1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 typedef struct SessionHook SessionHook; 29 struct SessionHook { 30 void *pCtx; 31 int (*xOld)(void*,int,sqlite3_value**); 32 int (*xNew)(void*,int,sqlite3_value**); 33 int (*xCount)(void*); 34 int (*xDepth)(void*); 35 }; 36 37 /* 38 ** Session handle structure. 39 */ 40 struct sqlite3_session { 41 sqlite3 *db; /* Database handle session is attached to */ 42 char *zDb; /* Name of database session is attached to */ 43 int bEnable; /* True if currently recording */ 44 int bIndirect; /* True if all changes are indirect */ 45 int bAutoAttach; /* True to auto-attach tables */ 46 int rc; /* Non-zero if an error has occurred */ 47 void *pFilterCtx; /* First argument to pass to xTableFilter */ 48 int (*xTableFilter)(void *pCtx, const char *zTab); 49 sqlite3_session *pNext; /* Next session object on same db. */ 50 SessionTable *pTable; /* List of attached tables */ 51 SessionHook hook; /* APIs to grab new and old data with */ 52 }; 53 54 /* 55 ** Instances of this structure are used to build strings or binary records. 56 */ 57 struct SessionBuffer { 58 u8 *aBuf; /* Pointer to changeset buffer */ 59 int nBuf; /* Size of buffer aBuf */ 60 int nAlloc; /* Size of allocation containing aBuf */ 61 }; 62 63 /* 64 ** An object of this type is used internally as an abstraction for 65 ** input data. Input data may be supplied either as a single large buffer 66 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 67 ** sqlite3changeset_start_strm()). 68 */ 69 struct SessionInput { 70 int bNoDiscard; /* If true, discard no data */ 71 int iCurrent; /* Offset in aData[] of current change */ 72 int iNext; /* Offset in aData[] of next change */ 73 u8 *aData; /* Pointer to buffer containing changeset */ 74 int nData; /* Number of bytes in aData */ 75 76 SessionBuffer buf; /* Current read buffer */ 77 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 78 void *pIn; /* First argument to xInput */ 79 int bEof; /* Set to true after xInput finished */ 80 }; 81 82 /* 83 ** Structure for changeset iterators. 84 */ 85 struct sqlite3_changeset_iter { 86 SessionInput in; /* Input buffer or stream */ 87 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 88 int bPatchset; /* True if this is a patchset */ 89 int rc; /* Iterator error code */ 90 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 91 char *zTab; /* Current table */ 92 int nCol; /* Number of columns in zTab */ 93 int op; /* Current operation */ 94 int bIndirect; /* True if current change was indirect */ 95 u8 *abPK; /* Primary key array */ 96 sqlite3_value **apValue; /* old.* and new.* values */ 97 }; 98 99 /* 100 ** Each session object maintains a set of the following structures, one 101 ** for each table the session object is monitoring. The structures are 102 ** stored in a linked list starting at sqlite3_session.pTable. 103 ** 104 ** The keys of the SessionTable.aChange[] hash table are all rows that have 105 ** been modified in any way since the session object was attached to the 106 ** table. 107 ** 108 ** The data associated with each hash-table entry is a structure containing 109 ** a subset of the initial values that the modified row contained at the 110 ** start of the session. Or no initial values if the row was inserted. 111 */ 112 struct SessionTable { 113 SessionTable *pNext; 114 char *zName; /* Local name of table */ 115 int nCol; /* Number of columns in table zName */ 116 const char **azCol; /* Column names */ 117 u8 *abPK; /* Array of primary key flags */ 118 int nEntry; /* Total number of entries in hash table */ 119 int nChange; /* Size of apChange[] array */ 120 SessionChange **apChange; /* Hash table buckets */ 121 }; 122 123 /* 124 ** RECORD FORMAT: 125 ** 126 ** The following record format is similar to (but not compatible with) that 127 ** used in SQLite database files. This format is used as part of the 128 ** change-set binary format, and so must be architecture independent. 129 ** 130 ** Unlike the SQLite database record format, each field is self-contained - 131 ** there is no separation of header and data. Each field begins with a 132 ** single byte describing its type, as follows: 133 ** 134 ** 0x00: Undefined value. 135 ** 0x01: Integer value. 136 ** 0x02: Real value. 137 ** 0x03: Text value. 138 ** 0x04: Blob value. 139 ** 0x05: SQL NULL value. 140 ** 141 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 142 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 143 ** only of the single type byte. For other types of values, the type byte 144 ** is followed by: 145 ** 146 ** Text values: 147 ** A varint containing the number of bytes in the value (encoded using 148 ** UTF-8). Followed by a buffer containing the UTF-8 representation 149 ** of the text value. There is no nul terminator. 150 ** 151 ** Blob values: 152 ** A varint containing the number of bytes in the value, followed by 153 ** a buffer containing the value itself. 154 ** 155 ** Integer values: 156 ** An 8-byte big-endian integer value. 157 ** 158 ** Real values: 159 ** An 8-byte big-endian IEEE 754-2008 real value. 160 ** 161 ** Varint values are encoded in the same way as varints in the SQLite 162 ** record format. 163 ** 164 ** CHANGESET FORMAT: 165 ** 166 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 167 ** one or more tables. Operations on a single table are grouped together, 168 ** but may occur in any order (i.e. deletes, updates and inserts are all 169 ** mixed together). 170 ** 171 ** Each group of changes begins with a table header: 172 ** 173 ** 1 byte: Constant 0x54 (capital 'T') 174 ** Varint: Number of columns in the table. 175 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 176 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 177 ** 178 ** Followed by one or more changes to the table. 179 ** 180 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 181 ** 1 byte: The "indirect-change" flag. 182 ** old.* record: (delete and update only) 183 ** new.* record: (insert and update only) 184 ** 185 ** The "old.*" and "new.*" records, if present, are N field records in the 186 ** format described above under "RECORD FORMAT", where N is the number of 187 ** columns in the table. The i'th field of each record is associated with 188 ** the i'th column of the table, counting from left to right in the order 189 ** in which columns were declared in the CREATE TABLE statement. 190 ** 191 ** The new.* record that is part of each INSERT change contains the values 192 ** that make up the new row. Similarly, the old.* record that is part of each 193 ** DELETE change contains the values that made up the row that was deleted 194 ** from the database. In the changeset format, the records that are part 195 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 196 ** fields. 197 ** 198 ** Within the old.* record associated with an UPDATE change, all fields 199 ** associated with table columns that are not PRIMARY KEY columns and are 200 ** not modified by the UPDATE change are set to "undefined". Other fields 201 ** are set to the values that made up the row before the UPDATE that the 202 ** change records took place. Within the new.* record, fields associated 203 ** with table columns modified by the UPDATE change contain the new 204 ** values. Fields associated with table columns that are not modified 205 ** are set to "undefined". 206 ** 207 ** PATCHSET FORMAT: 208 ** 209 ** A patchset is also a collection of changes. It is similar to a changeset, 210 ** but leaves undefined those fields that are not useful if no conflict 211 ** resolution is required when applying the changeset. 212 ** 213 ** Each group of changes begins with a table header: 214 ** 215 ** 1 byte: Constant 0x50 (capital 'P') 216 ** Varint: Number of columns in the table. 217 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 218 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 219 ** 220 ** Followed by one or more changes to the table. 221 ** 222 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 223 ** 1 byte: The "indirect-change" flag. 224 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 225 ** full record for INSERT). 226 ** 227 ** As in the changeset format, each field of the single record that is part 228 ** of a patchset change is associated with the correspondingly positioned 229 ** table column, counting from left to right within the CREATE TABLE 230 ** statement. 231 ** 232 ** For a DELETE change, all fields within the record except those associated 233 ** with PRIMARY KEY columns are set to "undefined". The PRIMARY KEY fields 234 ** contain the values identifying the row to delete. 235 ** 236 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 237 ** columns and columns that are modified by the UPDATE are set to "undefined". 238 ** PRIMARY KEY fields contain the values identifying the table row to update, 239 ** and fields associated with modified columns contain the new column values. 240 ** 241 ** The records associated with INSERT changes are in the same format as for 242 ** changesets. It is not possible for a record associated with an INSERT 243 ** change to contain a field set to "undefined". 244 */ 245 246 /* 247 ** For each row modified during a session, there exists a single instance of 248 ** this structure stored in a SessionTable.aChange[] hash table. 249 */ 250 struct SessionChange { 251 int op; /* One of UPDATE, DELETE, INSERT */ 252 int bIndirect; /* True if this change is "indirect" */ 253 int nRecord; /* Number of bytes in buffer aRecord[] */ 254 u8 *aRecord; /* Buffer containing old.* record */ 255 SessionChange *pNext; /* For hash-table collisions */ 256 }; 257 258 /* 259 ** Write a varint with value iVal into the buffer at aBuf. Return the 260 ** number of bytes written. 261 */ 262 static int sessionVarintPut(u8 *aBuf, int iVal){ 263 return putVarint32(aBuf, iVal); 264 } 265 266 /* 267 ** Return the number of bytes required to store value iVal as a varint. 268 */ 269 static int sessionVarintLen(int iVal){ 270 return sqlite3VarintLen(iVal); 271 } 272 273 /* 274 ** Read a varint value from aBuf[] into *piVal. Return the number of 275 ** bytes read. 276 */ 277 static int sessionVarintGet(u8 *aBuf, int *piVal){ 278 return getVarint32(aBuf, *piVal); 279 } 280 281 /* 282 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 283 ** the value read. 284 */ 285 static sqlite3_int64 sessionGetI64(u8 *aRec){ 286 return (((sqlite3_int64)aRec[0]) << 56) 287 + (((sqlite3_int64)aRec[1]) << 48) 288 + (((sqlite3_int64)aRec[2]) << 40) 289 + (((sqlite3_int64)aRec[3]) << 32) 290 + (((sqlite3_int64)aRec[4]) << 24) 291 + (((sqlite3_int64)aRec[5]) << 16) 292 + (((sqlite3_int64)aRec[6]) << 8) 293 + (((sqlite3_int64)aRec[7]) << 0); 294 } 295 296 /* 297 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 298 */ 299 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 300 aBuf[0] = (i>>56) & 0xFF; 301 aBuf[1] = (i>>48) & 0xFF; 302 aBuf[2] = (i>>40) & 0xFF; 303 aBuf[3] = (i>>32) & 0xFF; 304 aBuf[4] = (i>>24) & 0xFF; 305 aBuf[5] = (i>>16) & 0xFF; 306 aBuf[6] = (i>> 8) & 0xFF; 307 aBuf[7] = (i>> 0) & 0xFF; 308 } 309 310 /* 311 ** This function is used to serialize the contents of value pValue (see 312 ** comment titled "RECORD FORMAT" above). 313 ** 314 ** If it is non-NULL, the serialized form of the value is written to 315 ** buffer aBuf. *pnWrite is set to the number of bytes written before 316 ** returning. Or, if aBuf is NULL, the only thing this function does is 317 ** set *pnWrite. 318 ** 319 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 320 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 321 ** SQLITE_NOMEM is returned. 322 */ 323 static int sessionSerializeValue( 324 u8 *aBuf, /* If non-NULL, write serialized value here */ 325 sqlite3_value *pValue, /* Value to serialize */ 326 int *pnWrite /* IN/OUT: Increment by bytes written */ 327 ){ 328 int nByte; /* Size of serialized value in bytes */ 329 330 if( pValue ){ 331 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 332 333 eType = sqlite3_value_type(pValue); 334 if( aBuf ) aBuf[0] = eType; 335 336 switch( eType ){ 337 case SQLITE_NULL: 338 nByte = 1; 339 break; 340 341 case SQLITE_INTEGER: 342 case SQLITE_FLOAT: 343 if( aBuf ){ 344 /* TODO: SQLite does something special to deal with mixed-endian 345 ** floating point values (e.g. ARM7). This code probably should 346 ** too. */ 347 u64 i; 348 if( eType==SQLITE_INTEGER ){ 349 i = (u64)sqlite3_value_int64(pValue); 350 }else{ 351 double r; 352 assert( sizeof(double)==8 && sizeof(u64)==8 ); 353 r = sqlite3_value_double(pValue); 354 memcpy(&i, &r, 8); 355 } 356 sessionPutI64(&aBuf[1], i); 357 } 358 nByte = 9; 359 break; 360 361 default: { 362 u8 *z; 363 int n; 364 int nVarint; 365 366 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 367 if( eType==SQLITE_TEXT ){ 368 z = (u8 *)sqlite3_value_text(pValue); 369 }else{ 370 z = (u8 *)sqlite3_value_blob(pValue); 371 } 372 n = sqlite3_value_bytes(pValue); 373 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 374 nVarint = sessionVarintLen(n); 375 376 if( aBuf ){ 377 sessionVarintPut(&aBuf[1], n); 378 memcpy(&aBuf[nVarint + 1], eType==SQLITE_TEXT ? 379 sqlite3_value_text(pValue) : sqlite3_value_blob(pValue), n 380 ); 381 } 382 383 nByte = 1 + nVarint + n; 384 break; 385 } 386 } 387 }else{ 388 nByte = 1; 389 if( aBuf ) aBuf[0] = '\0'; 390 } 391 392 if( pnWrite ) *pnWrite += nByte; 393 return SQLITE_OK; 394 } 395 396 397 /* 398 ** This macro is used to calculate hash key values for data structures. In 399 ** order to use this macro, the entire data structure must be represented 400 ** as a series of unsigned integers. In order to calculate a hash-key value 401 ** for a data structure represented as three such integers, the macro may 402 ** then be used as follows: 403 ** 404 ** int hash_key_value; 405 ** hash_key_value = HASH_APPEND(0, <value 1>); 406 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 407 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 408 ** 409 ** In practice, the data structures this macro is used for are the primary 410 ** key values of modified rows. 411 */ 412 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 413 414 /* 415 ** Append the hash of the 64-bit integer passed as the second argument to the 416 ** hash-key value passed as the first. Return the new hash-key value. 417 */ 418 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 419 h = HASH_APPEND(h, i & 0xFFFFFFFF); 420 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 421 } 422 423 /* 424 ** Append the hash of the blob passed via the second and third arguments to 425 ** the hash-key value passed as the first. Return the new hash-key value. 426 */ 427 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 428 int i; 429 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 430 return h; 431 } 432 433 /* 434 ** Append the hash of the data type passed as the second argument to the 435 ** hash-key value passed as the first. Return the new hash-key value. 436 */ 437 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 438 return HASH_APPEND(h, eType); 439 } 440 441 /* 442 ** This function may only be called from within a pre-update callback. 443 ** It calculates a hash based on the primary key values of the old.* or 444 ** new.* row currently available and, assuming no error occurs, writes it to 445 ** *piHash before returning. If the primary key contains one or more NULL 446 ** values, *pbNullPK is set to true before returning. 447 ** 448 ** If an error occurs, an SQLite error code is returned and the final values 449 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 450 ** and the output variables are set as described above. 451 */ 452 static int sessionPreupdateHash( 453 sqlite3_session *pSession, /* Session object that owns pTab */ 454 SessionTable *pTab, /* Session table handle */ 455 int bNew, /* True to hash the new.* PK */ 456 int *piHash, /* OUT: Hash value */ 457 int *pbNullPK /* OUT: True if there are NULL values in PK */ 458 ){ 459 unsigned int h = 0; /* Hash value to return */ 460 int i; /* Used to iterate through columns */ 461 462 assert( *pbNullPK==0 ); 463 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 464 for(i=0; i<pTab->nCol; i++){ 465 if( pTab->abPK[i] ){ 466 int rc; 467 int eType; 468 sqlite3_value *pVal; 469 470 if( bNew ){ 471 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 472 }else{ 473 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 474 } 475 if( rc!=SQLITE_OK ) return rc; 476 477 eType = sqlite3_value_type(pVal); 478 h = sessionHashAppendType(h, eType); 479 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 480 i64 iVal; 481 if( eType==SQLITE_INTEGER ){ 482 iVal = sqlite3_value_int64(pVal); 483 }else{ 484 double rVal = sqlite3_value_double(pVal); 485 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 486 memcpy(&iVal, &rVal, 8); 487 } 488 h = sessionHashAppendI64(h, iVal); 489 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 490 const u8 *z; 491 int n; 492 if( eType==SQLITE_TEXT ){ 493 z = (const u8 *)sqlite3_value_text(pVal); 494 }else{ 495 z = (const u8 *)sqlite3_value_blob(pVal); 496 } 497 n = sqlite3_value_bytes(pVal); 498 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 499 h = sessionHashAppendBlob(h, n, z); 500 }else{ 501 assert( eType==SQLITE_NULL ); 502 *pbNullPK = 1; 503 } 504 } 505 } 506 507 *piHash = (h % pTab->nChange); 508 return SQLITE_OK; 509 } 510 511 /* 512 ** The buffer that the argument points to contains a serialized SQL value. 513 ** Return the number of bytes of space occupied by the value (including 514 ** the type byte). 515 */ 516 static int sessionSerialLen(u8 *a){ 517 int e = *a; 518 int n; 519 if( e==0 ) return 1; 520 if( e==SQLITE_NULL ) return 1; 521 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 522 return sessionVarintGet(&a[1], &n) + 1 + n; 523 } 524 525 /* 526 ** Based on the primary key values stored in change aRecord, calculate a 527 ** hash key. Assume the has table has nBucket buckets. The hash keys 528 ** calculated by this function are compatible with those calculated by 529 ** sessionPreupdateHash(). 530 ** 531 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 532 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 533 */ 534 static unsigned int sessionChangeHash( 535 SessionTable *pTab, /* Table handle */ 536 int bPkOnly, /* Record consists of PK fields only */ 537 u8 *aRecord, /* Change record */ 538 int nBucket /* Assume this many buckets in hash table */ 539 ){ 540 unsigned int h = 0; /* Value to return */ 541 int i; /* Used to iterate through columns */ 542 u8 *a = aRecord; /* Used to iterate through change record */ 543 544 for(i=0; i<pTab->nCol; i++){ 545 int eType = *a; 546 int isPK = pTab->abPK[i]; 547 if( bPkOnly && isPK==0 ) continue; 548 549 /* It is not possible for eType to be SQLITE_NULL here. The session 550 ** module does not record changes for rows with NULL values stored in 551 ** primary key columns. */ 552 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 553 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 554 || eType==SQLITE_NULL || eType==0 555 ); 556 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 557 558 if( isPK ){ 559 a++; 560 h = sessionHashAppendType(h, eType); 561 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 562 h = sessionHashAppendI64(h, sessionGetI64(a)); 563 a += 8; 564 }else{ 565 int n; 566 a += sessionVarintGet(a, &n); 567 h = sessionHashAppendBlob(h, n, a); 568 a += n; 569 } 570 }else{ 571 a += sessionSerialLen(a); 572 } 573 } 574 return (h % nBucket); 575 } 576 577 /* 578 ** Arguments aLeft and aRight are pointers to change records for table pTab. 579 ** This function returns true if the two records apply to the same row (i.e. 580 ** have the same values stored in the primary key columns), or false 581 ** otherwise. 582 */ 583 static int sessionChangeEqual( 584 SessionTable *pTab, /* Table used for PK definition */ 585 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 586 u8 *aLeft, /* Change record */ 587 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 588 u8 *aRight /* Change record */ 589 ){ 590 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 591 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 592 int iCol; /* Used to iterate through table columns */ 593 594 for(iCol=0; iCol<pTab->nCol; iCol++){ 595 int n1 = sessionSerialLen(a1); 596 int n2 = sessionSerialLen(a2); 597 598 if( pTab->abPK[iCol] && (n1!=n2 || memcmp(a1, a2, n1)) ){ 599 return 0; 600 } 601 if( pTab->abPK[iCol] || bLeftPkOnly==0 ) a1 += n1; 602 if( pTab->abPK[iCol] || bRightPkOnly==0 ) a2 += n2; 603 } 604 605 return 1; 606 } 607 608 /* 609 ** Arguments aLeft and aRight both point to buffers containing change 610 ** records with nCol columns. This function "merges" the two records into 611 ** a single records which is written to the buffer at *paOut. *paOut is 612 ** then set to point to one byte after the last byte written before 613 ** returning. 614 ** 615 ** The merging of records is done as follows: For each column, if the 616 ** aRight record contains a value for the column, copy the value from 617 ** their. Otherwise, if aLeft contains a value, copy it. If neither 618 ** record contains a value for a given column, then neither does the 619 ** output record. 620 */ 621 static void sessionMergeRecord( 622 u8 **paOut, 623 int nCol, 624 u8 *aLeft, 625 u8 *aRight 626 ){ 627 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 628 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 629 u8 *aOut = *paOut; /* Output cursor */ 630 int iCol; /* Used to iterate from 0 to nCol */ 631 632 for(iCol=0; iCol<nCol; iCol++){ 633 int n1 = sessionSerialLen(a1); 634 int n2 = sessionSerialLen(a2); 635 if( *a2 ){ 636 memcpy(aOut, a2, n2); 637 aOut += n2; 638 }else{ 639 memcpy(aOut, a1, n1); 640 aOut += n1; 641 } 642 a1 += n1; 643 a2 += n2; 644 } 645 646 *paOut = aOut; 647 } 648 649 /* 650 ** This is a helper function used by sessionMergeUpdate(). 651 ** 652 ** When this function is called, both *paOne and *paTwo point to a value 653 ** within a change record. Before it returns, both have been advanced so 654 ** as to point to the next value in the record. 655 ** 656 ** If, when this function is called, *paTwo points to a valid value (i.e. 657 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 658 ** pointer is returned and *pnVal is set to the number of bytes in the 659 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 660 ** set to the number of bytes in the value at *paOne. If *paOne points 661 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 662 ** 663 ** if( *paTwo is valid ) return *paTwo; 664 ** return *paOne; 665 ** 666 */ 667 static u8 *sessionMergeValue( 668 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 669 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 670 int *pnVal /* OUT: Bytes in returned value */ 671 ){ 672 u8 *a1 = *paOne; 673 u8 *a2 = *paTwo; 674 u8 *pRet = 0; 675 int n1; 676 677 assert( a1 ); 678 if( a2 ){ 679 int n2 = sessionSerialLen(a2); 680 if( *a2 ){ 681 *pnVal = n2; 682 pRet = a2; 683 } 684 *paTwo = &a2[n2]; 685 } 686 687 n1 = sessionSerialLen(a1); 688 if( pRet==0 ){ 689 *pnVal = n1; 690 pRet = a1; 691 } 692 *paOne = &a1[n1]; 693 694 return pRet; 695 } 696 697 /* 698 ** This function is used by changeset_concat() to merge two UPDATE changes 699 ** on the same row. 700 */ 701 static int sessionMergeUpdate( 702 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 703 SessionTable *pTab, /* Table change pertains to */ 704 int bPatchset, /* True if records are patchset records */ 705 u8 *aOldRecord1, /* old.* record for first change */ 706 u8 *aOldRecord2, /* old.* record for second change */ 707 u8 *aNewRecord1, /* new.* record for first change */ 708 u8 *aNewRecord2 /* new.* record for second change */ 709 ){ 710 u8 *aOld1 = aOldRecord1; 711 u8 *aOld2 = aOldRecord2; 712 u8 *aNew1 = aNewRecord1; 713 u8 *aNew2 = aNewRecord2; 714 715 u8 *aOut = *paOut; 716 int i; 717 718 if( bPatchset==0 ){ 719 int bRequired = 0; 720 721 assert( aOldRecord1 && aNewRecord1 ); 722 723 /* Write the old.* vector first. */ 724 for(i=0; i<pTab->nCol; i++){ 725 int nOld; 726 u8 *aOld; 727 int nNew; 728 u8 *aNew; 729 730 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 731 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 732 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 733 if( pTab->abPK[i]==0 ) bRequired = 1; 734 memcpy(aOut, aOld, nOld); 735 aOut += nOld; 736 }else{ 737 *(aOut++) = '\0'; 738 } 739 } 740 741 if( !bRequired ) return 0; 742 } 743 744 /* Write the new.* vector */ 745 aOld1 = aOldRecord1; 746 aOld2 = aOldRecord2; 747 aNew1 = aNewRecord1; 748 aNew2 = aNewRecord2; 749 for(i=0; i<pTab->nCol; i++){ 750 int nOld; 751 u8 *aOld; 752 int nNew; 753 u8 *aNew; 754 755 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 756 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 757 if( bPatchset==0 758 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 759 ){ 760 *(aOut++) = '\0'; 761 }else{ 762 memcpy(aOut, aNew, nNew); 763 aOut += nNew; 764 } 765 } 766 767 *paOut = aOut; 768 return 1; 769 } 770 771 /* 772 ** This function is only called from within a pre-update-hook callback. 773 ** It determines if the current pre-update-hook change affects the same row 774 ** as the change stored in argument pChange. If so, it returns true. Otherwise 775 ** if the pre-update-hook does not affect the same row as pChange, it returns 776 ** false. 777 */ 778 static int sessionPreupdateEqual( 779 sqlite3_session *pSession, /* Session object that owns SessionTable */ 780 SessionTable *pTab, /* Table associated with change */ 781 SessionChange *pChange, /* Change to compare to */ 782 int op /* Current pre-update operation */ 783 ){ 784 int iCol; /* Used to iterate through columns */ 785 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 786 787 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 788 for(iCol=0; iCol<pTab->nCol; iCol++){ 789 if( !pTab->abPK[iCol] ){ 790 a += sessionSerialLen(a); 791 }else{ 792 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 793 int rc; /* Error code from preupdate_new/old */ 794 int eType = *a++; /* Type of value from change record */ 795 796 /* The following calls to preupdate_new() and preupdate_old() can not 797 ** fail. This is because they cache their return values, and by the 798 ** time control flows to here they have already been called once from 799 ** within sessionPreupdateHash(). The first two asserts below verify 800 ** this (that the method has already been called). */ 801 if( op==SQLITE_INSERT ){ 802 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 803 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 804 }else{ 805 /* assert( db->pPreUpdate->pUnpacked ); */ 806 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 807 } 808 assert( rc==SQLITE_OK ); 809 if( sqlite3_value_type(pVal)!=eType ) return 0; 810 811 /* A SessionChange object never has a NULL value in a PK column */ 812 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 813 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 814 ); 815 816 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 817 i64 iVal = sessionGetI64(a); 818 a += 8; 819 if( eType==SQLITE_INTEGER ){ 820 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 821 }else{ 822 double rVal; 823 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 824 memcpy(&rVal, &iVal, 8); 825 if( sqlite3_value_double(pVal)!=rVal ) return 0; 826 } 827 }else{ 828 int n; 829 const u8 *z; 830 a += sessionVarintGet(a, &n); 831 if( sqlite3_value_bytes(pVal)!=n ) return 0; 832 if( eType==SQLITE_TEXT ){ 833 z = sqlite3_value_text(pVal); 834 }else{ 835 z = sqlite3_value_blob(pVal); 836 } 837 if( memcmp(a, z, n) ) return 0; 838 a += n; 839 break; 840 } 841 } 842 } 843 844 return 1; 845 } 846 847 /* 848 ** If required, grow the hash table used to store changes on table pTab 849 ** (part of the session pSession). If a fatal OOM error occurs, set the 850 ** session object to failed and return SQLITE_ERROR. Otherwise, return 851 ** SQLITE_OK. 852 ** 853 ** It is possible that a non-fatal OOM error occurs in this function. In 854 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 855 ** Growing the hash table in this case is a performance optimization only, 856 ** it is not required for correct operation. 857 */ 858 static int sessionGrowHash(int bPatchset, SessionTable *pTab){ 859 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 860 int i; 861 SessionChange **apNew; 862 int nNew = (pTab->nChange ? pTab->nChange : 128) * 2; 863 864 apNew = (SessionChange **)sqlite3_malloc(sizeof(SessionChange *) * nNew); 865 if( apNew==0 ){ 866 if( pTab->nChange==0 ){ 867 return SQLITE_ERROR; 868 } 869 return SQLITE_OK; 870 } 871 memset(apNew, 0, sizeof(SessionChange *) * nNew); 872 873 for(i=0; i<pTab->nChange; i++){ 874 SessionChange *p; 875 SessionChange *pNext; 876 for(p=pTab->apChange[i]; p; p=pNext){ 877 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 878 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 879 pNext = p->pNext; 880 p->pNext = apNew[iHash]; 881 apNew[iHash] = p; 882 } 883 } 884 885 sqlite3_free(pTab->apChange); 886 pTab->nChange = nNew; 887 pTab->apChange = apNew; 888 } 889 890 return SQLITE_OK; 891 } 892 893 /* 894 ** This function queries the database for the names of the columns of table 895 ** zThis, in schema zDb. It is expected that the table has nCol columns. If 896 ** not, SQLITE_SCHEMA is returned and none of the output variables are 897 ** populated. 898 ** 899 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 900 ** of columns in the database table and variable *pzTab is set to point to a 901 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 902 ** point to an array of pointers to column names. And *pabPK (again, if not 903 ** NULL) is set to point to an array of booleans - true if the corresponding 904 ** column is part of the primary key. 905 ** 906 ** For example, if the table is declared as: 907 ** 908 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 909 ** 910 ** Then the four output variables are populated as follows: 911 ** 912 ** *pnCol = 4 913 ** *pzTab = "tbl1" 914 ** *pazCol = {"w", "x", "y", "z"} 915 ** *pabPK = {1, 0, 0, 1} 916 ** 917 ** All returned buffers are part of the same single allocation, which must 918 ** be freed using sqlite3_free() by the caller. If pazCol was not NULL, then 919 ** pointer *pazCol should be freed to release all memory. Otherwise, pointer 920 ** *pabPK. It is illegal for both pazCol and pabPK to be NULL. 921 */ 922 static int sessionTableInfo( 923 sqlite3 *db, /* Database connection */ 924 const char *zDb, /* Name of attached database (e.g. "main") */ 925 const char *zThis, /* Table name */ 926 int *pnCol, /* OUT: number of columns */ 927 const char **pzTab, /* OUT: Copy of zThis */ 928 const char ***pazCol, /* OUT: Array of column names for table */ 929 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 930 ){ 931 char *zPragma; 932 sqlite3_stmt *pStmt; 933 int rc; 934 int nByte; 935 int nDbCol = 0; 936 int nThis; 937 int i; 938 u8 *pAlloc = 0; 939 char **azCol = 0; 940 u8 *abPK = 0; 941 942 assert( pazCol && pabPK ); 943 944 nThis = sqlite3Strlen30(zThis); 945 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 946 if( !zPragma ) return SQLITE_NOMEM; 947 948 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 949 sqlite3_free(zPragma); 950 if( rc!=SQLITE_OK ) return rc; 951 952 nByte = nThis + 1; 953 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 954 nByte += sqlite3_column_bytes(pStmt, 1); 955 nDbCol++; 956 } 957 rc = sqlite3_reset(pStmt); 958 959 if( rc==SQLITE_OK ){ 960 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 961 pAlloc = sqlite3_malloc(nByte); 962 if( pAlloc==0 ){ 963 rc = SQLITE_NOMEM; 964 } 965 } 966 if( rc==SQLITE_OK ){ 967 azCol = (char **)pAlloc; 968 pAlloc = (u8 *)&azCol[nDbCol]; 969 abPK = (u8 *)pAlloc; 970 pAlloc = &abPK[nDbCol]; 971 if( pzTab ){ 972 memcpy(pAlloc, zThis, nThis+1); 973 *pzTab = (char *)pAlloc; 974 pAlloc += nThis+1; 975 } 976 977 i = 0; 978 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 979 int nName = sqlite3_column_bytes(pStmt, 1); 980 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 981 if( zName==0 ) break; 982 memcpy(pAlloc, zName, nName+1); 983 azCol[i] = (char *)pAlloc; 984 pAlloc += nName+1; 985 abPK[i] = sqlite3_column_int(pStmt, 5); 986 i++; 987 } 988 rc = sqlite3_reset(pStmt); 989 990 } 991 992 /* If successful, populate the output variables. Otherwise, zero them and 993 ** free any allocation made. An error code will be returned in this case. 994 */ 995 if( rc==SQLITE_OK ){ 996 *pazCol = (const char **)azCol; 997 *pabPK = abPK; 998 *pnCol = nDbCol; 999 }else{ 1000 *pazCol = 0; 1001 *pabPK = 0; 1002 *pnCol = 0; 1003 if( pzTab ) *pzTab = 0; 1004 sqlite3_free(azCol); 1005 } 1006 sqlite3_finalize(pStmt); 1007 return rc; 1008 } 1009 1010 /* 1011 ** This function is only called from within a pre-update handler for a 1012 ** write to table pTab, part of session pSession. If this is the first 1013 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1014 ** abPK[] arrays accordingly. 1015 ** 1016 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1017 ** non-zero returned. Or, if no error occurs but the table has no primary 1018 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1019 ** indicate that updates on this table should be ignored. SessionTable.abPK 1020 ** is set to NULL in this case. 1021 */ 1022 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1023 if( pTab->nCol==0 ){ 1024 u8 *abPK; 1025 assert( pTab->azCol==0 || pTab->abPK==0 ); 1026 pSession->rc = sessionTableInfo(pSession->db, pSession->zDb, 1027 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1028 ); 1029 if( pSession->rc==SQLITE_OK ){ 1030 int i; 1031 for(i=0; i<pTab->nCol; i++){ 1032 if( abPK[i] ){ 1033 pTab->abPK = abPK; 1034 break; 1035 } 1036 } 1037 } 1038 } 1039 return (pSession->rc || pTab->abPK==0); 1040 } 1041 1042 /* 1043 ** This function is only called from with a pre-update-hook reporting a 1044 ** change on table pTab (attached to session pSession). The type of change 1045 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1046 ** 1047 ** Unless one is already present or an error occurs, an entry is added 1048 ** to the changed-rows hash table associated with table pTab. 1049 */ 1050 static void sessionPreupdateOneChange( 1051 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1052 sqlite3_session *pSession, /* Session object pTab is attached to */ 1053 SessionTable *pTab /* Table that change applies to */ 1054 ){ 1055 int iHash; 1056 int bNull = 0; 1057 int rc = SQLITE_OK; 1058 1059 if( pSession->rc ) return; 1060 1061 /* Load table details if required */ 1062 if( sessionInitTable(pSession, pTab) ) return; 1063 1064 /* Check the number of columns in this xPreUpdate call matches the 1065 ** number of columns in the table. */ 1066 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1067 pSession->rc = SQLITE_SCHEMA; 1068 return; 1069 } 1070 1071 /* Grow the hash table if required */ 1072 if( sessionGrowHash(0, pTab) ){ 1073 pSession->rc = SQLITE_NOMEM; 1074 return; 1075 } 1076 1077 /* Calculate the hash-key for this change. If the primary key of the row 1078 ** includes a NULL value, exit early. Such changes are ignored by the 1079 ** session module. */ 1080 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1081 if( rc!=SQLITE_OK ) goto error_out; 1082 1083 if( bNull==0 ){ 1084 /* Search the hash table for an existing record for this row. */ 1085 SessionChange *pC; 1086 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1087 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1088 } 1089 1090 if( pC==0 ){ 1091 /* Create a new change object containing all the old values (if 1092 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1093 ** values (if this is an INSERT). */ 1094 SessionChange *pChange; /* New change object */ 1095 int nByte; /* Number of bytes to allocate */ 1096 int i; /* Used to iterate through columns */ 1097 1098 assert( rc==SQLITE_OK ); 1099 pTab->nEntry++; 1100 1101 /* Figure out how large an allocation is required */ 1102 nByte = sizeof(SessionChange); 1103 for(i=0; i<pTab->nCol; i++){ 1104 sqlite3_value *p = 0; 1105 if( op!=SQLITE_INSERT ){ 1106 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1107 assert( trc==SQLITE_OK ); 1108 }else if( pTab->abPK[i] ){ 1109 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1110 assert( trc==SQLITE_OK ); 1111 } 1112 1113 /* This may fail if SQLite value p contains a utf-16 string that must 1114 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1115 rc = sessionSerializeValue(0, p, &nByte); 1116 if( rc!=SQLITE_OK ) goto error_out; 1117 } 1118 1119 /* Allocate the change object */ 1120 pChange = (SessionChange *)sqlite3_malloc(nByte); 1121 if( !pChange ){ 1122 rc = SQLITE_NOMEM; 1123 goto error_out; 1124 }else{ 1125 memset(pChange, 0, sizeof(SessionChange)); 1126 pChange->aRecord = (u8 *)&pChange[1]; 1127 } 1128 1129 /* Populate the change object. None of the preupdate_old(), 1130 ** preupdate_new() or SerializeValue() calls below may fail as all 1131 ** required values and encodings have already been cached in memory. 1132 ** It is not possible for an OOM to occur in this block. */ 1133 nByte = 0; 1134 for(i=0; i<pTab->nCol; i++){ 1135 sqlite3_value *p = 0; 1136 if( op!=SQLITE_INSERT ){ 1137 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1138 }else if( pTab->abPK[i] ){ 1139 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1140 } 1141 sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte); 1142 } 1143 1144 /* Add the change to the hash-table */ 1145 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1146 pChange->bIndirect = 1; 1147 } 1148 pChange->nRecord = nByte; 1149 pChange->op = op; 1150 pChange->pNext = pTab->apChange[iHash]; 1151 pTab->apChange[iHash] = pChange; 1152 1153 }else if( pC->bIndirect ){ 1154 /* If the existing change is considered "indirect", but this current 1155 ** change is "direct", mark the change object as direct. */ 1156 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1157 && pSession->bIndirect==0 1158 ){ 1159 pC->bIndirect = 0; 1160 } 1161 } 1162 } 1163 1164 /* If an error has occurred, mark the session object as failed. */ 1165 error_out: 1166 if( rc!=SQLITE_OK ){ 1167 pSession->rc = rc; 1168 } 1169 } 1170 1171 static int sessionFindTable( 1172 sqlite3_session *pSession, 1173 const char *zName, 1174 SessionTable **ppTab 1175 ){ 1176 int rc = SQLITE_OK; 1177 int nName = sqlite3Strlen30(zName); 1178 SessionTable *pRet; 1179 1180 /* Search for an existing table */ 1181 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1182 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1183 } 1184 1185 if( pRet==0 && pSession->bAutoAttach ){ 1186 /* If there is a table-filter configured, invoke it. If it returns 0, 1187 ** do not automatically add the new table. */ 1188 if( pSession->xTableFilter==0 1189 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1190 ){ 1191 rc = sqlite3session_attach(pSession, zName); 1192 if( rc==SQLITE_OK ){ 1193 for(pRet=pSession->pTable; pRet->pNext; pRet=pRet->pNext); 1194 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1195 } 1196 } 1197 } 1198 1199 assert( rc==SQLITE_OK || pRet==0 ); 1200 *ppTab = pRet; 1201 return rc; 1202 } 1203 1204 /* 1205 ** The 'pre-update' hook registered by this module with SQLite databases. 1206 */ 1207 static void xPreUpdate( 1208 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1209 sqlite3 *db, /* Database handle */ 1210 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1211 char const *zDb, /* Database name */ 1212 char const *zName, /* Table name */ 1213 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1214 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1215 ){ 1216 sqlite3_session *pSession; 1217 int nDb = sqlite3Strlen30(zDb); 1218 1219 assert( sqlite3_mutex_held(db->mutex) ); 1220 1221 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1222 SessionTable *pTab; 1223 1224 /* If this session is attached to a different database ("main", "temp" 1225 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1226 ** to the next session object attached to this database. */ 1227 if( pSession->bEnable==0 ) continue; 1228 if( pSession->rc ) continue; 1229 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1230 1231 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1232 if( pTab ){ 1233 assert( pSession->rc==SQLITE_OK ); 1234 sessionPreupdateOneChange(op, pSession, pTab); 1235 if( op==SQLITE_UPDATE ){ 1236 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1237 } 1238 } 1239 } 1240 } 1241 1242 /* 1243 ** The pre-update hook implementations. 1244 */ 1245 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1246 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1247 } 1248 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1249 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1250 } 1251 static int sessionPreupdateCount(void *pCtx){ 1252 return sqlite3_preupdate_count((sqlite3*)pCtx); 1253 } 1254 static int sessionPreupdateDepth(void *pCtx){ 1255 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1256 } 1257 1258 /* 1259 ** Install the pre-update hooks on the session object passed as the only 1260 ** argument. 1261 */ 1262 static void sessionPreupdateHooks( 1263 sqlite3_session *pSession 1264 ){ 1265 pSession->hook.pCtx = (void*)pSession->db; 1266 pSession->hook.xOld = sessionPreupdateOld; 1267 pSession->hook.xNew = sessionPreupdateNew; 1268 pSession->hook.xCount = sessionPreupdateCount; 1269 pSession->hook.xDepth = sessionPreupdateDepth; 1270 } 1271 1272 typedef struct SessionDiffCtx SessionDiffCtx; 1273 struct SessionDiffCtx { 1274 sqlite3_stmt *pStmt; 1275 int nOldOff; 1276 }; 1277 1278 /* 1279 ** The diff hook implementations. 1280 */ 1281 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1282 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1283 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1284 return SQLITE_OK; 1285 } 1286 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1287 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1288 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1289 return SQLITE_OK; 1290 } 1291 static int sessionDiffCount(void *pCtx){ 1292 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1293 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1294 } 1295 static int sessionDiffDepth(void *pCtx){ 1296 return 0; 1297 } 1298 1299 /* 1300 ** Install the diff hooks on the session object passed as the only 1301 ** argument. 1302 */ 1303 static void sessionDiffHooks( 1304 sqlite3_session *pSession, 1305 SessionDiffCtx *pDiffCtx 1306 ){ 1307 pSession->hook.pCtx = (void*)pDiffCtx; 1308 pSession->hook.xOld = sessionDiffOld; 1309 pSession->hook.xNew = sessionDiffNew; 1310 pSession->hook.xCount = sessionDiffCount; 1311 pSession->hook.xDepth = sessionDiffDepth; 1312 } 1313 1314 static char *sessionExprComparePK( 1315 int nCol, 1316 const char *zDb1, const char *zDb2, 1317 const char *zTab, 1318 const char **azCol, u8 *abPK 1319 ){ 1320 int i; 1321 const char *zSep = ""; 1322 char *zRet = 0; 1323 1324 for(i=0; i<nCol; i++){ 1325 if( abPK[i] ){ 1326 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1327 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1328 ); 1329 zSep = " AND "; 1330 if( zRet==0 ) break; 1331 } 1332 } 1333 1334 return zRet; 1335 } 1336 1337 static char *sessionExprCompareOther( 1338 int nCol, 1339 const char *zDb1, const char *zDb2, 1340 const char *zTab, 1341 const char **azCol, u8 *abPK 1342 ){ 1343 int i; 1344 const char *zSep = ""; 1345 char *zRet = 0; 1346 int bHave = 0; 1347 1348 for(i=0; i<nCol; i++){ 1349 if( abPK[i]==0 ){ 1350 bHave = 1; 1351 zRet = sqlite3_mprintf( 1352 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1353 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1354 ); 1355 zSep = " OR "; 1356 if( zRet==0 ) break; 1357 } 1358 } 1359 1360 if( bHave==0 ){ 1361 assert( zRet==0 ); 1362 zRet = sqlite3_mprintf("0"); 1363 } 1364 1365 return zRet; 1366 } 1367 1368 static char *sessionSelectFindNew( 1369 int nCol, 1370 const char *zDb1, /* Pick rows in this db only */ 1371 const char *zDb2, /* But not in this one */ 1372 const char *zTbl, /* Table name */ 1373 const char *zExpr 1374 ){ 1375 char *zRet = sqlite3_mprintf( 1376 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1377 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1378 ")", 1379 zDb1, zTbl, zDb2, zTbl, zExpr 1380 ); 1381 return zRet; 1382 } 1383 1384 static int sessionDiffFindNew( 1385 int op, 1386 sqlite3_session *pSession, 1387 SessionTable *pTab, 1388 const char *zDb1, 1389 const char *zDb2, 1390 char *zExpr 1391 ){ 1392 int rc = SQLITE_OK; 1393 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1394 1395 if( zStmt==0 ){ 1396 rc = SQLITE_NOMEM; 1397 }else{ 1398 sqlite3_stmt *pStmt; 1399 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1400 if( rc==SQLITE_OK ){ 1401 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1402 pDiffCtx->pStmt = pStmt; 1403 pDiffCtx->nOldOff = 0; 1404 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1405 sessionPreupdateOneChange(op, pSession, pTab); 1406 } 1407 rc = sqlite3_finalize(pStmt); 1408 } 1409 sqlite3_free(zStmt); 1410 } 1411 1412 return rc; 1413 } 1414 1415 static int sessionDiffFindModified( 1416 sqlite3_session *pSession, 1417 SessionTable *pTab, 1418 const char *zFrom, 1419 const char *zExpr 1420 ){ 1421 int rc = SQLITE_OK; 1422 1423 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1424 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1425 ); 1426 if( zExpr2==0 ){ 1427 rc = SQLITE_NOMEM; 1428 }else{ 1429 char *zStmt = sqlite3_mprintf( 1430 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1431 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1432 ); 1433 if( zStmt==0 ){ 1434 rc = SQLITE_NOMEM; 1435 }else{ 1436 sqlite3_stmt *pStmt; 1437 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1438 1439 if( rc==SQLITE_OK ){ 1440 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1441 pDiffCtx->pStmt = pStmt; 1442 pDiffCtx->nOldOff = pTab->nCol; 1443 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1444 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1445 } 1446 rc = sqlite3_finalize(pStmt); 1447 } 1448 sqlite3_free(zStmt); 1449 } 1450 } 1451 1452 return rc; 1453 } 1454 1455 int sqlite3session_diff( 1456 sqlite3_session *pSession, 1457 const char *zFrom, 1458 const char *zTbl, 1459 char **pzErrMsg 1460 ){ 1461 const char *zDb = pSession->zDb; 1462 int rc = pSession->rc; 1463 SessionDiffCtx d; 1464 1465 memset(&d, 0, sizeof(d)); 1466 sessionDiffHooks(pSession, &d); 1467 1468 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1469 if( pzErrMsg ) *pzErrMsg = 0; 1470 if( rc==SQLITE_OK ){ 1471 char *zExpr = 0; 1472 sqlite3 *db = pSession->db; 1473 SessionTable *pTo; /* Table zTbl */ 1474 1475 /* Locate and if necessary initialize the target table object */ 1476 rc = sessionFindTable(pSession, zTbl, &pTo); 1477 if( pTo==0 ) goto diff_out; 1478 if( sessionInitTable(pSession, pTo) ){ 1479 rc = pSession->rc; 1480 goto diff_out; 1481 } 1482 1483 /* Check the table schemas match */ 1484 if( rc==SQLITE_OK ){ 1485 int bHasPk = 0; 1486 int bMismatch = 0; 1487 int nCol; /* Columns in zFrom.zTbl */ 1488 u8 *abPK; 1489 const char **azCol = 0; 1490 rc = sessionTableInfo(db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1491 if( rc==SQLITE_OK ){ 1492 if( pTo->nCol!=nCol ){ 1493 bMismatch = 1; 1494 }else{ 1495 int i; 1496 for(i=0; i<nCol; i++){ 1497 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1498 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1499 if( abPK[i] ) bHasPk = 1; 1500 } 1501 } 1502 1503 } 1504 sqlite3_free((char*)azCol); 1505 if( bMismatch ){ 1506 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1507 rc = SQLITE_SCHEMA; 1508 } 1509 if( bHasPk==0 ){ 1510 /* Ignore tables with no primary keys */ 1511 goto diff_out; 1512 } 1513 } 1514 1515 if( rc==SQLITE_OK ){ 1516 zExpr = sessionExprComparePK(pTo->nCol, 1517 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1518 ); 1519 } 1520 1521 /* Find new rows */ 1522 if( rc==SQLITE_OK ){ 1523 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1524 } 1525 1526 /* Find old rows */ 1527 if( rc==SQLITE_OK ){ 1528 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1529 } 1530 1531 /* Find modified rows */ 1532 if( rc==SQLITE_OK ){ 1533 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1534 } 1535 1536 sqlite3_free(zExpr); 1537 } 1538 1539 diff_out: 1540 sessionPreupdateHooks(pSession); 1541 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1542 return rc; 1543 } 1544 1545 /* 1546 ** Create a session object. This session object will record changes to 1547 ** database zDb attached to connection db. 1548 */ 1549 int sqlite3session_create( 1550 sqlite3 *db, /* Database handle */ 1551 const char *zDb, /* Name of db (e.g. "main") */ 1552 sqlite3_session **ppSession /* OUT: New session object */ 1553 ){ 1554 sqlite3_session *pNew; /* Newly allocated session object */ 1555 sqlite3_session *pOld; /* Session object already attached to db */ 1556 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1557 1558 /* Zero the output value in case an error occurs. */ 1559 *ppSession = 0; 1560 1561 /* Allocate and populate the new session object. */ 1562 pNew = (sqlite3_session *)sqlite3_malloc(sizeof(sqlite3_session) + nDb + 1); 1563 if( !pNew ) return SQLITE_NOMEM; 1564 memset(pNew, 0, sizeof(sqlite3_session)); 1565 pNew->db = db; 1566 pNew->zDb = (char *)&pNew[1]; 1567 pNew->bEnable = 1; 1568 memcpy(pNew->zDb, zDb, nDb+1); 1569 sessionPreupdateHooks(pNew); 1570 1571 /* Add the new session object to the linked list of session objects 1572 ** attached to database handle $db. Do this under the cover of the db 1573 ** handle mutex. */ 1574 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1575 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1576 pNew->pNext = pOld; 1577 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1578 1579 *ppSession = pNew; 1580 return SQLITE_OK; 1581 } 1582 1583 /* 1584 ** Free the list of table objects passed as the first argument. The contents 1585 ** of the changed-rows hash tables are also deleted. 1586 */ 1587 static void sessionDeleteTable(SessionTable *pList){ 1588 SessionTable *pNext; 1589 SessionTable *pTab; 1590 1591 for(pTab=pList; pTab; pTab=pNext){ 1592 int i; 1593 pNext = pTab->pNext; 1594 for(i=0; i<pTab->nChange; i++){ 1595 SessionChange *p; 1596 SessionChange *pNextChange; 1597 for(p=pTab->apChange[i]; p; p=pNextChange){ 1598 pNextChange = p->pNext; 1599 sqlite3_free(p); 1600 } 1601 } 1602 sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */ 1603 sqlite3_free(pTab->apChange); 1604 sqlite3_free(pTab); 1605 } 1606 } 1607 1608 /* 1609 ** Delete a session object previously allocated using sqlite3session_create(). 1610 */ 1611 void sqlite3session_delete(sqlite3_session *pSession){ 1612 sqlite3 *db = pSession->db; 1613 sqlite3_session *pHead; 1614 sqlite3_session **pp; 1615 1616 /* Unlink the session from the linked list of sessions attached to the 1617 ** database handle. Hold the db mutex while doing so. */ 1618 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1619 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1620 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1621 if( (*pp)==pSession ){ 1622 *pp = (*pp)->pNext; 1623 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1624 break; 1625 } 1626 } 1627 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1628 1629 /* Delete all attached table objects. And the contents of their 1630 ** associated hash-tables. */ 1631 sessionDeleteTable(pSession->pTable); 1632 1633 /* Free the session object itself. */ 1634 sqlite3_free(pSession); 1635 } 1636 1637 /* 1638 ** Set a table filter on a Session Object. 1639 */ 1640 void sqlite3session_table_filter( 1641 sqlite3_session *pSession, 1642 int(*xFilter)(void*, const char*), 1643 void *pCtx /* First argument passed to xFilter */ 1644 ){ 1645 pSession->bAutoAttach = 1; 1646 pSession->pFilterCtx = pCtx; 1647 pSession->xTableFilter = xFilter; 1648 } 1649 1650 /* 1651 ** Attach a table to a session. All subsequent changes made to the table 1652 ** while the session object is enabled will be recorded. 1653 ** 1654 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1655 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1656 ** or not. 1657 */ 1658 int sqlite3session_attach( 1659 sqlite3_session *pSession, /* Session object */ 1660 const char *zName /* Table name */ 1661 ){ 1662 int rc = SQLITE_OK; 1663 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1664 1665 if( !zName ){ 1666 pSession->bAutoAttach = 1; 1667 }else{ 1668 SessionTable *pTab; /* New table object (if required) */ 1669 int nName; /* Number of bytes in string zName */ 1670 1671 /* First search for an existing entry. If one is found, this call is 1672 ** a no-op. Return early. */ 1673 nName = sqlite3Strlen30(zName); 1674 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1675 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1676 } 1677 1678 if( !pTab ){ 1679 /* Allocate new SessionTable object. */ 1680 pTab = (SessionTable *)sqlite3_malloc(sizeof(SessionTable) + nName + 1); 1681 if( !pTab ){ 1682 rc = SQLITE_NOMEM; 1683 }else{ 1684 /* Populate the new SessionTable object and link it into the list. 1685 ** The new object must be linked onto the end of the list, not 1686 ** simply added to the start of it in order to ensure that tables 1687 ** appear in the correct order when a changeset or patchset is 1688 ** eventually generated. */ 1689 SessionTable **ppTab; 1690 memset(pTab, 0, sizeof(SessionTable)); 1691 pTab->zName = (char *)&pTab[1]; 1692 memcpy(pTab->zName, zName, nName+1); 1693 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1694 *ppTab = pTab; 1695 } 1696 } 1697 } 1698 1699 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1700 return rc; 1701 } 1702 1703 /* 1704 ** Ensure that there is room in the buffer to append nByte bytes of data. 1705 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1706 ** 1707 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1708 ** set *pRc to SQLITE_NOMEM and return non-zero. 1709 */ 1710 static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ 1711 if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ 1712 u8 *aNew; 1713 int nNew = p->nAlloc ? p->nAlloc : 128; 1714 do { 1715 nNew = nNew*2; 1716 }while( nNew<(p->nBuf+nByte) ); 1717 1718 aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew); 1719 if( 0==aNew ){ 1720 *pRc = SQLITE_NOMEM; 1721 }else{ 1722 p->aBuf = aNew; 1723 p->nAlloc = nNew; 1724 } 1725 } 1726 return (*pRc!=SQLITE_OK); 1727 } 1728 1729 /* 1730 ** Append the value passed as the second argument to the buffer passed 1731 ** as the first. 1732 ** 1733 ** This function is a no-op if *pRc is non-zero when it is called. 1734 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 1735 ** before returning. 1736 */ 1737 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 1738 int rc = *pRc; 1739 if( rc==SQLITE_OK ){ 1740 int nByte = 0; 1741 rc = sessionSerializeValue(0, pVal, &nByte); 1742 sessionBufferGrow(p, nByte, &rc); 1743 if( rc==SQLITE_OK ){ 1744 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 1745 p->nBuf += nByte; 1746 }else{ 1747 *pRc = rc; 1748 } 1749 } 1750 } 1751 1752 /* 1753 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1754 ** called. Otherwise, append a single byte to the buffer. 1755 ** 1756 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1757 ** returning. 1758 */ 1759 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 1760 if( 0==sessionBufferGrow(p, 1, pRc) ){ 1761 p->aBuf[p->nBuf++] = v; 1762 } 1763 } 1764 1765 /* 1766 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1767 ** called. Otherwise, append a single varint to the buffer. 1768 ** 1769 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1770 ** returning. 1771 */ 1772 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 1773 if( 0==sessionBufferGrow(p, 9, pRc) ){ 1774 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 1775 } 1776 } 1777 1778 /* 1779 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1780 ** called. Otherwise, append a blob of data to the buffer. 1781 ** 1782 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1783 ** returning. 1784 */ 1785 static void sessionAppendBlob( 1786 SessionBuffer *p, 1787 const u8 *aBlob, 1788 int nBlob, 1789 int *pRc 1790 ){ 1791 if( 0==sessionBufferGrow(p, nBlob, pRc) ){ 1792 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 1793 p->nBuf += nBlob; 1794 } 1795 } 1796 1797 /* 1798 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1799 ** called. Otherwise, append a string to the buffer. All bytes in the string 1800 ** up to (but not including) the nul-terminator are written to the buffer. 1801 ** 1802 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1803 ** returning. 1804 */ 1805 static void sessionAppendStr( 1806 SessionBuffer *p, 1807 const char *zStr, 1808 int *pRc 1809 ){ 1810 int nStr = sqlite3Strlen30(zStr); 1811 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1812 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 1813 p->nBuf += nStr; 1814 } 1815 } 1816 1817 /* 1818 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1819 ** called. Otherwise, append the string representation of integer iVal 1820 ** to the buffer. No nul-terminator is written. 1821 ** 1822 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1823 ** returning. 1824 */ 1825 static void sessionAppendInteger( 1826 SessionBuffer *p, /* Buffer to append to */ 1827 int iVal, /* Value to write the string rep. of */ 1828 int *pRc /* IN/OUT: Error code */ 1829 ){ 1830 char aBuf[24]; 1831 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 1832 sessionAppendStr(p, aBuf, pRc); 1833 } 1834 1835 /* 1836 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1837 ** called. Otherwise, append the string zStr enclosed in quotes (") and 1838 ** with any embedded quote characters escaped to the buffer. No 1839 ** nul-terminator byte is written. 1840 ** 1841 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1842 ** returning. 1843 */ 1844 static void sessionAppendIdent( 1845 SessionBuffer *p, /* Buffer to a append to */ 1846 const char *zStr, /* String to quote, escape and append */ 1847 int *pRc /* IN/OUT: Error code */ 1848 ){ 1849 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 1850 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1851 char *zOut = (char *)&p->aBuf[p->nBuf]; 1852 const char *zIn = zStr; 1853 *zOut++ = '"'; 1854 while( *zIn ){ 1855 if( *zIn=='"' ) *zOut++ = '"'; 1856 *zOut++ = *(zIn++); 1857 } 1858 *zOut++ = '"'; 1859 p->nBuf = (int)((u8 *)zOut - p->aBuf); 1860 } 1861 } 1862 1863 /* 1864 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1865 ** called. Otherwse, it appends the serialized version of the value stored 1866 ** in column iCol of the row that SQL statement pStmt currently points 1867 ** to to the buffer. 1868 */ 1869 static void sessionAppendCol( 1870 SessionBuffer *p, /* Buffer to append to */ 1871 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 1872 int iCol, /* Column to read value from */ 1873 int *pRc /* IN/OUT: Error code */ 1874 ){ 1875 if( *pRc==SQLITE_OK ){ 1876 int eType = sqlite3_column_type(pStmt, iCol); 1877 sessionAppendByte(p, (u8)eType, pRc); 1878 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1879 sqlite3_int64 i; 1880 u8 aBuf[8]; 1881 if( eType==SQLITE_INTEGER ){ 1882 i = sqlite3_column_int64(pStmt, iCol); 1883 }else{ 1884 double r = sqlite3_column_double(pStmt, iCol); 1885 memcpy(&i, &r, 8); 1886 } 1887 sessionPutI64(aBuf, i); 1888 sessionAppendBlob(p, aBuf, 8, pRc); 1889 } 1890 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 1891 u8 *z; 1892 int nByte; 1893 if( eType==SQLITE_BLOB ){ 1894 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 1895 }else{ 1896 z = (u8 *)sqlite3_column_text(pStmt, iCol); 1897 } 1898 nByte = sqlite3_column_bytes(pStmt, iCol); 1899 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 1900 sessionAppendVarint(p, nByte, pRc); 1901 sessionAppendBlob(p, z, nByte, pRc); 1902 }else{ 1903 *pRc = SQLITE_NOMEM; 1904 } 1905 } 1906 } 1907 } 1908 1909 /* 1910 ** 1911 ** This function appends an update change to the buffer (see the comments 1912 ** under "CHANGESET FORMAT" at the top of the file). An update change 1913 ** consists of: 1914 ** 1915 ** 1 byte: SQLITE_UPDATE (0x17) 1916 ** n bytes: old.* record (see RECORD FORMAT) 1917 ** m bytes: new.* record (see RECORD FORMAT) 1918 ** 1919 ** The SessionChange object passed as the third argument contains the 1920 ** values that were stored in the row when the session began (the old.* 1921 ** values). The statement handle passed as the second argument points 1922 ** at the current version of the row (the new.* values). 1923 ** 1924 ** If all of the old.* values are equal to their corresponding new.* value 1925 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 1926 ** 1927 ** Otherwise, the old.* record contains all primary key values and the 1928 ** original values of any fields that have been modified. The new.* record 1929 ** contains the new values of only those fields that have been modified. 1930 */ 1931 static int sessionAppendUpdate( 1932 SessionBuffer *pBuf, /* Buffer to append to */ 1933 int bPatchset, /* True for "patchset", 0 for "changeset" */ 1934 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 1935 SessionChange *p, /* Object containing old values */ 1936 u8 *abPK /* Boolean array - true for PK columns */ 1937 ){ 1938 int rc = SQLITE_OK; 1939 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 1940 int bNoop = 1; /* Set to zero if any values are modified */ 1941 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 1942 int i; /* Used to iterate through columns */ 1943 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 1944 1945 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 1946 sessionAppendByte(pBuf, p->bIndirect, &rc); 1947 for(i=0; i<sqlite3_column_count(pStmt); i++){ 1948 int bChanged = 0; 1949 int nAdvance; 1950 int eType = *pCsr; 1951 switch( eType ){ 1952 case SQLITE_NULL: 1953 nAdvance = 1; 1954 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 1955 bChanged = 1; 1956 } 1957 break; 1958 1959 case SQLITE_FLOAT: 1960 case SQLITE_INTEGER: { 1961 nAdvance = 9; 1962 if( eType==sqlite3_column_type(pStmt, i) ){ 1963 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 1964 if( eType==SQLITE_INTEGER ){ 1965 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 1966 }else{ 1967 double dVal; 1968 memcpy(&dVal, &iVal, 8); 1969 if( dVal==sqlite3_column_double(pStmt, i) ) break; 1970 } 1971 } 1972 bChanged = 1; 1973 break; 1974 } 1975 1976 default: { 1977 int nByte; 1978 int nHdr = 1 + sessionVarintGet(&pCsr[1], &nByte); 1979 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 1980 nAdvance = nHdr + nByte; 1981 if( eType==sqlite3_column_type(pStmt, i) 1982 && nByte==sqlite3_column_bytes(pStmt, i) 1983 && 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), nByte) 1984 ){ 1985 break; 1986 } 1987 bChanged = 1; 1988 } 1989 } 1990 1991 /* If at least one field has been modified, this is not a no-op. */ 1992 if( bChanged ) bNoop = 0; 1993 1994 /* Add a field to the old.* record. This is omitted if this modules is 1995 ** currently generating a patchset. */ 1996 if( bPatchset==0 ){ 1997 if( bChanged || abPK[i] ){ 1998 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 1999 }else{ 2000 sessionAppendByte(pBuf, 0, &rc); 2001 } 2002 } 2003 2004 /* Add a field to the new.* record. Or the only record if currently 2005 ** generating a patchset. */ 2006 if( bChanged || (bPatchset && abPK[i]) ){ 2007 sessionAppendCol(&buf2, pStmt, i, &rc); 2008 }else{ 2009 sessionAppendByte(&buf2, 0, &rc); 2010 } 2011 2012 pCsr += nAdvance; 2013 } 2014 2015 if( bNoop ){ 2016 pBuf->nBuf = nRewind; 2017 }else{ 2018 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2019 } 2020 sqlite3_free(buf2.aBuf); 2021 2022 return rc; 2023 } 2024 2025 /* 2026 ** Append a DELETE change to the buffer passed as the first argument. Use 2027 ** the changeset format if argument bPatchset is zero, or the patchset 2028 ** format otherwise. 2029 */ 2030 static int sessionAppendDelete( 2031 SessionBuffer *pBuf, /* Buffer to append to */ 2032 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2033 SessionChange *p, /* Object containing old values */ 2034 int nCol, /* Number of columns in table */ 2035 u8 *abPK /* Boolean array - true for PK columns */ 2036 ){ 2037 int rc = SQLITE_OK; 2038 2039 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2040 sessionAppendByte(pBuf, p->bIndirect, &rc); 2041 2042 if( bPatchset==0 ){ 2043 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2044 }else{ 2045 int i; 2046 u8 *a = p->aRecord; 2047 for(i=0; i<nCol; i++){ 2048 u8 *pStart = a; 2049 int eType = *a++; 2050 2051 switch( eType ){ 2052 case 0: 2053 case SQLITE_NULL: 2054 assert( abPK[i]==0 ); 2055 break; 2056 2057 case SQLITE_FLOAT: 2058 case SQLITE_INTEGER: 2059 a += 8; 2060 break; 2061 2062 default: { 2063 int n; 2064 a += sessionVarintGet(a, &n); 2065 a += n; 2066 break; 2067 } 2068 } 2069 if( abPK[i] ){ 2070 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2071 } 2072 } 2073 assert( (a - p->aRecord)==p->nRecord ); 2074 } 2075 2076 return rc; 2077 } 2078 2079 /* 2080 ** Formulate and prepare a SELECT statement to retrieve a row from table 2081 ** zTab in database zDb based on its primary key. i.e. 2082 ** 2083 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2084 */ 2085 static int sessionSelectStmt( 2086 sqlite3 *db, /* Database handle */ 2087 const char *zDb, /* Database name */ 2088 const char *zTab, /* Table name */ 2089 int nCol, /* Number of columns in table */ 2090 const char **azCol, /* Names of table columns */ 2091 u8 *abPK, /* PRIMARY KEY array */ 2092 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2093 ){ 2094 int rc = SQLITE_OK; 2095 int i; 2096 const char *zSep = ""; 2097 SessionBuffer buf = {0, 0, 0}; 2098 2099 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2100 sessionAppendIdent(&buf, zDb, &rc); 2101 sessionAppendStr(&buf, ".", &rc); 2102 sessionAppendIdent(&buf, zTab, &rc); 2103 sessionAppendStr(&buf, " WHERE ", &rc); 2104 for(i=0; i<nCol; i++){ 2105 if( abPK[i] ){ 2106 sessionAppendStr(&buf, zSep, &rc); 2107 sessionAppendIdent(&buf, azCol[i], &rc); 2108 sessionAppendStr(&buf, " = ?", &rc); 2109 sessionAppendInteger(&buf, i+1, &rc); 2110 zSep = " AND "; 2111 } 2112 } 2113 if( rc==SQLITE_OK ){ 2114 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, ppStmt, 0); 2115 } 2116 sqlite3_free(buf.aBuf); 2117 return rc; 2118 } 2119 2120 /* 2121 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2122 ** to the SELECT statement passed as the first argument. The SELECT statement 2123 ** is as prepared by function sessionSelectStmt(). 2124 ** 2125 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2126 ** error code (e.g. SQLITE_NOMEM) otherwise. 2127 */ 2128 static int sessionSelectBind( 2129 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2130 int nCol, /* Number of columns in table */ 2131 u8 *abPK, /* PRIMARY KEY array */ 2132 SessionChange *pChange /* Change structure */ 2133 ){ 2134 int i; 2135 int rc = SQLITE_OK; 2136 u8 *a = pChange->aRecord; 2137 2138 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2139 int eType = *a++; 2140 2141 switch( eType ){ 2142 case 0: 2143 case SQLITE_NULL: 2144 assert( abPK[i]==0 ); 2145 break; 2146 2147 case SQLITE_INTEGER: { 2148 if( abPK[i] ){ 2149 i64 iVal = sessionGetI64(a); 2150 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2151 } 2152 a += 8; 2153 break; 2154 } 2155 2156 case SQLITE_FLOAT: { 2157 if( abPK[i] ){ 2158 double rVal; 2159 i64 iVal = sessionGetI64(a); 2160 memcpy(&rVal, &iVal, 8); 2161 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2162 } 2163 a += 8; 2164 break; 2165 } 2166 2167 case SQLITE_TEXT: { 2168 int n; 2169 a += sessionVarintGet(a, &n); 2170 if( abPK[i] ){ 2171 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2172 } 2173 a += n; 2174 break; 2175 } 2176 2177 default: { 2178 int n; 2179 assert( eType==SQLITE_BLOB ); 2180 a += sessionVarintGet(a, &n); 2181 if( abPK[i] ){ 2182 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2183 } 2184 a += n; 2185 break; 2186 } 2187 } 2188 } 2189 2190 return rc; 2191 } 2192 2193 /* 2194 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2195 ** is called. Otherwise, append a serialized table header (part of the binary 2196 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2197 ** SQLite error code before returning. 2198 */ 2199 static void sessionAppendTableHdr( 2200 SessionBuffer *pBuf, /* Append header to this buffer */ 2201 int bPatchset, /* Use the patchset format if true */ 2202 SessionTable *pTab, /* Table object to append header for */ 2203 int *pRc /* IN/OUT: Error code */ 2204 ){ 2205 /* Write a table header */ 2206 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2207 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2208 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2209 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2210 } 2211 2212 /* 2213 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2214 ** (if it is non-zero) based on the current contents of the session object 2215 ** passed as the first argument. 2216 ** 2217 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2218 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2219 ** occurs, an SQLite error code is returned and both output variables set 2220 ** to 0. 2221 */ 2222 static int sessionGenerateChangeset( 2223 sqlite3_session *pSession, /* Session object */ 2224 int bPatchset, /* True for patchset, false for changeset */ 2225 int (*xOutput)(void *pOut, const void *pData, int nData), 2226 void *pOut, /* First argument for xOutput */ 2227 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2228 void **ppChangeset /* OUT: Buffer containing changeset */ 2229 ){ 2230 sqlite3 *db = pSession->db; /* Source database handle */ 2231 SessionTable *pTab; /* Used to iterate through attached tables */ 2232 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2233 int rc; /* Return code */ 2234 2235 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0 ) ); 2236 2237 /* Zero the output variables in case an error occurs. If this session 2238 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2239 ** this call will be a no-op. */ 2240 if( xOutput==0 ){ 2241 *pnChangeset = 0; 2242 *ppChangeset = 0; 2243 } 2244 2245 if( pSession->rc ) return pSession->rc; 2246 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2247 if( rc!=SQLITE_OK ) return rc; 2248 2249 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2250 2251 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2252 if( pTab->nEntry ){ 2253 const char *zName = pTab->zName; 2254 int nCol; /* Number of columns in table */ 2255 u8 *abPK; /* Primary key array */ 2256 const char **azCol = 0; /* Table columns */ 2257 int i; /* Used to iterate through hash buckets */ 2258 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2259 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2260 int nNoop; /* Size of buffer after writing tbl header */ 2261 2262 /* Check the table schema is still Ok. */ 2263 rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK); 2264 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2265 rc = SQLITE_SCHEMA; 2266 } 2267 2268 /* Write a table header */ 2269 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2270 2271 /* Build and compile a statement to execute: */ 2272 if( rc==SQLITE_OK ){ 2273 rc = sessionSelectStmt( 2274 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2275 } 2276 2277 nNoop = buf.nBuf; 2278 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2279 SessionChange *p; /* Used to iterate through changes */ 2280 2281 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2282 rc = sessionSelectBind(pSel, nCol, abPK, p); 2283 if( rc!=SQLITE_OK ) continue; 2284 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2285 if( p->op==SQLITE_INSERT ){ 2286 int iCol; 2287 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2288 sessionAppendByte(&buf, p->bIndirect, &rc); 2289 for(iCol=0; iCol<nCol; iCol++){ 2290 sessionAppendCol(&buf, pSel, iCol, &rc); 2291 } 2292 }else{ 2293 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2294 } 2295 }else if( p->op!=SQLITE_INSERT ){ 2296 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2297 } 2298 if( rc==SQLITE_OK ){ 2299 rc = sqlite3_reset(pSel); 2300 } 2301 2302 /* If the buffer is now larger than SESSIONS_STRM_CHUNK_SIZE, pass 2303 ** its contents to the xOutput() callback. */ 2304 if( xOutput 2305 && rc==SQLITE_OK 2306 && buf.nBuf>nNoop 2307 && buf.nBuf>SESSIONS_STRM_CHUNK_SIZE 2308 ){ 2309 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2310 nNoop = -1; 2311 buf.nBuf = 0; 2312 } 2313 2314 } 2315 } 2316 2317 sqlite3_finalize(pSel); 2318 if( buf.nBuf==nNoop ){ 2319 buf.nBuf = nRewind; 2320 } 2321 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2322 } 2323 } 2324 2325 if( rc==SQLITE_OK ){ 2326 if( xOutput==0 ){ 2327 *pnChangeset = buf.nBuf; 2328 *ppChangeset = buf.aBuf; 2329 buf.aBuf = 0; 2330 }else if( buf.nBuf>0 ){ 2331 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2332 } 2333 } 2334 2335 sqlite3_free(buf.aBuf); 2336 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2337 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2338 return rc; 2339 } 2340 2341 /* 2342 ** Obtain a changeset object containing all changes recorded by the 2343 ** session object passed as the first argument. 2344 ** 2345 ** It is the responsibility of the caller to eventually free the buffer 2346 ** using sqlite3_free(). 2347 */ 2348 int sqlite3session_changeset( 2349 sqlite3_session *pSession, /* Session object */ 2350 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2351 void **ppChangeset /* OUT: Buffer containing changeset */ 2352 ){ 2353 return sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset); 2354 } 2355 2356 /* 2357 ** Streaming version of sqlite3session_changeset(). 2358 */ 2359 int sqlite3session_changeset_strm( 2360 sqlite3_session *pSession, 2361 int (*xOutput)(void *pOut, const void *pData, int nData), 2362 void *pOut 2363 ){ 2364 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2365 } 2366 2367 /* 2368 ** Streaming version of sqlite3session_patchset(). 2369 */ 2370 int sqlite3session_patchset_strm( 2371 sqlite3_session *pSession, 2372 int (*xOutput)(void *pOut, const void *pData, int nData), 2373 void *pOut 2374 ){ 2375 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2376 } 2377 2378 /* 2379 ** Obtain a patchset object containing all changes recorded by the 2380 ** session object passed as the first argument. 2381 ** 2382 ** It is the responsibility of the caller to eventually free the buffer 2383 ** using sqlite3_free(). 2384 */ 2385 int sqlite3session_patchset( 2386 sqlite3_session *pSession, /* Session object */ 2387 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2388 void **ppPatchset /* OUT: Buffer containing changeset */ 2389 ){ 2390 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2391 } 2392 2393 /* 2394 ** Enable or disable the session object passed as the first argument. 2395 */ 2396 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2397 int ret; 2398 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2399 if( bEnable>=0 ){ 2400 pSession->bEnable = bEnable; 2401 } 2402 ret = pSession->bEnable; 2403 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2404 return ret; 2405 } 2406 2407 /* 2408 ** Enable or disable the session object passed as the first argument. 2409 */ 2410 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2411 int ret; 2412 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2413 if( bIndirect>=0 ){ 2414 pSession->bIndirect = bIndirect; 2415 } 2416 ret = pSession->bIndirect; 2417 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2418 return ret; 2419 } 2420 2421 /* 2422 ** Return true if there have been no changes to monitored tables recorded 2423 ** by the session object passed as the only argument. 2424 */ 2425 int sqlite3session_isempty(sqlite3_session *pSession){ 2426 int ret = 0; 2427 SessionTable *pTab; 2428 2429 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2430 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2431 ret = (pTab->nEntry>0); 2432 } 2433 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2434 2435 return (ret==0); 2436 } 2437 2438 /* 2439 ** Do the work for either sqlite3changeset_start() or start_strm(). 2440 */ 2441 static int sessionChangesetStart( 2442 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2443 int (*xInput)(void *pIn, void *pData, int *pnData), 2444 void *pIn, 2445 int nChangeset, /* Size of buffer pChangeset in bytes */ 2446 void *pChangeset /* Pointer to buffer containing changeset */ 2447 ){ 2448 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2449 int nByte; /* Number of bytes to allocate for iterator */ 2450 2451 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2452 2453 /* Zero the output variable in case an error occurs. */ 2454 *pp = 0; 2455 2456 /* Allocate and initialize the iterator structure. */ 2457 nByte = sizeof(sqlite3_changeset_iter); 2458 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2459 if( !pRet ) return SQLITE_NOMEM; 2460 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2461 pRet->in.aData = (u8 *)pChangeset; 2462 pRet->in.nData = nChangeset; 2463 pRet->in.xInput = xInput; 2464 pRet->in.pIn = pIn; 2465 pRet->in.bEof = (xInput ? 0 : 1); 2466 2467 /* Populate the output variable and return success. */ 2468 *pp = pRet; 2469 return SQLITE_OK; 2470 } 2471 2472 /* 2473 ** Create an iterator used to iterate through the contents of a changeset. 2474 */ 2475 int sqlite3changeset_start( 2476 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2477 int nChangeset, /* Size of buffer pChangeset in bytes */ 2478 void *pChangeset /* Pointer to buffer containing changeset */ 2479 ){ 2480 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset); 2481 } 2482 2483 /* 2484 ** Streaming version of sqlite3changeset_start(). 2485 */ 2486 int sqlite3changeset_start_strm( 2487 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2488 int (*xInput)(void *pIn, void *pData, int *pnData), 2489 void *pIn 2490 ){ 2491 return sessionChangesetStart(pp, xInput, pIn, 0, 0); 2492 } 2493 2494 /* 2495 ** If the SessionInput object passed as the only argument is a streaming 2496 ** object and the buffer is full, discard some data to free up space. 2497 */ 2498 static void sessionDiscardData(SessionInput *pIn){ 2499 if( pIn->bEof && pIn->xInput && pIn->iNext>=SESSIONS_STRM_CHUNK_SIZE ){ 2500 int nMove = pIn->buf.nBuf - pIn->iNext; 2501 assert( nMove>=0 ); 2502 if( nMove>0 ){ 2503 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2504 } 2505 pIn->buf.nBuf -= pIn->iNext; 2506 pIn->iNext = 0; 2507 pIn->nData = pIn->buf.nBuf; 2508 } 2509 } 2510 2511 /* 2512 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2513 ** if there are not nByte bytes remaining in the input, that all available 2514 ** data is in the buffer. 2515 ** 2516 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2517 */ 2518 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2519 int rc = SQLITE_OK; 2520 if( pIn->xInput ){ 2521 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2522 int nNew = SESSIONS_STRM_CHUNK_SIZE; 2523 2524 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2525 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2526 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2527 if( nNew==0 ){ 2528 pIn->bEof = 1; 2529 }else{ 2530 pIn->buf.nBuf += nNew; 2531 } 2532 } 2533 2534 pIn->aData = pIn->buf.aBuf; 2535 pIn->nData = pIn->buf.nBuf; 2536 } 2537 } 2538 return rc; 2539 } 2540 2541 /* 2542 ** When this function is called, *ppRec points to the start of a record 2543 ** that contains nCol values. This function advances the pointer *ppRec 2544 ** until it points to the byte immediately following that record. 2545 */ 2546 static void sessionSkipRecord( 2547 u8 **ppRec, /* IN/OUT: Record pointer */ 2548 int nCol /* Number of values in record */ 2549 ){ 2550 u8 *aRec = *ppRec; 2551 int i; 2552 for(i=0; i<nCol; i++){ 2553 int eType = *aRec++; 2554 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2555 int nByte; 2556 aRec += sessionVarintGet((u8*)aRec, &nByte); 2557 aRec += nByte; 2558 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2559 aRec += 8; 2560 } 2561 } 2562 2563 *ppRec = aRec; 2564 } 2565 2566 /* 2567 ** This function sets the value of the sqlite3_value object passed as the 2568 ** first argument to a copy of the string or blob held in the aData[] 2569 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2570 ** error occurs. 2571 */ 2572 static int sessionValueSetStr( 2573 sqlite3_value *pVal, /* Set the value of this object */ 2574 u8 *aData, /* Buffer containing string or blob data */ 2575 int nData, /* Size of buffer aData[] in bytes */ 2576 u8 enc /* String encoding (0 for blobs) */ 2577 ){ 2578 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2579 ** argument to sqlite3ValueSetStr() and have the copy created 2580 ** automatically. But doing so makes it difficult to detect any OOM 2581 ** error. Hence the code to create the copy externally. */ 2582 u8 *aCopy = sqlite3_malloc(nData+1); 2583 if( aCopy==0 ) return SQLITE_NOMEM; 2584 memcpy(aCopy, aData, nData); 2585 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2586 return SQLITE_OK; 2587 } 2588 2589 /* 2590 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2591 ** for details. 2592 ** 2593 ** When this function is called, *paChange points to the start of the record 2594 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2595 ** one byte after the end of the same record before this function returns. 2596 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2597 ** if abPK is other than NULL, then the record contains only the PK fields 2598 ** (in other words, it is a patchset DELETE record). 2599 ** 2600 ** If successful, each element of the apOut[] array (allocated by the caller) 2601 ** is set to point to an sqlite3_value object containing the value read 2602 ** from the corresponding position in the record. If that value is not 2603 ** included in the record (i.e. because the record is part of an UPDATE change 2604 ** and the field was not modified), the corresponding element of apOut[] is 2605 ** set to NULL. 2606 ** 2607 ** It is the responsibility of the caller to free all sqlite_value structures 2608 ** using sqlite3_free(). 2609 ** 2610 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 2611 ** The apOut[] array may have been partially populated in this case. 2612 */ 2613 static int sessionReadRecord( 2614 SessionInput *pIn, /* Input data */ 2615 int nCol, /* Number of values in record */ 2616 u8 *abPK, /* Array of primary key flags, or NULL */ 2617 sqlite3_value **apOut /* Write values to this array */ 2618 ){ 2619 int i; /* Used to iterate through columns */ 2620 int rc = SQLITE_OK; 2621 2622 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2623 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 2624 if( abPK && abPK[i]==0 ) continue; 2625 rc = sessionInputBuffer(pIn, 9); 2626 if( rc==SQLITE_OK ){ 2627 eType = pIn->aData[pIn->iNext++]; 2628 } 2629 2630 assert( apOut[i]==0 ); 2631 if( eType ){ 2632 apOut[i] = sqlite3ValueNew(0); 2633 if( !apOut[i] ) rc = SQLITE_NOMEM; 2634 } 2635 2636 if( rc==SQLITE_OK ){ 2637 u8 *aVal = &pIn->aData[pIn->iNext]; 2638 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2639 int nByte; 2640 pIn->iNext += sessionVarintGet(aVal, &nByte); 2641 rc = sessionInputBuffer(pIn, nByte); 2642 if( rc==SQLITE_OK ){ 2643 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 2644 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 2645 } 2646 pIn->iNext += nByte; 2647 } 2648 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2649 sqlite3_int64 v = sessionGetI64(aVal); 2650 if( eType==SQLITE_INTEGER ){ 2651 sqlite3VdbeMemSetInt64(apOut[i], v); 2652 }else{ 2653 double d; 2654 memcpy(&d, &v, 8); 2655 sqlite3VdbeMemSetDouble(apOut[i], d); 2656 } 2657 pIn->iNext += 8; 2658 } 2659 } 2660 } 2661 2662 return rc; 2663 } 2664 2665 /* 2666 ** The input pointer currently points to the second byte of a table-header. 2667 ** Specifically, to the following: 2668 ** 2669 ** + number of columns in table (varint) 2670 ** + array of PK flags (1 byte per column), 2671 ** + table name (nul terminated). 2672 ** 2673 ** This function ensures that all of the above is present in the input 2674 ** buffer (i.e. that it can be accessed without any calls to xInput()). 2675 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2676 ** The input pointer is not moved. 2677 */ 2678 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 2679 int rc = SQLITE_OK; 2680 int nCol = 0; 2681 int nRead = 0; 2682 2683 rc = sessionInputBuffer(pIn, 9); 2684 if( rc==SQLITE_OK ){ 2685 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 2686 rc = sessionInputBuffer(pIn, nRead+nCol+100); 2687 nRead += nCol; 2688 } 2689 2690 while( rc==SQLITE_OK ){ 2691 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 2692 nRead++; 2693 } 2694 if( (pIn->iNext + nRead)<pIn->nData ) break; 2695 rc = sessionInputBuffer(pIn, nRead + 100); 2696 } 2697 *pnByte = nRead+1; 2698 return rc; 2699 } 2700 2701 /* 2702 ** The input pointer currently points to the first byte of the first field 2703 ** of a record consisting of nCol columns. This function ensures the entire 2704 ** record is buffered. It does not move the input pointer. 2705 ** 2706 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 2707 ** the record in bytes. Otherwise, an SQLite error code is returned. The 2708 ** final value of *pnByte is undefined in this case. 2709 */ 2710 static int sessionChangesetBufferRecord( 2711 SessionInput *pIn, /* Input data */ 2712 int nCol, /* Number of columns in record */ 2713 int *pnByte /* OUT: Size of record in bytes */ 2714 ){ 2715 int rc = SQLITE_OK; 2716 int nByte = 0; 2717 int i; 2718 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 2719 int eType; 2720 rc = sessionInputBuffer(pIn, nByte + 10); 2721 if( rc==SQLITE_OK ){ 2722 eType = pIn->aData[pIn->iNext + nByte++]; 2723 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2724 int n; 2725 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 2726 nByte += n; 2727 rc = sessionInputBuffer(pIn, nByte); 2728 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2729 nByte += 8; 2730 } 2731 } 2732 } 2733 *pnByte = nByte; 2734 return rc; 2735 } 2736 2737 /* 2738 ** The input pointer currently points to the second byte of a table-header. 2739 ** Specifically, to the following: 2740 ** 2741 ** + number of columns in table (varint) 2742 ** + array of PK flags (1 byte per column), 2743 ** + table name (nul terminated). 2744 ** 2745 ** This function decodes the table-header and populates the p->nCol, 2746 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 2747 ** also allocated or resized according to the new value of p->nCol. The 2748 ** input pointer is left pointing to the byte following the table header. 2749 ** 2750 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 2751 ** is returned and the final values of the various fields enumerated above 2752 ** are undefined. 2753 */ 2754 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 2755 int rc; 2756 int nCopy; 2757 assert( p->rc==SQLITE_OK ); 2758 2759 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 2760 if( rc==SQLITE_OK ){ 2761 int nByte; 2762 int nVarint; 2763 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 2764 nCopy -= nVarint; 2765 p->in.iNext += nVarint; 2766 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 2767 p->tblhdr.nBuf = 0; 2768 sessionBufferGrow(&p->tblhdr, nByte, &rc); 2769 } 2770 2771 if( rc==SQLITE_OK ){ 2772 int iPK = sizeof(sqlite3_value*)*p->nCol*2; 2773 memset(p->tblhdr.aBuf, 0, iPK); 2774 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 2775 p->in.iNext += nCopy; 2776 } 2777 2778 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 2779 p->abPK = (u8*)&p->apValue[p->nCol*2]; 2780 p->zTab = (char*)&p->abPK[p->nCol]; 2781 return (p->rc = rc); 2782 } 2783 2784 /* 2785 ** Advance the changeset iterator to the next change. 2786 ** 2787 ** If both paRec and pnRec are NULL, then this function works like the public 2788 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 2789 ** sqlite3changeset_new() and old() APIs may be used to query for values. 2790 ** 2791 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 2792 ** record is written to *paRec before returning and the number of bytes in 2793 ** the record to *pnRec. 2794 ** 2795 ** Either way, this function returns SQLITE_ROW if the iterator is 2796 ** successfully advanced to the next change in the changeset, an SQLite 2797 ** error code if an error occurs, or SQLITE_DONE if there are no further 2798 ** changes in the changeset. 2799 */ 2800 static int sessionChangesetNext( 2801 sqlite3_changeset_iter *p, /* Changeset iterator */ 2802 u8 **paRec, /* If non-NULL, store record pointer here */ 2803 int *pnRec /* If non-NULL, store size of record here */ 2804 ){ 2805 int i; 2806 u8 op; 2807 2808 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 2809 2810 /* If the iterator is in the error-state, return immediately. */ 2811 if( p->rc!=SQLITE_OK ) return p->rc; 2812 2813 /* Free the current contents of p->apValue[], if any. */ 2814 if( p->apValue ){ 2815 for(i=0; i<p->nCol*2; i++){ 2816 sqlite3ValueFree(p->apValue[i]); 2817 } 2818 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 2819 } 2820 2821 /* Make sure the buffer contains at least 10 bytes of input data, or all 2822 ** remaining data if there are less than 10 bytes available. This is 2823 ** sufficient either for the 'T' or 'P' byte and the varint that follows 2824 ** it, or for the two single byte values otherwise. */ 2825 p->rc = sessionInputBuffer(&p->in, 2); 2826 if( p->rc!=SQLITE_OK ) return p->rc; 2827 2828 /* If the iterator is already at the end of the changeset, return DONE. */ 2829 if( p->in.iNext>=p->in.nData ){ 2830 return SQLITE_DONE; 2831 } 2832 2833 sessionDiscardData(&p->in); 2834 p->in.iCurrent = p->in.iNext; 2835 2836 op = p->in.aData[p->in.iNext++]; 2837 if( op=='T' || op=='P' ){ 2838 p->bPatchset = (op=='P'); 2839 if( sessionChangesetReadTblhdr(p) ) return p->rc; 2840 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 2841 p->in.iCurrent = p->in.iNext; 2842 op = p->in.aData[p->in.iNext++]; 2843 } 2844 2845 p->op = op; 2846 p->bIndirect = p->in.aData[p->in.iNext++]; 2847 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 2848 return (p->rc = SQLITE_CORRUPT_BKPT); 2849 } 2850 2851 if( paRec ){ 2852 int nVal; /* Number of values to buffer */ 2853 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 2854 nVal = p->nCol * 2; 2855 }else if( p->bPatchset && op==SQLITE_DELETE ){ 2856 nVal = 0; 2857 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 2858 }else{ 2859 nVal = p->nCol; 2860 } 2861 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 2862 if( p->rc!=SQLITE_OK ) return p->rc; 2863 *paRec = &p->in.aData[p->in.iNext]; 2864 p->in.iNext += *pnRec; 2865 }else{ 2866 2867 /* If this is an UPDATE or DELETE, read the old.* record. */ 2868 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 2869 u8 *abPK = p->bPatchset ? p->abPK : 0; 2870 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, p->apValue); 2871 if( p->rc!=SQLITE_OK ) return p->rc; 2872 } 2873 2874 /* If this is an INSERT or UPDATE, read the new.* record. */ 2875 if( p->op!=SQLITE_DELETE ){ 2876 p->rc = sessionReadRecord(&p->in, p->nCol, 0, &p->apValue[p->nCol]); 2877 if( p->rc!=SQLITE_OK ) return p->rc; 2878 } 2879 2880 if( p->bPatchset && p->op==SQLITE_UPDATE ){ 2881 /* If this is an UPDATE that is part of a patchset, then all PK and 2882 ** modified fields are present in the new.* record. The old.* record 2883 ** is currently completely empty. This block shifts the PK fields from 2884 ** new.* to old.*, to accommodate the code that reads these arrays. */ 2885 for(i=0; i<p->nCol; i++){ 2886 assert( p->apValue[i]==0 ); 2887 assert( p->abPK[i]==0 || p->apValue[i+p->nCol] ); 2888 if( p->abPK[i] ){ 2889 p->apValue[i] = p->apValue[i+p->nCol]; 2890 p->apValue[i+p->nCol] = 0; 2891 } 2892 } 2893 } 2894 } 2895 2896 return SQLITE_ROW; 2897 } 2898 2899 /* 2900 ** Advance an iterator created by sqlite3changeset_start() to the next 2901 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 2902 ** or SQLITE_CORRUPT. 2903 ** 2904 ** This function may not be called on iterators passed to a conflict handler 2905 ** callback by changeset_apply(). 2906 */ 2907 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 2908 return sessionChangesetNext(p, 0, 0); 2909 } 2910 2911 /* 2912 ** The following function extracts information on the current change 2913 ** from a changeset iterator. It may only be called after changeset_next() 2914 ** has returned SQLITE_ROW. 2915 */ 2916 int sqlite3changeset_op( 2917 sqlite3_changeset_iter *pIter, /* Iterator handle */ 2918 const char **pzTab, /* OUT: Pointer to table name */ 2919 int *pnCol, /* OUT: Number of columns in table */ 2920 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 2921 int *pbIndirect /* OUT: True if change is indirect */ 2922 ){ 2923 *pOp = pIter->op; 2924 *pnCol = pIter->nCol; 2925 *pzTab = pIter->zTab; 2926 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 2927 return SQLITE_OK; 2928 } 2929 2930 /* 2931 ** Return information regarding the PRIMARY KEY and number of columns in 2932 ** the database table affected by the change that pIter currently points 2933 ** to. This function may only be called after changeset_next() returns 2934 ** SQLITE_ROW. 2935 */ 2936 int sqlite3changeset_pk( 2937 sqlite3_changeset_iter *pIter, /* Iterator object */ 2938 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 2939 int *pnCol /* OUT: Number of entries in output array */ 2940 ){ 2941 *pabPK = pIter->abPK; 2942 if( pnCol ) *pnCol = pIter->nCol; 2943 return SQLITE_OK; 2944 } 2945 2946 /* 2947 ** This function may only be called while the iterator is pointing to an 2948 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 2949 ** Otherwise, SQLITE_MISUSE is returned. 2950 ** 2951 ** It sets *ppValue to point to an sqlite3_value structure containing the 2952 ** iVal'th value in the old.* record. Or, if that particular value is not 2953 ** included in the record (because the change is an UPDATE and the field 2954 ** was not modified and is not a PK column), set *ppValue to NULL. 2955 ** 2956 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2957 ** not modified. Otherwise, SQLITE_OK. 2958 */ 2959 int sqlite3changeset_old( 2960 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2961 int iVal, /* Index of old.* value to retrieve */ 2962 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 2963 ){ 2964 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 2965 return SQLITE_MISUSE; 2966 } 2967 if( iVal<0 || iVal>=pIter->nCol ){ 2968 return SQLITE_RANGE; 2969 } 2970 *ppValue = pIter->apValue[iVal]; 2971 return SQLITE_OK; 2972 } 2973 2974 /* 2975 ** This function may only be called while the iterator is pointing to an 2976 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 2977 ** Otherwise, SQLITE_MISUSE is returned. 2978 ** 2979 ** It sets *ppValue to point to an sqlite3_value structure containing the 2980 ** iVal'th value in the new.* record. Or, if that particular value is not 2981 ** included in the record (because the change is an UPDATE and the field 2982 ** was not modified), set *ppValue to NULL. 2983 ** 2984 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 2985 ** not modified. Otherwise, SQLITE_OK. 2986 */ 2987 int sqlite3changeset_new( 2988 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 2989 int iVal, /* Index of new.* value to retrieve */ 2990 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 2991 ){ 2992 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 2993 return SQLITE_MISUSE; 2994 } 2995 if( iVal<0 || iVal>=pIter->nCol ){ 2996 return SQLITE_RANGE; 2997 } 2998 *ppValue = pIter->apValue[pIter->nCol+iVal]; 2999 return SQLITE_OK; 3000 } 3001 3002 /* 3003 ** The following two macros are used internally. They are similar to the 3004 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3005 ** they omit all error checking and return a pointer to the requested value. 3006 */ 3007 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3008 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3009 3010 /* 3011 ** This function may only be called with a changeset iterator that has been 3012 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3013 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3014 ** 3015 ** If successful, *ppValue is set to point to an sqlite3_value structure 3016 ** containing the iVal'th value of the conflicting record. 3017 ** 3018 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3019 ** code is returned. Otherwise, SQLITE_OK. 3020 */ 3021 int sqlite3changeset_conflict( 3022 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3023 int iVal, /* Index of conflict record value to fetch */ 3024 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3025 ){ 3026 if( !pIter->pConflict ){ 3027 return SQLITE_MISUSE; 3028 } 3029 if( iVal<0 || iVal>=sqlite3_column_count(pIter->pConflict) ){ 3030 return SQLITE_RANGE; 3031 } 3032 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3033 return SQLITE_OK; 3034 } 3035 3036 /* 3037 ** This function may only be called with an iterator passed to an 3038 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3039 ** it sets the output variable to the total number of known foreign key 3040 ** violations in the destination database and returns SQLITE_OK. 3041 ** 3042 ** In all other cases this function returns SQLITE_MISUSE. 3043 */ 3044 int sqlite3changeset_fk_conflicts( 3045 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3046 int *pnOut /* OUT: Number of FK violations */ 3047 ){ 3048 if( pIter->pConflict || pIter->apValue ){ 3049 return SQLITE_MISUSE; 3050 } 3051 *pnOut = pIter->nCol; 3052 return SQLITE_OK; 3053 } 3054 3055 3056 /* 3057 ** Finalize an iterator allocated with sqlite3changeset_start(). 3058 ** 3059 ** This function may not be called on iterators passed to a conflict handler 3060 ** callback by changeset_apply(). 3061 */ 3062 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3063 int rc = SQLITE_OK; 3064 if( p ){ 3065 int i; /* Used to iterate through p->apValue[] */ 3066 rc = p->rc; 3067 if( p->apValue ){ 3068 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3069 } 3070 sqlite3_free(p->tblhdr.aBuf); 3071 sqlite3_free(p->in.buf.aBuf); 3072 sqlite3_free(p); 3073 } 3074 return rc; 3075 } 3076 3077 static int sessionChangesetInvert( 3078 SessionInput *pInput, /* Input changeset */ 3079 int (*xOutput)(void *pOut, const void *pData, int nData), 3080 void *pOut, 3081 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3082 void **ppInverted /* OUT: Inverse of pChangeset */ 3083 ){ 3084 int rc = SQLITE_OK; /* Return value */ 3085 SessionBuffer sOut; /* Output buffer */ 3086 int nCol = 0; /* Number of cols in current table */ 3087 u8 *abPK = 0; /* PK array for current table */ 3088 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3089 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3090 3091 /* Initialize the output buffer */ 3092 memset(&sOut, 0, sizeof(SessionBuffer)); 3093 3094 /* Zero the output variables in case an error occurs. */ 3095 if( ppInverted ){ 3096 *ppInverted = 0; 3097 *pnInverted = 0; 3098 } 3099 3100 while( 1 ){ 3101 u8 eType; 3102 3103 /* Test for EOF. */ 3104 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3105 if( pInput->iNext>=pInput->nData ) break; 3106 eType = pInput->aData[pInput->iNext]; 3107 3108 switch( eType ){ 3109 case 'T': { 3110 /* A 'table' record consists of: 3111 ** 3112 ** * A constant 'T' character, 3113 ** * Number of columns in said table (a varint), 3114 ** * An array of nCol bytes (sPK), 3115 ** * A nul-terminated table name. 3116 */ 3117 int nByte; 3118 int nVar; 3119 pInput->iNext++; 3120 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3121 goto finished_invert; 3122 } 3123 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3124 sPK.nBuf = 0; 3125 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3126 sessionAppendByte(&sOut, eType, &rc); 3127 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3128 if( rc ) goto finished_invert; 3129 3130 pInput->iNext += nByte; 3131 sqlite3_free(apVal); 3132 apVal = 0; 3133 abPK = sPK.aBuf; 3134 break; 3135 } 3136 3137 case SQLITE_INSERT: 3138 case SQLITE_DELETE: { 3139 int nByte; 3140 int bIndirect = pInput->aData[pInput->iNext+1]; 3141 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3142 pInput->iNext += 2; 3143 assert( rc==SQLITE_OK ); 3144 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3145 sessionAppendByte(&sOut, eType2, &rc); 3146 sessionAppendByte(&sOut, bIndirect, &rc); 3147 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3148 pInput->iNext += nByte; 3149 if( rc ) goto finished_invert; 3150 break; 3151 } 3152 3153 case SQLITE_UPDATE: { 3154 int iCol; 3155 3156 if( 0==apVal ){ 3157 apVal = (sqlite3_value **)sqlite3_malloc(sizeof(apVal[0])*nCol*2); 3158 if( 0==apVal ){ 3159 rc = SQLITE_NOMEM; 3160 goto finished_invert; 3161 } 3162 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3163 } 3164 3165 /* Write the header for the new UPDATE change. Same as the original. */ 3166 sessionAppendByte(&sOut, eType, &rc); 3167 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3168 3169 /* Read the old.* and new.* records for the update change. */ 3170 pInput->iNext += 2; 3171 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0]); 3172 if( rc==SQLITE_OK ){ 3173 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol]); 3174 } 3175 3176 /* Write the new old.* record. Consists of the PK columns from the 3177 ** original old.* record, and the other values from the original 3178 ** new.* record. */ 3179 for(iCol=0; iCol<nCol; iCol++){ 3180 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3181 sessionAppendValue(&sOut, pVal, &rc); 3182 } 3183 3184 /* Write the new new.* record. Consists of a copy of all values 3185 ** from the original old.* record, except for the PK columns, which 3186 ** are set to "undefined". */ 3187 for(iCol=0; iCol<nCol; iCol++){ 3188 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3189 sessionAppendValue(&sOut, pVal, &rc); 3190 } 3191 3192 for(iCol=0; iCol<nCol*2; iCol++){ 3193 sqlite3ValueFree(apVal[iCol]); 3194 } 3195 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3196 if( rc!=SQLITE_OK ){ 3197 goto finished_invert; 3198 } 3199 3200 break; 3201 } 3202 3203 default: 3204 rc = SQLITE_CORRUPT_BKPT; 3205 goto finished_invert; 3206 } 3207 3208 assert( rc==SQLITE_OK ); 3209 if( xOutput && sOut.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 3210 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3211 sOut.nBuf = 0; 3212 if( rc!=SQLITE_OK ) goto finished_invert; 3213 } 3214 } 3215 3216 assert( rc==SQLITE_OK ); 3217 if( pnInverted ){ 3218 *pnInverted = sOut.nBuf; 3219 *ppInverted = sOut.aBuf; 3220 sOut.aBuf = 0; 3221 }else if( sOut.nBuf>0 ){ 3222 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3223 } 3224 3225 finished_invert: 3226 sqlite3_free(sOut.aBuf); 3227 sqlite3_free(apVal); 3228 sqlite3_free(sPK.aBuf); 3229 return rc; 3230 } 3231 3232 3233 /* 3234 ** Invert a changeset object. 3235 */ 3236 int sqlite3changeset_invert( 3237 int nChangeset, /* Number of bytes in input */ 3238 const void *pChangeset, /* Input changeset */ 3239 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3240 void **ppInverted /* OUT: Inverse of pChangeset */ 3241 ){ 3242 SessionInput sInput; 3243 3244 /* Set up the input stream */ 3245 memset(&sInput, 0, sizeof(SessionInput)); 3246 sInput.nData = nChangeset; 3247 sInput.aData = (u8*)pChangeset; 3248 3249 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3250 } 3251 3252 /* 3253 ** Streaming version of sqlite3changeset_invert(). 3254 */ 3255 int sqlite3changeset_invert_strm( 3256 int (*xInput)(void *pIn, void *pData, int *pnData), 3257 void *pIn, 3258 int (*xOutput)(void *pOut, const void *pData, int nData), 3259 void *pOut 3260 ){ 3261 SessionInput sInput; 3262 int rc; 3263 3264 /* Set up the input stream */ 3265 memset(&sInput, 0, sizeof(SessionInput)); 3266 sInput.xInput = xInput; 3267 sInput.pIn = pIn; 3268 3269 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3270 sqlite3_free(sInput.buf.aBuf); 3271 return rc; 3272 } 3273 3274 typedef struct SessionApplyCtx SessionApplyCtx; 3275 struct SessionApplyCtx { 3276 sqlite3 *db; 3277 sqlite3_stmt *pDelete; /* DELETE statement */ 3278 sqlite3_stmt *pUpdate; /* UPDATE statement */ 3279 sqlite3_stmt *pInsert; /* INSERT statement */ 3280 sqlite3_stmt *pSelect; /* SELECT statement */ 3281 int nCol; /* Size of azCol[] and abPK[] arrays */ 3282 const char **azCol; /* Array of column names */ 3283 u8 *abPK; /* Boolean array - true if column is in PK */ 3284 3285 int bDeferConstraints; /* True to defer constraints */ 3286 SessionBuffer constraints; /* Deferred constraints are stored here */ 3287 }; 3288 3289 /* 3290 ** Formulate a statement to DELETE a row from database db. Assuming a table 3291 ** structure like this: 3292 ** 3293 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3294 ** 3295 ** The DELETE statement looks like this: 3296 ** 3297 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3298 ** 3299 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3300 ** matching b and d values, or 1 otherwise. The second case comes up if the 3301 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3302 ** 3303 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3304 ** pointing to the prepared version of the SQL statement. 3305 */ 3306 static int sessionDeleteRow( 3307 sqlite3 *db, /* Database handle */ 3308 const char *zTab, /* Table name */ 3309 SessionApplyCtx *p /* Session changeset-apply context */ 3310 ){ 3311 int i; 3312 const char *zSep = ""; 3313 int rc = SQLITE_OK; 3314 SessionBuffer buf = {0, 0, 0}; 3315 int nPk = 0; 3316 3317 sessionAppendStr(&buf, "DELETE FROM ", &rc); 3318 sessionAppendIdent(&buf, zTab, &rc); 3319 sessionAppendStr(&buf, " WHERE ", &rc); 3320 3321 for(i=0; i<p->nCol; i++){ 3322 if( p->abPK[i] ){ 3323 nPk++; 3324 sessionAppendStr(&buf, zSep, &rc); 3325 sessionAppendIdent(&buf, p->azCol[i], &rc); 3326 sessionAppendStr(&buf, " = ?", &rc); 3327 sessionAppendInteger(&buf, i+1, &rc); 3328 zSep = " AND "; 3329 } 3330 } 3331 3332 if( nPk<p->nCol ){ 3333 sessionAppendStr(&buf, " AND (?", &rc); 3334 sessionAppendInteger(&buf, p->nCol+1, &rc); 3335 sessionAppendStr(&buf, " OR ", &rc); 3336 3337 zSep = ""; 3338 for(i=0; i<p->nCol; i++){ 3339 if( !p->abPK[i] ){ 3340 sessionAppendStr(&buf, zSep, &rc); 3341 sessionAppendIdent(&buf, p->azCol[i], &rc); 3342 sessionAppendStr(&buf, " IS ?", &rc); 3343 sessionAppendInteger(&buf, i+1, &rc); 3344 zSep = "AND "; 3345 } 3346 } 3347 sessionAppendStr(&buf, ")", &rc); 3348 } 3349 3350 if( rc==SQLITE_OK ){ 3351 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3352 } 3353 sqlite3_free(buf.aBuf); 3354 3355 return rc; 3356 } 3357 3358 /* 3359 ** Formulate and prepare a statement to UPDATE a row from database db. 3360 ** Assuming a table structure like this: 3361 ** 3362 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3363 ** 3364 ** The UPDATE statement looks like this: 3365 ** 3366 ** UPDATE x SET 3367 ** a = CASE WHEN ?2 THEN ?3 ELSE a END, 3368 ** b = CASE WHEN ?5 THEN ?6 ELSE b END, 3369 ** c = CASE WHEN ?8 THEN ?9 ELSE c END, 3370 ** d = CASE WHEN ?11 THEN ?12 ELSE d END 3371 ** WHERE a = ?1 AND c = ?7 AND (?13 OR 3372 ** (?5==0 OR b IS ?4) AND (?11==0 OR d IS ?10) AND 3373 ** ) 3374 ** 3375 ** For each column in the table, there are three variables to bind: 3376 ** 3377 ** ?(i*3+1) The old.* value of the column, if any. 3378 ** ?(i*3+2) A boolean flag indicating that the value is being modified. 3379 ** ?(i*3+3) The new.* value of the column, if any. 3380 ** 3381 ** Also, a boolean flag that, if set to true, causes the statement to update 3382 ** a row even if the non-PK values do not match. This is required if the 3383 ** conflict-handler is invoked with CHANGESET_DATA and returns 3384 ** CHANGESET_REPLACE. This is variable "?(nCol*3+1)". 3385 ** 3386 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left 3387 ** pointing to the prepared version of the SQL statement. 3388 */ 3389 static int sessionUpdateRow( 3390 sqlite3 *db, /* Database handle */ 3391 const char *zTab, /* Table name */ 3392 SessionApplyCtx *p /* Session changeset-apply context */ 3393 ){ 3394 int rc = SQLITE_OK; 3395 int i; 3396 const char *zSep = ""; 3397 SessionBuffer buf = {0, 0, 0}; 3398 3399 /* Append "UPDATE tbl SET " */ 3400 sessionAppendStr(&buf, "UPDATE ", &rc); 3401 sessionAppendIdent(&buf, zTab, &rc); 3402 sessionAppendStr(&buf, " SET ", &rc); 3403 3404 /* Append the assignments */ 3405 for(i=0; i<p->nCol; i++){ 3406 sessionAppendStr(&buf, zSep, &rc); 3407 sessionAppendIdent(&buf, p->azCol[i], &rc); 3408 sessionAppendStr(&buf, " = CASE WHEN ?", &rc); 3409 sessionAppendInteger(&buf, i*3+2, &rc); 3410 sessionAppendStr(&buf, " THEN ?", &rc); 3411 sessionAppendInteger(&buf, i*3+3, &rc); 3412 sessionAppendStr(&buf, " ELSE ", &rc); 3413 sessionAppendIdent(&buf, p->azCol[i], &rc); 3414 sessionAppendStr(&buf, " END", &rc); 3415 zSep = ", "; 3416 } 3417 3418 /* Append the PK part of the WHERE clause */ 3419 sessionAppendStr(&buf, " WHERE ", &rc); 3420 for(i=0; i<p->nCol; i++){ 3421 if( p->abPK[i] ){ 3422 sessionAppendIdent(&buf, p->azCol[i], &rc); 3423 sessionAppendStr(&buf, " = ?", &rc); 3424 sessionAppendInteger(&buf, i*3+1, &rc); 3425 sessionAppendStr(&buf, " AND ", &rc); 3426 } 3427 } 3428 3429 /* Append the non-PK part of the WHERE clause */ 3430 sessionAppendStr(&buf, " (?", &rc); 3431 sessionAppendInteger(&buf, p->nCol*3+1, &rc); 3432 sessionAppendStr(&buf, " OR 1", &rc); 3433 for(i=0; i<p->nCol; i++){ 3434 if( !p->abPK[i] ){ 3435 sessionAppendStr(&buf, " AND (?", &rc); 3436 sessionAppendInteger(&buf, i*3+2, &rc); 3437 sessionAppendStr(&buf, "=0 OR ", &rc); 3438 sessionAppendIdent(&buf, p->azCol[i], &rc); 3439 sessionAppendStr(&buf, " IS ?", &rc); 3440 sessionAppendInteger(&buf, i*3+1, &rc); 3441 sessionAppendStr(&buf, ")", &rc); 3442 } 3443 } 3444 sessionAppendStr(&buf, ")", &rc); 3445 3446 if( rc==SQLITE_OK ){ 3447 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0); 3448 } 3449 sqlite3_free(buf.aBuf); 3450 3451 return rc; 3452 } 3453 3454 /* 3455 ** Formulate and prepare an SQL statement to query table zTab by primary 3456 ** key. Assuming the following table structure: 3457 ** 3458 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3459 ** 3460 ** The SELECT statement looks like this: 3461 ** 3462 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 3463 ** 3464 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 3465 ** pointing to the prepared version of the SQL statement. 3466 */ 3467 static int sessionSelectRow( 3468 sqlite3 *db, /* Database handle */ 3469 const char *zTab, /* Table name */ 3470 SessionApplyCtx *p /* Session changeset-apply context */ 3471 ){ 3472 return sessionSelectStmt( 3473 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 3474 } 3475 3476 /* 3477 ** Formulate and prepare an INSERT statement to add a record to table zTab. 3478 ** For example: 3479 ** 3480 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 3481 ** 3482 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 3483 ** pointing to the prepared version of the SQL statement. 3484 */ 3485 static int sessionInsertRow( 3486 sqlite3 *db, /* Database handle */ 3487 const char *zTab, /* Table name */ 3488 SessionApplyCtx *p /* Session changeset-apply context */ 3489 ){ 3490 int rc = SQLITE_OK; 3491 int i; 3492 SessionBuffer buf = {0, 0, 0}; 3493 3494 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 3495 sessionAppendIdent(&buf, zTab, &rc); 3496 sessionAppendStr(&buf, " VALUES(?", &rc); 3497 for(i=1; i<p->nCol; i++){ 3498 sessionAppendStr(&buf, ", ?", &rc); 3499 } 3500 sessionAppendStr(&buf, ")", &rc); 3501 3502 if( rc==SQLITE_OK ){ 3503 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 3504 } 3505 sqlite3_free(buf.aBuf); 3506 return rc; 3507 } 3508 3509 /* 3510 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 3511 ** See comments in the body of this function for details. 3512 */ 3513 static int sessionBindValue( 3514 sqlite3_stmt *pStmt, /* Statement to bind value to */ 3515 int i, /* Parameter number to bind to */ 3516 sqlite3_value *pVal /* Value to bind */ 3517 ){ 3518 int eType = sqlite3_value_type(pVal); 3519 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 3520 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 3521 ** the (pVal->z) variable remains as it was or the type of the value is 3522 ** set to SQLITE_NULL. */ 3523 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 3524 /* This condition occurs when an earlier OOM in a call to 3525 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 3526 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 3527 return SQLITE_NOMEM; 3528 } 3529 return sqlite3_bind_value(pStmt, i, pVal); 3530 } 3531 3532 /* 3533 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 3534 ** transfers new.* values from the current iterator entry to statement 3535 ** pStmt. The table being inserted into has nCol columns. 3536 ** 3537 ** New.* value $i from the iterator is bound to variable ($i+1) of 3538 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 3539 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 3540 ** to an array nCol elements in size. In this case only those values for 3541 ** which abPK[$i] is true are read from the iterator and bound to the 3542 ** statement. 3543 ** 3544 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 3545 */ 3546 static int sessionBindRow( 3547 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 3548 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 3549 int nCol, /* Number of columns */ 3550 u8 *abPK, /* If not NULL, bind only if true */ 3551 sqlite3_stmt *pStmt /* Bind values to this statement */ 3552 ){ 3553 int i; 3554 int rc = SQLITE_OK; 3555 3556 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 3557 ** argument iterator points to a suitable entry. Make sure that xValue 3558 ** is one of these to guarantee that it is safe to ignore the return 3559 ** in the code below. */ 3560 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 3561 3562 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3563 if( !abPK || abPK[i] ){ 3564 sqlite3_value *pVal; 3565 (void)xValue(pIter, i, &pVal); 3566 rc = sessionBindValue(pStmt, i+1, pVal); 3567 } 3568 } 3569 return rc; 3570 } 3571 3572 /* 3573 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 3574 ** This function binds the primary key values from the change that changeset 3575 ** iterator pIter points to to the SELECT and attempts to seek to the table 3576 ** entry. If a row is found, the SELECT statement left pointing at the row 3577 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 3578 ** has occured, the statement is reset and SQLITE_OK is returned. If an 3579 ** error occurs, the statement is reset and an SQLite error code is returned. 3580 ** 3581 ** If this function returns SQLITE_ROW, the caller must eventually reset() 3582 ** statement pSelect. If any other value is returned, the statement does 3583 ** not require a reset(). 3584 ** 3585 ** If the iterator currently points to an INSERT record, bind values from the 3586 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 3587 ** UPDATE, bind values from the old.* record. 3588 */ 3589 static int sessionSeekToRow( 3590 sqlite3 *db, /* Database handle */ 3591 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3592 u8 *abPK, /* Primary key flags array */ 3593 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 3594 ){ 3595 int rc; /* Return code */ 3596 int nCol; /* Number of columns in table */ 3597 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 3598 const char *zDummy; /* Unused */ 3599 3600 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3601 rc = sessionBindRow(pIter, 3602 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 3603 nCol, abPK, pSelect 3604 ); 3605 3606 if( rc==SQLITE_OK ){ 3607 rc = sqlite3_step(pSelect); 3608 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 3609 } 3610 3611 return rc; 3612 } 3613 3614 /* 3615 ** Invoke the conflict handler for the change that the changeset iterator 3616 ** currently points to. 3617 ** 3618 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 3619 ** If argument pbReplace is NULL, then the type of conflict handler invoked 3620 ** depends solely on eType, as follows: 3621 ** 3622 ** eType value Value passed to xConflict 3623 ** ------------------------------------------------- 3624 ** CHANGESET_DATA CHANGESET_NOTFOUND 3625 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 3626 ** 3627 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 3628 ** record with the same primary key as the record about to be deleted, updated 3629 ** or inserted. If such a record can be found, it is available to the conflict 3630 ** handler as the "conflicting" record. In this case the type of conflict 3631 ** handler invoked is as follows: 3632 ** 3633 ** eType value PK Record found? Value passed to xConflict 3634 ** ---------------------------------------------------------------- 3635 ** CHANGESET_DATA Yes CHANGESET_DATA 3636 ** CHANGESET_DATA No CHANGESET_NOTFOUND 3637 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 3638 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 3639 ** 3640 ** If pbReplace is not NULL, and a record with a matching PK is found, and 3641 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 3642 ** is set to non-zero before returning SQLITE_OK. 3643 ** 3644 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 3645 ** returned. Or, if the conflict handler returns an invalid value, 3646 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 3647 ** this function returns SQLITE_OK. 3648 */ 3649 static int sessionConflictHandler( 3650 int eType, /* Either CHANGESET_DATA or CONFLICT */ 3651 SessionApplyCtx *p, /* changeset_apply() context */ 3652 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3653 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 3654 void *pCtx, /* First argument for conflict handler */ 3655 int *pbReplace /* OUT: Set to true if PK row is found */ 3656 ){ 3657 int res = 0; /* Value returned by conflict handler */ 3658 int rc; 3659 int nCol; 3660 int op; 3661 const char *zDummy; 3662 3663 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3664 3665 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 3666 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 3667 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 3668 3669 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 3670 if( pbReplace ){ 3671 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 3672 }else{ 3673 rc = SQLITE_OK; 3674 } 3675 3676 if( rc==SQLITE_ROW ){ 3677 /* There exists another row with the new.* primary key. */ 3678 pIter->pConflict = p->pSelect; 3679 res = xConflict(pCtx, eType, pIter); 3680 pIter->pConflict = 0; 3681 rc = sqlite3_reset(p->pSelect); 3682 }else if( rc==SQLITE_OK ){ 3683 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 3684 /* Instead of invoking the conflict handler, append the change blob 3685 ** to the SessionApplyCtx.constraints buffer. */ 3686 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 3687 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 3688 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 3689 res = SQLITE_CHANGESET_OMIT; 3690 }else{ 3691 /* No other row with the new.* primary key. */ 3692 res = xConflict(pCtx, eType+1, pIter); 3693 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 3694 } 3695 } 3696 3697 if( rc==SQLITE_OK ){ 3698 switch( res ){ 3699 case SQLITE_CHANGESET_REPLACE: 3700 assert( pbReplace ); 3701 *pbReplace = 1; 3702 break; 3703 3704 case SQLITE_CHANGESET_OMIT: 3705 break; 3706 3707 case SQLITE_CHANGESET_ABORT: 3708 rc = SQLITE_ABORT; 3709 break; 3710 3711 default: 3712 rc = SQLITE_MISUSE; 3713 break; 3714 } 3715 } 3716 3717 return rc; 3718 } 3719 3720 /* 3721 ** Attempt to apply the change that the iterator passed as the first argument 3722 ** currently points to to the database. If a conflict is encountered, invoke 3723 ** the conflict handler callback. 3724 ** 3725 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 3726 ** one is encountered, update or delete the row with the matching primary key 3727 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 3728 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 3729 ** to true before returning. In this case the caller will invoke this function 3730 ** again, this time with pbRetry set to NULL. 3731 ** 3732 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 3733 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 3734 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 3735 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 3736 ** before retrying. In this case the caller attempts to remove the conflicting 3737 ** row before invoking this function again, this time with pbReplace set 3738 ** to NULL. 3739 ** 3740 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 3741 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 3742 ** returned. 3743 */ 3744 static int sessionApplyOneOp( 3745 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3746 SessionApplyCtx *p, /* changeset_apply() context */ 3747 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 3748 void *pCtx, /* First argument for the conflict handler */ 3749 int *pbReplace, /* OUT: True to remove PK row and retry */ 3750 int *pbRetry /* OUT: True to retry. */ 3751 ){ 3752 const char *zDummy; 3753 int op; 3754 int nCol; 3755 int rc = SQLITE_OK; 3756 3757 assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect ); 3758 assert( p->azCol && p->abPK ); 3759 assert( !pbReplace || *pbReplace==0 ); 3760 3761 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3762 3763 if( op==SQLITE_DELETE ){ 3764 3765 /* Bind values to the DELETE statement. If conflict handling is required, 3766 ** bind values for all columns and set bound variable (nCol+1) to true. 3767 ** Or, if conflict handling is not required, bind just the PK column 3768 ** values and, if it exists, set (nCol+1) to false. Conflict handling 3769 ** is not required if: 3770 ** 3771 ** * this is a patchset, or 3772 ** * (pbRetry==0), or 3773 ** * all columns of the table are PK columns (in this case there is 3774 ** no (nCol+1) variable to bind to). 3775 */ 3776 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 3777 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 3778 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 3779 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 3780 } 3781 if( rc!=SQLITE_OK ) return rc; 3782 3783 sqlite3_step(p->pDelete); 3784 rc = sqlite3_reset(p->pDelete); 3785 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3786 rc = sessionConflictHandler( 3787 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3788 ); 3789 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3790 rc = sessionConflictHandler( 3791 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3792 ); 3793 } 3794 3795 }else if( op==SQLITE_UPDATE ){ 3796 int i; 3797 3798 /* Bind values to the UPDATE statement. */ 3799 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3800 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 3801 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 3802 3803 sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew); 3804 if( pOld ){ 3805 rc = sessionBindValue(p->pUpdate, i*3+1, pOld); 3806 } 3807 if( rc==SQLITE_OK && pNew ){ 3808 rc = sessionBindValue(p->pUpdate, i*3+3, pNew); 3809 } 3810 } 3811 if( rc==SQLITE_OK ){ 3812 sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0 || pIter->bPatchset); 3813 } 3814 if( rc!=SQLITE_OK ) return rc; 3815 3816 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 3817 ** the result will be SQLITE_OK with 0 rows modified. */ 3818 sqlite3_step(p->pUpdate); 3819 rc = sqlite3_reset(p->pUpdate); 3820 3821 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 3822 /* A NOTFOUND or DATA error. Search the table to see if it contains 3823 ** a row with a matching primary key. If so, this is a DATA conflict. 3824 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 3825 3826 rc = sessionConflictHandler( 3827 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 3828 ); 3829 3830 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3831 /* This is always a CONSTRAINT conflict. */ 3832 rc = sessionConflictHandler( 3833 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 3834 ); 3835 } 3836 3837 }else{ 3838 assert( op==SQLITE_INSERT ); 3839 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 3840 if( rc!=SQLITE_OK ) return rc; 3841 3842 sqlite3_step(p->pInsert); 3843 rc = sqlite3_reset(p->pInsert); 3844 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 3845 rc = sessionConflictHandler( 3846 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 3847 ); 3848 } 3849 } 3850 3851 return rc; 3852 } 3853 3854 /* 3855 ** Attempt to apply the change that the iterator passed as the first argument 3856 ** currently points to to the database. If a conflict is encountered, invoke 3857 ** the conflict handler callback. 3858 ** 3859 ** The difference between this function and sessionApplyOne() is that this 3860 ** function handles the case where the conflict-handler is invoked and 3861 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 3862 ** retried in some manner. 3863 */ 3864 static int sessionApplyOneWithRetry( 3865 sqlite3 *db, /* Apply change to "main" db of this handle */ 3866 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 3867 SessionApplyCtx *pApply, /* Apply context */ 3868 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3869 void *pCtx /* First argument passed to xConflict */ 3870 ){ 3871 int bReplace = 0; 3872 int bRetry = 0; 3873 int rc; 3874 3875 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 3876 assert( rc==SQLITE_OK || (bRetry==0 && bReplace==0) ); 3877 3878 /* If the bRetry flag is set, the change has not been applied due to an 3879 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 3880 ** a row with the correct PK is present in the db, but one or more other 3881 ** fields do not contain the expected values) and the conflict handler 3882 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 3883 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 3884 ** the SQLITE_CHANGESET_DATA problem. */ 3885 if( bRetry ){ 3886 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 3887 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3888 } 3889 3890 /* If the bReplace flag is set, the change is an INSERT that has not 3891 ** been performed because the database already contains a row with the 3892 ** specified primary key and the conflict handler returned 3893 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 3894 ** before reattempting the INSERT. */ 3895 else if( bReplace ){ 3896 assert( pIter->op==SQLITE_INSERT ); 3897 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 3898 if( rc==SQLITE_OK ){ 3899 rc = sessionBindRow(pIter, 3900 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 3901 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 3902 } 3903 if( rc==SQLITE_OK ){ 3904 sqlite3_step(pApply->pDelete); 3905 rc = sqlite3_reset(pApply->pDelete); 3906 } 3907 if( rc==SQLITE_OK ){ 3908 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 3909 } 3910 if( rc==SQLITE_OK ){ 3911 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 3912 } 3913 } 3914 3915 return rc; 3916 } 3917 3918 /* 3919 ** Retry the changes accumulated in the pApply->constraints buffer. 3920 */ 3921 static int sessionRetryConstraints( 3922 sqlite3 *db, 3923 int bPatchset, 3924 const char *zTab, 3925 SessionApplyCtx *pApply, 3926 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 3927 void *pCtx /* First argument passed to xConflict */ 3928 ){ 3929 int rc = SQLITE_OK; 3930 3931 while( pApply->constraints.nBuf ){ 3932 sqlite3_changeset_iter *pIter2 = 0; 3933 SessionBuffer cons = pApply->constraints; 3934 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 3935 3936 rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf); 3937 if( rc==SQLITE_OK ){ 3938 int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 3939 int rc2; 3940 pIter2->bPatchset = bPatchset; 3941 pIter2->zTab = (char*)zTab; 3942 pIter2->nCol = pApply->nCol; 3943 pIter2->abPK = pApply->abPK; 3944 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 3945 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 3946 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 3947 3948 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 3949 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 3950 } 3951 3952 rc2 = sqlite3changeset_finalize(pIter2); 3953 if( rc==SQLITE_OK ) rc = rc2; 3954 } 3955 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 3956 3957 sqlite3_free(cons.aBuf); 3958 if( rc!=SQLITE_OK ) break; 3959 if( pApply->constraints.nBuf>=cons.nBuf ){ 3960 /* No progress was made on the last round. */ 3961 pApply->bDeferConstraints = 0; 3962 } 3963 } 3964 3965 return rc; 3966 } 3967 3968 /* 3969 ** Argument pIter is a changeset iterator that has been initialized, but 3970 ** not yet passed to sqlite3changeset_next(). This function applies the 3971 ** changeset to the main database attached to handle "db". The supplied 3972 ** conflict handler callback is invoked to resolve any conflicts encountered 3973 ** while applying the change. 3974 */ 3975 static int sessionChangesetApply( 3976 sqlite3 *db, /* Apply change to "main" db of this handle */ 3977 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 3978 int(*xFilter)( 3979 void *pCtx, /* Copy of sixth arg to _apply() */ 3980 const char *zTab /* Table name */ 3981 ), 3982 int(*xConflict)( 3983 void *pCtx, /* Copy of fifth arg to _apply() */ 3984 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 3985 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 3986 ), 3987 void *pCtx /* First argument passed to xConflict */ 3988 ){ 3989 int schemaMismatch = 0; 3990 int rc; /* Return code */ 3991 const char *zTab = 0; /* Name of current table */ 3992 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 3993 SessionApplyCtx sApply; /* changeset_apply() context object */ 3994 int bPatchset; 3995 3996 assert( xConflict!=0 ); 3997 3998 pIter->in.bNoDiscard = 1; 3999 memset(&sApply, 0, sizeof(sApply)); 4000 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4001 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4002 if( rc==SQLITE_OK ){ 4003 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4004 } 4005 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4006 int nCol; 4007 int op; 4008 const char *zNew; 4009 4010 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4011 4012 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4013 u8 *abPK; 4014 4015 rc = sessionRetryConstraints( 4016 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4017 ); 4018 if( rc!=SQLITE_OK ) break; 4019 4020 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4021 sqlite3_finalize(sApply.pDelete); 4022 sqlite3_finalize(sApply.pUpdate); 4023 sqlite3_finalize(sApply.pInsert); 4024 sqlite3_finalize(sApply.pSelect); 4025 memset(&sApply, 0, sizeof(sApply)); 4026 sApply.db = db; 4027 sApply.bDeferConstraints = 1; 4028 4029 /* If an xFilter() callback was specified, invoke it now. If the 4030 ** xFilter callback returns zero, skip this table. If it returns 4031 ** non-zero, proceed. */ 4032 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4033 if( schemaMismatch ){ 4034 zTab = sqlite3_mprintf("%s", zNew); 4035 if( zTab==0 ){ 4036 rc = SQLITE_NOMEM; 4037 break; 4038 } 4039 nTab = (int)strlen(zTab); 4040 sApply.azCol = (const char **)zTab; 4041 }else{ 4042 sqlite3changeset_pk(pIter, &abPK, 0); 4043 rc = sessionTableInfo( 4044 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4045 ); 4046 if( rc!=SQLITE_OK ) break; 4047 4048 if( sApply.nCol==0 ){ 4049 schemaMismatch = 1; 4050 sqlite3_log(SQLITE_SCHEMA, 4051 "sqlite3changeset_apply(): no such table: %s", zTab 4052 ); 4053 } 4054 else if( sApply.nCol!=nCol ){ 4055 schemaMismatch = 1; 4056 sqlite3_log(SQLITE_SCHEMA, 4057 "sqlite3changeset_apply(): table %s has %d columns, expected %d", 4058 zTab, sApply.nCol, nCol 4059 ); 4060 } 4061 else if( memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4062 schemaMismatch = 1; 4063 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4064 "primary key mismatch for table %s", zTab 4065 ); 4066 } 4067 else if( 4068 (rc = sessionSelectRow(db, zTab, &sApply)) 4069 || (rc = sessionUpdateRow(db, zTab, &sApply)) 4070 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4071 || (rc = sessionInsertRow(db, zTab, &sApply)) 4072 ){ 4073 break; 4074 } 4075 nTab = sqlite3Strlen30(zTab); 4076 } 4077 } 4078 4079 /* If there is a schema mismatch on the current table, proceed to the 4080 ** next change. A log message has already been issued. */ 4081 if( schemaMismatch ) continue; 4082 4083 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4084 } 4085 4086 bPatchset = pIter->bPatchset; 4087 if( rc==SQLITE_OK ){ 4088 rc = sqlite3changeset_finalize(pIter); 4089 }else{ 4090 sqlite3changeset_finalize(pIter); 4091 } 4092 4093 if( rc==SQLITE_OK ){ 4094 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4095 } 4096 4097 if( rc==SQLITE_OK ){ 4098 int nFk, notUsed; 4099 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4100 if( nFk!=0 ){ 4101 int res = SQLITE_CHANGESET_ABORT; 4102 sqlite3_changeset_iter sIter; 4103 memset(&sIter, 0, sizeof(sIter)); 4104 sIter.nCol = nFk; 4105 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4106 if( res!=SQLITE_CHANGESET_OMIT ){ 4107 rc = SQLITE_CONSTRAINT; 4108 } 4109 } 4110 } 4111 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4112 4113 if( rc==SQLITE_OK ){ 4114 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4115 }else{ 4116 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4117 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4118 } 4119 4120 sqlite3_finalize(sApply.pInsert); 4121 sqlite3_finalize(sApply.pDelete); 4122 sqlite3_finalize(sApply.pUpdate); 4123 sqlite3_finalize(sApply.pSelect); 4124 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4125 sqlite3_free((char*)sApply.constraints.aBuf); 4126 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4127 return rc; 4128 } 4129 4130 /* 4131 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4132 ** attached to handle "db". Invoke the supplied conflict handler callback 4133 ** to resolve any conflicts encountered while applying the change. 4134 */ 4135 int sqlite3changeset_apply( 4136 sqlite3 *db, /* Apply change to "main" db of this handle */ 4137 int nChangeset, /* Size of changeset in bytes */ 4138 void *pChangeset, /* Changeset blob */ 4139 int(*xFilter)( 4140 void *pCtx, /* Copy of sixth arg to _apply() */ 4141 const char *zTab /* Table name */ 4142 ), 4143 int(*xConflict)( 4144 void *pCtx, /* Copy of fifth arg to _apply() */ 4145 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4146 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4147 ), 4148 void *pCtx /* First argument passed to xConflict */ 4149 ){ 4150 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4151 int rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset); 4152 if( rc==SQLITE_OK ){ 4153 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4154 } 4155 return rc; 4156 } 4157 4158 /* 4159 ** Apply the changeset passed via xInput/pIn to the main database 4160 ** attached to handle "db". Invoke the supplied conflict handler callback 4161 ** to resolve any conflicts encountered while applying the change. 4162 */ 4163 int sqlite3changeset_apply_strm( 4164 sqlite3 *db, /* Apply change to "main" db of this handle */ 4165 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4166 void *pIn, /* First arg for xInput */ 4167 int(*xFilter)( 4168 void *pCtx, /* Copy of sixth arg to _apply() */ 4169 const char *zTab /* Table name */ 4170 ), 4171 int(*xConflict)( 4172 void *pCtx, /* Copy of sixth arg to _apply() */ 4173 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4174 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4175 ), 4176 void *pCtx /* First argument passed to xConflict */ 4177 ){ 4178 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4179 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4180 if( rc==SQLITE_OK ){ 4181 rc = sessionChangesetApply(db, pIter, xFilter, xConflict, pCtx); 4182 } 4183 return rc; 4184 } 4185 4186 /* 4187 ** sqlite3_changegroup handle. 4188 */ 4189 struct sqlite3_changegroup { 4190 int rc; /* Error code */ 4191 int bPatch; /* True to accumulate patchsets */ 4192 SessionTable *pList; /* List of tables in current patch */ 4193 }; 4194 4195 /* 4196 ** This function is called to merge two changes to the same row together as 4197 ** part of an sqlite3changeset_concat() operation. A new change object is 4198 ** allocated and a pointer to it stored in *ppNew. 4199 */ 4200 static int sessionChangeMerge( 4201 SessionTable *pTab, /* Table structure */ 4202 int bPatchset, /* True for patchsets */ 4203 SessionChange *pExist, /* Existing change */ 4204 int op2, /* Second change operation */ 4205 int bIndirect, /* True if second change is indirect */ 4206 u8 *aRec, /* Second change record */ 4207 int nRec, /* Number of bytes in aRec */ 4208 SessionChange **ppNew /* OUT: Merged change */ 4209 ){ 4210 SessionChange *pNew = 0; 4211 4212 if( !pExist ){ 4213 pNew = (SessionChange *)sqlite3_malloc(sizeof(SessionChange) + nRec); 4214 if( !pNew ){ 4215 return SQLITE_NOMEM; 4216 } 4217 memset(pNew, 0, sizeof(SessionChange)); 4218 pNew->op = op2; 4219 pNew->bIndirect = bIndirect; 4220 pNew->nRecord = nRec; 4221 pNew->aRecord = (u8*)&pNew[1]; 4222 memcpy(pNew->aRecord, aRec, nRec); 4223 }else{ 4224 int op1 = pExist->op; 4225 4226 /* 4227 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 4228 ** op1=INSERT, op2=UPDATE -> INSERT. 4229 ** op1=INSERT, op2=DELETE -> (none) 4230 ** 4231 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 4232 ** op1=UPDATE, op2=UPDATE -> UPDATE. 4233 ** op1=UPDATE, op2=DELETE -> DELETE. 4234 ** 4235 ** op1=DELETE, op2=INSERT -> UPDATE. 4236 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 4237 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 4238 */ 4239 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 4240 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 4241 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 4242 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 4243 ){ 4244 pNew = pExist; 4245 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 4246 sqlite3_free(pExist); 4247 assert( pNew==0 ); 4248 }else{ 4249 u8 *aExist = pExist->aRecord; 4250 int nByte; 4251 u8 *aCsr; 4252 4253 /* Allocate a new SessionChange object. Ensure that the aRecord[] 4254 ** buffer of the new object is large enough to hold any record that 4255 ** may be generated by combining the input records. */ 4256 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 4257 pNew = (SessionChange *)sqlite3_malloc(nByte); 4258 if( !pNew ){ 4259 sqlite3_free(pExist); 4260 return SQLITE_NOMEM; 4261 } 4262 memset(pNew, 0, sizeof(SessionChange)); 4263 pNew->bIndirect = (bIndirect && pExist->bIndirect); 4264 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 4265 4266 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 4267 u8 *a1 = aRec; 4268 assert( op2==SQLITE_UPDATE ); 4269 pNew->op = SQLITE_INSERT; 4270 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 4271 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 4272 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 4273 assert( op2==SQLITE_INSERT ); 4274 pNew->op = SQLITE_UPDATE; 4275 if( bPatchset ){ 4276 memcpy(aCsr, aRec, nRec); 4277 aCsr += nRec; 4278 }else{ 4279 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 4280 sqlite3_free(pNew); 4281 pNew = 0; 4282 } 4283 } 4284 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 4285 u8 *a1 = aExist; 4286 u8 *a2 = aRec; 4287 assert( op1==SQLITE_UPDATE ); 4288 if( bPatchset==0 ){ 4289 sessionSkipRecord(&a1, pTab->nCol); 4290 sessionSkipRecord(&a2, pTab->nCol); 4291 } 4292 pNew->op = SQLITE_UPDATE; 4293 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 4294 sqlite3_free(pNew); 4295 pNew = 0; 4296 } 4297 }else{ /* UPDATE + DELETE */ 4298 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 4299 pNew->op = SQLITE_DELETE; 4300 if( bPatchset ){ 4301 memcpy(aCsr, aRec, nRec); 4302 aCsr += nRec; 4303 }else{ 4304 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 4305 } 4306 } 4307 4308 if( pNew ){ 4309 pNew->nRecord = (int)(aCsr - pNew->aRecord); 4310 } 4311 sqlite3_free(pExist); 4312 } 4313 } 4314 4315 *ppNew = pNew; 4316 return SQLITE_OK; 4317 } 4318 4319 /* 4320 ** Add all changes in the changeset traversed by the iterator passed as 4321 ** the first argument to the changegroup hash tables. 4322 */ 4323 static int sessionChangesetToHash( 4324 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 4325 sqlite3_changegroup *pGrp /* Changegroup object to add changeset to */ 4326 ){ 4327 u8 *aRec; 4328 int nRec; 4329 int rc = SQLITE_OK; 4330 SessionTable *pTab = 0; 4331 4332 4333 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec) ){ 4334 const char *zNew; 4335 int nCol; 4336 int op; 4337 int iHash; 4338 int bIndirect; 4339 SessionChange *pChange; 4340 SessionChange *pExist = 0; 4341 SessionChange **pp; 4342 4343 if( pGrp->pList==0 ){ 4344 pGrp->bPatch = pIter->bPatchset; 4345 }else if( pIter->bPatchset!=pGrp->bPatch ){ 4346 rc = SQLITE_ERROR; 4347 break; 4348 } 4349 4350 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 4351 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 4352 /* Search the list for a matching table */ 4353 int nNew = (int)strlen(zNew); 4354 u8 *abPK; 4355 4356 sqlite3changeset_pk(pIter, &abPK, 0); 4357 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 4358 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 4359 } 4360 if( !pTab ){ 4361 SessionTable **ppTab; 4362 4363 pTab = sqlite3_malloc(sizeof(SessionTable) + nCol + nNew+1); 4364 if( !pTab ){ 4365 rc = SQLITE_NOMEM; 4366 break; 4367 } 4368 memset(pTab, 0, sizeof(SessionTable)); 4369 pTab->nCol = nCol; 4370 pTab->abPK = (u8*)&pTab[1]; 4371 memcpy(pTab->abPK, abPK, nCol); 4372 pTab->zName = (char*)&pTab->abPK[nCol]; 4373 memcpy(pTab->zName, zNew, nNew+1); 4374 4375 /* The new object must be linked on to the end of the list, not 4376 ** simply added to the start of it. This is to ensure that the 4377 ** tables within the output of sqlite3changegroup_output() are in 4378 ** the right order. */ 4379 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 4380 *ppTab = pTab; 4381 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 4382 rc = SQLITE_SCHEMA; 4383 break; 4384 } 4385 } 4386 4387 if( sessionGrowHash(pIter->bPatchset, pTab) ){ 4388 rc = SQLITE_NOMEM; 4389 break; 4390 } 4391 iHash = sessionChangeHash( 4392 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 4393 ); 4394 4395 /* Search for existing entry. If found, remove it from the hash table. 4396 ** Code below may link it back in. 4397 */ 4398 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 4399 int bPkOnly1 = 0; 4400 int bPkOnly2 = 0; 4401 if( pIter->bPatchset ){ 4402 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 4403 bPkOnly2 = op==SQLITE_DELETE; 4404 } 4405 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 4406 pExist = *pp; 4407 *pp = (*pp)->pNext; 4408 pTab->nEntry--; 4409 break; 4410 } 4411 } 4412 4413 rc = sessionChangeMerge(pTab, 4414 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 4415 ); 4416 if( rc ) break; 4417 if( pChange ){ 4418 pChange->pNext = pTab->apChange[iHash]; 4419 pTab->apChange[iHash] = pChange; 4420 pTab->nEntry++; 4421 } 4422 } 4423 4424 if( rc==SQLITE_OK ) rc = pIter->rc; 4425 return rc; 4426 } 4427 4428 /* 4429 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 4430 ** added to the changegroup object passed as the first argument. 4431 ** 4432 ** If xOutput is not NULL, then the changeset/patchset is returned to the 4433 ** user via one or more calls to xOutput, as with the other streaming 4434 ** interfaces. 4435 ** 4436 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 4437 ** buffer containing the output changeset before this function returns. In 4438 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 4439 ** is the responsibility of the caller to free the output buffer using 4440 ** sqlite3_free() when it is no longer required. 4441 ** 4442 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 4443 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 4444 ** are both set to 0 before returning. 4445 */ 4446 static int sessionChangegroupOutput( 4447 sqlite3_changegroup *pGrp, 4448 int (*xOutput)(void *pOut, const void *pData, int nData), 4449 void *pOut, 4450 int *pnOut, 4451 void **ppOut 4452 ){ 4453 int rc = SQLITE_OK; 4454 SessionBuffer buf = {0, 0, 0}; 4455 SessionTable *pTab; 4456 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 4457 4458 /* Create the serialized output changeset based on the contents of the 4459 ** hash tables attached to the SessionTable objects in list p->pList. 4460 */ 4461 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 4462 int i; 4463 if( pTab->nEntry==0 ) continue; 4464 4465 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 4466 for(i=0; i<pTab->nChange; i++){ 4467 SessionChange *p; 4468 for(p=pTab->apChange[i]; p; p=p->pNext){ 4469 sessionAppendByte(&buf, p->op, &rc); 4470 sessionAppendByte(&buf, p->bIndirect, &rc); 4471 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 4472 } 4473 } 4474 4475 if( rc==SQLITE_OK && xOutput && buf.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){ 4476 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4477 buf.nBuf = 0; 4478 } 4479 } 4480 4481 if( rc==SQLITE_OK ){ 4482 if( xOutput ){ 4483 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4484 }else{ 4485 *ppOut = buf.aBuf; 4486 *pnOut = buf.nBuf; 4487 buf.aBuf = 0; 4488 } 4489 } 4490 sqlite3_free(buf.aBuf); 4491 4492 return rc; 4493 } 4494 4495 /* 4496 ** Allocate a new, empty, sqlite3_changegroup. 4497 */ 4498 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 4499 int rc = SQLITE_OK; /* Return code */ 4500 sqlite3_changegroup *p; /* New object */ 4501 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 4502 if( p==0 ){ 4503 rc = SQLITE_NOMEM; 4504 }else{ 4505 memset(p, 0, sizeof(sqlite3_changegroup)); 4506 } 4507 *pp = p; 4508 return rc; 4509 } 4510 4511 /* 4512 ** Add the changeset currently stored in buffer pData, size nData bytes, 4513 ** to changeset-group p. 4514 */ 4515 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 4516 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4517 int rc; /* Return code */ 4518 4519 rc = sqlite3changeset_start(&pIter, nData, pData); 4520 if( rc==SQLITE_OK ){ 4521 rc = sessionChangesetToHash(pIter, pGrp); 4522 } 4523 sqlite3changeset_finalize(pIter); 4524 return rc; 4525 } 4526 4527 /* 4528 ** Obtain a buffer containing a changeset representing the concatenation 4529 ** of all changesets added to the group so far. 4530 */ 4531 int sqlite3changegroup_output( 4532 sqlite3_changegroup *pGrp, 4533 int *pnData, 4534 void **ppData 4535 ){ 4536 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 4537 } 4538 4539 /* 4540 ** Streaming versions of changegroup_add(). 4541 */ 4542 int sqlite3changegroup_add_strm( 4543 sqlite3_changegroup *pGrp, 4544 int (*xInput)(void *pIn, void *pData, int *pnData), 4545 void *pIn 4546 ){ 4547 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4548 int rc; /* Return code */ 4549 4550 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 4551 if( rc==SQLITE_OK ){ 4552 rc = sessionChangesetToHash(pIter, pGrp); 4553 } 4554 sqlite3changeset_finalize(pIter); 4555 return rc; 4556 } 4557 4558 /* 4559 ** Streaming versions of changegroup_output(). 4560 */ 4561 int sqlite3changegroup_output_strm( 4562 sqlite3_changegroup *pGrp, 4563 int (*xOutput)(void *pOut, const void *pData, int nData), 4564 void *pOut 4565 ){ 4566 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 4567 } 4568 4569 /* 4570 ** Delete a changegroup object. 4571 */ 4572 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 4573 if( pGrp ){ 4574 sessionDeleteTable(pGrp->pList); 4575 sqlite3_free(pGrp); 4576 } 4577 } 4578 4579 /* 4580 ** Combine two changesets together. 4581 */ 4582 int sqlite3changeset_concat( 4583 int nLeft, /* Number of bytes in lhs input */ 4584 void *pLeft, /* Lhs input changeset */ 4585 int nRight /* Number of bytes in rhs input */, 4586 void *pRight, /* Rhs input changeset */ 4587 int *pnOut, /* OUT: Number of bytes in output changeset */ 4588 void **ppOut /* OUT: changeset (left <concat> right) */ 4589 ){ 4590 sqlite3_changegroup *pGrp; 4591 int rc; 4592 4593 rc = sqlite3changegroup_new(&pGrp); 4594 if( rc==SQLITE_OK ){ 4595 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 4596 } 4597 if( rc==SQLITE_OK ){ 4598 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 4599 } 4600 if( rc==SQLITE_OK ){ 4601 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 4602 } 4603 sqlite3changegroup_delete(pGrp); 4604 4605 return rc; 4606 } 4607 4608 /* 4609 ** Streaming version of sqlite3changeset_concat(). 4610 */ 4611 int sqlite3changeset_concat_strm( 4612 int (*xInputA)(void *pIn, void *pData, int *pnData), 4613 void *pInA, 4614 int (*xInputB)(void *pIn, void *pData, int *pnData), 4615 void *pInB, 4616 int (*xOutput)(void *pOut, const void *pData, int nData), 4617 void *pOut 4618 ){ 4619 sqlite3_changegroup *pGrp; 4620 int rc; 4621 4622 rc = sqlite3changegroup_new(&pGrp); 4623 if( rc==SQLITE_OK ){ 4624 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 4625 } 4626 if( rc==SQLITE_OK ){ 4627 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 4628 } 4629 if( rc==SQLITE_OK ){ 4630 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 4631 } 4632 sqlite3changegroup_delete(pGrp); 4633 4634 return rc; 4635 } 4636 4637 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 4638