; 3175 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0]); 3176 if( rc==SQLITE_OK ){ 3177 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol]); 3178 } 3179 3180 /* Write the new old.* record. Consists of the PK columns from the 3181 ** original old.* record, and the other values from the original 3182 ** new.* record. */ 3183 for(iCol=0; iCol<nCol; iCol++){ 3184 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3185 sessionAppendValue(&sOut, pVal, &rc); 3186 } 3187 3188 /* Write the new new.* record. Consists of a copy of all values 3189 ** from the original old.* record, except for the PK columns, which 3190 ** are set to "undefined". */ 3191 for(iCol=0; iCol<nCol; iCol++){ 3192 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3193 sessionAppendValue(&sOut, pVal, &rc); 3194 } 3195 3196 for(iCol=0; iCol<nCol*2; iCol++){ 3197 sqlite3ValueFree(apVal[iCol]); 3198 } 3199 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3200 if( rc!=SQLITE_OK ){ 3201 goto finished_invert; 3202 } 3203 3204 break; 3205 } 3206 3207 default: 3208 rc = SQLITE_CORRUPT_BKPT; 3209 goto finished_invert; 3210 } 3211 3212 assert( rc==SQLITE_OK ); 3213 if( xOutput && sOut.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 3214 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3215 sOut.nBuf = 0; 3216 if( rc!=SQLITE_OK ) goto finished_invert; 3217 } 3218 } 3219 3220 assert( rc==SQLITE_OK ); 3221 if( pnInverted ){ 3222 *pnInverted = sOut.nBuf; 3223 *ppInverted = sOut.aBuf; 3224 sOut.aBuf = 0; 3225 }else if( sOut.nBuf>0 ){ 3226 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3227 } 3228 3229 finished_invert: 3230 sqlite3_free(sOut.aBuf); 3231 sqlite3_free(apVal); 3232 sqlite3_free(sPK.aBuf); 3233 return rc; 3234 } 3235 3236 3237 /* 3238 ** Invert a changeset object. 3239 */ 3240 int sqlite3changeset_invert( 3241 int nChangeset, /* Number of bytes in input */ 3242 const void *pChangeset, /* Input changeset */ 3243 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3244 void **ppInverted /* OUT: Inverse of pChangeset */ 3245 ){ 3246 SessionInput sInput; 3247 3248 /* Set up the input stream */ 3249 memset(&sInput, 0, sizeof(SessionInput)); 3250 sInput.nData = nChangeset; 3251 sInput.aData = (u8*)pChangeset; 3252 3253 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3254 } 3255 3256 /* 3257 ** Streaming version of sqlite3changeset_invert(). 3258 */ 3259 int sqlite3changeset_invert_strm( 3260 int (*xInput)(void *pIn, void *pData, int *pnData), 3261 void *pIn, 3262 int (*xOutput)(void *pOut, const void *pData, int nData), 3263 void *pOut 3264 ){ 3265 SessionInput sInput; 3266 int rc; 3267 3268 /* Set up the input stream */ 3269 memset(&sInput, 0, sizeof(SessionInput)); 3270 sInput.xInput = xInput; 3271 sInput.pIn = pIn; 3272 3273 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3274 sqlite3_free(sInput.buf.aBuf); 3275 return rc; 3276 } 3277 3278 typedef struct SessionApplyCtx SessionApplyCtx; 3279 struct SessionApplyCtx { 3280 sqlite3 *db; 3281 sqlite3_stmt *pDelete; /* DELETE statement */ 3282 sqlite3_stmt *pUpdate; /* UPDATE statement */ 3283 sqlite3_stmt *pInsert; /* INSERT statement */ 3284 sqlite3_stmt *pSelect; /* SELECT statement */ 3285 int nCol; /* Size of azCol[] and abPK[] arrays */ 3286 const char **azCol; /* Array of column names */ 3287 u8 *abPK; /* Boolean array - true if column is in PK */ 3288 3289 int bDeferConstraints; /* True to defer constraints */ 3290 SessionBuffer constraints; /* Deferred constraints are stored here */ 3291 }; 3292 3293 /* 3294 ** Formulate a statement to DELETE a row from database db. Assuming a table 3295 ** structure like this: 3296 ** 3297 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3298 ** 3299 ** The DELETE statement looks like this: 3300 ** 3301 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3302 ** 3303 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3304 ** matching b and d values, or 1 otherwise. The second case comes up if the 3305 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3306 ** 3307 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3308 ** pointing to the prepared version of the SQL statement. 3309 */ 3310 static int sessionDeleteRow( 3311 sqlite3 *db, /* Database handle */ 3312 const char *zTab, /* Table name */ 3313 SessionApplyCtx *p /* Session changeset-apply context */ 3314 ){ 3315 int i; 3316 const char *zSep = ""; 3317 int rc = SQLITE_OK; 3318 SessionBuffer buf = {0, 0, 0}; 3319 int nPk = 0; 3320 3321 sessionAppendStr(&buf, "DELETE FROM ", &rc); 3322 sessionAppendIdent(&buf, zTab, &rc); 3323 sessionAppendStr(&buf, " WHERE ", &rc); 3324 3325 for(i=0; i<p->nCol; i++){ 3326 if( p->abPK[i] ){ 3327 nPk++; 3328 sessionAppendStr(&buf, zSep, &rc); 3329 sessionAppendIdent(&buf, p->azCol[i], &rc); 3330 sessionAppendStr(&buf, " = ?", &rc); 3331 sessionAppendInteger(&buf, i+1, &rc); 3332 zSep = " AND "; 3333 } 3334 } 3335 3336 if( nPk<p->nCol ){ 3337 sessionAppendStr(&buf, " AND (?", &rc); 3338 sessionAppendInteger(&buf, p->nCol+1, &rc); 3339 sessionAppendStr(&buf, " OR ", &rc); 3340 3341 zSep = ""; 3342 for(i=0; i<p->nCol; i++){ 3343 if( !p->abPK[i] ){ 3344 sessionAppendStr(&buf, zSep, &rc); 3345 sessionAppendIdent(&buf, p->azCol[i], &rc); 3346 sessionAppendStr(&buf, " IS ?", &rc); 3347 sessionAppendInteger(&buf, i+1, &rc); 3348 zSep = "AND "; 3349 } 3350 } 3351 sessionAppendStr(&buf, ")", &rc); 3352 } 3353 3354 if( rc==SQLITE_OK ){ 3355 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3356 } 3357 sqlite3_free(buf.aBuf); 3358 3359 return rc; 3360 } 3361 3362 /* 3363 ** Formulate and prepare a statement to UPDATE a row from database db. 3364 ** Assuming a table structure like this: 3365 ** 3366 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3367 ** 3368 ** The UPDATE statement looks like this: 3369 ** 3370 ** UPDATE x SET 3371 ** a = CASE WHEN ?2 THEN ?3 ELSE a END, 3372 ** b = CASE WHEN ?5 THEN ?6 ELSE b END, 3373 ** c = CASE WHEN ?8 THEN ?9 ELSE c END, 3374 ** d = CASE WHEN ?11 THEN ?12 ELSE d END 3375 ** WHERE a = ?1 AND c = ?7 AND (?13 OR 3376 ** (?5==0 OR b IS ?4) AND (?11==0 OR d IS ?10) AND 3377 ** ) 3378 ** 3379 ** For each column in the table, there are three variables to bind: 3380 ** 3381 ** ?(i*3+1) The old.* value of the column, if any. 3382 ** ?(i*3+2) A boolean flag indicating that the value is being modified. 3383 ** ?(i*3+3) The new.* value of the column, if any. 3384 ** 3385 ** Also, a boolean flag that, if set to true, causes the statement to update 3386 ** a row even if the non-PK values do not match. This is required if the 3387 ** conflict-handler is invoked with CHANGESET_DATA and returns 3388 ** CHANGESET_REPLACE. This is variable "?(nCol*3+1)". 3389 ** 3390 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left 3391 ** pointing to the prepared version of the SQL statement. 3392 */ 3393 static int sessionUpdateRow( 3394 sqlite3 *db, /* Database handle */ 3395 const char *zTab, /* Table name */ 3396 SessionApplyCtx *p /* Session changeset-apply context */ 3397 ){ 3398 int rc = SQLITE_OK; 3399 int i; 3400 const char *zSep = ""; 3401 SessionBuffer buf = {0, 0, 0}; 3402 3403 /* Append "UPDATE tbl SET " */ 3404 sessionAppendStr(&buf, "UPDATE ", &rc); 3405 sessionAppendIdent(&buf, zTab, &rc); 3406 sessionAppendStr(&buf, " SET ", &rc); 3407 3408 /* Append the assignments */ 3409 for(i=0; i<p->nCol; i++){ 3410 sessionAppendStr(&buf, zSep, &rc); 3411 sessionAppendIdent(&buf, p->azCol[i], &rc); 3412 sessionAppendStr(&buf, " = CASE WHEN ?", &rc); 3413 sessionAppendInteger(&buf, i*3+2, &rc); 3414 sessionAppendStr(&buf, " THEN ?", &rc); 3415 sessionAppendInteger(&buf, i*3+3, &rc); 3416 sessionAppendStr(&buf, " ELSE ", &rc); 3417 sessionAppendIdent(&buf, p->azCol[i], &rc); 3418 sessionAppendStr(&buf, " END", &rc); 3419 zSep = ", "; 3420 } 3421 3422 /* Append the PK part of the WHERE clause */ 3423 sessionAppendStr(&buf, " WHERE ", &rc); 3424 for(i=0; i<p->nCol; i++){ 3425 if( p->abPK[i] ){ 3426 sessionAppendIdent(&buf, p->azCol[i], &rc); 3427 sessionAppendStr(&buf, " = ?", &rc); 3428 sessionAppendInteger(&buf, i*3+1, &rc); 3429 sessionAppendStr(&buf, " AND ", &rc); 3430 } 3431 } 3432 3433 /* Append the non-PK part of the WHERE clause */ 3434 sessionAppendStr(&buf, " (?", &rc); 3435 sessionAppendInteger(&buf, p->nCol*3+1, &rc); 3436 sessionAppendStr(&buf, " OR 1", &rc); 3437 for(i=0; i<p->nCol; i++){ 3438 if( !p->abPK[i] ){ 3439 sessionAppendStr(&buf, " AND (?", &rc); 3440 sessionAppendInteger(&buf, i*3+2, &rc); 3441 sessionAppendStr(&buf, "=0 OR ", &rc); 3442 sessionAppendIdent(&buf, p->azCol[i], &rc); 3443 sessionAppendStr(&buf, " IS ?", &rc); 3444 sessionAppendInteger(&buf, i*3+1, &rc); 3445 sessionAppendStr(&buf, ")", &rc); 3446 } 3447 } 3448 sessionAppendStr(&buf, ")", &rc); 3449 3450 if( rc==SQLITE_OK ){ 3451 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0); 3452 } 3453 sqlite3_free(buf.aBuf); 3454 3455 return rc; 3456 } 3457 3458 /* 3459 ** Formulate and prepare an SQL statement to query table zTab by primary 3460 ** key. Assuming the following table structure: 3461 ** 3462 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3463 ** 3464 ** The SELECT statement looks like this: 3465 ** 3466 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 3467 ** 3468 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 3469 ** pointing to the prepared version of the SQL statement. 3470 */ 3471 static int sessionSelectRow( 3472 sqlite3 *db, /* Database handle */ 3473 const char *zTab, /* Table name */ 3474 SessionApplyCtx *p /* Session changeset-apply context */ 3475 ){ 3476 return sessionSelectStmt( 3477 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 3478 } 3479 3480 /* 3481 ** Formulate and prepare an INSERT statement to add a record to table zTab. 3482 ** For example: 3483 ** 3484 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 3485 ** 3486 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 3487 ** pointing to the prepared version of the SQL statement. 3488 */ 3489 static int sessionInsertRow( 3490 sqlite3 *db, /* Database handle */ 3491 const char *zTab, /* Table name */ 3492 SessionApplyCtx *p /* Session changeset-apply context */ 3493 ){ 3494 int rc = SQLITE_OK; 3495 int i; 3496 SessionBuffer buf = {0, 0, 0}; 3497 3498 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 3499 sessionAppendIdent(&buf, zTab, &rc); 3500 sessionAppendStr(&buf, " VALUES(?", &rc); 3501 for(i=1; i<p->nCol; i++){ 3502 sessionAppendStr(&buf, ", ?", &rc); 3503 } 3504 sessionAppendStr(&buf, ")", &rc); 3505 3506 if( rc==SQLITE_OK ){ 3507 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 3508 } 3509 sqlite3_free(buf.aBuf); 3510 return rc; 3511 } 3512 3513 /* 3514 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 3515 ** See comments in the body of this function for details. 3516 */ 3517 static int sessionBindValue( 3518 sqlite3_stmt *pStmt, /* Statement to bind value to */ 3519 int i, /* Parameter number to bind to */ 3520 sqlite3_value *pVal /* Value to bind */ 3521 ){ 3522 int eType = sqlite3_value_type(pVal); 3523 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 3524 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 3525 ** the (pVal->z) variable remains as it was or the type of the value is 3526 ** set to SQLITE_NULL. */ 3527 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 3528 /* This condition occurs when an earlier OOM in a call to 3529 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 3530 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 3531 return SQLITE_NOMEM; 3532 } 3533 return sqlite3_bind_value(pStmt, i, pVal); 3534 } 3535 3536 /* 3537 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 3538 ** transfers new.* values from the current iterator entry to statement 3539 ** pStmt. The table being inserted into has nCol columns. 3540 ** 3541 ** New.* value $i from the iterator is bound to variable ($i+1) of 3542 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 3543 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 3544 ** to an array nCol elements in size. In this case only those values for 3545 ** which abPK[$i] is true are read from the iterator and bound to the 3546 ** statement. 3547 ** 3548 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 3549 */ 3550 static int sessionBindRow( 3551 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 3552 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 3553 int nCol, /* Number of columns */ 3554 u8 *abPK, /* If not NULL, bind only if true */ 3555 sqlite3_stmt *pStmt /* Bind values to this statement */ 3556 ){ 3557 int i; 3558 int rc = SQLITE_OK; 3559 3560 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 3561 ** argument iterator points to a suitable entry. Make sure that xValue 3562 ** is one of these to guarantee that it is safe to ignore the return 3563 ** in the code below. */ 3564 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 3565 3566 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3567 if( !abPK || abPK[i] ){ 3568 sqlite3_value *pVal; 3569 (void)xValue(pIter, i, &pVal); 3570 rc = sessionBindValue(pStmt, i+1, pVal); 3571 } 3572 } 3573 return rc; 3574 } 3575 3576 /* 3577 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 3578 ** This function binds the primary key values from the change that changeset 3579 ** iterator pIter points to to the SELECT and attempts to seek to the table 3580 ** entry. If a row is found, the SELECT statement left pointing at the row 3581 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 3582 ** has occured, the statement is reset and SQLITE_OK is returned. If an 3583 ** error occurs, the statement is reset and an SQLite error code is returned. 3584 ** 3585 ** If this function returns SQLITE_ROW, the caller must eventually reset() 3586 ** statement pSelect. If any other value is returned, the statement does 3587 ** not require a reset(). 3588 ** 3589 ** If the iterator currently points to an INSERT record, bind values from the 3590 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 3591 ** UPDATE, bind values from the old.* record. 3592 */ 3593 static int sessionSeekToRow( 3594 sqlite3 *db, /* Database handle */ 3595 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3596 u8 *abPK, /* Primary key flags array */ 3597 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 3598 ){ 3599 int rc; /* Return code */ 3600 int nCol; /* Number of columns in table */ 3601 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 3602 const char *zDummy; /* Unused */ 3603 3604 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3605 rc = sessionBindRow(pIter, 3606 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 3607 nCol, abPK, pSelect 3608 ); 3609 3610 if( rc==SQLITE_OK ){ 3611 rc = sqlite3_step(pSelect); 3612 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 3613 } 3614 3615 return rc; 3616 } 3617 3618 /* 3619 ** Invoke the conflict handler for the change that the changeset iterator 3620 ** currently points to. 3621 ** 3622 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 3623 ** If argument pbReplace is NULL, then the type of conflict handler invoked 3624 ** depends solely on eType, as follows: 3625 ** 3626 ** eType value Value passed to xConflict 3627 ** ------------------------------------------------- 3628 ** CHANGESET_DATA CHANGESET_NOTFOUND 3629 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 3630 ** 3631 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 3632 ** record with the same primary key as the record about to be deleted, updated 3633 ** or inserted. If such a record can be found, it is available to the conflict 3634 ** handler as the "conflicting" record. In this case the type of conflict 3635 ** handler invoked is as follows: 3636 ** 3637 ** eType value PK Record found? Value passed to xConflict 3638 ** ---------------------------------------------------------------- 3639 ** CHANGESET_DATA Yes CHANGESET_DATA 3640 ** CHANGESET_DATA No CHANGESET_NOTFOUND 3641 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 3642 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 3643 ** 3644 ** If pbReplace is not NULL, and a record with a matching PK is found, and 3645 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 3646 ** is set to non-zero before returning SQLITE_OK. 3647 ** 3648 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 3649 ** returned. Or, if the conflict handler returns an invalid value, 3650 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 3651 ** this function returns SQLITE_OK. 3652 */ 3653 static int sessionConflictHandler( 3654 int eType, /* Either CHANGESET_DATA or CONFLICT */ 3655 SessionApplyCtx *p, /* changeset_apply() context */ 3656 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3657 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 3658 void *pCtx, /* First argument for conflict handler */ 3659 int *pbReplace /* OUT: Set to true if PK row is found */ 3660 ){ 3661 int res = 0; /* Value returned by conflict handler */ 3662 int rc; 3663 int nCol; 3664 int op; 3665 const char *zDummy; 3666 3667 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3668 3669 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 3670 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 3671 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 3672 3673 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 3674 if( pbReplace ){ 3675 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 3676 }else{ 3677 rc = SQLITE_OK; 3678 } 3679 3680 if( rc==SQLITE_ROW ){ 3681 /* There exists another row with the new.* primary key. */ 3682 pIter->pConflict = p->pSelect; 3683 res = xConflict(pCtx, eType, pIter); 3684 pIter->pConflict = 0; 3685 rc = sqlite3_reset(p->pSelect); 3686 }else if( rc==SQLITE_OK ){ 3687 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 3688 /* Instead of invoking the conflict handler, append the change blob 3689 ** to the SessionApplyCtx.constraints buffer. */ 3690 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 3691 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 3692 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 3693 res = SQLITE_CHANGESET_OMIT; 3694 }else{ 3695 /* No other row with the new.* primary key. */ 3696 res = xConflict(pCtx, eType+1, pIter); 3697 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 3698 } 3699 } 3700 3701 if( rc==SQLITE_OK ){ 3702 switch( res ){ 3703 case SQLITE_CHANGESET_REPLACE: 3704 assert( pbReplace ); 3705 *pbReplace = 1; 3706 break; 3707 3708 case SQLITE_CHANGESET_OMIT: 3709 break; 3710 3711 case SQLITE_CHANGESET_ABORT: 3712 rc = SQLITE_ABORT; 3713 break; 3714 3715 default: 3716 rc = SQLITE_MISUSE; 3717 break; 3718 } 3719 } 3720 3721 return rc; 3722 } 3723 3724 /* 3725 ** Attempt to apply the change that the iterator passed as the first argument 3726 ** currently points to to the database. If a conflict is encountered, invoke 3727 ** the conflict handler callback. 3728 ** 3729 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 3730 ** one is encountered, update or delete the row with the matching primary key 3731 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 3732 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 3733 ** to true before returning. In this case the caller will invoke this function 3734 ** again, this time with pbRetry set to NULL. 3735 ** 3736 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 3737 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 3738 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 3739 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 3740 ** before retrying. In this case the caller attempts to remove the conflicting 3741 ** row before invoking this function again, this time with pbReplace set 3742 ** to NULL. 3743 ** 3744 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 3745 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 3746 ** returned. 3747 */ 3748 static int sessionApplyOneOp( 3749 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3750 SessionApplyCtx *p, /* changeset_apply() context */ 3751 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 3752 void *pCtx, /* First argument for the conflict handler */ 3753 int *pbReplace, /* OUT: True to remove PK row and retry */ 3754 int *pbRetry /* OUT: True to retry. */ 3755 ){ 3756 const char *zDummy; 3757 int op; 3758 int nCol; 3759 int rc = SQLITE_OK; 3760 3761 assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect ); 3762 assert( p->azCol && p->abPK ); 3763 assert( !pbReplace || *pbReplace==0 ); 3764 3765 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3766 3767 if( op==SQLITE_DELETE ){ 3768 3769 /* Bind values to the DELETE statement. If conflict handling is required, 3770 ** bind values for all columns and set bound variable (nCol+1) to true. 3771 ** Or, if conflict handling is not required, bind just the PK column 3772 ** values and, if it exists, set (nCol+1) to false. Conflict handling 3773 ** is not required if: 3774 ** 3775 ** * this is a patchset, or 3776 ** * (pbRetry==0), or 3777 ** * all columns of the table are PK columns (in this case there is 3778 ** no (nCol+1) variable to bind to). 3779 */ 3780 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 3781 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 3782 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 3783 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 3784 } 3785 if( rc!=SQLITE_OK ) return rc; 3786 3787 sqlite3_step(p->pDelete); 3788 rc = sqlite3_reset(p->pDelete); 3789 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3790 rc = sessionConflictHandler( 3791 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3792 ); 3793 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3794 rc = sessionConflictHandler( 3795 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3796 ); 3797 } 3798 3799 }else if( op==SQLITE_UPDATE ){ 3800 int i; 3801 3802 /* Bind values to the UPDATE statement. */ 3803 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3804 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 3805 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 3806 3807 sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew); 3808 if( pOld ){ 3809 rc = sessionBindValue(p->pUpdate, i*3+1, pOld); 3810 } 3811 if( rc==SQLITE_OK && pNew ){ 3812 rc = sessionBindValue(p->pUpdate, i*3+3, pNew); 3813 } 3814 } 3815 if( rc==SQLITE_OK ){ 3816 sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0 || pIter->bPatchset); 3817 } 3818 if( rc!=SQLITE_OK ) return rc; 3819 3820 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 3821 ** the result will be SQLITE_OK with 0 rows modified. */ 3822 sqlite3_step(p->pUpdate); 3823 rc = sqlite3_reset(p->pUpdate); 3824 3825 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3826 /* A NOTFOUND or DATA error. Search the table to see if it contains 3827 ** a row with a matching primary key. If so, this is a DATA conflict. 3828 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 3829 3830 rc = sessionConflictHandler( 3831 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3832 ); 3833 3834 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3835 /* This is always a CONSTRAINT conflict. */ 3836 rc = sessionConflictHandler( 3837 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3838 ); 3839 } 3840 3841 }else{ 3842 assert( op==SQLITE_INSERT ); 3843 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 3844 if( rc!=SQLITE_OK ) return rc; 3845 3846 sqlite3_step(p->pInsert); 3847 rc = sqlite3_reset(p->pInsert); 3848 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3849 rc = sessionConflictHandler( 3850 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 3851 ); 3852 } 3853 } 3854 3855 return rc; 3856 } 3857 3858 /* 3859 ** Attempt to apply the change that the iterator passed as the first argument 3860 ** currently points to to the database. If a conflict is encountered, invoke 3861 ** the conflict handler callback. 3862 ** 3863 ** The difference between this function and sessionApplyOne() is that this 3864 ** function handles the case where the conflict-handler is invoked and 3865 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 3866 ** retried in some manner. 3867 */ 3868 static int sessionApplyOneWithRetry( 3869 sqlite3 *db, /* Apply change to "main" db of this handle */ 3870 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 3871 SessionApplyCtx *pApply, /* Apply context */ 3872 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3873 void *pCtx /* First argument passed to xConflict */ 3874 ){ 3875 int bReplace = 0; 3876 int bRetry = 0; 3877 int rc; 3878 3879 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 3880 assert( rc==SQLITE_OK || (bRetry==0 && bReplace==0) ); 3881 3882 /* If the bRetry flag is set, the change has not been applied due to an 3883 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 3884 ** a row with the correct PK is present in the db, but one or more other 3885 ** fields do not contain the expected values) and the conflict handler 3886 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 3887 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 3888 ** the SQLITE_CHANGESET_DATA problem. */ 3889 if( bRetry ){ 3890 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 3891 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3892 } 3893 3894 /* If the bReplace flag is set, the change is an INSERT that has not 3895 ** been performed because the database already contains a row with the 3896 ** specified primary key and the conflict handler returned 3897 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 3898 ** before reattempting the INSERT. */ 3899 else if( bReplace ){ 3900 assert( pIter->op==SQLITE_INSERT ); 3901 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 3902 if( rc==SQLITE_OK ){ 3903 rc = sessionBindRow(pIter, 3904 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 3905 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 3906 } 3907 if( rc==SQLITE_OK ){ 3908 sqlite3_step(pApply->pDelete); 3909 rc = sqlite3_reset(pApply->pDelete); 3910 } 3911 if( rc==SQLITE_OK ){ 3912 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3913 } 3914 if( rc==SQLITE_OK ){ 3915 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 3916 } 3917 } 3918 3919 return rc; 3920 } 3921 3922 /* 3923 ** Retry the changes accumulated in the pApply->constraints buffer. 3924 */ 3925 static int sessionRetryConstraints( 3926 sqlite3 *db, 3927 int bPatchset, 3928 const char *zTab, 3929 SessionApplyCtx *pApply, 3930 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3931 void *pCtx /* First argument passed to xConflict */ 3932 ){ 3933 int rc = SQLITE_OK; 3934 3935 while( pApply->constraints.nBuf ){ 3936 sqlite3_changeset_iter *pIter2 = 0; 3937 SessionBuffer cons = pApply->constraints; 3938 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 3939 3940 rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf); 3941 if( rc==SQLITE_OK ){ 3942 int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 3943 int rc2; 3944 pIter2->bPatchset = bPatchset; 3945 pIter2->zTab = (char*)zTab; 3946 pIter2->nCol = pApply->nCol; 3947 pIter2->abPK = pApply->abPK; 3948 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 3949 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 3950 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 3951 3952 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 3953 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 3954 } 3955 3956 rc2 = sqlite3changeset_finalize(pIter2); 3957 if( rc==SQLITE_OK ) rc = rc2; 3958 } 3959 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 3960 3961 sqlite3_free(cons.aBuf); 3962 if( rc!=SQLITE_OK ) break; 3963 if( pApply->constraints.nBuf>=cons.nBuf ){ 3964 /* No progress was made on the last round. */ 3965 pApply->bDeferConstraints = 0; 3966 } 3967 } 3968 3969 return rc; 3970 } 3971 3972 /* 3973 ** Argument pIter is a changeset iterator that has been initialized, but 3974 ** not yet passed to sqlite3changeset_next(). This function applies the 3975 ** changeset to the main database attached to handle "db". The supplied 3976 ** conflict handler callback is invoked to resolve any conflicts encountered 3977 ** while applying the change. 3978 */ 3979 static int sessionChangesetApply( 3980 sqlite3 *db, /* Apply change to "main" db of this handle */ 3981 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 3982 int(*xFilter)( 3983 void *pCtx, /* Copy of sixth arg to _apply() */ 3984 const char *zTab /* Table name */ 3985 ), 3986 int(*xConflict)( 3987 void *pCtx, /* Copy of fifth arg to _apply() */ 3988 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 3989 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 3990 ), 3991 void *pCtx /* First argument passed to xConflict */ 3992 ){ 3993 int schemaMismatch = 0; 3994 int rc; /* Return code */ 3995 const char *zTab = 0; /* Name of current table */ 3996 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 3997 SessionApplyCtx sApply; /* changeset_apply() context object */ 3998 int bPatchset; 3999 4000 assert( xConflict!=0 ); 4001 4002 pIter->in.bNoDiscard = 1; 4003 memset(&sApply, 0, sizeof(sApply)); 4004 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4005 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4006 if( rc==SQLITE_OK ){ 4007 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4008 } 4009 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4010 int nCol; 4011 int op; 4012 const char *zNew; 4013 4014 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4015 4016 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4017 u8 *abPK; 4018 4019 rc = sessionRetryConstraints( 4020 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4021 ); 4022 if( rc!=SQLITE_OK ) break; 4023 4024 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4025 sqlite3_finalize(sApply.pDelete); 4026 sqlite3_finalize(sApply.pUpdate); 4027 sqlite3_finalize(sApply.pInsert); 4028 sqlite3_finalize(sApply.pSelect); 4029 memset(&sApply, 0, sizeof(sApply)); 4030 sApply.db = db; 4031 sApply.bDeferConstraints = 1; 4032 4033 /* If an xFilter() callback was specified, invoke it now. If the 4034 ** xFilter callback returns zero, skip this table. If it returns 4035 ** non-zero, proceed. */ 4036 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4037 if( schemaMismatch ){ 4038 zTab = sqlite3_mprintf("%s", zNew); 4039 if( zTab==0 ){ 4040 rc = SQLITE_NOMEM; 4041 break; 4042 } 4043 nTab = (int)strlen(zTab); 4044 sApply.azCol = (const char **)zTab; 4045 }else{ 4046 sqlite3changeset_pk(pIter, &abPK, 0); 4047 rc = sessionTableInfo( 4048 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4049 ); 4050 if( rc!=SQLITE_OK ) break; 4051 4052 if( sApply.nCol==0 ){ 4053 schemaMismatch = 1; 4054 sqlite3_log(SQLITE_SCHEMA, 4055 "sqlite3changeset_apply(): no such table: %s", zTab 4056 ); 4057 } 4058 else if( sApply.nCol!=nCol ){ 4059 schemaMismatch = 1; 4060 sqlite3_log(SQLITE_SCHEMA, 4061 "sqlite3changeset_apply(): table %s has %d columns, expected %d", 4062 zTab, sApply.nCol, nCol 4063 ); 4064 } 4065 else if( memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4066 schemaMismatch = 1; 4067 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4068 "primary key mismatch for table %s", zTab 4069 ); 4070 } 4071 else if( 4072 (rc = sessionSelectRow(db, zTab, &sApply)) 4073 || (rc = sessionUpdateRow(db, zTab, &sApply)) 4074 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4075 || (rc = sessionInsertRow(db, zTab, &sApply)) 4076 ){ 4077 break; 4078 } 4079 nTab = sqlite3Strlen30(zTab); 4080 } 4081 } 4082 4083 /* If there is a schema mismatch on the current table, proceed to the 4084 ** next change. A log message has already been issued. */ 4085 if( schemaMismatch ) continue; 4086 4087 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4088 } 4089 4090 bPatchset = pIter->bPatchset; 4091 if( rc==SQLITE_OK ){ 4092 rc = sqlite3changeset_finalize(pIter); 4093 }else{ 4094 sqlite3changeset_finalize(pIter); 4095 } 4096 4097 if( rc==SQLITE_OK ){ 4098 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4099 } 4100 4101 if( rc==SQLITE_OK ){ 4102 int nFk, notUsed; 4103 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4104 if( nFk!=0 ){ 4105 int res = SQLITE_CHANGESET_ABORT; 4106 sqlite3_changeset_iter sIter; 4107 memset(&sIter, 0, sizeof(sIter)); 4108 sIter.nCol = nFk; 4109 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4110 if( res!=SQLITE_CHANGESET_OMIT ){ 4111 rc = SQLITE_CONSTRAINT; 4112 } 4113 } 4114 } 4115 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4116 4117 if( rc==SQLITE_OK ){ 4118 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4119 }else{ 4120 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4121 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4122 } 4123 4124 sqlite3_finalize(sApply.pInsert); 4125 sqlite3_finalize(sApply.pDelete); 4126 sqlite3_finalize(sApply.pUpdate); 4127 sqlite3_finalize(sApply.pSelect); 4128 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4129 sqlite3_free((char*)sApply.constraints.aBuf); 4130 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4131 return rc; 4132 } 4133 4134 /* 4135 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4136 ** attached to handle "db". Invoke the supplied conflict handler callback 4137 ** to resolve any conflicts encountered while applying the change. 4138 */ 4139 int sqlite3changeset_apply( 4140 sqlite3 *db, /* Apply change to "main" db of this handle */ 4141 int nChangeset, /* Size of changeset in bytes */ 4142 void *pChangeset, /* Changeset blob */ 4143 int(*xFilter)( 4144 void *pCtx, /* Copy of sixth arg to _apply() */ 4145 const char *zTab /* Table name */ 4146 ), 4147 int(*xConflict)( 4148 void *pCtx, /* Copy of fifth arg to _apply() */ 4149 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4150 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4151 ), 4152 void *pCtx /* First argument passed to xConflict */ 4153 ){ 4154 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4155 int rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset); 4156 if( rc==SQLITE_OK ){ 4157 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4158 } 4159 return rc; 4160 } 4161 4162 /* 4163 ** Apply the changeset passed via xInput/pIn to the main database 4164 ** attached to handle "db". Invoke the supplied conflict handler callback 4165 ** to resolve any conflicts encountered while applying the change. 4166 */ 4167 int sqlite3changeset_apply_strm( 4168 sqlite3 *db, /* Apply change to "main" db of this handle */ 4169 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4170 void *pIn, /* First arg for xInput */ 4171 int(*xFilter)( 4172 void *pCtx, /* Copy of sixth arg to _apply() */ 4173 const char *zTab /* Table name */ 4174 ), 4175 int(*xConflict)( 4176 void *pCtx, /* Copy of sixth arg to _apply() */ 4177 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4178 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4179 ), 4180 void *pCtx /* First argument passed to xConflict */ 4181 ){ 4182 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4183 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4184 if( rc==SQLITE_OK ){ 4185 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4186 } 4187 return rc; 4188 } 4189 4190 /* 4191 ** sqlite3_changegroup handle. 4192 */ 4193 struct sqlite3_changegroup { 4194 int rc; /* Error code */ 4195 int bPatch; /* True to accumulate patchsets */ 4196 SessionTable *pList; /* List of tables in current patch */ 4197 }; 4198 4199 /* 4200 ** This function is called to merge two changes to the same row together as 4201 ** part of an sqlite3changeset_concat() operation. A new change object is 4202 ** allocated and a pointer to it stored in *ppNew. 4203 */ 4204 static int sessionChangeMerge( 4205 SessionTable *pTab, /* Table structure */ 4206 int bPatchset, /* True for patchsets */ 4207 SessionChange *pExist, /* Existing change */ 4208 int op2, /* Second change operation */ 4209 int bIndirect, /* True if second change is indirect */ 4210 u8 *aRec, /* Second change record */ 4211 int nRec, /* Number of bytes in aRec */ 4212 SessionChange **ppNew /* OUT: Merged change */ 4213 ){ 4214 SessionChange *pNew = 0; 4215 4216 if( !pExist ){ 4217 pNew = (SessionChange *)sqlite3_malloc(sizeof(SessionChange) + nRec); 4218 if( !pNew ){ 4219 return SQLITE_NOMEM; 4220 } 4221 memset(pNew, 0, sizeof(SessionChange)); 4222 pNew->op = op2; 4223 pNew->bIndirect = bIndirect; 4224 pNew->nRecord = nRec; 4225 pNew->aRecord = (u8*)&pNew[1]; 4226 memcpy(pNew->aRecord, aRec, nRec); 4227 }else{ 4228 int op1 = pExist->op; 4229 4230 /* 4231 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 4232 ** op1=INSERT, op2=UPDATE -> INSERT. 4233 ** op1=INSERT, op2=DELETE -> (none) 4234 ** 4235 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 4236 ** op1=UPDATE, op2=UPDATE -> UPDATE. 4237 ** op1=UPDATE, op2=DELETE -> DELETE. 4238 ** 4239 ** op1=DELETE, op2=INSERT -> UPDATE. 4240 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 4241 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 4242 */ 4243 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 4244 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 4245 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 4246 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 4247 ){ 4248 pNew = pExist; 4249 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 4250 sqlite3_free(pExist); 4251 assert( pNew==0 ); 4252 }else{ 4253 u8 *aExist = pExist->aRecord; 4254 int nByte; 4255 u8 *aCsr; 4256 4257 /* Allocate a new SessionChange object. Ensure that the aRecord[] 4258 ** buffer of the new object is large enough to hold any record that 4259 ** may be generated by combining the input records. */ 4260 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 4261 pNew = (SessionChange *)sqlite3_malloc(nByte); 4262 if( !pNew ){ 4263 sqlite3_free(pExist); 4264 return SQLITE_NOMEM; 4265 } 4266 memset(pNew, 0, sizeof(SessionChange)); 4267 pNew->bIndirect = (bIndirect && pExist->bIndirect); 4268 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 4269 4270 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 4271 u8 *a1 = aRec; 4272 assert( op2==SQLITE_UPDATE ); 4273 pNew->op = SQLITE_INSERT; 4274 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 4275 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 4276 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 4277 assert( op2==SQLITE_INSERT ); 4278 pNew->op = SQLITE_UPDATE; 4279 if( bPatchset ){ 4280 memcpy(aCsr, aRec, nRec); 4281 aCsr += nRec; 4282 }else{ 4283 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 4284 sqlite3_free(pNew); 4285 pNew = 0; 4286 } 4287 } 4288 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 4289 u8 *a1 = aExist; 4290 u8 *a2 = aRec; 4291 assert( op1==SQLITE_UPDATE ); 4292 if( bPatchset==0 ){ 4293 sessionSkipRecord(&a1, pTab->nCol); 4294 sessionSkipRecord(&a2, pTab->nCol); 4295 } 4296 pNew->op = SQLITE_UPDATE; 4297 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 4298 sqlite3_free(pNew); 4299 pNew = 0; 4300 } 4301 }else{ /* UPDATE + DELETE */ 4302 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 4303 pNew->op = SQLITE_DELETE; 4304 if( bPatchset ){ 4305 memcpy(aCsr, aRec, nRec); 4306 aCsr += nRec; 4307 }else{ 4308 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 4309 } 4310 } 4311 4312 if( pNew ){ 4313 pNew->nRecord = (int)(aCsr - pNew->aRecord); 4314 } 4315 sqlite3_free(pExist); 4316 } 4317 } 4318 4319 *ppNew = pNew; 4320 return SQLITE_OK; 4321 } 4322 4323 /* 4324 ** Add all changes in the changeset traversed by the iterator passed as 4325 ** the first argument to the changegroup hash tables. 4326 */ 4327 static int sessionChangesetToHash( 4328 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 4329 sqlite3_changegroup *pGrp /* Changegroup object to add changeset to */ 4330 ){ 4331 u8 *aRec; 4332 int nRec; 4333 int rc = SQLITE_OK; 4334 SessionTable *pTab = 0; 4335 4336 4337 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec) ){ 4338 const char *zNew; 4339 int nCol; 4340 int op; 4341 int iHash; 4342 int bIndirect; 4343 SessionChange *pChange; 4344 SessionChange *pExist = 0; 4345 SessionChange **pp; 4346 4347 if( pGrp->pList==0 ){ 4348 pGrp->bPatch = pIter->bPatchset; 4349 }else if( pIter->bPatchset!=pGrp->bPatch ){ 4350 rc = SQLITE_ERROR; 4351 break; 4352 } 4353 4354 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 4355 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 4356 /* Search the list for a matching table */ 4357 int nNew = (int)strlen(zNew); 4358 u8 *abPK; 4359 4360 sqlite3changeset_pk(pIter, &abPK, 0); 4361 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 4362 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 4363 } 4364 if( !pTab ){ 4365 SessionTable **ppTab; 4366 4367 pTab = sqlite3_malloc(sizeof(SessionTable) + nCol + nNew+1); 4368 if( !pTab ){ 4369 rc = SQLITE_NOMEM; 4370 break; 4371 } 4372 memset(pTab, 0, sizeof(SessionTable)); 4373 pTab->nCol = nCol; 4374 pTab->abPK = (u8*)&pTab[1]; 4375 memcpy(pTab->abPK, abPK, nCol); 4376 pTab->zName = (char*)&pTab->abPK[nCol]; 4377 memcpy(pTab->zName, zNew, nNew+1); 4378 4379 /* The new object must be linked on to the end of the list, not 4380 ** simply added to the start of it. This is to ensure that the 4381 ** tables within the output of sqlite3changegroup_output() are in 4382 ** the right order. */ 4383 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 4384 *ppTab = pTab; 4385 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 4386 rc = SQLITE_SCHEMA; 4387 break; 4388 } 4389 } 4390 4391 if( sessionGrowHash(pIter->bPatchset, pTab) ){ 4392 rc = SQLITE_NOMEM; 4393 break; 4394 } 4395 iHash = sessionChangeHash( 4396 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 4397 ); 4398 4399 /* Search for existing entry. If found, remove it from the hash table. 4400 ** Code below may link it back in. 4401 */ 4402 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 4403 int bPkOnly1 = 0; 4404 int bPkOnly2 = 0; 4405 if( pIter->bPatchset ){ 4406 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 4407 bPkOnly2 = op==SQLITE_DELETE; 4408 } 4409 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 4410 pExist = *pp; 4411 *pp = (*pp)->pNext; 4412 pTab->nEntry--; 4413 break; 4414 } 4415 } 4416 4417 rc = sessionChangeMerge(pTab, 4418 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 4419 ); 4420 if( rc ) break; 4421 if( pChange ){ 4422 pChange->pNext = pTab->apChange[iHash]; 4423 pTab->apChange[iHash] = pChange; 4424 pTab->nEntry++; 4425 } 4426 } 4427 4428 if( rc==SQLITE_OK ) rc = pIter->rc; 4429 return rc; 4430 } 4431 4432 /* 4433 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 4434 ** added to the changegroup object passed as the first argument. 4435 ** 4436 ** If xOutput is not NULL, then the changeset/patchset is returned to the 4437 ** user via one or more calls to xOutput, as with the other streaming 4438 ** interfaces. 4439 ** 4440 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 4441 ** buffer containing the output changeset before this function returns. In 4442 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 4443 ** is the responsibility of the caller to free the output buffer using 4444 ** sqlite3_free() when it is no longer required. 4445 ** 4446 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 4447 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 4448 ** are both set to 0 before returning. 4449 */ 4450 static int sessionChangegroupOutput( 4451 sqlite3_changegroup *pGrp, 4452 int (*xOutput)(void *pOut, const void *pData, int nData), 4453 void *pOut, 4454 int *pnOut, 4455 void **ppOut 4456 ){ 4457 int rc = SQLITE_OK; 4458 SessionBuffer buf = {0, 0, 0}; 4459 SessionTable *pTab; 4460 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 4461 4462 /* Create the serialized output changeset based on the contents of the 4463 ** hash tables attached to the SessionTable objects in list p->pList. 4464 */ 4465 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 4466 int i; 4467 if( pTab->nEntry==0 ) continue; 4468 4469 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 4470 for(i=0; i<pTab->nChange; i++){ 4471 SessionChange *p; 4472 for(p=pTab->apChange[i]; p; p=p->pNext){ 4473 sessionAppendByte(&buf, p->op, &rc); 4474 sessionAppendByte(&buf, p->bIndirect, &rc); 4475 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 4476 } 4477 } 4478 4479 if( rc==SQLITE_OK && xOutput && buf.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 4480 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4481 buf.nBuf = 0; 4482 } 4483 } 4484 4485 if( rc==SQLITE_OK ){ 4486 if( xOutput ){ 4487 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4488 }else{ 4489 *ppOut = buf.aBuf; 4490 *pnOut = buf.nBuf; 4491 buf.aBuf = 0; 4492 } 4493 } 4494 sqlite3_free(buf.aBuf); 4495 4496 return rc; 4497 } 4498 4499 /* 4500 ** Allocate a new, empty, sqlite3_changegroup. 4501 */ 4502 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 4503 int rc = SQLITE_OK; /* Return code */ 4504 sqlite3_changegroup *p; /* New object */ 4505 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 4506 if( p==0 ){ 4507 rc = SQLITE_NOMEM; 4508 }else{ 4509 memset(p, 0, sizeof(sqlite3_changegroup)); 4510 } 4511 *pp = p; 4512 return rc; 4513 } 4514 4515 /* 4516 ** Add the changeset currently stored in buffer pData, size nData bytes, 4517 ** to changeset-group p. 4518 */ 4519 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 4520 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4521 int rc; /* Return code */ 4522 4523 rc = sqlite3changeset_start(&pIter, nData, pData); 4524 if( rc==SQLITE_OK ){ 4525 rc = sessionChangesetToHash(pIter, pGrp); 4526 } 4527 sqlite3changeset_finalize(pIter); 4528 return rc; 4529 } 4530 4531 /* 4532 ** Obtain a buffer containing a changeset representing the concatenation 4533 ** of all changesets added to the group so far. 4534 */ 4535 int sqlite3changegroup_output( 4536 sqlite3_changegroup *pGrp, 4537 int *pnData, 4538 void **ppData 4539 ){ 4540 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 4541 } 4542 4543 /* 4544 ** Streaming versions of changegroup_add(). 4545 */ 4546 int sqlite3changegroup_add_strm( 4547 sqlite3_changegroup *pGrp, 4548 int (*xInput)(void *pIn, void *pData, int *pnData), 4549 void *pIn 4550 ){ 4551 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4552 int rc; /* Return code */ 4553 4554 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4555 if( rc==SQLITE_OK ){ 4556 rc = sessionChangesetToHash(pIter, pGrp); 4557 } 4558 sqlite3changeset_finalize(pIter); 4559 return rc; 4560 } 4561 4562 /* 4563 ** Streaming versions of changegroup_output(). 4564 */ 4565 int sqlite3changegroup_output_strm( 4566 sqlite3_changegroup *pGrp, 4567 int (*xOutput)(void *pOut, const void *pData, int nData), 4568 void *pOut 4569 ){ 4570 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 4571 } 4572 4573 /* 4574 ** Delete a changegroup object. 4575 */ 4576 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 4577 if( pGrp ){ 4578 sessionDeleteTable(pGrp->pList); 4579 sqlite3_free(pGrp); 4580 } 4581 } 4582 4583 /* 4584 ** Combine two changesets together. 4585 */ 4586 int sqlite3changeset_concat( 4587 int nLeft, /* Number of bytes in lhs input */ 4588 void *pLeft, /* Lhs input changeset */ 4589 int nRight /* Number of bytes in rhs input */, 4590 void *pRight, /* Rhs input changeset */ 4591 int *pnOut, /* OUT: Number of bytes in output changeset */ 4592 void **ppOut /* OUT: changeset (left <concat> right) */ 4593 ){ 4594 sqlite3_changegroup *pGrp; 4595 int rc; 4596 4597 rc = sqlite3changegroup_new(&pGrp); 4598 if( rc==SQLITE_OK ){ 4599 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 4600 } 4601 if( rc==SQLITE_OK ){ 4602 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 4603 } 4604 if( rc==SQLITE_OK ){ 4605 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 4606 } 4607 sqlite3changegroup_delete(pGrp); 4608 4609 return rc; 4610 } 4611 4612 /* 4613 ** Streaming version of sqlite3changeset_concat(). 4614 */ 4615 int sqlite3changeset_concat_strm( 4616 int (*xInputA)(void *pIn, void *pData, int *pnData), 4617 void *pInA, 4618 int (*xInputB)(void *pIn, void *pData, int *pnData), 4619 void *pInB, 4620 int (*xOutput)(void *pOut, const void *pData, int nData), 4621 void *pOut 4622 ){ 4623 sqlite3_changegroup *pGrp; 4624 int rc; 4625 4626 rc = sqlite3changegroup_new(&pGrp); 4627 if( rc==SQLITE_OK ){ 4628 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 4629 } 4630 if( rc==SQLITE_OK ){ 4631 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 4632 } 4633 if( rc==SQLITE_OK ){ 4634 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 4635 } 4636 sqlite3changegroup_delete(pGrp); 4637 4638 return rc; 4639 } 4640 4641 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 4642