1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 typedef struct SessionHook SessionHook; 29 struct SessionHook { 30 void *pCtx; 31 int (*xOld)(void*,int,sqlite3_value**); 32 int (*xNew)(void*,int,sqlite3_value**); 33 int (*xCount)(void*); 34 int (*xDepth)(void*); 35 }; 36 37 /* 38 ** Session handle structure. 39 */ 40 struct sqlite3_session { 41 sqlite3 *db; /* Database handle session is attached to */ 42 char *zDb; /* Name of database session is attached to */ 43 int bEnable; /* True if currently recording */ 44 int bIndirect; /* True if all changes are indirect */ 45 int bAutoAttach; /* True to auto-attach tables */ 46 int rc; /* Non-zero if an error has occurred */ 47 void *pFilterCtx; /* First argument to pass to xTableFilter */ 48 int (*xTableFilter)(void *pCtx, const char *zTab); 49 sqlite3_session *pNext; /* Next session object on same db. */ 50 SessionTable *pTable; /* List of attached tables */ 51 SessionHook hook; /* APIs to grab new and old data with */ 52 }; 53 54 /* 55 ** Instances of this structure are used to build strings or binary records. 56 */ 57 struct SessionBuffer { 58 u8 *aBuf; /* Pointer to changeset buffer */ 59 int nBuf; /* Size of buffer aBuf */ 60 int nAlloc; /* Size of allocation containing aBuf */ 61 }; 62 63 /* 64 ** An object of this type is used internally as an abstraction for 65 ** input data. Input data may be supplied either as a single large buffer 66 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 67 ** sqlite3changeset_start_strm()). 68 */ 69 struct SessionInput { 70 int bNoDiscard; /* If true, discard no data */ 71 int iCurrent; /* Offset in aData[] of current change */ 72 int iNext; /* Offset in aData[] of next change */ 73 u8 *aData; /* Pointer to buffer containing changeset */ 74 int nData; /* Number of bytes in aData */ 75 76 SessionBuffer buf; /* Current read buffer */ 77 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 78 void *pIn; /* First argument to xInput */ 79 int bEof; /* Set to true after xInput finished */ 80 }; 81 82 /* 83 ** Structure for changeset iterators. 84 */ 85 struct sqlite3_changeset_iter { 86 SessionInput in; /* Input buffer or stream */ 87 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 88 int bPatchset; /* True if this is a patchset */ 89 int rc; /* Iterator error code */ 90 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 91 char *zTab; /* Current table */ 92 int nCol; /* Number of columns in zTab */ 93 int op; /* Current operation */ 94 int bIndirect; /* True if current change was indirect */ 95 u8 *abPK; /* Primary key array */ 96 sqlite3_value **apValue; /* old.* and new.* values */ 97 }; 98 99 /* 100 ** Each session object maintains a set of the following structures, one 101 ** for each table the session object is monitoring. The structures are 102 ** stored in a linked list starting at sqlite3_session.pTable. 103 ** 104 ** The keys of the SessionTable.aChange[] hash table are all rows that have 105 ** been modified in any way since the session object was attached to the 106 ** table. 107 ** 108 ** The data associated with each hash-table entry is a structure containing 109 ** a subset of the initial values that the modified row contained at the 110 ** start of the session. Or no initial values if the row was inserted. 111 */ 112 struct SessionTable { 113 SessionTable *pNext; 114 char *zName; /* Local name of table */ 115 int nCol; /* Number of columns in table zName */ 116 const char **azCol; /* Column names */ 117 u8 *abPK; /* Array of primary key flags */ 118 int nEntry; /* Total number of entries in hash table */ 119 int nChange; /* Size of apChange[] array */ 120 SessionChange **apChange; /* Hash table buckets */ 121 }; 122 123 /* 124 ** RECORD FORMAT: 125 ** 126 ** The following record format is similar to (but not compatible with) that 127 ** used in SQLite database files. This format is used as part of the 128 ** change-set binary format, and so must be architecture independent. 129 ** 130 ** Unlike the SQLite database record format, each field is self-contained - 131 ** there is no separation of header and data. Each field begins with a 132 ** single byte describing its type, as follows: 133 ** 134 ** 0x00: Undefined value. 135 ** 0x01: Integer value. 136 ** 0x02: Real value. 137 ** 0x03: Text value. 138 ** 0x04: Blob value. 139 ** 0x05: SQL NULL value. 140 ** 141 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 142 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 143 ** only of the single type byte. For other types of values, the type byte 144 ** is followed by: 145 ** 146 ** Text values: 147 ** A varint containing the number of bytes in the value (encoded using 148 ** UTF-8). Followed by a buffer containing the UTF-8 representation 149 ** of the text value. There is no nul terminator. 150 ** 151 ** Blob values: 152 ** A varint containing the number of bytes in the value, followed by 153 ** a buffer containing the value itself. 154 ** 155 ** Integer values: 156 ** An 8-byte big-endian integer value. 157 ** 158 ** Real values: 159 ** An 8-byte big-endian IEEE 754-2008 real value. 160 ** 161 ** Varint values are encoded in the same way as varints in the SQLite 162 ** record format. 163 ** 164 ** CHANGESET FORMAT: 165 ** 166 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 167 ** one or more tables. Operations on a single table are grouped together, 168 ** but may occur in any order (i.e. deletes, updates and inserts are all 169 ** mixed together). 170 ** 171 ** Each group of changes begins with a table header: 172 ** 173 ** 1 byte: Constant 0x54 (capital 'T') 174 ** Varint: Number of columns in the table. 175 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 176 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 177 ** 178 ** Followed by one or more changes to the table. 179 ** 180 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 181 ** 1 byte: The "indirect-change" flag. 182 ** old.* record: (delete and update only) 183 ** new.* record: (insert and update only) 184 ** 185 ** The "old.*" and "new.*" records, if present, are N field records in the 186 ** format described above under "RECORD FORMAT", where N is the number of 187 ** columns in the table. The i'th field of each record is associated with 188 ** the i'th column of the table, counting from left to right in the order 189 ** in which columns were declared in the CREATE TABLE statement. 190 ** 191 ** The new.* record that is part of each INSERT change contains the values 192 ** that make up the new row. Similarly, the old.* record that is part of each 193 ** DELETE change contains the values that made up the row that was deleted 194 ** from the database. In the changeset format, the records that are part 195 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 196 ** fields. 197 ** 198 ** Within the old.* record associated with an UPDATE change, all fields 199 ** associated with table columns that are not PRIMARY KEY columns and are 200 ** not modified by the UPDATE change are set to "undefined". Other fields 201 ** are set to the values that made up the row before the UPDATE that the 202 ** change records took place. Within the new.* record, fields associated 203 ** with table columns modified by the UPDATE change contain the new 204 ** values. Fields associated with table columns that are not modified 205 ** are set to "undefined". 206 ** 207 ** PATCHSET FORMAT: 208 ** 209 ** A patchset is also a collection of changes. It is similar to a changeset, 210 ** but leaves undefined those fields that are not useful if no conflict 211 ** resolution is required when applying the changeset. 212 ** 213 ** Each group of changes begins with a table header: 214 ** 215 ** 1 byte: Constant 0x50 (capital 'P') 216 ** Varint: Number of columns in the table. 217 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 218 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 219 ** 220 ** Followed by one or more changes to the table. 221 ** 222 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 223 ** 1 byte: The "indirect-change" flag. 224 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 225 ** full record for INSERT). 226 ** 227 ** As in the changeset format, each field of the single record that is part 228 ** of a patchset change is associated with the correspondingly positioned 229 ** table column, counting from left to right within the CREATE TABLE 230 ** statement. 231 ** 232 ** For a DELETE change, all fields within the record except those associated 233 ** with PRIMARY KEY columns are set to "undefined". The PRIMARY KEY fields 234 ** contain the values identifying the row to delete. 235 ** 236 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 237 ** columns and columns that are modified by the UPDATE are set to "undefined". 238 ** PRIMARY KEY fields contain the values identifying the table row to update, 239 ** and fields associated with modified columns contain the new column values. 240 ** 241 ** The records associated with INSERT changes are in the same format as for 242 ** changesets. It is not possible for a record associated with an INSERT 243 ** change to contain a field set to "undefined". 244 */ 245 246 /* 247 ** For each row modified during a session, there exists a single instance of 248 ** this structure stored in a SessionTable.aChange[] hash table. 249 */ 250 struct SessionChange { 251 int op; /* One of UPDATE, DELETE, INSERT */ 252 int bIndirect; /* True if this change is "indirect" */ 253 int nRecord; /* Number of bytes in buffer aRecord[] */ 254 u8 *aRecord; /* Buffer containing old.* record */ 255 SessionChange *pNext; /* For hash-table collisions */ 256 }; 257 258 /* 259 ** Write a varint with value iVal into the buffer at aBuf. Return the 260 ** number of bytes written. 261 */ 262 static int sessionVarintPut(u8 *aBuf, int iVal){ 263 return putVarint32(aBuf, iVal); 264 } 265 266 /* 267 ** Return the number of bytes required to store value iVal as a varint. 268 */ 269 static int sessionVarintLen(int iVal){ 270 return sqlite3VarintLen(iVal); 271 } 272 273 /* 274 ** Read a varint value from aBuf[] into *piVal. Return the number of 275 ** bytes read. 276 */ 277 static int sessionVarintGet(u8 *aBuf, int *piVal){ 278 return getVarint32(aBuf, *piVal); 279 } 280 281 /* Load an unaligned and unsigned 32-bit integer */ 282 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 283 284 /* 285 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 286 ** the value read. 287 */ 288 static sqlite3_int64 sessionGetI64(u8 *aRec){ 289 u64 x = SESSION_UINT32(aRec); 290 u32 y = SESSION_UINT32(aRec+4); 291 x = (x<<32) + y; 292 return (sqlite3_int64)x; 293 } 294 295 /* 296 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 297 */ 298 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 299 aBuf[0] = (i>>56) & 0xFF; 300 aBuf[1] = (i>>48) & 0xFF; 301 aBuf[2] = (i>>40) & 0xFF; 302 aBuf[3] = (i>>32) & 0xFF; 303 aBuf[4] = (i>>24) & 0xFF; 304 aBuf[5] = (i>>16) & 0xFF; 305 aBuf[6] = (i>> 8) & 0xFF; 306 aBuf[7] = (i>> 0) & 0xFF; 307 } 308 309 /* 310 ** This function is used to serialize the contents of value pValue (see 311 ** comment titled "RECORD FORMAT" above). 312 ** 313 ** If it is non-NULL, the serialized form of the value is written to 314 ** buffer aBuf. *pnWrite is set to the number of bytes written before 315 ** returning. Or, if aBuf is NULL, the only thing this function does is 316 ** set *pnWrite. 317 ** 318 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 319 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 320 ** SQLITE_NOMEM is returned. 321 */ 322 static int sessionSerializeValue( 323 u8 *aBuf, /* If non-NULL, write serialized value here */ 324 sqlite3_value *pValue, /* Value to serialize */ 325 int *pnWrite /* IN/OUT: Increment by bytes written */ 326 ){ 327 int nByte; /* Size of serialized value in bytes */ 328 329 if( pValue ){ 330 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 331 332 eType = sqlite3_value_type(pValue); 333 if( aBuf ) aBuf[0] = eType; 334 335 switch( eType ){ 336 case SQLITE_NULL: 337 nByte = 1; 338 break; 339 340 case SQLITE_INTEGER: 341 case SQLITE_FLOAT: 342 if( aBuf ){ 343 /* TODO: SQLite does something special to deal with mixed-endian 344 ** floating point values (e.g. ARM7). This code probably should 345 ** too. */ 346 u64 i; 347 if( eType==SQLITE_INTEGER ){ 348 i = (u64)sqlite3_value_int64(pValue); 349 }else{ 350 double r; 351 assert( sizeof(double)==8 && sizeof(u64)==8 ); 352 r = sqlite3_value_double(pValue); 353 memcpy(&i, &r, 8); 354 } 355 sessionPutI64(&aBuf[1], i); 356 } 357 nByte = 9; 358 break; 359 360 default: { 361 u8 *z; 362 int n; 363 int nVarint; 364 365 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 366 if( eType==SQLITE_TEXT ){ 367 z = (u8 *)sqlite3_value_text(pValue); 368 }else{ 369 z = (u8 *)sqlite3_value_blob(pValue); 370 } 371 n = sqlite3_value_bytes(pValue); 372 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 373 nVarint = sessionVarintLen(n); 374 375 if( aBuf ){ 376 sessionVarintPut(&aBuf[1], n); 377 if( n ) memcpy(&aBuf[nVarint + 1], z, n); 378 } 379 380 nByte = 1 + nVarint + n; 381 break; 382 } 383 } 384 }else{ 385 nByte = 1; 386 if( aBuf ) aBuf[0] = '\0'; 387 } 388 389 if( pnWrite ) *pnWrite += nByte; 390 return SQLITE_OK; 391 } 392 393 394 /* 395 ** This macro is used to calculate hash key values for data structures. In 396 ** order to use this macro, the entire data structure must be represented 397 ** as a series of unsigned integers. In order to calculate a hash-key value 398 ** for a data structure represented as three such integers, the macro may 399 ** then be used as follows: 400 ** 401 ** int hash_key_value; 402 ** hash_key_value = HASH_APPEND(0, <value 1>); 403 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 404 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 405 ** 406 ** In practice, the data structures this macro is used for are the primary 407 ** key values of modified rows. 408 */ 409 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 410 411 /* 412 ** Append the hash of the 64-bit integer passed as the second argument to the 413 ** hash-key value passed as the first. Return the new hash-key value. 414 */ 415 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 416 h = HASH_APPEND(h, i & 0xFFFFFFFF); 417 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 418 } 419 420 /* 421 ** Append the hash of the blob passed via the second and third arguments to 422 ** the hash-key value passed as the first. Return the new hash-key value. 423 */ 424 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 425 int i; 426 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 427 return h; 428 } 429 430 /* 431 ** Append the hash of the data type passed as the second argument to the 432 ** hash-key value passed as the first. Return the new hash-key value. 433 */ 434 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 435 return HASH_APPEND(h, eType); 436 } 437 438 /* 439 ** This function may only be called from within a pre-update callback. 440 ** It calculates a hash based on the primary key values of the old.* or 441 ** new.* row currently available and, assuming no error occurs, writes it to 442 ** *piHash before returning. If the primary key contains one or more NULL 443 ** values, *pbNullPK is set to true before returning. 444 ** 445 ** If an error occurs, an SQLite error code is returned and the final values 446 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 447 ** and the output variables are set as described above. 448 */ 449 static int sessionPreupdateHash( 450 sqlite3_session *pSession, /* Session object that owns pTab */ 451 SessionTable *pTab, /* Session table handle */ 452 int bNew, /* True to hash the new.* PK */ 453 int *piHash, /* OUT: Hash value */ 454 int *pbNullPK /* OUT: True if there are NULL values in PK */ 455 ){ 456 unsigned int h = 0; /* Hash value to return */ 457 int i; /* Used to iterate through columns */ 458 459 assert( *pbNullPK==0 ); 460 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 461 for(i=0; i<pTab->nCol; i++){ 462 if( pTab->abPK[i] ){ 463 int rc; 464 int eType; 465 sqlite3_value *pVal; 466 467 if( bNew ){ 468 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 469 }else{ 470 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 471 } 472 if( rc!=SQLITE_OK ) return rc; 473 474 eType = sqlite3_value_type(pVal); 475 h = sessionHashAppendType(h, eType); 476 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 477 i64 iVal; 478 if( eType==SQLITE_INTEGER ){ 479 iVal = sqlite3_value_int64(pVal); 480 }else{ 481 double rVal = sqlite3_value_double(pVal); 482 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 483 memcpy(&iVal, &rVal, 8); 484 } 485 h = sessionHashAppendI64(h, iVal); 486 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 487 const u8 *z; 488 int n; 489 if( eType==SQLITE_TEXT ){ 490 z = (const u8 *)sqlite3_value_text(pVal); 491 }else{ 492 z = (const u8 *)sqlite3_value_blob(pVal); 493 } 494 n = sqlite3_value_bytes(pVal); 495 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 496 h = sessionHashAppendBlob(h, n, z); 497 }else{ 498 assert( eType==SQLITE_NULL ); 499 *pbNullPK = 1; 500 } 501 } 502 } 503 504 *piHash = (h % pTab->nChange); 505 return SQLITE_OK; 506 } 507 508 /* 509 ** The buffer that the argument points to contains a serialized SQL value. 510 ** Return the number of bytes of space occupied by the value (including 511 ** the type byte). 512 */ 513 static int sessionSerialLen(u8 *a){ 514 int e = *a; 515 int n; 516 if( e==0 ) return 1; 517 if( e==SQLITE_NULL ) return 1; 518 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 519 return sessionVarintGet(&a[1], &n) + 1 + n; 520 } 521 522 /* 523 ** Based on the primary key values stored in change aRecord, calculate a 524 ** hash key. Assume the has table has nBucket buckets. The hash keys 525 ** calculated by this function are compatible with those calculated by 526 ** sessionPreupdateHash(). 527 ** 528 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 529 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 530 */ 531 static unsigned int sessionChangeHash( 532 SessionTable *pTab, /* Table handle */ 533 int bPkOnly, /* Record consists of PK fields only */ 534 u8 *aRecord, /* Change record */ 535 int nBucket /* Assume this many buckets in hash table */ 536 ){ 537 unsigned int h = 0; /* Value to return */ 538 int i; /* Used to iterate through columns */ 539 u8 *a = aRecord; /* Used to iterate through change record */ 540 541 for(i=0; i<pTab->nCol; i++){ 542 int eType = *a; 543 int isPK = pTab->abPK[i]; 544 if( bPkOnly && isPK==0 ) continue; 545 546 /* It is not possible for eType to be SQLITE_NULL here. The session 547 ** module does not record changes for rows with NULL values stored in 548 ** primary key columns. */ 549 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 550 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 551 || eType==SQLITE_NULL || eType==0 552 ); 553 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 554 555 if( isPK ){ 556 a++; 557 h = sessionHashAppendType(h, eType); 558 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 559 h = sessionHashAppendI64(h, sessionGetI64(a)); 560 a += 8; 561 }else{ 562 int n; 563 a += sessionVarintGet(a, &n); 564 h = sessionHashAppendBlob(h, n, a); 565 a += n; 566 } 567 }else{ 568 a += sessionSerialLen(a); 569 } 570 } 571 return (h % nBucket); 572 } 573 574 /* 575 ** Arguments aLeft and aRight are pointers to change records for table pTab. 576 ** This function returns true if the two records apply to the same row (i.e. 577 ** have the same values stored in the primary key columns), or false 578 ** otherwise. 579 */ 580 static int sessionChangeEqual( 581 SessionTable *pTab, /* Table used for PK definition */ 582 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 583 u8 *aLeft, /* Change record */ 584 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 585 u8 *aRight /* Change record */ 586 ){ 587 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 588 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 589 int iCol; /* Used to iterate through table columns */ 590 591 for(iCol=0; iCol<pTab->nCol; iCol++){ 592 if( pTab->abPK[iCol] ){ 593 int n1 = sessionSerialLen(a1); 594 int n2 = sessionSerialLen(a2); 595 596 if( pTab->abPK[iCol] && (n1!=n2 || memcmp(a1, a2, n1)) ){ 597 return 0; 598 } 599 a1 += n1; 600 a2 += n2; 601 }else{ 602 if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1); 603 if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2); 604 } 605 } 606 607 return 1; 608 } 609 610 /* 611 ** Arguments aLeft and aRight both point to buffers containing change 612 ** records with nCol columns. This function "merges" the two records into 613 ** a single records which is written to the buffer at *paOut. *paOut is 614 ** then set to point to one byte after the last byte written before 615 ** returning. 616 ** 617 ** The merging of records is done as follows: For each column, if the 618 ** aRight record contains a value for the column, copy the value from 619 ** their. Otherwise, if aLeft contains a value, copy it. If neither 620 ** record contains a value for a given column, then neither does the 621 ** output record. 622 */ 623 static void sessionMergeRecord( 624 u8 **paOut, 625 int nCol, 626 u8 *aLeft, 627 u8 *aRight 628 ){ 629 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 630 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 631 u8 *aOut = *paOut; /* Output cursor */ 632 int iCol; /* Used to iterate from 0 to nCol */ 633 634 for(iCol=0; iCol<nCol; iCol++){ 635 int n1 = sessionSerialLen(a1); 636 int n2 = sessionSerialLen(a2); 637 if( *a2 ){ 638 memcpy(aOut, a2, n2); 639 aOut += n2; 640 }else{ 641 memcpy(aOut, a1, n1); 642 aOut += n1; 643 } 644 a1 += n1; 645 a2 += n2; 646 } 647 648 *paOut = aOut; 649 } 650 651 /* 652 ** This is a helper function used by sessionMergeUpdate(). 653 ** 654 ** When this function is called, both *paOne and *paTwo point to a value 655 ** within a change record. Before it returns, both have been advanced so 656 ** as to point to the next value in the record. 657 ** 658 ** If, when this function is called, *paTwo points to a valid value (i.e. 659 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 660 ** pointer is returned and *pnVal is set to the number of bytes in the 661 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 662 ** set to the number of bytes in the value at *paOne. If *paOne points 663 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 664 ** 665 ** if( *paTwo is valid ) return *paTwo; 666 ** return *paOne; 667 ** 668 */ 669 static u8 *sessionMergeValue( 670 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 671 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 672 int *pnVal /* OUT: Bytes in returned value */ 673 ){ 674 u8 *a1 = *paOne; 675 u8 *a2 = *paTwo; 676 u8 *pRet = 0; 677 int n1; 678 679 assert( a1 ); 680 if( a2 ){ 681 int n2 = sessionSerialLen(a2); 682 if( *a2 ){ 683 *pnVal = n2; 684 pRet = a2; 685 } 686 *paTwo = &a2[n2]; 687 } 688 689 n1 = sessionSerialLen(a1); 690 if( pRet==0 ){ 691 *pnVal = n1; 692 pRet = a1; 693 } 694 *paOne = &a1[n1]; 695 696 return pRet; 697 } 698 699 /* 700 ** This function is used by changeset_concat() to merge two UPDATE changes 701 ** on the same row. 702 */ 703 static int sessionMergeUpdate( 704 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 705 SessionTable *pTab, /* Table change pertains to */ 706 int bPatchset, /* True if records are patchset records */ 707 u8 *aOldRecord1, /* old.* record for first change */ 708 u8 *aOldRecord2, /* old.* record for second change */ 709 u8 *aNewRecord1, /* new.* record for first change */ 710 u8 *aNewRecord2 /* new.* record for second change */ 711 ){ 712 u8 *aOld1 = aOldRecord1; 713 u8 *aOld2 = aOldRecord2; 714 u8 *aNew1 = aNewRecord1; 715 u8 *aNew2 = aNewRecord2; 716 717 u8 *aOut = *paOut; 718 int i; 719 720 if( bPatchset==0 ){ 721 int bRequired = 0; 722 723 assert( aOldRecord1 && aNewRecord1 ); 724 725 /* Write the old.* vector first. */ 726 for(i=0; i<pTab->nCol; i++){ 727 int nOld; 728 u8 *aOld; 729 int nNew; 730 u8 *aNew; 731 732 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 733 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 734 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 735 if( pTab->abPK[i]==0 ) bRequired = 1; 736 memcpy(aOut, aOld, nOld); 737 aOut += nOld; 738 }else{ 739 *(aOut++) = '\0'; 740 } 741 } 742 743 if( !bRequired ) return 0; 744 } 745 746 /* Write the new.* vector */ 747 aOld1 = aOldRecord1; 748 aOld2 = aOldRecord2; 749 aNew1 = aNewRecord1; 750 aNew2 = aNewRecord2; 751 for(i=0; i<pTab->nCol; i++){ 752 int nOld; 753 u8 *aOld; 754 int nNew; 755 u8 *aNew; 756 757 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 758 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 759 if( bPatchset==0 760 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 761 ){ 762 *(aOut++) = '\0'; 763 }else{ 764 memcpy(aOut, aNew, nNew); 765 aOut += nNew; 766 } 767 } 768 769 *paOut = aOut; 770 return 1; 771 } 772 773 /* 774 ** This function is only called from within a pre-update-hook callback. 775 ** It determines if the current pre-update-hook change affects the same row 776 ** as the change stored in argument pChange. If so, it returns true. Otherwise 777 ** if the pre-update-hook does not affect the same row as pChange, it returns 778 ** false. 779 */ 780 static int sessionPreupdateEqual( 781 sqlite3_session *pSession, /* Session object that owns SessionTable */ 782 SessionTable *pTab, /* Table associated with change */ 783 SessionChange *pChange, /* Change to compare to */ 784 int op /* Current pre-update operation */ 785 ){ 786 int iCol; /* Used to iterate through columns */ 787 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 788 789 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 790 for(iCol=0; iCol<pTab->nCol; iCol++){ 791 if( !pTab->abPK[iCol] ){ 792 a += sessionSerialLen(a); 793 }else{ 794 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 795 int rc; /* Error code from preupdate_new/old */ 796 int eType = *a++; /* Type of value from change record */ 797 798 /* The following calls to preupdate_new() and preupdate_old() can not 799 ** fail. This is because they cache their return values, and by the 800 ** time control flows to here they have already been called once from 801 ** within sessionPreupdateHash(). The first two asserts below verify 802 ** this (that the method has already been called). */ 803 if( op==SQLITE_INSERT ){ 804 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 805 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 806 }else{ 807 /* assert( db->pPreUpdate->pUnpacked ); */ 808 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 809 } 810 assert( rc==SQLITE_OK ); 811 if( sqlite3_value_type(pVal)!=eType ) return 0; 812 813 /* A SessionChange object never has a NULL value in a PK column */ 814 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 815 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 816 ); 817 818 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 819 i64 iVal = sessionGetI64(a); 820 a += 8; 821 if( eType==SQLITE_INTEGER ){ 822 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 823 }else{ 824 double rVal; 825 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 826 memcpy(&rVal, &iVal, 8); 827 if( sqlite3_value_double(pVal)!=rVal ) return 0; 828 } 829 }else{ 830 int n; 831 const u8 *z; 832 a += sessionVarintGet(a, &n); 833 if( sqlite3_value_bytes(pVal)!=n ) return 0; 834 if( eType==SQLITE_TEXT ){ 835 z = sqlite3_value_text(pVal); 836 }else{ 837 z = sqlite3_value_blob(pVal); 838 } 839 if( memcmp(a, z, n) ) return 0; 840 a += n; 841 break; 842 } 843 } 844 } 845 846 return 1; 847 } 848 849 /* 850 ** If required, grow the hash table used to store changes on table pTab 851 ** (part of the session pSession). If a fatal OOM error occurs, set the 852 ** session object to failed and return SQLITE_ERROR. Otherwise, return 853 ** SQLITE_OK. 854 ** 855 ** It is possible that a non-fatal OOM error occurs in this function. In 856 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 857 ** Growing the hash table in this case is a performance optimization only, 858 ** it is not required for correct operation. 859 */ 860 static int sessionGrowHash(int bPatchset, SessionTable *pTab){ 861 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 862 int i; 863 SessionChange **apNew; 864 int nNew = (pTab->nChange ? pTab->nChange : 128) * 2; 865 866 apNew = (SessionChange **)sqlite3_malloc(sizeof(SessionChange *) * nNew); 867 if( apNew==0 ){ 868 if( pTab->nChange==0 ){ 869 return SQLITE_ERROR; 870 } 871 return SQLITE_OK; 872 } 873 memset(apNew, 0, sizeof(SessionChange *) * nNew); 874 875 for(i=0; i<pTab->nChange; i++){ 876 SessionChange *p; 877 SessionChange *pNext; 878 for(p=pTab->apChange[i]; p; p=pNext){ 879 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 880 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 881 pNext = p->pNext; 882 p->pNext = apNew[iHash]; 883 apNew[iHash] = p; 884 } 885 } 886 887 sqlite3_free(pTab->apChange); 888 pTab->nChange = nNew; 889 pTab->apChange = apNew; 890 } 891 892 return SQLITE_OK; 893 } 894 895 /* 896 ** This function queries the database for the names of the columns of table 897 ** zThis, in schema zDb. It is expected that the table has nCol columns. If 898 ** not, SQLITE_SCHEMA is returned and none of the output variables are 899 ** populated. 900 ** 901 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 902 ** of columns in the database table and variable *pzTab is set to point to a 903 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 904 ** point to an array of pointers to column names. And *pabPK (again, if not 905 ** NULL) is set to point to an array of booleans - true if the corresponding 906 ** column is part of the primary key. 907 ** 908 ** For example, if the table is declared as: 909 ** 910 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 911 ** 912 ** Then the four output variables are populated as follows: 913 ** 914 ** *pnCol = 4 915 ** *pzTab = "tbl1" 916 ** *pazCol = {"w", "x", "y", "z"} 917 ** *pabPK = {1, 0, 0, 1} 918 ** 919 ** All returned buffers are part of the same single allocation, which must 920 ** be freed using sqlite3_free() by the caller. If pazCol was not NULL, then 921 ** pointer *pazCol should be freed to release all memory. Otherwise, pointer 922 ** *pabPK. It is illegal for both pazCol and pabPK to be NULL. 923 */ 924 static int sessionTableInfo( 925 sqlite3 *db, /* Database connection */ 926 const char *zDb, /* Name of attached database (e.g. "main") */ 927 const char *zThis, /* Table name */ 928 int *pnCol, /* OUT: number of columns */ 929 const char **pzTab, /* OUT: Copy of zThis */ 930 const char ***pazCol, /* OUT: Array of column names for table */ 931 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 932 ){ 933 char *zPragma; 934 sqlite3_stmt *pStmt; 935 int rc; 936 int nByte; 937 int nDbCol = 0; 938 int nThis; 939 int i; 940 u8 *pAlloc = 0; 941 char **azCol = 0; 942 u8 *abPK = 0; 943 944 assert( pazCol && pabPK ); 945 946 nThis = sqlite3Strlen30(zThis); 947 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 948 if( !zPragma ) return SQLITE_NOMEM; 949 950 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 951 sqlite3_free(zPragma); 952 if( rc!=SQLITE_OK ) return rc; 953 954 nByte = nThis + 1; 955 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 956 nByte += sqlite3_column_bytes(pStmt, 1); 957 nDbCol++; 958 } 959 rc = sqlite3_reset(pStmt); 960 961 if( rc==SQLITE_OK ){ 962 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 963 pAlloc = sqlite3_malloc(nByte); 964 if( pAlloc==0 ){ 965 rc = SQLITE_NOMEM; 966 } 967 } 968 if( rc==SQLITE_OK ){ 969 azCol = (char **)pAlloc; 970 pAlloc = (u8 *)&azCol[nDbCol]; 971 abPK = (u8 *)pAlloc; 972 pAlloc = &abPK[nDbCol]; 973 if( pzTab ){ 974 memcpy(pAlloc, zThis, nThis+1); 975 *pzTab = (char *)pAlloc; 976 pAlloc += nThis+1; 977 } 978 979 i = 0; 980 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 981 int nName = sqlite3_column_bytes(pStmt, 1); 982 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 983 if( zName==0 ) break; 984 memcpy(pAlloc, zName, nName+1); 985 azCol[i] = (char *)pAlloc; 986 pAlloc += nName+1; 987 abPK[i] = sqlite3_column_int(pStmt, 5); 988 i++; 989 } 990 rc = sqlite3_reset(pStmt); 991 992 } 993 994 /* If successful, populate the output variables. Otherwise, zero them and 995 ** free any allocation made. An error code will be returned in this case. 996 */ 997 if( rc==SQLITE_OK ){ 998 *pazCol = (const char **)azCol; 999 *pabPK = abPK; 1000 *pnCol = nDbCol; 1001 }else{ 1002 *pazCol = 0; 1003 *pabPK = 0; 1004 *pnCol = 0; 1005 if( pzTab ) *pzTab = 0; 1006 sqlite3_free(azCol); 1007 } 1008 sqlite3_finalize(pStmt); 1009 return rc; 1010 } 1011 1012 /* 1013 ** This function is only called from within a pre-update handler for a 1014 ** write to table pTab, part of session pSession. If this is the first 1015 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1016 ** abPK[] arrays accordingly. 1017 ** 1018 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1019 ** non-zero returned. Or, if no error occurs but the table has no primary 1020 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1021 ** indicate that updates on this table should be ignored. SessionTable.abPK 1022 ** is set to NULL in this case. 1023 */ 1024 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1025 if( pTab->nCol==0 ){ 1026 u8 *abPK; 1027 assert( pTab->azCol==0 || pTab->abPK==0 ); 1028 pSession->rc = sessionTableInfo(pSession->db, pSession->zDb, 1029 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1030 ); 1031 if( pSession->rc==SQLITE_OK ){ 1032 int i; 1033 for(i=0; i<pTab->nCol; i++){ 1034 if( abPK[i] ){ 1035 pTab->abPK = abPK; 1036 break; 1037 } 1038 } 1039 } 1040 } 1041 return (pSession->rc || pTab->abPK==0); 1042 } 1043 1044 /* 1045 ** This function is only called from with a pre-update-hook reporting a 1046 ** change on table pTab (attached to session pSession). The type of change 1047 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1048 ** 1049 ** Unless one is already present or an error occurs, an entry is added 1050 ** to the changed-rows hash table associated with table pTab. 1051 */ 1052 static void sessionPreupdateOneChange( 1053 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1054 sqlite3_session *pSession, /* Session object pTab is attached to */ 1055 SessionTable *pTab /* Table that change applies to */ 1056 ){ 1057 int iHash; 1058 int bNull = 0; 1059 int rc = SQLITE_OK; 1060 1061 if( pSession->rc ) return; 1062 1063 /* Load table details if required */ 1064 if( sessionInitTable(pSession, pTab) ) return; 1065 1066 /* Check the number of columns in this xPreUpdate call matches the 1067 ** number of columns in the table. */ 1068 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1069 pSession->rc = SQLITE_SCHEMA; 1070 return; 1071 } 1072 1073 /* Grow the hash table if required */ 1074 if( sessionGrowHash(0, pTab) ){ 1075 pSession->rc = SQLITE_NOMEM; 1076 return; 1077 } 1078 1079 /* Calculate the hash-key for this change. If the primary key of the row 1080 ** includes a NULL value, exit early. Such changes are ignored by the 1081 ** session module. */ 1082 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1083 if( rc!=SQLITE_OK ) goto error_out; 1084 1085 if( bNull==0 ){ 1086 /* Search the hash table for an existing record for this row. */ 1087 SessionChange *pC; 1088 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1089 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1090 } 1091 1092 if( pC==0 ){ 1093 /* Create a new change object containing all the old values (if 1094 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1095 ** values (if this is an INSERT). */ 1096 SessionChange *pChange; /* New change object */ 1097 int nByte; /* Number of bytes to allocate */ 1098 int i; /* Used to iterate through columns */ 1099 1100 assert( rc==SQLITE_OK ); 1101 pTab->nEntry++; 1102 1103 /* Figure out how large an allocation is required */ 1104 nByte = sizeof(SessionChange); 1105 for(i=0; i<pTab->nCol; i++){ 1106 sqlite3_value *p = 0; 1107 if( op!=SQLITE_INSERT ){ 1108 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1109 assert( trc==SQLITE_OK ); 1110 }else if( pTab->abPK[i] ){ 1111 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1112 assert( trc==SQLITE_OK ); 1113 } 1114 1115 /* This may fail if SQLite value p contains a utf-16 string that must 1116 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1117 rc = sessionSerializeValue(0, p, &nByte); 1118 if( rc!=SQLITE_OK ) goto error_out; 1119 } 1120 1121 /* Allocate the change object */ 1122 pChange = (SessionChange *)sqlite3_malloc(nByte); 1123 if( !pChange ){ 1124 rc = SQLITE_NOMEM; 1125 goto error_out; 1126 }else{ 1127 memset(pChange, 0, sizeof(SessionChange)); 1128 pChange->aRecord = (u8 *)&pChange[1]; 1129 } 1130 1131 /* Populate the change object. None of the preupdate_old(), 1132 ** preupdate_new() or SerializeValue() calls below may fail as all 1133 ** required values and encodings have already been cached in memory. 1134 ** It is not possible for an OOM to occur in this block. */ 1135 nByte = 0; 1136 for(i=0; i<pTab->nCol; i++){ 1137 sqlite3_value *p = 0; 1138 if( op!=SQLITE_INSERT ){ 1139 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1140 }else if( pTab->abPK[i] ){ 1141 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1142 } 1143 sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte); 1144 } 1145 1146 /* Add the change to the hash-table */ 1147 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1148 pChange->bIndirect = 1; 1149 } 1150 pChange->nRecord = nByte; 1151 pChange->op = op; 1152 pChange->pNext = pTab->apChange[iHash]; 1153 pTab->apChange[iHash] = pChange; 1154 1155 }else if( pC->bIndirect ){ 1156 /* If the existing change is considered "indirect", but this current 1157 ** change is "direct", mark the change object as direct. */ 1158 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1159 && pSession->bIndirect==0 1160 ){ 1161 pC->bIndirect = 0; 1162 } 1163 } 1164 } 1165 1166 /* If an error has occurred, mark the session object as failed. */ 1167 error_out: 1168 if( rc!=SQLITE_OK ){ 1169 pSession->rc = rc; 1170 } 1171 } 1172 1173 static int sessionFindTable( 1174 sqlite3_session *pSession, 1175 const char *zName, 1176 SessionTable **ppTab 1177 ){ 1178 int rc = SQLITE_OK; 1179 int nName = sqlite3Strlen30(zName); 1180 SessionTable *pRet; 1181 1182 /* Search for an existing table */ 1183 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1184 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1185 } 1186 1187 if( pRet==0 && pSession->bAutoAttach ){ 1188 /* If there is a table-filter configured, invoke it. If it returns 0, 1189 ** do not automatically add the new table. */ 1190 if( pSession->xTableFilter==0 1191 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1192 ){ 1193 rc = sqlite3session_attach(pSession, zName); 1194 if( rc==SQLITE_OK ){ 1195 for(pRet=pSession->pTable; pRet->pNext; pRet=pRet->pNext); 1196 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1197 } 1198 } 1199 } 1200 1201 assert( rc==SQLITE_OK || pRet==0 ); 1202 *ppTab = pRet; 1203 return rc; 1204 } 1205 1206 /* 1207 ** The 'pre-update' hook registered by this module with SQLite databases. 1208 */ 1209 static void xPreUpdate( 1210 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1211 sqlite3 *db, /* Database handle */ 1212 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1213 char const *zDb, /* Database name */ 1214 char const *zName, /* Table name */ 1215 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1216 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1217 ){ 1218 sqlite3_session *pSession; 1219 int nDb = sqlite3Strlen30(zDb); 1220 1221 assert( sqlite3_mutex_held(db->mutex) ); 1222 1223 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1224 SessionTable *pTab; 1225 1226 /* If this session is attached to a different database ("main", "temp" 1227 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1228 ** to the next session object attached to this database. */ 1229 if( pSession->bEnable==0 ) continue; 1230 if( pSession->rc ) continue; 1231 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1232 1233 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1234 if( pTab ){ 1235 assert( pSession->rc==SQLITE_OK ); 1236 sessionPreupdateOneChange(op, pSession, pTab); 1237 if( op==SQLITE_UPDATE ){ 1238 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1239 } 1240 } 1241 } 1242 } 1243 1244 /* 1245 ** The pre-update hook implementations. 1246 */ 1247 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1248 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1249 } 1250 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1251 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1252 } 1253 static int sessionPreupdateCount(void *pCtx){ 1254 return sqlite3_preupdate_count((sqlite3*)pCtx); 1255 } 1256 static int sessionPreupdateDepth(void *pCtx){ 1257 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1258 } 1259 1260 /* 1261 ** Install the pre-update hooks on the session object passed as the only 1262 ** argument. 1263 */ 1264 static void sessionPreupdateHooks( 1265 sqlite3_session *pSession 1266 ){ 1267 pSession->hook.pCtx = (void*)pSession->db; 1268 pSession->hook.xOld = sessionPreupdateOld; 1269 pSession->hook.xNew = sessionPreupdateNew; 1270 pSession->hook.xCount = sessionPreupdateCount; 1271 pSession->hook.xDepth = sessionPreupdateDepth; 1272 } 1273 1274 typedef struct SessionDiffCtx SessionDiffCtx; 1275 struct SessionDiffCtx { 1276 sqlite3_stmt *pStmt; 1277 int nOldOff; 1278 }; 1279 1280 /* 1281 ** The diff hook implementations. 1282 */ 1283 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1284 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1285 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1286 return SQLITE_OK; 1287 } 1288 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1289 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1290 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1291 return SQLITE_OK; 1292 } 1293 static int sessionDiffCount(void *pCtx){ 1294 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1295 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1296 } 1297 static int sessionDiffDepth(void *pCtx){ 1298 return 0; 1299 } 1300 1301 /* 1302 ** Install the diff hooks on the session object passed as the only 1303 ** argument. 1304 */ 1305 static void sessionDiffHooks( 1306 sqlite3_session *pSession, 1307 SessionDiffCtx *pDiffCtx 1308 ){ 1309 pSession->hook.pCtx = (void*)pDiffCtx; 1310 pSession->hook.xOld = sessionDiffOld; 1311 pSession->hook.xNew = sessionDiffNew; 1312 pSession->hook.xCount = sessionDiffCount; 1313 pSession->hook.xDepth = sessionDiffDepth; 1314 } 1315 1316 static char *sessionExprComparePK( 1317 int nCol, 1318 const char *zDb1, const char *zDb2, 1319 const char *zTab, 1320 const char **azCol, u8 *abPK 1321 ){ 1322 int i; 1323 const char *zSep = ""; 1324 char *zRet = 0; 1325 1326 for(i=0; i<nCol; i++){ 1327 if( abPK[i] ){ 1328 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1329 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1330 ); 1331 zSep = " AND "; 1332 if( zRet==0 ) break; 1333 } 1334 } 1335 1336 return zRet; 1337 } 1338 1339 static char *sessionExprCompareOther( 1340 int nCol, 1341 const char *zDb1, const char *zDb2, 1342 const char *zTab, 1343 const char **azCol, u8 *abPK 1344 ){ 1345 int i; 1346 const char *zSep = ""; 1347 char *zRet = 0; 1348 int bHave = 0; 1349 1350 for(i=0; i<nCol; i++){ 1351 if( abPK[i]==0 ){ 1352 bHave = 1; 1353 zRet = sqlite3_mprintf( 1354 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1355 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1356 ); 1357 zSep = " OR "; 1358 if( zRet==0 ) break; 1359 } 1360 } 1361 1362 if( bHave==0 ){ 1363 assert( zRet==0 ); 1364 zRet = sqlite3_mprintf("0"); 1365 } 1366 1367 return zRet; 1368 } 1369 1370 static char *sessionSelectFindNew( 1371 int nCol, 1372 const char *zDb1, /* Pick rows in this db only */ 1373 const char *zDb2, /* But not in this one */ 1374 const char *zTbl, /* Table name */ 1375 const char *zExpr 1376 ){ 1377 char *zRet = sqlite3_mprintf( 1378 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1379 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1380 ")", 1381 zDb1, zTbl, zDb2, zTbl, zExpr 1382 ); 1383 return zRet; 1384 } 1385 1386 static int sessionDiffFindNew( 1387 int op, 1388 sqlite3_session *pSession, 1389 SessionTable *pTab, 1390 const char *zDb1, 1391 const char *zDb2, 1392 char *zExpr 1393 ){ 1394 int rc = SQLITE_OK; 1395 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1396 1397 if( zStmt==0 ){ 1398 rc = SQLITE_NOMEM; 1399 }else{ 1400 sqlite3_stmt *pStmt; 1401 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1402 if( rc==SQLITE_OK ){ 1403 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1404 pDiffCtx->pStmt = pStmt; 1405 pDiffCtx->nOldOff = 0; 1406 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1407 sessionPreupdateOneChange(op, pSession, pTab); 1408 } 1409 rc = sqlite3_finalize(pStmt); 1410 } 1411 sqlite3_free(zStmt); 1412 } 1413 1414 return rc; 1415 } 1416 1417 static int sessionDiffFindModified( 1418 sqlite3_session *pSession, 1419 SessionTable *pTab, 1420 const char *zFrom, 1421 const char *zExpr 1422 ){ 1423 int rc = SQLITE_OK; 1424 1425 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1426 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1427 ); 1428 if( zExpr2==0 ){ 1429 rc = SQLITE_NOMEM; 1430 }else{ 1431 char *zStmt = sqlite3_mprintf( 1432 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1433 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1434 ); 1435 if( zStmt==0 ){ 1436 rc = SQLITE_NOMEM; 1437 }else{ 1438 sqlite3_stmt *pStmt; 1439 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1440 1441 if( rc==SQLITE_OK ){ 1442 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1443 pDiffCtx->pStmt = pStmt; 1444 pDiffCtx->nOldOff = pTab->nCol; 1445 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1446 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1447 } 1448 rc = sqlite3_finalize(pStmt); 1449 } 1450 sqlite3_free(zStmt); 1451 } 1452 } 1453 1454 return rc; 1455 } 1456 1457 int sqlite3session_diff( 1458 sqlite3_session *pSession, 1459 const char *zFrom, 1460 const char *zTbl, 1461 char **pzErrMsg 1462 ){ 1463 const char *zDb = pSession->zDb; 1464 int rc = pSession->rc; 1465 SessionDiffCtx d; 1466 1467 memset(&d, 0, sizeof(d)); 1468 sessionDiffHooks(pSession, &d); 1469 1470 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1471 if( pzErrMsg ) *pzErrMsg = 0; 1472 if( rc==SQLITE_OK ){ 1473 char *zExpr = 0; 1474 sqlite3 *db = pSession->db; 1475 SessionTable *pTo; /* Table zTbl */ 1476 1477 /* Locate and if necessary initialize the target table object */ 1478 rc = sessionFindTable(pSession, zTbl, &pTo); 1479 if( pTo==0 ) goto diff_out; 1480 if( sessionInitTable(pSession, pTo) ){ 1481 rc = pSession->rc; 1482 goto diff_out; 1483 } 1484 1485 /* Check the table schemas match */ 1486 if( rc==SQLITE_OK ){ 1487 int bHasPk = 0; 1488 int bMismatch = 0; 1489 int nCol; /* Columns in zFrom.zTbl */ 1490 u8 *abPK; 1491 const char **azCol = 0; 1492 rc = sessionTableInfo(db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1493 if( rc==SQLITE_OK ){ 1494 if( pTo->nCol!=nCol ){ 1495 bMismatch = 1; 1496 }else{ 1497 int i; 1498 for(i=0; i<nCol; i++){ 1499 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1500 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1501 if( abPK[i] ) bHasPk = 1; 1502 } 1503 } 1504 1505 } 1506 sqlite3_free((char*)azCol); 1507 if( bMismatch ){ 1508 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1509 rc = SQLITE_SCHEMA; 1510 } 1511 if( bHasPk==0 ){ 1512 /* Ignore tables with no primary keys */ 1513 goto diff_out; 1514 } 1515 } 1516 1517 if( rc==SQLITE_OK ){ 1518 zExpr = sessionExprComparePK(pTo->nCol, 1519 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1520 ); 1521 } 1522 1523 /* Find new rows */ 1524 if( rc==SQLITE_OK ){ 1525 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1526 } 1527 1528 /* Find old rows */ 1529 if( rc==SQLITE_OK ){ 1530 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1531 } 1532 1533 /* Find modified rows */ 1534 if( rc==SQLITE_OK ){ 1535 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1536 } 1537 1538 sqlite3_free(zExpr); 1539 } 1540 1541 diff_out: 1542 sessionPreupdateHooks(pSession); 1543 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1544 return rc; 1545 } 1546 1547 /* 1548 ** Create a session object. This session object will record changes to 1549 ** database zDb attached to connection db. 1550 */ 1551 int sqlite3session_create( 1552 sqlite3 *db, /* Database handle */ 1553 const char *zDb, /* Name of db (e.g. "main") */ 1554 sqlite3_session **ppSession /* OUT: New session object */ 1555 ){ 1556 sqlite3_session *pNew; /* Newly allocated session object */ 1557 sqlite3_session *pOld; /* Session object already attached to db */ 1558 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1559 1560 /* Zero the output value in case an error occurs. */ 1561 *ppSession = 0; 1562 1563 /* Allocate and populate the new session object. */ 1564 pNew = (sqlite3_session *)sqlite3_malloc(sizeof(sqlite3_session) + nDb + 1); 1565 if( !pNew ) return SQLITE_NOMEM; 1566 memset(pNew, 0, sizeof(sqlite3_session)); 1567 pNew->db = db; 1568 pNew->zDb = (char *)&pNew[1]; 1569 pNew->bEnable = 1; 1570 memcpy(pNew->zDb, zDb, nDb+1); 1571 sessionPreupdateHooks(pNew); 1572 1573 /* Add the new session object to the linked list of session objects 1574 ** attached to database handle $db. Do this under the cover of the db 1575 ** handle mutex. */ 1576 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1577 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1578 pNew->pNext = pOld; 1579 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1580 1581 *ppSession = pNew; 1582 return SQLITE_OK; 1583 } 1584 1585 /* 1586 ** Free the list of table objects passed as the first argument. The contents 1587 ** of the changed-rows hash tables are also deleted. 1588 */ 1589 static void sessionDeleteTable(SessionTable *pList){ 1590 SessionTable *pNext; 1591 SessionTable *pTab; 1592 1593 for(pTab=pList; pTab; pTab=pNext){ 1594 int i; 1595 pNext = pTab->pNext; 1596 for(i=0; i<pTab->nChange; i++){ 1597 SessionChange *p; 1598 SessionChange *pNextChange; 1599 for(p=pTab->apChange[i]; p; p=pNextChange){ 1600 pNextChange = p->pNext; 1601 sqlite3_free(p); 1602 } 1603 } 1604 sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */ 1605 sqlite3_free(pTab->apChange); 1606 sqlite3_free(pTab); 1607 } 1608 } 1609 1610 /* 1611 ** Delete a session object previously allocated using sqlite3session_create(). 1612 */ 1613 void sqlite3session_delete(sqlite3_session *pSession){ 1614 sqlite3 *db = pSession->db; 1615 sqlite3_session *pHead; 1616 sqlite3_session **pp; 1617 1618 /* Unlink the session from the linked list of sessions attached to the 1619 ** database handle. Hold the db mutex while doing so. */ 1620 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1621 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1622 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1623 if( (*pp)==pSession ){ 1624 *pp = (*pp)->pNext; 1625 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1626 break; 1627 } 1628 } 1629 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1630 1631 /* Delete all attached table objects. And the contents of their 1632 ** associated hash-tables. */ 1633 sessionDeleteTable(pSession->pTable); 1634 1635 /* Free the session object itself. */ 1636 sqlite3_free(pSession); 1637 } 1638 1639 /* 1640 ** Set a table filter on a Session Object. 1641 */ 1642 void sqlite3session_table_filter( 1643 sqlite3_session *pSession, 1644 int(*xFilter)(void*, const char*), 1645 void *pCtx /* First argument passed to xFilter */ 1646 ){ 1647 pSession->bAutoAttach = 1; 1648 pSession->pFilterCtx = pCtx; 1649 pSession->xTableFilter = xFilter; 1650 } 1651 1652 /* 1653 ** Attach a table to a session. All subsequent changes made to the table 1654 ** while the session object is enabled will be recorded. 1655 ** 1656 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1657 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1658 ** or not. 1659 */ 1660 int sqlite3session_attach( 1661 sqlite3_session *pSession, /* Session object */ 1662 const char *zName /* Table name */ 1663 ){ 1664 int rc = SQLITE_OK; 1665 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1666 1667 if( !zName ){ 1668 pSession->bAutoAttach = 1; 1669 }else{ 1670 SessionTable *pTab; /* New table object (if required) */ 1671 int nName; /* Number of bytes in string zName */ 1672 1673 /* First search for an existing entry. If one is found, this call is 1674 ** a no-op. Return early. */ 1675 nName = sqlite3Strlen30(zName); 1676 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1677 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1678 } 1679 1680 if( !pTab ){ 1681 /* Allocate new SessionTable object. */ 1682 pTab = (SessionTable *)sqlite3_malloc(sizeof(SessionTable) + nName + 1); 1683 if( !pTab ){ 1684 rc = SQLITE_NOMEM; 1685 }else{ 1686 /* Populate the new SessionTable object and link it into the list. 1687 ** The new object must be linked onto the end of the list, not 1688 ** simply added to the start of it in order to ensure that tables 1689 ** appear in the correct order when a changeset or patchset is 1690 ** eventually generated. */ 1691 SessionTable **ppTab; 1692 memset(pTab, 0, sizeof(SessionTable)); 1693 pTab->zName = (char *)&pTab[1]; 1694 memcpy(pTab->zName, zName, nName+1); 1695 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1696 *ppTab = pTab; 1697 } 1698 } 1699 } 1700 1701 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1702 return rc; 1703 } 1704 1705 /* 1706 ** Ensure that there is room in the buffer to append nByte bytes of data. 1707 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1708 ** 1709 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1710 ** set *pRc to SQLITE_NOMEM and return non-zero. 1711 */ 1712 static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ 1713 if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ 1714 u8 *aNew; 1715 int nNew = p->nAlloc ? p->nAlloc : 128; 1716 do { 1717 nNew = nNew*2; 1718 }while( nNew<(p->nBuf+nByte) ); 1719 1720 aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew); 1721 if( 0==aNew ){ 1722 *pRc = SQLITE_NOMEM; 1723 }else{ 1724 p->aBuf = aNew; 1725 p->nAlloc = nNew; 1726 } 1727 } 1728 return (*pRc!=SQLITE_OK); 1729 } 1730 1731 /* 1732 ** Append the value passed as the second argument to the buffer passed 1733 ** as the first. 1734 ** 1735 ** This function is a no-op if *pRc is non-zero when it is called. 1736 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 1737 ** before returning. 1738 */ 1739 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 1740 int rc = *pRc; 1741 if( rc==SQLITE_OK ){ 1742 int nByte = 0; 1743 rc = sessionSerializeValue(0, pVal, &nByte); 1744 sessionBufferGrow(p, nByte, &rc); 1745 if( rc==SQLITE_OK ){ 1746 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 1747 p->nBuf += nByte; 1748 }else{ 1749 *pRc = rc; 1750 } 1751 } 1752 } 1753 1754 /* 1755 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1756 ** called. Otherwise, append a single byte to the buffer. 1757 ** 1758 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1759 ** returning. 1760 */ 1761 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 1762 if( 0==sessionBufferGrow(p, 1, pRc) ){ 1763 p->aBuf[p->nBuf++] = v; 1764 } 1765 } 1766 1767 /* 1768 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1769 ** called. Otherwise, append a single varint to the buffer. 1770 ** 1771 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1772 ** returning. 1773 */ 1774 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 1775 if( 0==sessionBufferGrow(p, 9, pRc) ){ 1776 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 1777 } 1778 } 1779 1780 /* 1781 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1782 ** called. Otherwise, append a blob of data to the buffer. 1783 ** 1784 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1785 ** returning. 1786 */ 1787 static void sessionAppendBlob( 1788 SessionBuffer *p, 1789 const u8 *aBlob, 1790 int nBlob, 1791 int *pRc 1792 ){ 1793 if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){ 1794 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 1795 p->nBuf += nBlob; 1796 } 1797 } 1798 1799 /* 1800 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1801 ** called. Otherwise, append a string to the buffer. All bytes in the string 1802 ** up to (but not including) the nul-terminator are written to the buffer. 1803 ** 1804 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1805 ** returning. 1806 */ 1807 static void sessionAppendStr( 1808 SessionBuffer *p, 1809 const char *zStr, 1810 int *pRc 1811 ){ 1812 int nStr = sqlite3Strlen30(zStr); 1813 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1814 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 1815 p->nBuf += nStr; 1816 } 1817 } 1818 1819 /* 1820 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1821 ** called. Otherwise, append the string representation of integer iVal 1822 ** to the buffer. No nul-terminator is written. 1823 ** 1824 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1825 ** returning. 1826 */ 1827 static void sessionAppendInteger( 1828 SessionBuffer *p, /* Buffer to append to */ 1829 int iVal, /* Value to write the string rep. of */ 1830 int *pRc /* IN/OUT: Error code */ 1831 ){ 1832 char aBuf[24]; 1833 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 1834 sessionAppendStr(p, aBuf, pRc); 1835 } 1836 1837 /* 1838 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1839 ** called. Otherwise, append the string zStr enclosed in quotes (") and 1840 ** with any embedded quote characters escaped to the buffer. No 1841 ** nul-terminator byte is written. 1842 ** 1843 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1844 ** returning. 1845 */ 1846 static void sessionAppendIdent( 1847 SessionBuffer *p, /* Buffer to a append to */ 1848 const char *zStr, /* String to quote, escape and append */ 1849 int *pRc /* IN/OUT: Error code */ 1850 ){ 1851 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 1852 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1853 char *zOut = (char *)&p->aBuf[p->nBuf]; 1854 const char *zIn = zStr; 1855 *zOut++ = '"'; 1856 while( *zIn ){ 1857 if( *zIn=='"' ) *zOut++ = '"'; 1858 *zOut++ = *(zIn++); 1859 } 1860 *zOut++ = '"'; 1861 p->nBuf = (int)((u8 *)zOut - p->aBuf); 1862 } 1863 } 1864 1865 /* 1866 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1867 ** called. Otherwse, it appends the serialized version of the value stored 1868 ** in column iCol of the row that SQL statement pStmt currently points 1869 ** to to the buffer. 1870 */ 1871 static void sessionAppendCol( 1872 SessionBuffer *p, /* Buffer to append to */ 1873 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 1874 int iCol, /* Column to read value from */ 1875 int *pRc /* IN/OUT: Error code */ 1876 ){ 1877 if( *pRc==SQLITE_OK ){ 1878 int eType = sqlite3_column_type(pStmt, iCol); 1879 sessionAppendByte(p, (u8)eType, pRc); 1880 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1881 sqlite3_int64 i; 1882 u8 aBuf[8]; 1883 if( eType==SQLITE_INTEGER ){ 1884 i = sqlite3_column_int64(pStmt, iCol); 1885 }else{ 1886 double r = sqlite3_column_double(pStmt, iCol); 1887 memcpy(&i, &r, 8); 1888 } 1889 sessionPutI64(aBuf, i); 1890 sessionAppendBlob(p, aBuf, 8, pRc); 1891 } 1892 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 1893 u8 *z; 1894 int nByte; 1895 if( eType==SQLITE_BLOB ){ 1896 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 1897 }else{ 1898 z = (u8 *)sqlite3_column_text(pStmt, iCol); 1899 } 1900 nByte = sqlite3_column_bytes(pStmt, iCol); 1901 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 1902 sessionAppendVarint(p, nByte, pRc); 1903 sessionAppendBlob(p, z, nByte, pRc); 1904 }else{ 1905 *pRc = SQLITE_NOMEM; 1906 } 1907 } 1908 } 1909 } 1910 1911 /* 1912 ** 1913 ** This function appends an update change to the buffer (see the comments 1914 ** under "CHANGESET FORMAT" at the top of the file). An update change 1915 ** consists of: 1916 ** 1917 ** 1 byte: SQLITE_UPDATE (0x17) 1918 ** n bytes: old.* record (see RECORD FORMAT) 1919 ** m bytes: new.* record (see RECORD FORMAT) 1920 ** 1921 ** The SessionChange object passed as the third argument contains the 1922 ** values that were stored in the row when the session began (the old.* 1923 ** values). The statement handle passed as the second argument points 1924 ** at the current version of the row (the new.* values). 1925 ** 1926 ** If all of the old.* values are equal to their corresponding new.* value 1927 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 1928 ** 1929 ** Otherwise, the old.* record contains all primary key values and the 1930 ** original values of any fields that have been modified. The new.* record 1931 ** contains the new values of only those fields that have been modified. 1932 */ 1933 static int sessionAppendUpdate( 1934 SessionBuffer *pBuf, /* Buffer to append to */ 1935 int bPatchset, /* True for "patchset", 0 for "changeset" */ 1936 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 1937 SessionChange *p, /* Object containing old values */ 1938 u8 *abPK /* Boolean array - true for PK columns */ 1939 ){ 1940 int rc = SQLITE_OK; 1941 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 1942 int bNoop = 1; /* Set to zero if any values are modified */ 1943 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 1944 int i; /* Used to iterate through columns */ 1945 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 1946 1947 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 1948 sessionAppendByte(pBuf, p->bIndirect, &rc); 1949 for(i=0; i<sqlite3_column_count(pStmt); i++){ 1950 int bChanged = 0; 1951 int nAdvance; 1952 int eType = *pCsr; 1953 switch( eType ){ 1954 case SQLITE_NULL: 1955 nAdvance = 1; 1956 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 1957 bChanged = 1; 1958 } 1959 break; 1960 1961 case SQLITE_FLOAT: 1962 case SQLITE_INTEGER: { 1963 nAdvance = 9; 1964 if( eType==sqlite3_column_type(pStmt, i) ){ 1965 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 1966 if( eType==SQLITE_INTEGER ){ 1967 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 1968 }else{ 1969 double dVal; 1970 memcpy(&dVal, &iVal, 8); 1971 if( dVal==sqlite3_column_double(pStmt, i) ) break; 1972 } 1973 } 1974 bChanged = 1; 1975 break; 1976 } 1977 1978 default: { 1979 int n; 1980 int nHdr = 1 + sessionVarintGet(&pCsr[1], &n); 1981 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 1982 nAdvance = nHdr + n; 1983 if( eType==sqlite3_column_type(pStmt, i) 1984 && n==sqlite3_column_bytes(pStmt, i) 1985 && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n)) 1986 ){ 1987 break; 1988 } 1989 bChanged = 1; 1990 } 1991 } 1992 1993 /* If at least one field has been modified, this is not a no-op. */ 1994 if( bChanged ) bNoop = 0; 1995 1996 /* Add a field to the old.* record. This is omitted if this modules is 1997 ** currently generating a patchset. */ 1998 if( bPatchset==0 ){ 1999 if( bChanged || abPK[i] ){ 2000 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 2001 }else{ 2002 sessionAppendByte(pBuf, 0, &rc); 2003 } 2004 } 2005 2006 /* Add a field to the new.* record. Or the only record if currently 2007 ** generating a patchset. */ 2008 if( bChanged || (bPatchset && abPK[i]) ){ 2009 sessionAppendCol(&buf2, pStmt, i, &rc); 2010 }else{ 2011 sessionAppendByte(&buf2, 0, &rc); 2012 } 2013 2014 pCsr += nAdvance; 2015 } 2016 2017 if( bNoop ){ 2018 pBuf->nBuf = nRewind; 2019 }else{ 2020 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2021 } 2022 sqlite3_free(buf2.aBuf); 2023 2024 return rc; 2025 } 2026 2027 /* 2028 ** Append a DELETE change to the buffer passed as the first argument. Use 2029 ** the changeset format if argument bPatchset is zero, or the patchset 2030 ** format otherwise. 2031 */ 2032 static int sessionAppendDelete( 2033 SessionBuffer *pBuf, /* Buffer to append to */ 2034 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2035 SessionChange *p, /* Object containing old values */ 2036 int nCol, /* Number of columns in table */ 2037 u8 *abPK /* Boolean array - true for PK columns */ 2038 ){ 2039 int rc = SQLITE_OK; 2040 2041 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2042 sessionAppendByte(pBuf, p->bIndirect, &rc); 2043 2044 if( bPatchset==0 ){ 2045 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2046 }else{ 2047 int i; 2048 u8 *a = p->aRecord; 2049 for(i=0; i<nCol; i++){ 2050 u8 *pStart = a; 2051 int eType = *a++; 2052 2053 switch( eType ){ 2054 case 0: 2055 case SQLITE_NULL: 2056 assert( abPK[i]==0 ); 2057 break; 2058 2059 case SQLITE_FLOAT: 2060 case SQLITE_INTEGER: 2061 a += 8; 2062 break; 2063 2064 default: { 2065 int n; 2066 a += sessionVarintGet(a, &n); 2067 a += n; 2068 break; 2069 } 2070 } 2071 if( abPK[i] ){ 2072 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2073 } 2074 } 2075 assert( (a - p->aRecord)==p->nRecord ); 2076 } 2077 2078 return rc; 2079 } 2080 2081 /* 2082 ** Formulate and prepare a SELECT statement to retrieve a row from table 2083 ** zTab in database zDb based on its primary key. i.e. 2084 ** 2085 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2086 */ 2087 static int sessionSelectStmt( 2088 sqlite3 *db, /* Database handle */ 2089 const char *zDb, /* Database name */ 2090 const char *zTab, /* Table name */ 2091 int nCol, /* Number of columns in table */ 2092 const char **azCol, /* Names of table columns */ 2093 u8 *abPK, /* PRIMARY KEY array */ 2094 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2095 ){ 2096 int rc = SQLITE_OK; 2097 int i; 2098 const char *zSep = ""; 2099 SessionBuffer buf = {0, 0, 0}; 2100 2101 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2102 sessionAppendIdent(&buf, zDb, &rc); 2103 sessionAppendStr(&buf, ".", &rc); 2104 sessionAppendIdent(&buf, zTab, &rc); 2105 sessionAppendStr(&buf, " WHERE ", &rc); 2106 for(i=0; i<nCol; i++){ 2107 if( abPK[i] ){ 2108 sessionAppendStr(&buf, zSep, &rc); 2109 sessionAppendIdent(&buf, azCol[i], &rc); 2110 sessionAppendStr(&buf, " = ?", &rc); 2111 sessionAppendInteger(&buf, i+1, &rc); 2112 zSep = " AND "; 2113 } 2114 } 2115 if( rc==SQLITE_OK ){ 2116 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, ppStmt, 0); 2117 } 2118 sqlite3_free(buf.aBuf); 2119 return rc; 2120 } 2121 2122 /* 2123 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2124 ** to the SELECT statement passed as the first argument. The SELECT statement 2125 ** is as prepared by function sessionSelectStmt(). 2126 ** 2127 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2128 ** error code (e.g. SQLITE_NOMEM) otherwise. 2129 */ 2130 static int sessionSelectBind( 2131 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2132 int nCol, /* Number of columns in table */ 2133 u8 *abPK, /* PRIMARY KEY array */ 2134 SessionChange *pChange /* Change structure */ 2135 ){ 2136 int i; 2137 int rc = SQLITE_OK; 2138 u8 *a = pChange->aRecord; 2139 2140 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2141 int eType = *a++; 2142 2143 switch( eType ){ 2144 case 0: 2145 case SQLITE_NULL: 2146 assert( abPK[i]==0 ); 2147 break; 2148 2149 case SQLITE_INTEGER: { 2150 if( abPK[i] ){ 2151 i64 iVal = sessionGetI64(a); 2152 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2153 } 2154 a += 8; 2155 break; 2156 } 2157 2158 case SQLITE_FLOAT: { 2159 if( abPK[i] ){ 2160 double rVal; 2161 i64 iVal = sessionGetI64(a); 2162 memcpy(&rVal, &iVal, 8); 2163 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2164 } 2165 a += 8; 2166 break; 2167 } 2168 2169 case SQLITE_TEXT: { 2170 int n; 2171 a += sessionVarintGet(a, &n); 2172 if( abPK[i] ){ 2173 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2174 } 2175 a += n; 2176 break; 2177 } 2178 2179 default: { 2180 int n; 2181 assert( eType==SQLITE_BLOB ); 2182 a += sessionVarintGet(a, &n); 2183 if( abPK[i] ){ 2184 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2185 } 2186 a += n; 2187 break; 2188 } 2189 } 2190 } 2191 2192 return rc; 2193 } 2194 2195 /* 2196 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2197 ** is called. Otherwise, append a serialized table header (part of the binary 2198 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2199 ** SQLite error code before returning. 2200 */ 2201 static void sessionAppendTableHdr( 2202 SessionBuffer *pBuf, /* Append header to this buffer */ 2203 int bPatchset, /* Use the patchset format if true */ 2204 SessionTable *pTab, /* Table object to append header for */ 2205 int *pRc /* IN/OUT: Error code */ 2206 ){ 2207 /* Write a table header */ 2208 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2209 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2210 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2211 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2212 } 2213 2214 /* 2215 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2216 ** (if it is non-zero) based on the current contents of the session object 2217 ** passed as the first argument. 2218 ** 2219 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2220 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2221 ** occurs, an SQLite error code is returned and both output variables set 2222 ** to 0. 2223 */ 2224 static int sessionGenerateChangeset( 2225 sqlite3_session *pSession, /* Session object */ 2226 int bPatchset, /* True for patchset, false for changeset */ 2227 int (*xOutput)(void *pOut, const void *pData, int nData), 2228 void *pOut, /* First argument for xOutput */ 2229 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2230 void **ppChangeset /* OUT: Buffer containing changeset */ 2231 ){ 2232 sqlite3 *db = pSession->db; /* Source database handle */ 2233 SessionTable *pTab; /* Used to iterate through attached tables */ 2234 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2235 int rc; /* Return code */ 2236 2237 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0 ) ); 2238 2239 /* Zero the output variables in case an error occurs. If this session 2240 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2241 ** this call will be a no-op. */ 2242 if( xOutput==0 ){ 2243 *pnChangeset = 0; 2244 *ppChangeset = 0; 2245 } 2246 2247 if( pSession->rc ) return pSession->rc; 2248 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2249 if( rc!=SQLITE_OK ) return rc; 2250 2251 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2252 2253 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2254 if( pTab->nEntry ){ 2255 const char *zName = pTab->zName; 2256 int nCol; /* Number of columns in table */ 2257 u8 *abPK; /* Primary key array */ 2258 const char **azCol = 0; /* Table columns */ 2259 int i; /* Used to iterate through hash buckets */ 2260 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2261 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2262 int nNoop; /* Size of buffer after writing tbl header */ 2263 2264 /* Check the table schema is still Ok. */ 2265 rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK); 2266 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2267 rc = SQLITE_SCHEMA; 2268 } 2269 2270 /* Write a table header */ 2271 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2272 2273 /* Build and compile a statement to execute: */ 2274 if( rc==SQLITE_OK ){ 2275 rc = sessionSelectStmt( 2276 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2277 } 2278 2279 nNoop = buf.nBuf; 2280 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2281 SessionChange *p; /* Used to iterate through changes */ 2282 2283 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2284 rc = sessionSelectBind(pSel, nCol, abPK, p); 2285 if( rc!=SQLITE_OK ) continue; 2286 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2287 if( p->op==SQLITE_INSERT ){ 2288 int iCol; 2289 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2290 sessionAppendByte(&buf, p->bIndirect, &rc); 2291 for(iCol=0; iCol<nCol; iCol++){ 2292 sessionAppendCol(&buf, pSel, iCol, &rc); 2293 } 2294 }else{ 2295 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2296 } 2297 }else if( p->op!=SQLITE_INSERT ){ 2298 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2299 } 2300 if( rc==SQLITE_OK ){ 2301 rc = sqlite3_reset(pSel); 2302 } 2303 2304 /* If the buffer is now larger than SESSIONS_STRM_CHUNK_SIZE, pass 2305 ** its contents to the xOutput() callback. */ 2306 if( xOutput 2307 && rc==SQLITE_OK 2308 && buf.nBuf>nNoop 2309 && buf.nBuf>SESSIONS_STRM_CHUNK_SIZE 2310 ){ 2311 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2312 nNoop = -1; 2313 buf.nBuf = 0; 2314 } 2315 2316 } 2317 } 2318 2319 sqlite3_finalize(pSel); 2320 if( buf.nBuf==nNoop ){ 2321 buf.nBuf = nRewind; 2322 } 2323 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2324 } 2325 } 2326 2327 if( rc==SQLITE_OK ){ 2328 if( xOutput==0 ){ 2329 *pnChangeset = buf.nBuf; 2330 *ppChangeset = buf.aBuf; 2331 buf.aBuf = 0; 2332 }else if( buf.nBuf>0 ){ 2333 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2334 } 2335 } 2336 2337 sqlite3_free(buf.aBuf); 2338 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2339 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2340 return rc; 2341 } 2342 2343 /* 2344 ** Obtain a changeset object containing all changes recorded by the 2345 ** session object passed as the first argument. 2346 ** 2347 ** It is the responsibility of the caller to eventually free the buffer 2348 ** using sqlite3_free(). 2349 */ 2350 int sqlite3session_changeset( 2351 sqlite3_session *pSession, /* Session object */ 2352 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2353 void **ppChangeset /* OUT: Buffer containing changeset */ 2354 ){ 2355 return sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset); 2356 } 2357 2358 /* 2359 ** Streaming version of sqlite3session_changeset(). 2360 */ 2361 int sqlite3session_changeset_strm( 2362 sqlite3_session *pSession, 2363 int (*xOutput)(void *pOut, const void *pData, int nData), 2364 void *pOut 2365 ){ 2366 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2367 } 2368 2369 /* 2370 ** Streaming version of sqlite3session_patchset(). 2371 */ 2372 int sqlite3session_patchset_strm( 2373 sqlite3_session *pSession, 2374 int (*xOutput)(void *pOut, const void *pData, int nData), 2375 void *pOut 2376 ){ 2377 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2378 } 2379 2380 /* 2381 ** Obtain a patchset object containing all changes recorded by the 2382 ** session object passed as the first argument. 2383 ** 2384 ** It is the responsibility of the caller to eventually free the buffer 2385 ** using sqlite3_free(). 2386 */ 2387 int sqlite3session_patchset( 2388 sqlite3_session *pSession, /* Session object */ 2389 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2390 void **ppPatchset /* OUT: Buffer containing changeset */ 2391 ){ 2392 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2393 } 2394 2395 /* 2396 ** Enable or disable the session object passed as the first argument. 2397 */ 2398 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2399 int ret; 2400 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2401 if( bEnable>=0 ){ 2402 pSession->bEnable = bEnable; 2403 } 2404 ret = pSession->bEnable; 2405 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2406 return ret; 2407 } 2408 2409 /* 2410 ** Enable or disable the session object passed as the first argument. 2411 */ 2412 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2413 int ret; 2414 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2415 if( bIndirect>=0 ){ 2416 pSession->bIndirect = bIndirect; 2417 } 2418 ret = pSession->bIndirect; 2419 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2420 return ret; 2421 } 2422 2423 /* 2424 ** Return true if there have been no changes to monitored tables recorded 2425 ** by the session object passed as the only argument. 2426 */ 2427 int sqlite3session_isempty(sqlite3_session *pSession){ 2428 int ret = 0; 2429 SessionTable *pTab; 2430 2431 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2432 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2433 ret = (pTab->nEntry>0); 2434 } 2435 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2436 2437 return (ret==0); 2438 } 2439 2440 /* 2441 ** Do the work for either sqlite3changeset_start() or start_strm(). 2442 */ 2443 static int sessionChangesetStart( 2444 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2445 int (*xInput)(void *pIn, void *pData, int *pnData), 2446 void *pIn, 2447 int nChangeset, /* Size of buffer pChangeset in bytes */ 2448 void *pChangeset /* Pointer to buffer containing changeset */ 2449 ){ 2450 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2451 int nByte; /* Number of bytes to allocate for iterator */ 2452 2453 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2454 2455 /* Zero the output variable in case an error occurs. */ 2456 *pp = 0; 2457 2458 /* Allocate and initialize the iterator structure. */ 2459 nByte = sizeof(sqlite3_changeset_iter); 2460 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2461 if( !pRet ) return SQLITE_NOMEM; 2462 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2463 pRet->in.aData = (u8 *)pChangeset; 2464 pRet->in.nData = nChangeset; 2465 pRet->in.xInput = xInput; 2466 pRet->in.pIn = pIn; 2467 pRet->in.bEof = (xInput ? 0 : 1); 2468 2469 /* Populate the output variable and return success. */ 2470 *pp = pRet; 2471 return SQLITE_OK; 2472 } 2473 2474 /* 2475 ** Create an iterator used to iterate through the contents of a changeset. 2476 */ 2477 int sqlite3changeset_start( 2478 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2479 int nChangeset, /* Size of buffer pChangeset in bytes */ 2480 void *pChangeset /* Pointer to buffer containing changeset */ 2481 ){ 2482 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset); 2483 } 2484 2485 /* 2486 ** Streaming version of sqlite3changeset_start(). 2487 */ 2488 int sqlite3changeset_start_strm( 2489 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2490 int (*xInput)(void *pIn, void *pData, int *pnData), 2491 void *pIn 2492 ){ 2493 return sessionChangesetStart(pp, xInput, pIn, 0, 0); 2494 } 2495 2496 /* 2497 ** If the SessionInput object passed as the only argument is a streaming 2498 ** object and the buffer is full, discard some data to free up space. 2499 */ 2500 static void sessionDiscardData(SessionInput *pIn){ 2501 if( pIn->bEof && pIn->xInput && pIn->iNext>=SESSIONS_STRM_CHUNK_SIZE ){ 2502 int nMove = pIn->buf.nBuf - pIn->iNext; 2503 assert( nMove>=0 ); 2504 if( nMove>0 ){ 2505 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2506 } 2507 pIn->buf.nBuf -= pIn->iNext; 2508 pIn->iNext = 0; 2509 pIn->nData = pIn->buf.nBuf; 2510 } 2511 } 2512 2513 /* 2514 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2515 ** if there are not nByte bytes remaining in the input, that all available 2516 ** data is in the buffer. 2517 ** 2518 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2519 */ 2520 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2521 int rc = SQLITE_OK; 2522 if( pIn->xInput ){ 2523 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2524 int nNew = SESSIONS_STRM_CHUNK_SIZE; 2525 2526 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2527 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2528 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2529 if( nNew==0 ){ 2530 pIn->bEof = 1; 2531 }else{ 2532 pIn->buf.nBuf += nNew; 2533 } 2534 } 2535 2536 pIn->aData = pIn->buf.aBuf; 2537 pIn->nData = pIn->buf.nBuf; 2538 } 2539 } 2540 return rc; 2541 } 2542 2543 /* 2544 ** When this function is called, *ppRec points to the start of a record 2545 ** that contains nCol values. This function advances the pointer *ppRec 2546 ** until it points to the byte immediately following that record. 2547 */ 2548 static void sessionSkipRecord( 2549 u8 **ppRec, /* IN/OUT: Record pointer */ 2550 int nCol /* Number of values in record */ 2551 ){ 2552 u8 *aRec = *ppRec; 2553 int i; 2554 for(i=0; i<nCol; i++){ 2555 int eType = *aRec++; 2556 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2557 int nByte; 2558 aRec += sessionVarintGet((u8*)aRec, &nByte); 2559 aRec += nByte; 2560 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2561 aRec += 8; 2562 } 2563 } 2564 2565 *ppRec = aRec; 2566 } 2567 2568 /* 2569 ** This function sets the value of the sqlite3_value object passed as the 2570 ** first argument to a copy of the string or blob held in the aData[] 2571 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2572 ** error occurs. 2573 */ 2574 static int sessionValueSetStr( 2575 sqlite3_value *pVal, /* Set the value of this object */ 2576 u8 *aData, /* Buffer containing string or blob data */ 2577 int nData, /* Size of buffer aData[] in bytes */ 2578 u8 enc /* String encoding (0 for blobs) */ 2579 ){ 2580 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2581 ** argument to sqlite3ValueSetStr() and have the copy created 2582 ** automatically. But doing so makes it difficult to detect any OOM 2583 ** error. Hence the code to create the copy externally. */ 2584 u8 *aCopy = sqlite3_malloc(nData+1); 2585 if( aCopy==0 ) return SQLITE_NOMEM; 2586 memcpy(aCopy, aData, nData); 2587 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2588 return SQLITE_OK; 2589 } 2590 2591 /* 2592 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2593 ** for details. 2594 ** 2595 ** When this function is called, *paChange points to the start of the record 2596 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2597 ** one byte after the end of the same record before this function returns. 2598 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2599 ** if abPK is other than NULL, then the record contains only the PK fields 2600 ** (in other words, it is a patchset DELETE record). 2601 ** 2602 ** If successful, each element of the apOut[] array (allocated by the caller) 2603 ** is set to point to an sqlite3_value object containing the value read 2604 ** from the corresponding position in the record. If that value is not 2605 ** included in the record (i.e. because the record is part of an UPDATE change 2606 ** and the field was not modified), the corresponding element of apOut[] is 2607 ** set to NULL. 2608 ** 2609 ** It is the responsibility of the caller to free all sqlite_value structures 2610 ** using sqlite3_free(). 2611 ** 2612 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 2613 ** The apOut[] array may have been partially populated in this case. 2614 */ 2615 static int sessionReadRecord( 2616 SessionInput *pIn, /* Input data */ 2617 int nCol, /* Number of values in record */ 2618 u8 *abPK, /* Array of primary key flags, or NULL */ 2619 sqlite3_value **apOut /* Write values to this array */ 2620 ){ 2621 int i; /* Used to iterate through columns */ 2622 int rc = SQLITE_OK; 2623 2624 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2625 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 2626 if( abPK && abPK[i]==0 ) continue; 2627 rc = sessionInputBuffer(pIn, 9); 2628 if( rc==SQLITE_OK ){ 2629 eType = pIn->aData[pIn->iNext++]; 2630 } 2631 2632 assert( apOut[i]==0 ); 2633 if( eType ){ 2634 apOut[i] = sqlite3ValueNew(0); 2635 if( !apOut[i] ) rc = SQLITE_NOMEM; 2636 } 2637 2638 if( rc==SQLITE_OK ){ 2639 u8 *aVal = &pIn->aData[pIn->iNext]; 2640 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2641 int nByte; 2642 pIn->iNext += sessionVarintGet(aVal, &nByte); 2643 rc = sessionInputBuffer(pIn, nByte); 2644 if( rc==SQLITE_OK ){ 2645 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 2646 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 2647 } 2648 pIn->iNext += nByte; 2649 } 2650 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2651 sqlite3_int64 v = sessionGetI64(aVal); 2652 if( eType==SQLITE_INTEGER ){ 2653 sqlite3VdbeMemSetInt64(apOut[i], v); 2654 }else{ 2655 double d; 2656 memcpy(&d, &v, 8); 2657 sqlite3VdbeMemSetDouble(apOut[i], d); 2658 } 2659 pIn->iNext += 8; 2660 } 2661 } 2662 } 2663 2664 return rc; 2665 } 2666 2667 /* 2668 ** The input pointer currently points to the second byte of a table-header. 2669 ** Specifically, to the following: 2670 ** 2671 ** + number of columns in table (varint) 2672 ** + array of PK flags (1 byte per column), 2673 ** + table name (nul terminated). 2674 ** 2675 ** This function ensures that all of the above is present in the input 2676 ** buffer (i.e. that it can be accessed without any calls to xInput()). 2677 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2678 ** The input pointer is not moved. 2679 */ 2680 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 2681 int rc = SQLITE_OK; 2682 int nCol = 0; 2683 int nRead = 0; 2684 2685 rc = sessionInputBuffer(pIn, 9); 2686 if( rc==SQLITE_OK ){ 2687 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 2688 rc = sessionInputBuffer(pIn, nRead+nCol+100); 2689 nRead += nCol; 2690 } 2691 2692 while( rc==SQLITE_OK ){ 2693 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 2694 nRead++; 2695 } 2696 if( (pIn->iNext + nRead)<pIn->nData ) break; 2697 rc = sessionInputBuffer(pIn, nRead + 100); 2698 } 2699 *pnByte = nRead+1; 2700 return rc; 2701 } 2702 2703 /* 2704 ** The input pointer currently points to the first byte of the first field 2705 ** of a record consisting of nCol columns. This function ensures the entire 2706 ** record is buffered. It does not move the input pointer. 2707 ** 2708 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 2709 ** the record in bytes. Otherwise, an SQLite error code is returned. The 2710 ** final value of *pnByte is undefined in this case. 2711 */ 2712 static int sessionChangesetBufferRecord( 2713 SessionInput *pIn, /* Input data */ 2714 int nCol, /* Number of columns in record */ 2715 int *pnByte /* OUT: Size of record in bytes */ 2716 ){ 2717 int rc = SQLITE_OK; 2718 int nByte = 0; 2719 int i; 2720 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 2721 int eType; 2722 rc = sessionInputBuffer(pIn, nByte + 10); 2723 if( rc==SQLITE_OK ){ 2724 eType = pIn->aData[pIn->iNext + nByte++]; 2725 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2726 int n; 2727 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 2728 nByte += n; 2729 rc = sessionInputBuffer(pIn, nByte); 2730 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2731 nByte += 8; 2732 } 2733 } 2734 } 2735 *pnByte = nByte; 2736 return rc; 2737 } 2738 2739 /* 2740 ** The input pointer currently points to the second byte of a table-header. 2741 ** Specifically, to the following: 2742 ** 2743 ** + number of columns in table (varint) 2744 ** + array of PK flags (1 byte per column), 2745 ** + table name (nul terminated). 2746 ** 2747 ** This function decodes the table-header and populates the p->nCol, 2748 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 2749 ** also allocated or resized according to the new value of p->nCol. The 2750 ** input pointer is left pointing to the byte following the table header. 2751 ** 2752 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 2753 ** is returned and the final values of the various fields enumerated above 2754 ** are undefined. 2755 */ 2756 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 2757 int rc; 2758 int nCopy; 2759 assert( p->rc==SQLITE_OK ); 2760 2761 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 2762 if( rc==SQLITE_OK ){ 2763 int nByte; 2764 int nVarint; 2765 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 2766 nCopy -= nVarint; 2767 p->in.iNext += nVarint; 2768 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 2769 p->tblhdr.nBuf = 0; 2770 sessionBufferGrow(&p->tblhdr, nByte, &rc); 2771 } 2772 2773 if( rc==SQLITE_OK ){ 2774 int iPK = sizeof(sqlite3_value*)*p->nCol*2; 2775 memset(p->tblhdr.aBuf, 0, iPK); 2776 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 2777 p->in.iNext += nCopy; 2778 } 2779 2780 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 2781 p->abPK = (u8*)&p->apValue[p->nCol*2]; 2782 p->zTab = (char*)&p->abPK[p->nCol]; 2783 return (p->rc = rc); 2784 } 2785 2786 /* 2787 ** Advance the changeset iterator to the next change. 2788 ** 2789 ** If both paRec and pnRec are NULL, then this function works like the public 2790 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 2791 ** sqlite3changeset_new() and old() APIs may be used to query for values. 2792 ** 2793 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 2794 ** record is written to *paRec before returning and the number of bytes in 2795 ** the record to *pnRec. 2796 ** 2797 ** Either way, this function returns SQLITE_ROW if the iterator is 2798 ** successfully advanced to the next change in the changeset, an SQLite 2799 ** error code if an error occurs, or SQLITE_DONE if there are no further 2800 ** changes in the changeset. 2801 */ 2802 static int sessionChangesetNext( 2803 sqlite3_changeset_iter *p, /* Changeset iterator */ 2804 u8 **paRec, /* If non-NULL, store record pointer here */ 2805 int *pnRec /* If non-NULL, store size of record here */ 2806 ){ 2807 int i; 2808 u8 op; 2809 2810 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 2811 2812 /* If the iterator is in the error-state, return immediately. */ 2813 if( p->rc!=SQLITE_OK ) return p->rc; 2814 2815 /* Free the current contents of p->apValue[], if any. */ 2816 if( p->apValue ){ 2817 for(i=0; i<p->nCol*2; i++){ 2818 sqlite3ValueFree(p->apValue[i]); 2819 } 2820 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 2821 } 2822 2823 /* Make sure the buffer contains at least 10 bytes of input data, or all 2824 ** remaining data if there are less than 10 bytes available. This is 2825 ** sufficient either for the 'T' or 'P' byte and the varint that follows 2826 ** it, or for the two single byte values otherwise. */ 2827 p->rc = sessionInputBuffer(&p->in, 2); 2828 if( p->rc!=SQLITE_OK ) return p->rc; 2829 2830 /* If the iterator is already at the end of the changeset, return DONE. */ 2831 if( p->in.iNext>=p->in.nData ){ 2832 return SQLITE_DONE; 2833 } 2834 2835 sessionDiscardData(&p->in); 2836 p->in.iCurrent = p->in.iNext; 2837 2838 op = p->in.aData[p->in.iNext++]; 2839 while( op=='T' || op=='P' ){ 2840 p->bPatchset = (op=='P'); 2841 if( sessionChangesetReadTblhdr(p) ) return p->rc; 2842 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 2843 p->in.iCurrent = p->in.iNext; 2844 if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; 2845 op = p->in.aData[p->in.iNext++]; 2846 } 2847 2848 p->op = op; 2849 p->bIndirect = p->in.aData[p->in.iNext++]; 2850 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 2851 return (p->rc = SQLITE_CORRUPT_BKPT); 2852 } 2853 2854 if( paRec ){ 2855 int nVal; /* Number of values to buffer */ 2856 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 2857 nVal = p->nCol * 2; 2858 }else if( p->bPatchset && op==SQLITE_DELETE ){ 2859 nVal = 0; 2860 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 2861 }else{ 2862 nVal = p->nCol; 2863 } 2864 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 2865 if( p->rc!=SQLITE_OK ) return p->rc; 2866 *paRec = &p->in.aData[p->in.iNext]; 2867 p->in.iNext += *pnRec; 2868 }else{ 2869 2870 /* If this is an UPDATE or DELETE, read the old.* record. */ 2871 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 2872 u8 *abPK = p->bPatchset ? p->abPK : 0; 2873 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, p->apValue); 2874 if( p->rc!=SQLITE_OK ) return p->rc; 2875 } 2876 2877 /* If this is an INSERT or UPDATE, read the new.* record. */ 2878 if( p->op!=SQLITE_DELETE ){ 2879 p->rc = sessionReadRecord(&p->in, p->nCol, 0, &p->apValue[p->nCol]); 2880 if( p->rc!=SQLITE_OK ) return p->rc; 2881 } 2882 2883 if( p->bPatchset && p->op==SQLITE_UPDATE ){ 2884 /* If this is an UPDATE that is part of a patchset, then all PK and 2885 ** modified fields are present in the new.* record. The old.* record 2886 ** is currently completely empty. This block shifts the PK fields from 2887 ** new.* to old.*, to accommodate the code that reads these arrays. */ 2888 for(i=0; i<p->nCol; i++){ 2889 assert( p->apValue[i]==0 ); 2890 assert( p->abPK[i]==0 || p->apValue[i+p->nCol] ); 2891 if( p->abPK[i] ){ 2892 p->apValue[i] = p->apValue[i+p->nCol]; 2893 p->apValue[i+p->nCol] = 0; 2894 } 2895 } 2896 } 2897 } 2898 2899 return SQLITE_ROW; 2900 } 2901 2902 /* 2903 ** Advance an iterator created by sqlite3changeset_start() to the next 2904 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 2905 ** or SQLITE_CORRUPT. 2906 ** 2907 ** This function may not be called on iterators passed to a conflict handler 2908 ** callback by changeset_apply(). 2909 */ 2910 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 2911 return sessionChangesetNext(p, 0, 0); 2912 } 2913 2914 /* 2915 ** The following function extracts information on the current change 2916 ** from a changeset iterator. It may only be called after changeset_next() 2917 ** has returned SQLITE_ROW. 2918 */ 2919 int sqlite3changeset_op( 2920 sqlite3_changeset_iter *pIter, /* Iterator handle */ 2921 const char **pzTab, /* OUT: Pointer to table name */ 2922 int *pnCol, /* OUT: Number of columns in table */ 2923 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 2924 int *pbIndirect /* OUT: True if change is indirect */ 2925 ){ 2926 *pOp = pIter->op; 2927 *pnCol = pIter->nCol; 2928 *pzTab = pIter->zTab; 2929 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 2930 return SQLITE_OK; 2931 } 2932 2933 /* 2934 ** Return information regarding the PRIMARY KEY and number of columns in 2935 ** the database table affected by the change that pIter currently points 2936 ** to. This function may only be called after changeset_next() returns 2937 ** SQLITE_ROW. 2938 */ 2939 int sqlite3changeset_pk( 2940 sqlite3_changeset_iter *pIter, /* Iterator object */ 2941 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 2942 int *pnCol /* OUT: Number of entries in output array */ 2943 ){ 2944 *pabPK = pIter->abPK; 2945 if( pnCol ) *pnCol = pIter->nCol; 2946 return SQLITE_OK; 2947 } 2948 2949 /* 2950 ** This function may only be called while the iterator is pointing to an 2951 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 2952 ** Otherwise, SQLITE_MISUSE is returned. 2953 ** 2954 ** It sets *ppValue to point to an sqlite3_value structure containing the 2955 ** iVal'th value in the old.* record. Or, if that particular value is not 2956 ** included in the record (because the change is an UPDATE and the field 2957 ** was not modified and is not a PK column), set *ppValue to NULL. 2958 ** 2959 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2960 ** not modified. Otherwise, SQLITE_OK. 2961 */ 2962 int sqlite3changeset_old( 2963 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2964 int iVal, /* Index of old.* value to retrieve */ 2965 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 2966 ){ 2967 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 2968 return SQLITE_MISUSE; 2969 } 2970 if( iVal<0 || iVal>=pIter->nCol ){ 2971 return SQLITE_RANGE; 2972 } 2973 *ppValue = pIter->apValue[iVal]; 2974 return SQLITE_OK; 2975 } 2976 2977 /* 2978 ** This function may only be called while the iterator is pointing to an 2979 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 2980 ** Otherwise, SQLITE_MISUSE is returned. 2981 ** 2982 ** It sets *ppValue to point to an sqlite3_value structure containing the 2983 ** iVal'th value in the new.* record. Or, if that particular value is not 2984 ** included in the record (because the change is an UPDATE and the field 2985 ** was not modified), set *ppValue to NULL. 2986 ** 2987 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2988 ** not modified. Otherwise, SQLITE_OK. 2989 */ 2990 int sqlite3changeset_new( 2991 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2992 int iVal, /* Index of new.* value to retrieve */ 2993 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 2994 ){ 2995 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 2996 return SQLITE_MISUSE; 2997 } 2998 if( iVal<0 || iVal>=pIter->nCol ){ 2999 return SQLITE_RANGE; 3000 } 3001 *ppValue = pIter->apValue[pIter->nCol+iVal]; 3002 return SQLITE_OK; 3003 } 3004 3005 /* 3006 ** The following two macros are used internally. They are similar to the 3007 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3008 ** they omit all error checking and return a pointer to the requested value. 3009 */ 3010 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3011 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3012 3013 /* 3014 ** This function may only be called with a changeset iterator that has been 3015 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3016 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3017 ** 3018 ** If successful, *ppValue is set to point to an sqlite3_value structure 3019 ** containing the iVal'th value of the conflicting record. 3020 ** 3021 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3022 ** code is returned. Otherwise, SQLITE_OK. 3023 */ 3024 int sqlite3changeset_conflict( 3025 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3026 int iVal, /* Index of conflict record value to fetch */ 3027 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3028 ){ 3029 if( !pIter->pConflict ){ 3030 return SQLITE_MISUSE; 3031 } 3032 if( iVal<0 || iVal>=pIter->nCol ){ 3033 return SQLITE_RANGE; 3034 } 3035 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3036 return SQLITE_OK; 3037 } 3038 3039 /* 3040 ** This function may only be called with an iterator passed to an 3041 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3042 ** it sets the output variable to the total number of known foreign key 3043 ** violations in the destination database and returns SQLITE_OK. 3044 ** 3045 ** In all other cases this function returns SQLITE_MISUSE. 3046 */ 3047 int sqlite3changeset_fk_conflicts( 3048 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3049 int *pnOut /* OUT: Number of FK violations */ 3050 ){ 3051 if( pIter->pConflict || pIter->apValue ){ 3052 return SQLITE_MISUSE; 3053 } 3054 *pnOut = pIter->nCol; 3055 return SQLITE_OK; 3056 } 3057 3058 3059 /* 3060 ** Finalize an iterator allocated with sqlite3changeset_start(). 3061 ** 3062 ** This function may not be called on iterators passed to a conflict handler 3063 ** callback by changeset_apply(). 3064 */ 3065 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3066 int rc = SQLITE_OK; 3067 if( p ){ 3068 int i; /* Used to iterate through p->apValue[] */ 3069 rc = p->rc; 3070 if( p->apValue ){ 3071 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3072 } 3073 sqlite3_free(p->tblhdr.aBuf); 3074 sqlite3_free(p->in.buf.aBuf); 3075 sqlite3_free(p); 3076 } 3077 return rc; 3078 } 3079 3080 static int sessionChangesetInvert( 3081 SessionInput *pInput, /* Input changeset */ 3082 int (*xOutput)(void *pOut, const void *pData, int nData), 3083 void *pOut, 3084 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3085 void **ppInverted /* OUT: Inverse of pChangeset */ 3086 ){ 3087 int rc = SQLITE_OK; /* Return value */ 3088 SessionBuffer sOut; /* Output buffer */ 3089 int nCol = 0; /* Number of cols in current table */ 3090 u8 *abPK = 0; /* PK array for current table */ 3091 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3092 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3093 3094 /* Initialize the output buffer */ 3095 memset(&sOut, 0, sizeof(SessionBuffer)); 3096 3097 /* Zero the output variables in case an error occurs. */ 3098 if( ppInverted ){ 3099 *ppInverted = 0; 3100 *pnInverted = 0; 3101 } 3102 3103 while( 1 ){ 3104 u8 eType; 3105 3106 /* Test for EOF. */ 3107 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3108 if( pInput->iNext>=pInput->nData ) break; 3109 eType = pInput->aData[pInput->iNext]; 3110 3111 switch( eType ){ 3112 case 'T': { 3113 /* A 'table' record consists of: 3114 ** 3115 ** * A constant 'T' character, 3116 ** * Number of columns in said table (a varint), 3117 ** * An array of nCol bytes (sPK), 3118 ** * A nul-terminated table name. 3119 */ 3120 int nByte; 3121 int nVar; 3122 pInput->iNext++; 3123 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3124 goto finished_invert; 3125 } 3126 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3127 sPK.nBuf = 0; 3128 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3129 sessionAppendByte(&sOut, eType, &rc); 3130 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3131 if( rc ) goto finished_invert; 3132 3133 pInput->iNext += nByte; 3134 sqlite3_free(apVal); 3135 apVal = 0; 3136 abPK = sPK.aBuf; 3137 break; 3138 } 3139 3140 case SQLITE_INSERT: 3141 case SQLITE_DELETE: { 3142 int nByte; 3143 int bIndirect = pInput->aData[pInput->iNext+1]; 3144 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3145 pInput->iNext += 2; 3146 assert( rc==SQLITE_OK ); 3147 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3148 sessionAppendByte(&sOut, eType2, &rc); 3149 sessionAppendByte(&sOut, bIndirect, &rc); 3150 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3151 pInput->iNext += nByte; 3152 if( rc ) goto finished_invert; 3153 break; 3154 } 3155 3156 case SQLITE_UPDATE: { 3157 int iCol; 3158 3159 if( 0==apVal ){ 3160 apVal = (sqlite3_value **)sqlite3_malloc(sizeof(apVal[0])*nCol*2); 3161 if( 0==apVal ){ 3162 rc = SQLITE_NOMEM; 3163 goto finished_invert; 3164 } 3165 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3166 } 3167 3168 /* Write the header for the new UPDATE change. Same as the original. */ 3169 sessionAppendByte(&sOut, eType, &rc); 3170 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3171 3172 /* Read the old.* and new.* records for the update change. */ 3173 pInput->iNext += 2; 3174 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0]); 3175 if( rc==SQLITE_OK ){ 3176 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol]); 3177 } 3178 3179 /* Write the new old.* record. Consists of the PK columns from the 3180 ** original old.* record, and the other values from the original 3181 ** new.* record. */ 3182 for(iCol=0; iCol<nCol; iCol++){ 3183 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3184 sessionAppendValue(&sOut, pVal, &rc); 3185 } 3186 3187 /* Write the new new.* record. Consists of a copy of all values 3188 ** from the original old.* record, except for the PK columns, which 3189 ** are set to "undefined". */ 3190 for(iCol=0; iCol<nCol; iCol++){ 3191 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3192 sessionAppendValue(&sOut, pVal, &rc); 3193 } 3194 3195 for(iCol=0; iCol<nCol*2; iCol++){ 3196 sqlite3ValueFree(apVal[iCol]); 3197 } 3198 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3199 if( rc!=SQLITE_OK ){ 3200 goto finished_invert; 3201 } 3202 3203 break; 3204 } 3205 3206 default: 3207 rc = SQLITE_CORRUPT_BKPT; 3208 goto finished_invert; 3209 } 3210 3211 assert( rc==SQLITE_OK ); 3212 if( xOutput && sOut.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 3213 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3214 sOut.nBuf = 0; 3215 if( rc!=SQLITE_OK ) goto finished_invert; 3216 } 3217 } 3218 3219 assert( rc==SQLITE_OK ); 3220 if( pnInverted ){ 3221 *pnInverted = sOut.nBuf; 3222 *ppInverted = sOut.aBuf; 3223 sOut.aBuf = 0; 3224 }else if( sOut.nBuf>0 ){ 3225 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3226 } 3227 3228 finished_invert: 3229 sqlite3_free(sOut.aBuf); 3230 sqlite3_free(apVal); 3231 sqlite3_free(sPK.aBuf); 3232 return rc; 3233 } 3234 3235 3236 /* 3237 ** Invert a changeset object. 3238 */ 3239 int sqlite3changeset_invert( 3240 int nChangeset, /* Number of bytes in input */ 3241 const void *pChangeset, /* Input changeset */ 3242 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3243 void **ppInverted /* OUT: Inverse of pChangeset */ 3244 ){ 3245 SessionInput sInput; 3246 3247 /* Set up the input stream */ 3248 memset(&sInput, 0, sizeof(SessionInput)); 3249 sInput.nData = nChangeset; 3250 sInput.aData = (u8*)pChangeset; 3251 3252 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3253 } 3254 3255 /* 3256 ** Streaming version of sqlite3changeset_invert(). 3257 */ 3258 int sqlite3changeset_invert_strm( 3259 int (*xInput)(void *pIn, void *pData, int *pnData), 3260 void *pIn, 3261 int (*xOutput)(void *pOut, const void *pData, int nData), 3262 void *pOut 3263 ){ 3264 SessionInput sInput; 3265 int rc; 3266 3267 /* Set up the input stream */ 3268 memset(&sInput, 0, sizeof(SessionInput)); 3269 sInput.xInput = xInput; 3270 sInput.pIn = pIn; 3271 3272 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3273 sqlite3_free(sInput.buf.aBuf); 3274 return rc; 3275 } 3276 3277 typedef struct SessionApplyCtx SessionApplyCtx; 3278 struct SessionApplyCtx { 3279 sqlite3 *db; 3280 sqlite3_stmt *pDelete; /* DELETE statement */ 3281 sqlite3_stmt *pUpdate; /* UPDATE statement */ 3282 sqlite3_stmt *pInsert; /* INSERT statement */ 3283 sqlite3_stmt *pSelect; /* SELECT statement */ 3284 int nCol; /* Size of azCol[] and abPK[] arrays */ 3285 const char **azCol; /* Array of column names */ 3286 u8 *abPK; /* Boolean array - true if column is in PK */ 3287 3288 int bDeferConstraints; /* True to defer constraints */ 3289 SessionBuffer constraints; /* Deferred constraints are stored here */ 3290 }; 3291 3292 /* 3293 ** Formulate a statement to DELETE a row from database db. Assuming a table 3294 ** structure like this: 3295 ** 3296 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3297 ** 3298 ** The DELETE statement looks like this: 3299 ** 3300 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3301 ** 3302 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3303 ** matching b and d values, or 1 otherwise. The second case comes up if the 3304 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3305 ** 3306 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3307 ** pointing to the prepared version of the SQL statement. 3308 */ 3309 static int sessionDeleteRow( 3310 sqlite3 *db, /* Database handle */ 3311 const char *zTab, /* Table name */ 3312 SessionApplyCtx *p /* Session changeset-apply context */ 3313 ){ 3314 int i; 3315 const char *zSep = ""; 3316 int rc = SQLITE_OK; 3317 SessionBuffer buf = {0, 0, 0}; 3318 int nPk = 0; 3319 3320 sessionAppendStr(&buf, "DELETE FROM ", &rc); 3321 sessionAppendIdent(&buf, zTab, &rc); 3322 sessionAppendStr(&buf, " WHERE ", &rc); 3323 3324 for(i=0; i<p->nCol; i++){ 3325 if( p->abPK[i] ){ 3326 nPk++; 3327 sessionAppendStr(&buf, zSep, &rc); 3328 sessionAppendIdent(&buf, p->azCol[i], &rc); 3329 sessionAppendStr(&buf, " = ?", &rc); 3330 sessionAppendInteger(&buf, i+1, &rc); 3331 zSep = " AND "; 3332 } 3333 } 3334 3335 if( nPk<p->nCol ){ 3336 sessionAppendStr(&buf, " AND (?", &rc); 3337 sessionAppendInteger(&buf, p->nCol+1, &rc); 3338 sessionAppendStr(&buf, " OR ", &rc); 3339 3340 zSep = ""; 3341 for(i=0; i<p->nCol; i++){ 3342 if( !p->abPK[i] ){ 3343 sessionAppendStr(&buf, zSep, &rc); 3344 sessionAppendIdent(&buf, p->azCol[i], &rc); 3345 sessionAppendStr(&buf, " IS ?", &rc); 3346 sessionAppendInteger(&buf, i+1, &rc); 3347 zSep = "AND "; 3348 } 3349 } 3350 sessionAppendStr(&buf, ")", &rc); 3351 } 3352 3353 if( rc==SQLITE_OK ){ 3354 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3355 } 3356 sqlite3_free(buf.aBuf); 3357 3358 return rc; 3359 } 3360 3361 /* 3362 ** Formulate and prepare a statement to UPDATE a row from database db. 3363 ** Assuming a table structure like this: 3364 ** 3365 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3366 ** 3367 ** The UPDATE statement looks like this: 3368 ** 3369 ** UPDATE x SET 3370 ** a = CASE WHEN ?2 THEN ?3 ELSE a END, 3371 ** b = CASE WHEN ?5 THEN ?6 ELSE b END, 3372 ** c = CASE WHEN ?8 THEN ?9 ELSE c END, 3373 ** d = CASE WHEN ?11 THEN ?12 ELSE d END 3374 ** WHERE a = ?1 AND c = ?7 AND (?13 OR 3375 ** (?5==0 OR b IS ?4) AND (?11==0 OR d IS ?10) AND 3376 ** ) 3377 ** 3378 ** For each column in the table, there are three variables to bind: 3379 ** 3380 ** ?(i*3+1) The old.* value of the column, if any. 3381 ** ?(i*3+2) A boolean flag indicating that the value is being modified. 3382 ** ?(i*3+3) The new.* value of the column, if any. 3383 ** 3384 ** Also, a boolean flag that, if set to true, causes the statement to update 3385 ** a row even if the non-PK values do not match. This is required if the 3386 ** conflict-handler is invoked with CHANGESET_DATA and returns 3387 ** CHANGESET_REPLACE. This is variable "?(nCol*3+1)". 3388 ** 3389 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left 3390 ** pointing to the prepared version of the SQL statement. 3391 */ 3392 static int sessionUpdateRow( 3393 sqlite3 *db, /* Database handle */ 3394 const char *zTab, /* Table name */ 3395 SessionApplyCtx *p /* Session changeset-apply context */ 3396 ){ 3397 int rc = SQLITE_OK; 3398 int i; 3399 const char *zSep = ""; 3400 SessionBuffer buf = {0, 0, 0}; 3401 3402 /* Append "UPDATE tbl SET " */ 3403 sessionAppendStr(&buf, "UPDATE ", &rc); 3404 sessionAppendIdent(&buf, zTab, &rc); 3405 sessionAppendStr(&buf, " SET ", &rc); 3406 3407 /* Append the assignments */ 3408 for(i=0; i<p->nCol; i++){ 3409 sessionAppendStr(&buf, zSep, &rc); 3410 sessionAppendIdent(&buf, p->azCol[i], &rc); 3411 sessionAppendStr(&buf, " = CASE WHEN ?", &rc); 3412 sessionAppendInteger(&buf, i*3+2, &rc); 3413 sessionAppendStr(&buf, " THEN ?", &rc); 3414 sessionAppendInteger(&buf, i*3+3, &rc); 3415 sessionAppendStr(&buf, " ELSE ", &rc); 3416 sessionAppendIdent(&buf, p->azCol[i], &rc); 3417 sessionAppendStr(&buf, " END", &rc); 3418 zSep = ", "; 3419 } 3420 3421 /* Append the PK part of the WHERE clause */ 3422 sessionAppendStr(&buf, " WHERE ", &rc); 3423 for(i=0; i<p->nCol; i++){ 3424 if( p->abPK[i] ){ 3425 sessionAppendIdent(&buf, p->azCol[i], &rc); 3426 sessionAppendStr(&buf, " = ?", &rc); 3427 sessionAppendInteger(&buf, i*3+1, &rc); 3428 sessionAppendStr(&buf, " AND ", &rc); 3429 } 3430 } 3431 3432 /* Append the non-PK part of the WHERE clause */ 3433 sessionAppendStr(&buf, " (?", &rc); 3434 sessionAppendInteger(&buf, p->nCol*3+1, &rc); 3435 sessionAppendStr(&buf, " OR 1", &rc); 3436 for(i=0; i<p->nCol; i++){ 3437 if( !p->abPK[i] ){ 3438 sessionAppendStr(&buf, " AND (?", &rc); 3439 sessionAppendInteger(&buf, i*3+2, &rc); 3440 sessionAppendStr(&buf, "=0 OR ", &rc); 3441 sessionAppendIdent(&buf, p->azCol[i], &rc); 3442 sessionAppendStr(&buf, " IS ?", &rc); 3443 sessionAppendInteger(&buf, i*3+1, &rc); 3444 sessionAppendStr(&buf, ")", &rc); 3445 } 3446 } 3447 sessionAppendStr(&buf, ")", &rc); 3448 3449 if( rc==SQLITE_OK ){ 3450 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0); 3451 } 3452 sqlite3_free(buf.aBuf); 3453 3454 return rc; 3455 } 3456 3457 /* 3458 ** Formulate and prepare an SQL statement to query table zTab by primary 3459 ** key. Assuming the following table structure: 3460 ** 3461 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3462 ** 3463 ** The SELECT statement looks like this: 3464 ** 3465 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 3466 ** 3467 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 3468 ** pointing to the prepared version of the SQL statement. 3469 */ 3470 static int sessionSelectRow( 3471 sqlite3 *db, /* Database handle */ 3472 const char *zTab, /* Table name */ 3473 SessionApplyCtx *p /* Session changeset-apply context */ 3474 ){ 3475 return sessionSelectStmt( 3476 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 3477 } 3478 3479 /* 3480 ** Formulate and prepare an INSERT statement to add a record to table zTab. 3481 ** For example: 3482 ** 3483 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 3484 ** 3485 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 3486 ** pointing to the prepared version of the SQL statement. 3487 */ 3488 static int sessionInsertRow( 3489 sqlite3 *db, /* Database handle */ 3490 const char *zTab, /* Table name */ 3491 SessionApplyCtx *p /* Session changeset-apply context */ 3492 ){ 3493 int rc = SQLITE_OK; 3494 int i; 3495 SessionBuffer buf = {0, 0, 0}; 3496 3497 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 3498 sessionAppendIdent(&buf, zTab, &rc); 3499 sessionAppendStr(&buf, "(", &rc); 3500 for(i=0; i<p->nCol; i++){ 3501 if( i!=0 ) sessionAppendStr(&buf, ", ", &rc); 3502 sessionAppendIdent(&buf, p->azCol[i], &rc); 3503 } 3504 3505 sessionAppendStr(&buf, ") VALUES(?", &rc); 3506 for(i=1; i<p->nCol; i++){ 3507 sessionAppendStr(&buf, ", ?", &rc); 3508 } 3509 sessionAppendStr(&buf, ")", &rc); 3510 3511 if( rc==SQLITE_OK ){ 3512 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 3513 } 3514 sqlite3_free(buf.aBuf); 3515 return rc; 3516 } 3517 3518 /* 3519 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 3520 ** See comments in the body of this function for details. 3521 */ 3522 static int sessionBindValue( 3523 sqlite3_stmt *pStmt, /* Statement to bind value to */ 3524 int i, /* Parameter number to bind to */ 3525 sqlite3_value *pVal /* Value to bind */ 3526 ){ 3527 int eType = sqlite3_value_type(pVal); 3528 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 3529 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 3530 ** the (pVal->z) variable remains as it was or the type of the value is 3531 ** set to SQLITE_NULL. */ 3532 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 3533 /* This condition occurs when an earlier OOM in a call to 3534 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 3535 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 3536 return SQLITE_NOMEM; 3537 } 3538 return sqlite3_bind_value(pStmt, i, pVal); 3539 } 3540 3541 /* 3542 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 3543 ** transfers new.* values from the current iterator entry to statement 3544 ** pStmt. The table being inserted into has nCol columns. 3545 ** 3546 ** New.* value $i from the iterator is bound to variable ($i+1) of 3547 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 3548 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 3549 ** to an array nCol elements in size. In this case only those values for 3550 ** which abPK[$i] is true are read from the iterator and bound to the 3551 ** statement. 3552 ** 3553 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 3554 */ 3555 static int sessionBindRow( 3556 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 3557 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 3558 int nCol, /* Number of columns */ 3559 u8 *abPK, /* If not NULL, bind only if true */ 3560 sqlite3_stmt *pStmt /* Bind values to this statement */ 3561 ){ 3562 int i; 3563 int rc = SQLITE_OK; 3564 3565 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 3566 ** argument iterator points to a suitable entry. Make sure that xValue 3567 ** is one of these to guarantee that it is safe to ignore the return 3568 ** in the code below. */ 3569 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 3570 3571 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3572 if( !abPK || abPK[i] ){ 3573 sqlite3_value *pVal; 3574 (void)xValue(pIter, i, &pVal); 3575 rc = sessionBindValue(pStmt, i+1, pVal); 3576 } 3577 } 3578 return rc; 3579 } 3580 3581 /* 3582 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 3583 ** This function binds the primary key values from the change that changeset 3584 ** iterator pIter points to to the SELECT and attempts to seek to the table 3585 ** entry. If a row is found, the SELECT statement left pointing at the row 3586 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 3587 ** has occured, the statement is reset and SQLITE_OK is returned. If an 3588 ** error occurs, the statement is reset and an SQLite error code is returned. 3589 ** 3590 ** If this function returns SQLITE_ROW, the caller must eventually reset() 3591 ** statement pSelect. If any other value is returned, the statement does 3592 ** not require a reset(). 3593 ** 3594 ** If the iterator currently points to an INSERT record, bind values from the 3595 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 3596 ** UPDATE, bind values from the old.* record. 3597 */ 3598 static int sessionSeekToRow( 3599 sqlite3 *db, /* Database handle */ 3600 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3601 u8 *abPK, /* Primary key flags array */ 3602 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 3603 ){ 3604 int rc; /* Return code */ 3605 int nCol; /* Number of columns in table */ 3606 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 3607 const char *zDummy; /* Unused */ 3608 3609 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3610 rc = sessionBindRow(pIter, 3611 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 3612 nCol, abPK, pSelect 3613 ); 3614 3615 if( rc==SQLITE_OK ){ 3616 rc = sqlite3_step(pSelect); 3617 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 3618 } 3619 3620 return rc; 3621 } 3622 3623 /* 3624 ** Invoke the conflict handler for the change that the changeset iterator 3625 ** currently points to. 3626 ** 3627 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 3628 ** If argument pbReplace is NULL, then the type of conflict handler invoked 3629 ** depends solely on eType, as follows: 3630 ** 3631 ** eType value Value passed to xConflict 3632 ** ------------------------------------------------- 3633 ** CHANGESET_DATA CHANGESET_NOTFOUND 3634 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 3635 ** 3636 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 3637 ** record with the same primary key as the record about to be deleted, updated 3638 ** or inserted. If such a record can be found, it is available to the conflict 3639 ** handler as the "conflicting" record. In this case the type of conflict 3640 ** handler invoked is as follows: 3641 ** 3642 ** eType value PK Record found? Value passed to xConflict 3643 ** ---------------------------------------------------------------- 3644 ** CHANGESET_DATA Yes CHANGESET_DATA 3645 ** CHANGESET_DATA No CHANGESET_NOTFOUND 3646 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 3647 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 3648 ** 3649 ** If pbReplace is not NULL, and a record with a matching PK is found, and 3650 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 3651 ** is set to non-zero before returning SQLITE_OK. 3652 ** 3653 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 3654 ** returned. Or, if the conflict handler returns an invalid value, 3655 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 3656 ** this function returns SQLITE_OK. 3657 */ 3658 static int sessionConflictHandler( 3659 int eType, /* Either CHANGESET_DATA or CONFLICT */ 3660 SessionApplyCtx *p, /* changeset_apply() context */ 3661 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3662 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 3663 void *pCtx, /* First argument for conflict handler */ 3664 int *pbReplace /* OUT: Set to true if PK row is found */ 3665 ){ 3666 int res = 0; /* Value returned by conflict handler */ 3667 int rc; 3668 int nCol; 3669 int op; 3670 const char *zDummy; 3671 3672 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3673 3674 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 3675 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 3676 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 3677 3678 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 3679 if( pbReplace ){ 3680 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 3681 }else{ 3682 rc = SQLITE_OK; 3683 } 3684 3685 if( rc==SQLITE_ROW ){ 3686 /* There exists another row with the new.* primary key. */ 3687 pIter->pConflict = p->pSelect; 3688 res = xConflict(pCtx, eType, pIter); 3689 pIter->pConflict = 0; 3690 rc = sqlite3_reset(p->pSelect); 3691 }else if( rc==SQLITE_OK ){ 3692 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 3693 /* Instead of invoking the conflict handler, append the change blob 3694 ** to the SessionApplyCtx.constraints buffer. */ 3695 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 3696 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 3697 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 3698 res = SQLITE_CHANGESET_OMIT; 3699 }else{ 3700 /* No other row with the new.* primary key. */ 3701 res = xConflict(pCtx, eType+1, pIter); 3702 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 3703 } 3704 } 3705 3706 if( rc==SQLITE_OK ){ 3707 switch( res ){ 3708 case SQLITE_CHANGESET_REPLACE: 3709 assert( pbReplace ); 3710 *pbReplace = 1; 3711 break; 3712 3713 case SQLITE_CHANGESET_OMIT: 3714 break; 3715 3716 case SQLITE_CHANGESET_ABORT: 3717 rc = SQLITE_ABORT; 3718 break; 3719 3720 default: 3721 rc = SQLITE_MISUSE; 3722 break; 3723 } 3724 } 3725 3726 return rc; 3727 } 3728 3729 /* 3730 ** Attempt to apply the change that the iterator passed as the first argument 3731 ** currently points to to the database. If a conflict is encountered, invoke 3732 ** the conflict handler callback. 3733 ** 3734 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 3735 ** one is encountered, update or delete the row with the matching primary key 3736 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 3737 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 3738 ** to true before returning. In this case the caller will invoke this function 3739 ** again, this time with pbRetry set to NULL. 3740 ** 3741 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 3742 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 3743 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 3744 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 3745 ** before retrying. In this case the caller attempts to remove the conflicting 3746 ** row before invoking this function again, this time with pbReplace set 3747 ** to NULL. 3748 ** 3749 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 3750 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 3751 ** returned. 3752 */ 3753 static int sessionApplyOneOp( 3754 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3755 SessionApplyCtx *p, /* changeset_apply() context */ 3756 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 3757 void *pCtx, /* First argument for the conflict handler */ 3758 int *pbReplace, /* OUT: True to remove PK row and retry */ 3759 int *pbRetry /* OUT: True to retry. */ 3760 ){ 3761 const char *zDummy; 3762 int op; 3763 int nCol; 3764 int rc = SQLITE_OK; 3765 3766 assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect ); 3767 assert( p->azCol && p->abPK ); 3768 assert( !pbReplace || *pbReplace==0 ); 3769 3770 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3771 3772 if( op==SQLITE_DELETE ){ 3773 3774 /* Bind values to the DELETE statement. If conflict handling is required, 3775 ** bind values for all columns and set bound variable (nCol+1) to true. 3776 ** Or, if conflict handling is not required, bind just the PK column 3777 ** values and, if it exists, set (nCol+1) to false. Conflict handling 3778 ** is not required if: 3779 ** 3780 ** * this is a patchset, or 3781 ** * (pbRetry==0), or 3782 ** * all columns of the table are PK columns (in this case there is 3783 ** no (nCol+1) variable to bind to). 3784 */ 3785 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 3786 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 3787 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 3788 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 3789 } 3790 if( rc!=SQLITE_OK ) return rc; 3791 3792 sqlite3_step(p->pDelete); 3793 rc = sqlite3_reset(p->pDelete); 3794 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3795 rc = sessionConflictHandler( 3796 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3797 ); 3798 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3799 rc = sessionConflictHandler( 3800 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3801 ); 3802 } 3803 3804 }else if( op==SQLITE_UPDATE ){ 3805 int i; 3806 3807 /* Bind values to the UPDATE statement. */ 3808 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3809 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 3810 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 3811 3812 sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew); 3813 if( pOld ){ 3814 rc = sessionBindValue(p->pUpdate, i*3+1, pOld); 3815 } 3816 if( rc==SQLITE_OK && pNew ){ 3817 rc = sessionBindValue(p->pUpdate, i*3+3, pNew); 3818 } 3819 } 3820 if( rc==SQLITE_OK ){ 3821 sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0 || pIter->bPatchset); 3822 } 3823 if( rc!=SQLITE_OK ) return rc; 3824 3825 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 3826 ** the result will be SQLITE_OK with 0 rows modified. */ 3827 sqlite3_step(p->pUpdate); 3828 rc = sqlite3_reset(p->pUpdate); 3829 3830 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3831 /* A NOTFOUND or DATA error. Search the table to see if it contains 3832 ** a row with a matching primary key. If so, this is a DATA conflict. 3833 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 3834 3835 rc = sessionConflictHandler( 3836 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3837 ); 3838 3839 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3840 /* This is always a CONSTRAINT conflict. */ 3841 rc = sessionConflictHandler( 3842 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3843 ); 3844 } 3845 3846 }else{ 3847 assert( op==SQLITE_INSERT ); 3848 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 3849 if( rc!=SQLITE_OK ) return rc; 3850 3851 sqlite3_step(p->pInsert); 3852 rc = sqlite3_reset(p->pInsert); 3853 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3854 rc = sessionConflictHandler( 3855 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 3856 ); 3857 } 3858 } 3859 3860 return rc; 3861 } 3862 3863 /* 3864 ** Attempt to apply the change that the iterator passed as the first argument 3865 ** currently points to to the database. If a conflict is encountered, invoke 3866 ** the conflict handler callback. 3867 ** 3868 ** The difference between this function and sessionApplyOne() is that this 3869 ** function handles the case where the conflict-handler is invoked and 3870 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 3871 ** retried in some manner. 3872 */ 3873 static int sessionApplyOneWithRetry( 3874 sqlite3 *db, /* Apply change to "main" db of this handle */ 3875 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 3876 SessionApplyCtx *pApply, /* Apply context */ 3877 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3878 void *pCtx /* First argument passed to xConflict */ 3879 ){ 3880 int bReplace = 0; 3881 int bRetry = 0; 3882 int rc; 3883 3884 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 3885 assert( rc==SQLITE_OK || (bRetry==0 && bReplace==0) ); 3886 3887 /* If the bRetry flag is set, the change has not been applied due to an 3888 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 3889 ** a row with the correct PK is present in the db, but one or more other 3890 ** fields do not contain the expected values) and the conflict handler 3891 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 3892 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 3893 ** the SQLITE_CHANGESET_DATA problem. */ 3894 if( bRetry ){ 3895 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 3896 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3897 } 3898 3899 /* If the bReplace flag is set, the change is an INSERT that has not 3900 ** been performed because the database already contains a row with the 3901 ** specified primary key and the conflict handler returned 3902 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 3903 ** before reattempting the INSERT. */ 3904 else if( bReplace ){ 3905 assert( pIter->op==SQLITE_INSERT ); 3906 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 3907 if( rc==SQLITE_OK ){ 3908 rc = sessionBindRow(pIter, 3909 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 3910 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 3911 } 3912 if( rc==SQLITE_OK ){ 3913 sqlite3_step(pApply->pDelete); 3914 rc = sqlite3_reset(pApply->pDelete); 3915 } 3916 if( rc==SQLITE_OK ){ 3917 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3918 } 3919 if( rc==SQLITE_OK ){ 3920 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 3921 } 3922 } 3923 3924 return rc; 3925 } 3926 3927 /* 3928 ** Retry the changes accumulated in the pApply->constraints buffer. 3929 */ 3930 static int sessionRetryConstraints( 3931 sqlite3 *db, 3932 int bPatchset, 3933 const char *zTab, 3934 SessionApplyCtx *pApply, 3935 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3936 void *pCtx /* First argument passed to xConflict */ 3937 ){ 3938 int rc = SQLITE_OK; 3939 3940 while( pApply->constraints.nBuf ){ 3941 sqlite3_changeset_iter *pIter2 = 0; 3942 SessionBuffer cons = pApply->constraints; 3943 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 3944 3945 rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf); 3946 if( rc==SQLITE_OK ){ 3947 int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 3948 int rc2; 3949 pIter2->bPatchset = bPatchset; 3950 pIter2->zTab = (char*)zTab; 3951 pIter2->nCol = pApply->nCol; 3952 pIter2->abPK = pApply->abPK; 3953 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 3954 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 3955 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 3956 3957 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 3958 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 3959 } 3960 3961 rc2 = sqlite3changeset_finalize(pIter2); 3962 if( rc==SQLITE_OK ) rc = rc2; 3963 } 3964 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 3965 3966 sqlite3_free(cons.aBuf); 3967 if( rc!=SQLITE_OK ) break; 3968 if( pApply->constraints.nBuf>=cons.nBuf ){ 3969 /* No progress was made on the last round. */ 3970 pApply->bDeferConstraints = 0; 3971 } 3972 } 3973 3974 return rc; 3975 } 3976 3977 /* 3978 ** Argument pIter is a changeset iterator that has been initialized, but 3979 ** not yet passed to sqlite3changeset_next(). This function applies the 3980 ** changeset to the main database attached to handle "db". The supplied 3981 ** conflict handler callback is invoked to resolve any conflicts encountered 3982 ** while applying the change. 3983 */ 3984 static int sessionChangesetApply( 3985 sqlite3 *db, /* Apply change to "main" db of this handle */ 3986 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 3987 int(*xFilter)( 3988 void *pCtx, /* Copy of sixth arg to _apply() */ 3989 const char *zTab /* Table name */ 3990 ), 3991 int(*xConflict)( 3992 void *pCtx, /* Copy of fifth arg to _apply() */ 3993 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 3994 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 3995 ), 3996 void *pCtx /* First argument passed to xConflict */ 3997 ){ 3998 int schemaMismatch = 0; 3999 int rc; /* Return code */ 4000 const char *zTab = 0; /* Name of current table */ 4001 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 4002 SessionApplyCtx sApply; /* changeset_apply() context object */ 4003 int bPatchset; 4004 4005 assert( xConflict!=0 ); 4006 4007 pIter->in.bNoDiscard = 1; 4008 memset(&sApply, 0, sizeof(sApply)); 4009 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4010 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4011 if( rc==SQLITE_OK ){ 4012 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4013 } 4014 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4015 int nCol; 4016 int op; 4017 const char *zNew; 4018 4019 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4020 4021 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4022 u8 *abPK; 4023 4024 rc = sessionRetryConstraints( 4025 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4026 ); 4027 if( rc!=SQLITE_OK ) break; 4028 4029 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4030 sqlite3_finalize(sApply.pDelete); 4031 sqlite3_finalize(sApply.pUpdate); 4032 sqlite3_finalize(sApply.pInsert); 4033 sqlite3_finalize(sApply.pSelect); 4034 memset(&sApply, 0, sizeof(sApply)); 4035 sApply.db = db; 4036 sApply.bDeferConstraints = 1; 4037 4038 /* If an xFilter() callback was specified, invoke it now. If the 4039 ** xFilter callback returns zero, skip this table. If it returns 4040 ** non-zero, proceed. */ 4041 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4042 if( schemaMismatch ){ 4043 zTab = sqlite3_mprintf("%s", zNew); 4044 if( zTab==0 ){ 4045 rc = SQLITE_NOMEM; 4046 break; 4047 } 4048 nTab = (int)strlen(zTab); 4049 sApply.azCol = (const char **)zTab; 4050 }else{ 4051 int nMinCol = 0; 4052 int i; 4053 4054 sqlite3changeset_pk(pIter, &abPK, 0); 4055 rc = sessionTableInfo( 4056 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4057 ); 4058 if( rc!=SQLITE_OK ) break; 4059 for(i=0; i<sApply.nCol; i++){ 4060 if( sApply.abPK[i] ) nMinCol = i+1; 4061 } 4062 4063 if( sApply.nCol==0 ){ 4064 schemaMismatch = 1; 4065 sqlite3_log(SQLITE_SCHEMA, 4066 "sqlite3changeset_apply(): no such table: %s", zTab 4067 ); 4068 } 4069 else if( sApply.nCol<nCol ){ 4070 schemaMismatch = 1; 4071 sqlite3_log(SQLITE_SCHEMA, 4072 "sqlite3changeset_apply(): table %s has %d columns, " 4073 "expected %d or more", 4074 zTab, sApply.nCol, nCol 4075 ); 4076 } 4077 else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4078 schemaMismatch = 1; 4079 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4080 "primary key mismatch for table %s", zTab 4081 ); 4082 } 4083 else{ 4084 sApply.nCol = nCol; 4085 if((rc = sessionSelectRow(db, zTab, &sApply)) 4086 || (rc = sessionUpdateRow(db, zTab, &sApply)) 4087 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4088 || (rc = sessionInsertRow(db, zTab, &sApply)) 4089 ){ 4090 break; 4091 } 4092 } 4093 nTab = sqlite3Strlen30(zTab); 4094 } 4095 } 4096 4097 /* If there is a schema mismatch on the current table, proceed to the 4098 ** next change. A log message has already been issued. */ 4099 if( schemaMismatch ) continue; 4100 4101 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4102 } 4103 4104 bPatchset = pIter->bPatchset; 4105 if( rc==SQLITE_OK ){ 4106 rc = sqlite3changeset_finalize(pIter); 4107 }else{ 4108 sqlite3changeset_finalize(pIter); 4109 } 4110 4111 if( rc==SQLITE_OK ){ 4112 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4113 } 4114 4115 if( rc==SQLITE_OK ){ 4116 int nFk, notUsed; 4117 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4118 if( nFk!=0 ){ 4119 int res = SQLITE_CHANGESET_ABORT; 4120 sqlite3_changeset_iter sIter; 4121 memset(&sIter, 0, sizeof(sIter)); 4122 sIter.nCol = nFk; 4123 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4124 if( res!=SQLITE_CHANGESET_OMIT ){ 4125 rc = SQLITE_CONSTRAINT; 4126 } 4127 } 4128 } 4129 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4130 4131 if( rc==SQLITE_OK ){ 4132 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4133 }else{ 4134 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4135 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4136 } 4137 4138 sqlite3_finalize(sApply.pInsert); 4139 sqlite3_finalize(sApply.pDelete); 4140 sqlite3_finalize(sApply.pUpdate); 4141 sqlite3_finalize(sApply.pSelect); 4142 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4143 sqlite3_free((char*)sApply.constraints.aBuf); 4144 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4145 return rc; 4146 } 4147 4148 /* 4149 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4150 ** attached to handle "db". Invoke the supplied conflict handler callback 4151 ** to resolve any conflicts encountered while applying the change. 4152 */ 4153 int sqlite3changeset_apply( 4154 sqlite3 *db, /* Apply change to "main" db of this handle */ 4155 int nChangeset, /* Size of changeset in bytes */ 4156 void *pChangeset, /* Changeset blob */ 4157 int(*xFilter)( 4158 void *pCtx, /* Copy of sixth arg to _apply() */ 4159 const char *zTab /* Table name */ 4160 ), 4161 int(*xConflict)( 4162 void *pCtx, /* Copy of fifth arg to _apply() */ 4163 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4164 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4165 ), 4166 void *pCtx /* First argument passed to xConflict */ 4167 ){ 4168 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4169 int rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset); 4170 if( rc==SQLITE_OK ){ 4171 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4172 } 4173 return rc; 4174 } 4175 4176 /* 4177 ** Apply the changeset passed via xInput/pIn to the main database 4178 ** attached to handle "db". Invoke the supplied conflict handler callback 4179 ** to resolve any conflicts encountered while applying the change. 4180 */ 4181 int sqlite3changeset_apply_strm( 4182 sqlite3 *db, /* Apply change to "main" db of this handle */ 4183 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4184 void *pIn, /* First arg for xInput */ 4185 int(*xFilter)( 4186 void *pCtx, /* Copy of sixth arg to _apply() */ 4187 const char *zTab /* Table name */ 4188 ), 4189 int(*xConflict)( 4190 void *pCtx, /* Copy of sixth arg to _apply() */ 4191 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4192 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4193 ), 4194 void *pCtx /* First argument passed to xConflict */ 4195 ){ 4196 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4197 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4198 if( rc==SQLITE_OK ){ 4199 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4200 } 4201 return rc; 4202 } 4203 4204 /* 4205 ** sqlite3_changegroup handle. 4206 */ 4207 struct sqlite3_changegroup { 4208 int rc; /* Error code */ 4209 int bPatch; /* True to accumulate patchsets */ 4210 SessionTable *pList; /* List of tables in current patch */ 4211 }; 4212 4213 /* 4214 ** This function is called to merge two changes to the same row together as 4215 ** part of an sqlite3changeset_concat() operation. A new change object is 4216 ** allocated and a pointer to it stored in *ppNew. 4217 */ 4218 static int sessionChangeMerge( 4219 SessionTable *pTab, /* Table structure */ 4220 int bPatchset, /* True for patchsets */ 4221 SessionChange *pExist, /* Existing change */ 4222 int op2, /* Second change operation */ 4223 int bIndirect, /* True if second change is indirect */ 4224 u8 *aRec, /* Second change record */ 4225 int nRec, /* Number of bytes in aRec */ 4226 SessionChange **ppNew /* OUT: Merged change */ 4227 ){ 4228 SessionChange *pNew = 0; 4229 4230 if( !pExist ){ 4231 pNew = (SessionChange *)sqlite3_malloc(sizeof(SessionChange) + nRec); 4232 if( !pNew ){ 4233 return SQLITE_NOMEM; 4234 } 4235 memset(pNew, 0, sizeof(SessionChange)); 4236 pNew->op = op2; 4237 pNew->bIndirect = bIndirect; 4238 pNew->nRecord = nRec; 4239 pNew->aRecord = (u8*)&pNew[1]; 4240 memcpy(pNew->aRecord, aRec, nRec); 4241 }else{ 4242 int op1 = pExist->op; 4243 4244 /* 4245 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 4246 ** op1=INSERT, op2=UPDATE -> INSERT. 4247 ** op1=INSERT, op2=DELETE -> (none) 4248 ** 4249 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 4250 ** op1=UPDATE, op2=UPDATE -> UPDATE. 4251 ** op1=UPDATE, op2=DELETE -> DELETE. 4252 ** 4253 ** op1=DELETE, op2=INSERT -> UPDATE. 4254 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 4255 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 4256 */ 4257 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 4258 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 4259 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 4260 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 4261 ){ 4262 pNew = pExist; 4263 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 4264 sqlite3_free(pExist); 4265 assert( pNew==0 ); 4266 }else{ 4267 u8 *aExist = pExist->aRecord; 4268 int nByte; 4269 u8 *aCsr; 4270 4271 /* Allocate a new SessionChange object. Ensure that the aRecord[] 4272 ** buffer of the new object is large enough to hold any record that 4273 ** may be generated by combining the input records. */ 4274 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 4275 pNew = (SessionChange *)sqlite3_malloc(nByte); 4276 if( !pNew ){ 4277 sqlite3_free(pExist); 4278 return SQLITE_NOMEM; 4279 } 4280 memset(pNew, 0, sizeof(SessionChange)); 4281 pNew->bIndirect = (bIndirect && pExist->bIndirect); 4282 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 4283 4284 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 4285 u8 *a1 = aRec; 4286 assert( op2==SQLITE_UPDATE ); 4287 pNew->op = SQLITE_INSERT; 4288 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 4289 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 4290 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 4291 assert( op2==SQLITE_INSERT ); 4292 pNew->op = SQLITE_UPDATE; 4293 if( bPatchset ){ 4294 memcpy(aCsr, aRec, nRec); 4295 aCsr += nRec; 4296 }else{ 4297 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 4298 sqlite3_free(pNew); 4299 pNew = 0; 4300 } 4301 } 4302 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 4303 u8 *a1 = aExist; 4304 u8 *a2 = aRec; 4305 assert( op1==SQLITE_UPDATE ); 4306 if( bPatchset==0 ){ 4307 sessionSkipRecord(&a1, pTab->nCol); 4308 sessionSkipRecord(&a2, pTab->nCol); 4309 } 4310 pNew->op = SQLITE_UPDATE; 4311 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 4312 sqlite3_free(pNew); 4313 pNew = 0; 4314 } 4315 }else{ /* UPDATE + DELETE */ 4316 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 4317 pNew->op = SQLITE_DELETE; 4318 if( bPatchset ){ 4319 memcpy(aCsr, aRec, nRec); 4320 aCsr += nRec; 4321 }else{ 4322 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 4323 } 4324 } 4325 4326 if( pNew ){ 4327 pNew->nRecord = (int)(aCsr - pNew->aRecord); 4328 } 4329 sqlite3_free(pExist); 4330 } 4331 } 4332 4333 *ppNew = pNew; 4334 return SQLITE_OK; 4335 } 4336 4337 /* 4338 ** Add all changes in the changeset traversed by the iterator passed as 4339 ** the first argument to the changegroup hash tables. 4340 */ 4341 static int sessionChangesetToHash( 4342 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 4343 sqlite3_changegroup *pGrp /* Changegroup object to add changeset to */ 4344 ){ 4345 u8 *aRec; 4346 int nRec; 4347 int rc = SQLITE_OK; 4348 SessionTable *pTab = 0; 4349 4350 4351 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec) ){ 4352 const char *zNew; 4353 int nCol; 4354 int op; 4355 int iHash; 4356 int bIndirect; 4357 SessionChange *pChange; 4358 SessionChange *pExist = 0; 4359 SessionChange **pp; 4360 4361 if( pGrp->pList==0 ){ 4362 pGrp->bPatch = pIter->bPatchset; 4363 }else if( pIter->bPatchset!=pGrp->bPatch ){ 4364 rc = SQLITE_ERROR; 4365 break; 4366 } 4367 4368 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 4369 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 4370 /* Search the list for a matching table */ 4371 int nNew = (int)strlen(zNew); 4372 u8 *abPK; 4373 4374 sqlite3changeset_pk(pIter, &abPK, 0); 4375 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 4376 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 4377 } 4378 if( !pTab ){ 4379 SessionTable **ppTab; 4380 4381 pTab = sqlite3_malloc(sizeof(SessionTable) + nCol + nNew+1); 4382 if( !pTab ){ 4383 rc = SQLITE_NOMEM; 4384 break; 4385 } 4386 memset(pTab, 0, sizeof(SessionTable)); 4387 pTab->nCol = nCol; 4388 pTab->abPK = (u8*)&pTab[1]; 4389 memcpy(pTab->abPK, abPK, nCol); 4390 pTab->zName = (char*)&pTab->abPK[nCol]; 4391 memcpy(pTab->zName, zNew, nNew+1); 4392 4393 /* The new object must be linked on to the end of the list, not 4394 ** simply added to the start of it. This is to ensure that the 4395 ** tables within the output of sqlite3changegroup_output() are in 4396 ** the right order. */ 4397 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 4398 *ppTab = pTab; 4399 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 4400 rc = SQLITE_SCHEMA; 4401 break; 4402 } 4403 } 4404 4405 if( sessionGrowHash(pIter->bPatchset, pTab) ){ 4406 rc = SQLITE_NOMEM; 4407 break; 4408 } 4409 iHash = sessionChangeHash( 4410 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 4411 ); 4412 4413 /* Search for existing entry. If found, remove it from the hash table. 4414 ** Code below may link it back in. 4415 */ 4416 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 4417 int bPkOnly1 = 0; 4418 int bPkOnly2 = 0; 4419 if( pIter->bPatchset ){ 4420 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 4421 bPkOnly2 = op==SQLITE_DELETE; 4422 } 4423 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 4424 pExist = *pp; 4425 *pp = (*pp)->pNext; 4426 pTab->nEntry--; 4427 break; 4428 } 4429 } 4430 4431 rc = sessionChangeMerge(pTab, 4432 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 4433 ); 4434 if( rc ) break; 4435 if( pChange ){ 4436 pChange->pNext = pTab->apChange[iHash]; 4437 pTab->apChange[iHash] = pChange; 4438 pTab->nEntry++; 4439 } 4440 } 4441 4442 if( rc==SQLITE_OK ) rc = pIter->rc; 4443 return rc; 4444 } 4445 4446 /* 4447 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 4448 ** added to the changegroup object passed as the first argument. 4449 ** 4450 ** If xOutput is not NULL, then the changeset/patchset is returned to the 4451 ** user via one or more calls to xOutput, as with the other streaming 4452 ** interfaces. 4453 ** 4454 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 4455 ** buffer containing the output changeset before this function returns. In 4456 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 4457 ** is the responsibility of the caller to free the output buffer using 4458 ** sqlite3_free() when it is no longer required. 4459 ** 4460 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 4461 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 4462 ** are both set to 0 before returning. 4463 */ 4464 static int sessionChangegroupOutput( 4465 sqlite3_changegroup *pGrp, 4466 int (*xOutput)(void *pOut, const void *pData, int nData), 4467 void *pOut, 4468 int *pnOut, 4469 void **ppOut 4470 ){ 4471 int rc = SQLITE_OK; 4472 SessionBuffer buf = {0, 0, 0}; 4473 SessionTable *pTab; 4474 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 4475 4476 /* Create the serialized output changeset based on the contents of the 4477 ** hash tables attached to the SessionTable objects in list p->pList. 4478 */ 4479 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 4480 int i; 4481 if( pTab->nEntry==0 ) continue; 4482 4483 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 4484 for(i=0; i<pTab->nChange; i++){ 4485 SessionChange *p; 4486 for(p=pTab->apChange[i]; p; p=p->pNext){ 4487 sessionAppendByte(&buf, p->op, &rc); 4488 sessionAppendByte(&buf, p->bIndirect, &rc); 4489 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 4490 } 4491 } 4492 4493 if( rc==SQLITE_OK && xOutput && buf.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 4494 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4495 buf.nBuf = 0; 4496 } 4497 } 4498 4499 if( rc==SQLITE_OK ){ 4500 if( xOutput ){ 4501 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4502 }else{ 4503 *ppOut = buf.aBuf; 4504 *pnOut = buf.nBuf; 4505 buf.aBuf = 0; 4506 } 4507 } 4508 sqlite3_free(buf.aBuf); 4509 4510 return rc; 4511 } 4512 4513 /* 4514 ** Allocate a new, empty, sqlite3_changegroup. 4515 */ 4516 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 4517 int rc = SQLITE_OK; /* Return code */ 4518 sqlite3_changegroup *p; /* New object */ 4519 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 4520 if( p==0 ){ 4521 rc = SQLITE_NOMEM; 4522 }else{ 4523 memset(p, 0, sizeof(sqlite3_changegroup)); 4524 } 4525 *pp = p; 4526 return rc; 4527 } 4528 4529 /* 4530 ** Add the changeset currently stored in buffer pData, size nData bytes, 4531 ** to changeset-group p. 4532 */ 4533 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 4534 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4535 int rc; /* Return code */ 4536 4537 rc = sqlite3changeset_start(&pIter, nData, pData); 4538 if( rc==SQLITE_OK ){ 4539 rc = sessionChangesetToHash(pIter, pGrp); 4540 } 4541 sqlite3changeset_finalize(pIter); 4542 return rc; 4543 } 4544 4545 /* 4546 ** Obtain a buffer containing a changeset representing the concatenation 4547 ** of all changesets added to the group so far. 4548 */ 4549 int sqlite3changegroup_output( 4550 sqlite3_changegroup *pGrp, 4551 int *pnData, 4552 void **ppData 4553 ){ 4554 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 4555 } 4556 4557 /* 4558 ** Streaming versions of changegroup_add(). 4559 */ 4560 int sqlite3changegroup_add_strm( 4561 sqlite3_changegroup *pGrp, 4562 int (*xInput)(void *pIn, void *pData, int *pnData), 4563 void *pIn 4564 ){ 4565 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4566 int rc; /* Return code */ 4567 4568 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4569 if( rc==SQLITE_OK ){ 4570 rc = sessionChangesetToHash(pIter, pGrp); 4571 } 4572 sqlite3changeset_finalize(pIter); 4573 return rc; 4574 } 4575 4576 /* 4577 ** Streaming versions of changegroup_output(). 4578 */ 4579 int sqlite3changegroup_output_strm( 4580 sqlite3_changegroup *pGrp, 4581 int (*xOutput)(void *pOut, const void *pData, int nData), 4582 void *pOut 4583 ){ 4584 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 4585 } 4586 4587 /* 4588 ** Delete a changegroup object. 4589 */ 4590 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 4591 if( pGrp ){ 4592 sessionDeleteTable(pGrp->pList); 4593 sqlite3_free(pGrp); 4594 } 4595 } 4596 4597 /* 4598 ** Combine two changesets together. 4599 */ 4600 int sqlite3changeset_concat( 4601 int nLeft, /* Number of bytes in lhs input */ 4602 void *pLeft, /* Lhs input changeset */ 4603 int nRight /* Number of bytes in rhs input */, 4604 void *pRight, /* Rhs input changeset */ 4605 int *pnOut, /* OUT: Number of bytes in output changeset */ 4606 void **ppOut /* OUT: changeset (left <concat> right) */ 4607 ){ 4608 sqlite3_changegroup *pGrp; 4609 int rc; 4610 4611 rc = sqlite3changegroup_new(&pGrp); 4612 if( rc==SQLITE_OK ){ 4613 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 4614 } 4615 if( rc==SQLITE_OK ){ 4616 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 4617 } 4618 if( rc==SQLITE_OK ){ 4619 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 4620 } 4621 sqlite3changegroup_delete(pGrp); 4622 4623 return rc; 4624 } 4625 4626 /* 4627 ** Streaming version of sqlite3changeset_concat(). 4628 */ 4629 int sqlite3changeset_concat_strm( 4630 int (*xInputA)(void *pIn, void *pData, int *pnData), 4631 void *pInA, 4632 int (*xInputB)(void *pIn, void *pData, int *pnData), 4633 void *pInB, 4634 int (*xOutput)(void *pOut, const void *pData, int nData), 4635 void *pOut 4636 ){ 4637 sqlite3_changegroup *pGrp; 4638 int rc; 4639 4640 rc = sqlite3changegroup_new(&pGrp); 4641 if( rc==SQLITE_OK ){ 4642 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 4643 } 4644 if( rc==SQLITE_OK ){ 4645 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 4646 } 4647 if( rc==SQLITE_OK ){ 4648 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 4649 } 4650 sqlite3changegroup_delete(pGrp); 4651 4652 return rc; 4653 } 4654 4655 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 4656