1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE; 29 30 typedef struct SessionHook SessionHook; 31 struct SessionHook { 32 void *pCtx; 33 int (*xOld)(void*,int,sqlite3_value**); 34 int (*xNew)(void*,int,sqlite3_value**); 35 int (*xCount)(void*); 36 int (*xDepth)(void*); 37 }; 38 39 /* 40 ** Session handle structure. 41 */ 42 struct sqlite3_session { 43 sqlite3 *db; /* Database handle session is attached to */ 44 char *zDb; /* Name of database session is attached to */ 45 int bEnable; /* True if currently recording */ 46 int bIndirect; /* True if all changes are indirect */ 47 int bAutoAttach; /* True to auto-attach tables */ 48 int rc; /* Non-zero if an error has occurred */ 49 void *pFilterCtx; /* First argument to pass to xTableFilter */ 50 int (*xTableFilter)(void *pCtx, const char *zTab); 51 sqlite3_value *pZeroBlob; /* Value containing X'' */ 52 sqlite3_session *pNext; /* Next session object on same db. */ 53 SessionTable *pTable; /* List of attached tables */ 54 SessionHook hook; /* APIs to grab new and old data with */ 55 }; 56 57 /* 58 ** Instances of this structure are used to build strings or binary records. 59 */ 60 struct SessionBuffer { 61 u8 *aBuf; /* Pointer to changeset buffer */ 62 int nBuf; /* Size of buffer aBuf */ 63 int nAlloc; /* Size of allocation containing aBuf */ 64 }; 65 66 /* 67 ** An object of this type is used internally as an abstraction for 68 ** input data. Input data may be supplied either as a single large buffer 69 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 70 ** sqlite3changeset_start_strm()). 71 */ 72 struct SessionInput { 73 int bNoDiscard; /* If true, do not discard in InputBuffer() */ 74 int iCurrent; /* Offset in aData[] of current change */ 75 int iNext; /* Offset in aData[] of next change */ 76 u8 *aData; /* Pointer to buffer containing changeset */ 77 int nData; /* Number of bytes in aData */ 78 79 SessionBuffer buf; /* Current read buffer */ 80 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 81 void *pIn; /* First argument to xInput */ 82 int bEof; /* Set to true after xInput finished */ 83 }; 84 85 /* 86 ** Structure for changeset iterators. 87 */ 88 struct sqlite3_changeset_iter { 89 SessionInput in; /* Input buffer or stream */ 90 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 91 int bPatchset; /* True if this is a patchset */ 92 int bInvert; /* True to invert changeset */ 93 int rc; /* Iterator error code */ 94 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 95 char *zTab; /* Current table */ 96 int nCol; /* Number of columns in zTab */ 97 int op; /* Current operation */ 98 int bIndirect; /* True if current change was indirect */ 99 u8 *abPK; /* Primary key array */ 100 sqlite3_value **apValue; /* old.* and new.* values */ 101 }; 102 103 /* 104 ** Each session object maintains a set of the following structures, one 105 ** for each table the session object is monitoring. The structures are 106 ** stored in a linked list starting at sqlite3_session.pTable. 107 ** 108 ** The keys of the SessionTable.aChange[] hash table are all rows that have 109 ** been modified in any way since the session object was attached to the 110 ** table. 111 ** 112 ** The data associated with each hash-table entry is a structure containing 113 ** a subset of the initial values that the modified row contained at the 114 ** start of the session. Or no initial values if the row was inserted. 115 */ 116 struct SessionTable { 117 SessionTable *pNext; 118 char *zName; /* Local name of table */ 119 int nCol; /* Number of columns in table zName */ 120 int bStat1; /* True if this is sqlite_stat1 */ 121 const char **azCol; /* Column names */ 122 u8 *abPK; /* Array of primary key flags */ 123 int nEntry; /* Total number of entries in hash table */ 124 int nChange; /* Size of apChange[] array */ 125 SessionChange **apChange; /* Hash table buckets */ 126 }; 127 128 /* 129 ** RECORD FORMAT: 130 ** 131 ** The following record format is similar to (but not compatible with) that 132 ** used in SQLite database files. This format is used as part of the 133 ** change-set binary format, and so must be architecture independent. 134 ** 135 ** Unlike the SQLite database record format, each field is self-contained - 136 ** there is no separation of header and data. Each field begins with a 137 ** single byte describing its type, as follows: 138 ** 139 ** 0x00: Undefined value. 140 ** 0x01: Integer value. 141 ** 0x02: Real value. 142 ** 0x03: Text value. 143 ** 0x04: Blob value. 144 ** 0x05: SQL NULL value. 145 ** 146 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 147 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 148 ** only of the single type byte. For other types of values, the type byte 149 ** is followed by: 150 ** 151 ** Text values: 152 ** A varint containing the number of bytes in the value (encoded using 153 ** UTF-8). Followed by a buffer containing the UTF-8 representation 154 ** of the text value. There is no nul terminator. 155 ** 156 ** Blob values: 157 ** A varint containing the number of bytes in the value, followed by 158 ** a buffer containing the value itself. 159 ** 160 ** Integer values: 161 ** An 8-byte big-endian integer value. 162 ** 163 ** Real values: 164 ** An 8-byte big-endian IEEE 754-2008 real value. 165 ** 166 ** Varint values are encoded in the same way as varints in the SQLite 167 ** record format. 168 ** 169 ** CHANGESET FORMAT: 170 ** 171 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 172 ** one or more tables. Operations on a single table are grouped together, 173 ** but may occur in any order (i.e. deletes, updates and inserts are all 174 ** mixed together). 175 ** 176 ** Each group of changes begins with a table header: 177 ** 178 ** 1 byte: Constant 0x54 (capital 'T') 179 ** Varint: Number of columns in the table. 180 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 181 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 182 ** 183 ** Followed by one or more changes to the table. 184 ** 185 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 186 ** 1 byte: The "indirect-change" flag. 187 ** old.* record: (delete and update only) 188 ** new.* record: (insert and update only) 189 ** 190 ** The "old.*" and "new.*" records, if present, are N field records in the 191 ** format described above under "RECORD FORMAT", where N is the number of 192 ** columns in the table. The i'th field of each record is associated with 193 ** the i'th column of the table, counting from left to right in the order 194 ** in which columns were declared in the CREATE TABLE statement. 195 ** 196 ** The new.* record that is part of each INSERT change contains the values 197 ** that make up the new row. Similarly, the old.* record that is part of each 198 ** DELETE change contains the values that made up the row that was deleted 199 ** from the database. In the changeset format, the records that are part 200 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 201 ** fields. 202 ** 203 ** Within the old.* record associated with an UPDATE change, all fields 204 ** associated with table columns that are not PRIMARY KEY columns and are 205 ** not modified by the UPDATE change are set to "undefined". Other fields 206 ** are set to the values that made up the row before the UPDATE that the 207 ** change records took place. Within the new.* record, fields associated 208 ** with table columns modified by the UPDATE change contain the new 209 ** values. Fields associated with table columns that are not modified 210 ** are set to "undefined". 211 ** 212 ** PATCHSET FORMAT: 213 ** 214 ** A patchset is also a collection of changes. It is similar to a changeset, 215 ** but leaves undefined those fields that are not useful if no conflict 216 ** resolution is required when applying the changeset. 217 ** 218 ** Each group of changes begins with a table header: 219 ** 220 ** 1 byte: Constant 0x50 (capital 'P') 221 ** Varint: Number of columns in the table. 222 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 223 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 224 ** 225 ** Followed by one or more changes to the table. 226 ** 227 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 228 ** 1 byte: The "indirect-change" flag. 229 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 230 ** full record for INSERT). 231 ** 232 ** As in the changeset format, each field of the single record that is part 233 ** of a patchset change is associated with the correspondingly positioned 234 ** table column, counting from left to right within the CREATE TABLE 235 ** statement. 236 ** 237 ** For a DELETE change, all fields within the record except those associated 238 ** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the 239 ** values identifying the row to delete. 240 ** 241 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 242 ** columns and columns that are modified by the UPDATE are set to "undefined". 243 ** PRIMARY KEY fields contain the values identifying the table row to update, 244 ** and fields associated with modified columns contain the new column values. 245 ** 246 ** The records associated with INSERT changes are in the same format as for 247 ** changesets. It is not possible for a record associated with an INSERT 248 ** change to contain a field set to "undefined". 249 ** 250 ** REBASE BLOB FORMAT: 251 ** 252 ** A rebase blob may be output by sqlite3changeset_apply_v2() and its 253 ** streaming equivalent for use with the sqlite3_rebaser APIs to rebase 254 ** existing changesets. A rebase blob contains one entry for each conflict 255 ** resolved using either the OMIT or REPLACE strategies within the apply_v2() 256 ** call. 257 ** 258 ** The format used for a rebase blob is very similar to that used for 259 ** changesets. All entries related to a single table are grouped together. 260 ** 261 ** Each group of entries begins with a table header in changeset format: 262 ** 263 ** 1 byte: Constant 0x54 (capital 'T') 264 ** Varint: Number of columns in the table. 265 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 266 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 267 ** 268 ** Followed by one or more entries associated with the table. 269 ** 270 ** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09). 271 ** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT. 272 ** record: (in the record format defined above). 273 ** 274 ** In a rebase blob, the first field is set to SQLITE_INSERT if the change 275 ** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if 276 ** it was a DELETE. The second field is set to 0x01 if the conflict 277 ** resolution strategy was REPLACE, or 0x00 if it was OMIT. 278 ** 279 ** If the change that caused the conflict was a DELETE, then the single 280 ** record is a copy of the old.* record from the original changeset. If it 281 ** was an INSERT, then the single record is a copy of the new.* record. If 282 ** the conflicting change was an UPDATE, then the single record is a copy 283 ** of the new.* record with the PK fields filled in based on the original 284 ** old.* record. 285 */ 286 287 /* 288 ** For each row modified during a session, there exists a single instance of 289 ** this structure stored in a SessionTable.aChange[] hash table. 290 */ 291 struct SessionChange { 292 int op; /* One of UPDATE, DELETE, INSERT */ 293 int bIndirect; /* True if this change is "indirect" */ 294 int nRecord; /* Number of bytes in buffer aRecord[] */ 295 u8 *aRecord; /* Buffer containing old.* record */ 296 SessionChange *pNext; /* For hash-table collisions */ 297 }; 298 299 /* 300 ** Write a varint with value iVal into the buffer at aBuf. Return the 301 ** number of bytes written. 302 */ 303 static int sessionVarintPut(u8 *aBuf, int iVal){ 304 return putVarint32(aBuf, iVal); 305 } 306 307 /* 308 ** Return the number of bytes required to store value iVal as a varint. 309 */ 310 static int sessionVarintLen(int iVal){ 311 return sqlite3VarintLen(iVal); 312 } 313 314 /* 315 ** Read a varint value from aBuf[] into *piVal. Return the number of 316 ** bytes read. 317 */ 318 static int sessionVarintGet(u8 *aBuf, int *piVal){ 319 return getVarint32(aBuf, *piVal); 320 } 321 322 /* Load an unaligned and unsigned 32-bit integer */ 323 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 324 325 /* 326 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 327 ** the value read. 328 */ 329 static sqlite3_int64 sessionGetI64(u8 *aRec){ 330 u64 x = SESSION_UINT32(aRec); 331 u32 y = SESSION_UINT32(aRec+4); 332 x = (x<<32) + y; 333 return (sqlite3_int64)x; 334 } 335 336 /* 337 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 338 */ 339 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 340 aBuf[0] = (i>>56) & 0xFF; 341 aBuf[1] = (i>>48) & 0xFF; 342 aBuf[2] = (i>>40) & 0xFF; 343 aBuf[3] = (i>>32) & 0xFF; 344 aBuf[4] = (i>>24) & 0xFF; 345 aBuf[5] = (i>>16) & 0xFF; 346 aBuf[6] = (i>> 8) & 0xFF; 347 aBuf[7] = (i>> 0) & 0xFF; 348 } 349 350 /* 351 ** This function is used to serialize the contents of value pValue (see 352 ** comment titled "RECORD FORMAT" above). 353 ** 354 ** If it is non-NULL, the serialized form of the value is written to 355 ** buffer aBuf. *pnWrite is set to the number of bytes written before 356 ** returning. Or, if aBuf is NULL, the only thing this function does is 357 ** set *pnWrite. 358 ** 359 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 360 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 361 ** SQLITE_NOMEM is returned. 362 */ 363 static int sessionSerializeValue( 364 u8 *aBuf, /* If non-NULL, write serialized value here */ 365 sqlite3_value *pValue, /* Value to serialize */ 366 sqlite3_int64 *pnWrite /* IN/OUT: Increment by bytes written */ 367 ){ 368 int nByte; /* Size of serialized value in bytes */ 369 370 if( pValue ){ 371 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 372 373 eType = sqlite3_value_type(pValue); 374 if( aBuf ) aBuf[0] = eType; 375 376 switch( eType ){ 377 case SQLITE_NULL: 378 nByte = 1; 379 break; 380 381 case SQLITE_INTEGER: 382 case SQLITE_FLOAT: 383 if( aBuf ){ 384 /* TODO: SQLite does something special to deal with mixed-endian 385 ** floating point values (e.g. ARM7). This code probably should 386 ** too. */ 387 u64 i; 388 if( eType==SQLITE_INTEGER ){ 389 i = (u64)sqlite3_value_int64(pValue); 390 }else{ 391 double r; 392 assert( sizeof(double)==8 && sizeof(u64)==8 ); 393 r = sqlite3_value_double(pValue); 394 memcpy(&i, &r, 8); 395 } 396 sessionPutI64(&aBuf[1], i); 397 } 398 nByte = 9; 399 break; 400 401 default: { 402 u8 *z; 403 int n; 404 int nVarint; 405 406 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 407 if( eType==SQLITE_TEXT ){ 408 z = (u8 *)sqlite3_value_text(pValue); 409 }else{ 410 z = (u8 *)sqlite3_value_blob(pValue); 411 } 412 n = sqlite3_value_bytes(pValue); 413 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 414 nVarint = sessionVarintLen(n); 415 416 if( aBuf ){ 417 sessionVarintPut(&aBuf[1], n); 418 if( n ) memcpy(&aBuf[nVarint + 1], z, n); 419 } 420 421 nByte = 1 + nVarint + n; 422 break; 423 } 424 } 425 }else{ 426 nByte = 1; 427 if( aBuf ) aBuf[0] = '\0'; 428 } 429 430 if( pnWrite ) *pnWrite += nByte; 431 return SQLITE_OK; 432 } 433 434 435 /* 436 ** This macro is used to calculate hash key values for data structures. In 437 ** order to use this macro, the entire data structure must be represented 438 ** as a series of unsigned integers. In order to calculate a hash-key value 439 ** for a data structure represented as three such integers, the macro may 440 ** then be used as follows: 441 ** 442 ** int hash_key_value; 443 ** hash_key_value = HASH_APPEND(0, <value 1>); 444 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 445 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 446 ** 447 ** In practice, the data structures this macro is used for are the primary 448 ** key values of modified rows. 449 */ 450 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 451 452 /* 453 ** Append the hash of the 64-bit integer passed as the second argument to the 454 ** hash-key value passed as the first. Return the new hash-key value. 455 */ 456 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 457 h = HASH_APPEND(h, i & 0xFFFFFFFF); 458 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 459 } 460 461 /* 462 ** Append the hash of the blob passed via the second and third arguments to 463 ** the hash-key value passed as the first. Return the new hash-key value. 464 */ 465 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 466 int i; 467 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 468 return h; 469 } 470 471 /* 472 ** Append the hash of the data type passed as the second argument to the 473 ** hash-key value passed as the first. Return the new hash-key value. 474 */ 475 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 476 return HASH_APPEND(h, eType); 477 } 478 479 /* 480 ** This function may only be called from within a pre-update callback. 481 ** It calculates a hash based on the primary key values of the old.* or 482 ** new.* row currently available and, assuming no error occurs, writes it to 483 ** *piHash before returning. If the primary key contains one or more NULL 484 ** values, *pbNullPK is set to true before returning. 485 ** 486 ** If an error occurs, an SQLite error code is returned and the final values 487 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 488 ** and the output variables are set as described above. 489 */ 490 static int sessionPreupdateHash( 491 sqlite3_session *pSession, /* Session object that owns pTab */ 492 SessionTable *pTab, /* Session table handle */ 493 int bNew, /* True to hash the new.* PK */ 494 int *piHash, /* OUT: Hash value */ 495 int *pbNullPK /* OUT: True if there are NULL values in PK */ 496 ){ 497 unsigned int h = 0; /* Hash value to return */ 498 int i; /* Used to iterate through columns */ 499 500 assert( *pbNullPK==0 ); 501 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 502 for(i=0; i<pTab->nCol; i++){ 503 if( pTab->abPK[i] ){ 504 int rc; 505 int eType; 506 sqlite3_value *pVal; 507 508 if( bNew ){ 509 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 510 }else{ 511 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 512 } 513 if( rc!=SQLITE_OK ) return rc; 514 515 eType = sqlite3_value_type(pVal); 516 h = sessionHashAppendType(h, eType); 517 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 518 i64 iVal; 519 if( eType==SQLITE_INTEGER ){ 520 iVal = sqlite3_value_int64(pVal); 521 }else{ 522 double rVal = sqlite3_value_double(pVal); 523 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 524 memcpy(&iVal, &rVal, 8); 525 } 526 h = sessionHashAppendI64(h, iVal); 527 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 528 const u8 *z; 529 int n; 530 if( eType==SQLITE_TEXT ){ 531 z = (const u8 *)sqlite3_value_text(pVal); 532 }else{ 533 z = (const u8 *)sqlite3_value_blob(pVal); 534 } 535 n = sqlite3_value_bytes(pVal); 536 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 537 h = sessionHashAppendBlob(h, n, z); 538 }else{ 539 assert( eType==SQLITE_NULL ); 540 assert( pTab->bStat1==0 || i!=1 ); 541 *pbNullPK = 1; 542 } 543 } 544 } 545 546 *piHash = (h % pTab->nChange); 547 return SQLITE_OK; 548 } 549 550 /* 551 ** The buffer that the argument points to contains a serialized SQL value. 552 ** Return the number of bytes of space occupied by the value (including 553 ** the type byte). 554 */ 555 static int sessionSerialLen(u8 *a){ 556 int e = *a; 557 int n; 558 if( e==0 || e==0xFF ) return 1; 559 if( e==SQLITE_NULL ) return 1; 560 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 561 return sessionVarintGet(&a[1], &n) + 1 + n; 562 } 563 564 /* 565 ** Based on the primary key values stored in change aRecord, calculate a 566 ** hash key. Assume the has table has nBucket buckets. The hash keys 567 ** calculated by this function are compatible with those calculated by 568 ** sessionPreupdateHash(). 569 ** 570 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 571 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 572 */ 573 static unsigned int sessionChangeHash( 574 SessionTable *pTab, /* Table handle */ 575 int bPkOnly, /* Record consists of PK fields only */ 576 u8 *aRecord, /* Change record */ 577 int nBucket /* Assume this many buckets in hash table */ 578 ){ 579 unsigned int h = 0; /* Value to return */ 580 int i; /* Used to iterate through columns */ 581 u8 *a = aRecord; /* Used to iterate through change record */ 582 583 for(i=0; i<pTab->nCol; i++){ 584 int eType = *a; 585 int isPK = pTab->abPK[i]; 586 if( bPkOnly && isPK==0 ) continue; 587 588 /* It is not possible for eType to be SQLITE_NULL here. The session 589 ** module does not record changes for rows with NULL values stored in 590 ** primary key columns. */ 591 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 592 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 593 || eType==SQLITE_NULL || eType==0 594 ); 595 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 596 597 if( isPK ){ 598 a++; 599 h = sessionHashAppendType(h, eType); 600 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 601 h = sessionHashAppendI64(h, sessionGetI64(a)); 602 a += 8; 603 }else{ 604 int n; 605 a += sessionVarintGet(a, &n); 606 h = sessionHashAppendBlob(h, n, a); 607 a += n; 608 } 609 }else{ 610 a += sessionSerialLen(a); 611 } 612 } 613 return (h % nBucket); 614 } 615 616 /* 617 ** Arguments aLeft and aRight are pointers to change records for table pTab. 618 ** This function returns true if the two records apply to the same row (i.e. 619 ** have the same values stored in the primary key columns), or false 620 ** otherwise. 621 */ 622 static int sessionChangeEqual( 623 SessionTable *pTab, /* Table used for PK definition */ 624 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 625 u8 *aLeft, /* Change record */ 626 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 627 u8 *aRight /* Change record */ 628 ){ 629 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 630 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 631 int iCol; /* Used to iterate through table columns */ 632 633 for(iCol=0; iCol<pTab->nCol; iCol++){ 634 if( pTab->abPK[iCol] ){ 635 int n1 = sessionSerialLen(a1); 636 int n2 = sessionSerialLen(a2); 637 638 if( n1!=n2 || memcmp(a1, a2, n1) ){ 639 return 0; 640 } 641 a1 += n1; 642 a2 += n2; 643 }else{ 644 if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1); 645 if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2); 646 } 647 } 648 649 return 1; 650 } 651 652 /* 653 ** Arguments aLeft and aRight both point to buffers containing change 654 ** records with nCol columns. This function "merges" the two records into 655 ** a single records which is written to the buffer at *paOut. *paOut is 656 ** then set to point to one byte after the last byte written before 657 ** returning. 658 ** 659 ** The merging of records is done as follows: For each column, if the 660 ** aRight record contains a value for the column, copy the value from 661 ** their. Otherwise, if aLeft contains a value, copy it. If neither 662 ** record contains a value for a given column, then neither does the 663 ** output record. 664 */ 665 static void sessionMergeRecord( 666 u8 **paOut, 667 int nCol, 668 u8 *aLeft, 669 u8 *aRight 670 ){ 671 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 672 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 673 u8 *aOut = *paOut; /* Output cursor */ 674 int iCol; /* Used to iterate from 0 to nCol */ 675 676 for(iCol=0; iCol<nCol; iCol++){ 677 int n1 = sessionSerialLen(a1); 678 int n2 = sessionSerialLen(a2); 679 if( *a2 ){ 680 memcpy(aOut, a2, n2); 681 aOut += n2; 682 }else{ 683 memcpy(aOut, a1, n1); 684 aOut += n1; 685 } 686 a1 += n1; 687 a2 += n2; 688 } 689 690 *paOut = aOut; 691 } 692 693 /* 694 ** This is a helper function used by sessionMergeUpdate(). 695 ** 696 ** When this function is called, both *paOne and *paTwo point to a value 697 ** within a change record. Before it returns, both have been advanced so 698 ** as to point to the next value in the record. 699 ** 700 ** If, when this function is called, *paTwo points to a valid value (i.e. 701 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 702 ** pointer is returned and *pnVal is set to the number of bytes in the 703 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 704 ** set to the number of bytes in the value at *paOne. If *paOne points 705 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 706 ** 707 ** if( *paTwo is valid ) return *paTwo; 708 ** return *paOne; 709 ** 710 */ 711 static u8 *sessionMergeValue( 712 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 713 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 714 int *pnVal /* OUT: Bytes in returned value */ 715 ){ 716 u8 *a1 = *paOne; 717 u8 *a2 = *paTwo; 718 u8 *pRet = 0; 719 int n1; 720 721 assert( a1 ); 722 if( a2 ){ 723 int n2 = sessionSerialLen(a2); 724 if( *a2 ){ 725 *pnVal = n2; 726 pRet = a2; 727 } 728 *paTwo = &a2[n2]; 729 } 730 731 n1 = sessionSerialLen(a1); 732 if( pRet==0 ){ 733 *pnVal = n1; 734 pRet = a1; 735 } 736 *paOne = &a1[n1]; 737 738 return pRet; 739 } 740 741 /* 742 ** This function is used by changeset_concat() to merge two UPDATE changes 743 ** on the same row. 744 */ 745 static int sessionMergeUpdate( 746 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 747 SessionTable *pTab, /* Table change pertains to */ 748 int bPatchset, /* True if records are patchset records */ 749 u8 *aOldRecord1, /* old.* record for first change */ 750 u8 *aOldRecord2, /* old.* record for second change */ 751 u8 *aNewRecord1, /* new.* record for first change */ 752 u8 *aNewRecord2 /* new.* record for second change */ 753 ){ 754 u8 *aOld1 = aOldRecord1; 755 u8 *aOld2 = aOldRecord2; 756 u8 *aNew1 = aNewRecord1; 757 u8 *aNew2 = aNewRecord2; 758 759 u8 *aOut = *paOut; 760 int i; 761 762 if( bPatchset==0 ){ 763 int bRequired = 0; 764 765 assert( aOldRecord1 && aNewRecord1 ); 766 767 /* Write the old.* vector first. */ 768 for(i=0; i<pTab->nCol; i++){ 769 int nOld; 770 u8 *aOld; 771 int nNew; 772 u8 *aNew; 773 774 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 775 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 776 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 777 if( pTab->abPK[i]==0 ) bRequired = 1; 778 memcpy(aOut, aOld, nOld); 779 aOut += nOld; 780 }else{ 781 *(aOut++) = '\0'; 782 } 783 } 784 785 if( !bRequired ) return 0; 786 } 787 788 /* Write the new.* vector */ 789 aOld1 = aOldRecord1; 790 aOld2 = aOldRecord2; 791 aNew1 = aNewRecord1; 792 aNew2 = aNewRecord2; 793 for(i=0; i<pTab->nCol; i++){ 794 int nOld; 795 u8 *aOld; 796 int nNew; 797 u8 *aNew; 798 799 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 800 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 801 if( bPatchset==0 802 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 803 ){ 804 *(aOut++) = '\0'; 805 }else{ 806 memcpy(aOut, aNew, nNew); 807 aOut += nNew; 808 } 809 } 810 811 *paOut = aOut; 812 return 1; 813 } 814 815 /* 816 ** This function is only called from within a pre-update-hook callback. 817 ** It determines if the current pre-update-hook change affects the same row 818 ** as the change stored in argument pChange. If so, it returns true. Otherwise 819 ** if the pre-update-hook does not affect the same row as pChange, it returns 820 ** false. 821 */ 822 static int sessionPreupdateEqual( 823 sqlite3_session *pSession, /* Session object that owns SessionTable */ 824 SessionTable *pTab, /* Table associated with change */ 825 SessionChange *pChange, /* Change to compare to */ 826 int op /* Current pre-update operation */ 827 ){ 828 int iCol; /* Used to iterate through columns */ 829 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 830 831 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 832 for(iCol=0; iCol<pTab->nCol; iCol++){ 833 if( !pTab->abPK[iCol] ){ 834 a += sessionSerialLen(a); 835 }else{ 836 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 837 int rc; /* Error code from preupdate_new/old */ 838 int eType = *a++; /* Type of value from change record */ 839 840 /* The following calls to preupdate_new() and preupdate_old() can not 841 ** fail. This is because they cache their return values, and by the 842 ** time control flows to here they have already been called once from 843 ** within sessionPreupdateHash(). The first two asserts below verify 844 ** this (that the method has already been called). */ 845 if( op==SQLITE_INSERT ){ 846 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 847 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 848 }else{ 849 /* assert( db->pPreUpdate->pUnpacked ); */ 850 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 851 } 852 assert( rc==SQLITE_OK ); 853 if( sqlite3_value_type(pVal)!=eType ) return 0; 854 855 /* A SessionChange object never has a NULL value in a PK column */ 856 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 857 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 858 ); 859 860 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 861 i64 iVal = sessionGetI64(a); 862 a += 8; 863 if( eType==SQLITE_INTEGER ){ 864 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 865 }else{ 866 double rVal; 867 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 868 memcpy(&rVal, &iVal, 8); 869 if( sqlite3_value_double(pVal)!=rVal ) return 0; 870 } 871 }else{ 872 int n; 873 const u8 *z; 874 a += sessionVarintGet(a, &n); 875 if( sqlite3_value_bytes(pVal)!=n ) return 0; 876 if( eType==SQLITE_TEXT ){ 877 z = sqlite3_value_text(pVal); 878 }else{ 879 z = sqlite3_value_blob(pVal); 880 } 881 if( n>0 && memcmp(a, z, n) ) return 0; 882 a += n; 883 } 884 } 885 } 886 887 return 1; 888 } 889 890 /* 891 ** If required, grow the hash table used to store changes on table pTab 892 ** (part of the session pSession). If a fatal OOM error occurs, set the 893 ** session object to failed and return SQLITE_ERROR. Otherwise, return 894 ** SQLITE_OK. 895 ** 896 ** It is possible that a non-fatal OOM error occurs in this function. In 897 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 898 ** Growing the hash table in this case is a performance optimization only, 899 ** it is not required for correct operation. 900 */ 901 static int sessionGrowHash(int bPatchset, SessionTable *pTab){ 902 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 903 int i; 904 SessionChange **apNew; 905 int nNew = (pTab->nChange ? pTab->nChange : 128) * 2; 906 907 apNew = (SessionChange **)sqlite3_malloc64(sizeof(SessionChange *) * nNew); 908 if( apNew==0 ){ 909 if( pTab->nChange==0 ){ 910 return SQLITE_ERROR; 911 } 912 return SQLITE_OK; 913 } 914 memset(apNew, 0, sizeof(SessionChange *) * nNew); 915 916 for(i=0; i<pTab->nChange; i++){ 917 SessionChange *p; 918 SessionChange *pNext; 919 for(p=pTab->apChange[i]; p; p=pNext){ 920 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 921 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 922 pNext = p->pNext; 923 p->pNext = apNew[iHash]; 924 apNew[iHash] = p; 925 } 926 } 927 928 sqlite3_free(pTab->apChange); 929 pTab->nChange = nNew; 930 pTab->apChange = apNew; 931 } 932 933 return SQLITE_OK; 934 } 935 936 /* 937 ** This function queries the database for the names of the columns of table 938 ** zThis, in schema zDb. 939 ** 940 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 941 ** of columns in the database table and variable *pzTab is set to point to a 942 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 943 ** point to an array of pointers to column names. And *pabPK (again, if not 944 ** NULL) is set to point to an array of booleans - true if the corresponding 945 ** column is part of the primary key. 946 ** 947 ** For example, if the table is declared as: 948 ** 949 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 950 ** 951 ** Then the four output variables are populated as follows: 952 ** 953 ** *pnCol = 4 954 ** *pzTab = "tbl1" 955 ** *pazCol = {"w", "x", "y", "z"} 956 ** *pabPK = {1, 0, 0, 1} 957 ** 958 ** All returned buffers are part of the same single allocation, which must 959 ** be freed using sqlite3_free() by the caller 960 */ 961 static int sessionTableInfo( 962 sqlite3 *db, /* Database connection */ 963 const char *zDb, /* Name of attached database (e.g. "main") */ 964 const char *zThis, /* Table name */ 965 int *pnCol, /* OUT: number of columns */ 966 const char **pzTab, /* OUT: Copy of zThis */ 967 const char ***pazCol, /* OUT: Array of column names for table */ 968 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 969 ){ 970 char *zPragma; 971 sqlite3_stmt *pStmt; 972 int rc; 973 sqlite3_int64 nByte; 974 int nDbCol = 0; 975 int nThis; 976 int i; 977 u8 *pAlloc = 0; 978 char **azCol = 0; 979 u8 *abPK = 0; 980 981 assert( pazCol && pabPK ); 982 983 nThis = sqlite3Strlen30(zThis); 984 if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){ 985 rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0); 986 if( rc==SQLITE_OK ){ 987 /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */ 988 zPragma = sqlite3_mprintf( 989 "SELECT 0, 'tbl', '', 0, '', 1 UNION ALL " 990 "SELECT 1, 'idx', '', 0, '', 2 UNION ALL " 991 "SELECT 2, 'stat', '', 0, '', 0" 992 ); 993 }else if( rc==SQLITE_ERROR ){ 994 zPragma = sqlite3_mprintf(""); 995 }else{ 996 return rc; 997 } 998 }else{ 999 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 1000 } 1001 if( !zPragma ) return SQLITE_NOMEM; 1002 1003 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 1004 sqlite3_free(zPragma); 1005 if( rc!=SQLITE_OK ) return rc; 1006 1007 nByte = nThis + 1; 1008 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1009 nByte += sqlite3_column_bytes(pStmt, 1); 1010 nDbCol++; 1011 } 1012 rc = sqlite3_reset(pStmt); 1013 1014 if( rc==SQLITE_OK ){ 1015 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 1016 pAlloc = sqlite3_malloc64(nByte); 1017 if( pAlloc==0 ){ 1018 rc = SQLITE_NOMEM; 1019 } 1020 } 1021 if( rc==SQLITE_OK ){ 1022 azCol = (char **)pAlloc; 1023 pAlloc = (u8 *)&azCol[nDbCol]; 1024 abPK = (u8 *)pAlloc; 1025 pAlloc = &abPK[nDbCol]; 1026 if( pzTab ){ 1027 memcpy(pAlloc, zThis, nThis+1); 1028 *pzTab = (char *)pAlloc; 1029 pAlloc += nThis+1; 1030 } 1031 1032 i = 0; 1033 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1034 int nName = sqlite3_column_bytes(pStmt, 1); 1035 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 1036 if( zName==0 ) break; 1037 memcpy(pAlloc, zName, nName+1); 1038 azCol[i] = (char *)pAlloc; 1039 pAlloc += nName+1; 1040 abPK[i] = sqlite3_column_int(pStmt, 5); 1041 i++; 1042 } 1043 rc = sqlite3_reset(pStmt); 1044 1045 } 1046 1047 /* If successful, populate the output variables. Otherwise, zero them and 1048 ** free any allocation made. An error code will be returned in this case. 1049 */ 1050 if( rc==SQLITE_OK ){ 1051 *pazCol = (const char **)azCol; 1052 *pabPK = abPK; 1053 *pnCol = nDbCol; 1054 }else{ 1055 *pazCol = 0; 1056 *pabPK = 0; 1057 *pnCol = 0; 1058 if( pzTab ) *pzTab = 0; 1059 sqlite3_free(azCol); 1060 } 1061 sqlite3_finalize(pStmt); 1062 return rc; 1063 } 1064 1065 /* 1066 ** This function is only called from within a pre-update handler for a 1067 ** write to table pTab, part of session pSession. If this is the first 1068 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1069 ** abPK[] arrays accordingly. 1070 ** 1071 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1072 ** non-zero returned. Or, if no error occurs but the table has no primary 1073 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1074 ** indicate that updates on this table should be ignored. SessionTable.abPK 1075 ** is set to NULL in this case. 1076 */ 1077 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1078 if( pTab->nCol==0 ){ 1079 u8 *abPK; 1080 assert( pTab->azCol==0 || pTab->abPK==0 ); 1081 pSession->rc = sessionTableInfo(pSession->db, pSession->zDb, 1082 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1083 ); 1084 if( pSession->rc==SQLITE_OK ){ 1085 int i; 1086 for(i=0; i<pTab->nCol; i++){ 1087 if( abPK[i] ){ 1088 pTab->abPK = abPK; 1089 break; 1090 } 1091 } 1092 if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){ 1093 pTab->bStat1 = 1; 1094 } 1095 } 1096 } 1097 return (pSession->rc || pTab->abPK==0); 1098 } 1099 1100 /* 1101 ** Versions of the four methods in object SessionHook for use with the 1102 ** sqlite_stat1 table. The purpose of this is to substitute a zero-length 1103 ** blob each time a NULL value is read from the "idx" column of the 1104 ** sqlite_stat1 table. 1105 */ 1106 typedef struct SessionStat1Ctx SessionStat1Ctx; 1107 struct SessionStat1Ctx { 1108 SessionHook hook; 1109 sqlite3_session *pSession; 1110 }; 1111 static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){ 1112 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1113 sqlite3_value *pVal = 0; 1114 int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal); 1115 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1116 pVal = p->pSession->pZeroBlob; 1117 } 1118 *ppVal = pVal; 1119 return rc; 1120 } 1121 static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){ 1122 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1123 sqlite3_value *pVal = 0; 1124 int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal); 1125 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1126 pVal = p->pSession->pZeroBlob; 1127 } 1128 *ppVal = pVal; 1129 return rc; 1130 } 1131 static int sessionStat1Count(void *pCtx){ 1132 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1133 return p->hook.xCount(p->hook.pCtx); 1134 } 1135 static int sessionStat1Depth(void *pCtx){ 1136 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1137 return p->hook.xDepth(p->hook.pCtx); 1138 } 1139 1140 1141 /* 1142 ** This function is only called from with a pre-update-hook reporting a 1143 ** change on table pTab (attached to session pSession). The type of change 1144 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1145 ** 1146 ** Unless one is already present or an error occurs, an entry is added 1147 ** to the changed-rows hash table associated with table pTab. 1148 */ 1149 static void sessionPreupdateOneChange( 1150 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1151 sqlite3_session *pSession, /* Session object pTab is attached to */ 1152 SessionTable *pTab /* Table that change applies to */ 1153 ){ 1154 int iHash; 1155 int bNull = 0; 1156 int rc = SQLITE_OK; 1157 SessionStat1Ctx stat1 = {{0,0,0,0,0},0}; 1158 1159 if( pSession->rc ) return; 1160 1161 /* Load table details if required */ 1162 if( sessionInitTable(pSession, pTab) ) return; 1163 1164 /* Check the number of columns in this xPreUpdate call matches the 1165 ** number of columns in the table. */ 1166 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1167 pSession->rc = SQLITE_SCHEMA; 1168 return; 1169 } 1170 1171 /* Grow the hash table if required */ 1172 if( sessionGrowHash(0, pTab) ){ 1173 pSession->rc = SQLITE_NOMEM; 1174 return; 1175 } 1176 1177 if( pTab->bStat1 ){ 1178 stat1.hook = pSession->hook; 1179 stat1.pSession = pSession; 1180 pSession->hook.pCtx = (void*)&stat1; 1181 pSession->hook.xNew = sessionStat1New; 1182 pSession->hook.xOld = sessionStat1Old; 1183 pSession->hook.xCount = sessionStat1Count; 1184 pSession->hook.xDepth = sessionStat1Depth; 1185 if( pSession->pZeroBlob==0 ){ 1186 sqlite3_value *p = sqlite3ValueNew(0); 1187 if( p==0 ){ 1188 rc = SQLITE_NOMEM; 1189 goto error_out; 1190 } 1191 sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC); 1192 pSession->pZeroBlob = p; 1193 } 1194 } 1195 1196 /* Calculate the hash-key for this change. If the primary key of the row 1197 ** includes a NULL value, exit early. Such changes are ignored by the 1198 ** session module. */ 1199 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1200 if( rc!=SQLITE_OK ) goto error_out; 1201 1202 if( bNull==0 ){ 1203 /* Search the hash table for an existing record for this row. */ 1204 SessionChange *pC; 1205 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1206 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1207 } 1208 1209 if( pC==0 ){ 1210 /* Create a new change object containing all the old values (if 1211 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1212 ** values (if this is an INSERT). */ 1213 SessionChange *pChange; /* New change object */ 1214 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1215 int i; /* Used to iterate through columns */ 1216 1217 assert( rc==SQLITE_OK ); 1218 pTab->nEntry++; 1219 1220 /* Figure out how large an allocation is required */ 1221 nByte = sizeof(SessionChange); 1222 for(i=0; i<pTab->nCol; i++){ 1223 sqlite3_value *p = 0; 1224 if( op!=SQLITE_INSERT ){ 1225 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1226 assert( trc==SQLITE_OK ); 1227 }else if( pTab->abPK[i] ){ 1228 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1229 assert( trc==SQLITE_OK ); 1230 } 1231 1232 /* This may fail if SQLite value p contains a utf-16 string that must 1233 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1234 rc = sessionSerializeValue(0, p, &nByte); 1235 if( rc!=SQLITE_OK ) goto error_out; 1236 } 1237 1238 /* Allocate the change object */ 1239 pChange = (SessionChange *)sqlite3_malloc64(nByte); 1240 if( !pChange ){ 1241 rc = SQLITE_NOMEM; 1242 goto error_out; 1243 }else{ 1244 memset(pChange, 0, sizeof(SessionChange)); 1245 pChange->aRecord = (u8 *)&pChange[1]; 1246 } 1247 1248 /* Populate the change object. None of the preupdate_old(), 1249 ** preupdate_new() or SerializeValue() calls below may fail as all 1250 ** required values and encodings have already been cached in memory. 1251 ** It is not possible for an OOM to occur in this block. */ 1252 nByte = 0; 1253 for(i=0; i<pTab->nCol; i++){ 1254 sqlite3_value *p = 0; 1255 if( op!=SQLITE_INSERT ){ 1256 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1257 }else if( pTab->abPK[i] ){ 1258 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1259 } 1260 sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte); 1261 } 1262 1263 /* Add the change to the hash-table */ 1264 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1265 pChange->bIndirect = 1; 1266 } 1267 pChange->nRecord = nByte; 1268 pChange->op = op; 1269 pChange->pNext = pTab->apChange[iHash]; 1270 pTab->apChange[iHash] = pChange; 1271 1272 }else if( pC->bIndirect ){ 1273 /* If the existing change is considered "indirect", but this current 1274 ** change is "direct", mark the change object as direct. */ 1275 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1276 && pSession->bIndirect==0 1277 ){ 1278 pC->bIndirect = 0; 1279 } 1280 } 1281 } 1282 1283 /* If an error has occurred, mark the session object as failed. */ 1284 error_out: 1285 if( pTab->bStat1 ){ 1286 pSession->hook = stat1.hook; 1287 } 1288 if( rc!=SQLITE_OK ){ 1289 pSession->rc = rc; 1290 } 1291 } 1292 1293 static int sessionFindTable( 1294 sqlite3_session *pSession, 1295 const char *zName, 1296 SessionTable **ppTab 1297 ){ 1298 int rc = SQLITE_OK; 1299 int nName = sqlite3Strlen30(zName); 1300 SessionTable *pRet; 1301 1302 /* Search for an existing table */ 1303 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1304 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1305 } 1306 1307 if( pRet==0 && pSession->bAutoAttach ){ 1308 /* If there is a table-filter configured, invoke it. If it returns 0, 1309 ** do not automatically add the new table. */ 1310 if( pSession->xTableFilter==0 1311 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1312 ){ 1313 rc = sqlite3session_attach(pSession, zName); 1314 if( rc==SQLITE_OK ){ 1315 for(pRet=pSession->pTable; pRet->pNext; pRet=pRet->pNext); 1316 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1317 } 1318 } 1319 } 1320 1321 assert( rc==SQLITE_OK || pRet==0 ); 1322 *ppTab = pRet; 1323 return rc; 1324 } 1325 1326 /* 1327 ** The 'pre-update' hook registered by this module with SQLite databases. 1328 */ 1329 static void xPreUpdate( 1330 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1331 sqlite3 *db, /* Database handle */ 1332 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1333 char const *zDb, /* Database name */ 1334 char const *zName, /* Table name */ 1335 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1336 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1337 ){ 1338 sqlite3_session *pSession; 1339 int nDb = sqlite3Strlen30(zDb); 1340 1341 assert( sqlite3_mutex_held(db->mutex) ); 1342 1343 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1344 SessionTable *pTab; 1345 1346 /* If this session is attached to a different database ("main", "temp" 1347 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1348 ** to the next session object attached to this database. */ 1349 if( pSession->bEnable==0 ) continue; 1350 if( pSession->rc ) continue; 1351 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1352 1353 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1354 if( pTab ){ 1355 assert( pSession->rc==SQLITE_OK ); 1356 sessionPreupdateOneChange(op, pSession, pTab); 1357 if( op==SQLITE_UPDATE ){ 1358 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1359 } 1360 } 1361 } 1362 } 1363 1364 /* 1365 ** The pre-update hook implementations. 1366 */ 1367 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1368 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1369 } 1370 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1371 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1372 } 1373 static int sessionPreupdateCount(void *pCtx){ 1374 return sqlite3_preupdate_count((sqlite3*)pCtx); 1375 } 1376 static int sessionPreupdateDepth(void *pCtx){ 1377 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1378 } 1379 1380 /* 1381 ** Install the pre-update hooks on the session object passed as the only 1382 ** argument. 1383 */ 1384 static void sessionPreupdateHooks( 1385 sqlite3_session *pSession 1386 ){ 1387 pSession->hook.pCtx = (void*)pSession->db; 1388 pSession->hook.xOld = sessionPreupdateOld; 1389 pSession->hook.xNew = sessionPreupdateNew; 1390 pSession->hook.xCount = sessionPreupdateCount; 1391 pSession->hook.xDepth = sessionPreupdateDepth; 1392 } 1393 1394 typedef struct SessionDiffCtx SessionDiffCtx; 1395 struct SessionDiffCtx { 1396 sqlite3_stmt *pStmt; 1397 int nOldOff; 1398 }; 1399 1400 /* 1401 ** The diff hook implementations. 1402 */ 1403 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1404 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1405 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1406 return SQLITE_OK; 1407 } 1408 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1409 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1410 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1411 return SQLITE_OK; 1412 } 1413 static int sessionDiffCount(void *pCtx){ 1414 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1415 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1416 } 1417 static int sessionDiffDepth(void *pCtx){ 1418 return 0; 1419 } 1420 1421 /* 1422 ** Install the diff hooks on the session object passed as the only 1423 ** argument. 1424 */ 1425 static void sessionDiffHooks( 1426 sqlite3_session *pSession, 1427 SessionDiffCtx *pDiffCtx 1428 ){ 1429 pSession->hook.pCtx = (void*)pDiffCtx; 1430 pSession->hook.xOld = sessionDiffOld; 1431 pSession->hook.xNew = sessionDiffNew; 1432 pSession->hook.xCount = sessionDiffCount; 1433 pSession->hook.xDepth = sessionDiffDepth; 1434 } 1435 1436 static char *sessionExprComparePK( 1437 int nCol, 1438 const char *zDb1, const char *zDb2, 1439 const char *zTab, 1440 const char **azCol, u8 *abPK 1441 ){ 1442 int i; 1443 const char *zSep = ""; 1444 char *zRet = 0; 1445 1446 for(i=0; i<nCol; i++){ 1447 if( abPK[i] ){ 1448 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1449 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1450 ); 1451 zSep = " AND "; 1452 if( zRet==0 ) break; 1453 } 1454 } 1455 1456 return zRet; 1457 } 1458 1459 static char *sessionExprCompareOther( 1460 int nCol, 1461 const char *zDb1, const char *zDb2, 1462 const char *zTab, 1463 const char **azCol, u8 *abPK 1464 ){ 1465 int i; 1466 const char *zSep = ""; 1467 char *zRet = 0; 1468 int bHave = 0; 1469 1470 for(i=0; i<nCol; i++){ 1471 if( abPK[i]==0 ){ 1472 bHave = 1; 1473 zRet = sqlite3_mprintf( 1474 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1475 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1476 ); 1477 zSep = " OR "; 1478 if( zRet==0 ) break; 1479 } 1480 } 1481 1482 if( bHave==0 ){ 1483 assert( zRet==0 ); 1484 zRet = sqlite3_mprintf("0"); 1485 } 1486 1487 return zRet; 1488 } 1489 1490 static char *sessionSelectFindNew( 1491 int nCol, 1492 const char *zDb1, /* Pick rows in this db only */ 1493 const char *zDb2, /* But not in this one */ 1494 const char *zTbl, /* Table name */ 1495 const char *zExpr 1496 ){ 1497 char *zRet = sqlite3_mprintf( 1498 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1499 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1500 ")", 1501 zDb1, zTbl, zDb2, zTbl, zExpr 1502 ); 1503 return zRet; 1504 } 1505 1506 static int sessionDiffFindNew( 1507 int op, 1508 sqlite3_session *pSession, 1509 SessionTable *pTab, 1510 const char *zDb1, 1511 const char *zDb2, 1512 char *zExpr 1513 ){ 1514 int rc = SQLITE_OK; 1515 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1516 1517 if( zStmt==0 ){ 1518 rc = SQLITE_NOMEM; 1519 }else{ 1520 sqlite3_stmt *pStmt; 1521 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1522 if( rc==SQLITE_OK ){ 1523 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1524 pDiffCtx->pStmt = pStmt; 1525 pDiffCtx->nOldOff = 0; 1526 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1527 sessionPreupdateOneChange(op, pSession, pTab); 1528 } 1529 rc = sqlite3_finalize(pStmt); 1530 } 1531 sqlite3_free(zStmt); 1532 } 1533 1534 return rc; 1535 } 1536 1537 static int sessionDiffFindModified( 1538 sqlite3_session *pSession, 1539 SessionTable *pTab, 1540 const char *zFrom, 1541 const char *zExpr 1542 ){ 1543 int rc = SQLITE_OK; 1544 1545 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1546 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1547 ); 1548 if( zExpr2==0 ){ 1549 rc = SQLITE_NOMEM; 1550 }else{ 1551 char *zStmt = sqlite3_mprintf( 1552 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1553 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1554 ); 1555 if( zStmt==0 ){ 1556 rc = SQLITE_NOMEM; 1557 }else{ 1558 sqlite3_stmt *pStmt; 1559 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1560 1561 if( rc==SQLITE_OK ){ 1562 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1563 pDiffCtx->pStmt = pStmt; 1564 pDiffCtx->nOldOff = pTab->nCol; 1565 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1566 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1567 } 1568 rc = sqlite3_finalize(pStmt); 1569 } 1570 sqlite3_free(zStmt); 1571 } 1572 } 1573 1574 return rc; 1575 } 1576 1577 int sqlite3session_diff( 1578 sqlite3_session *pSession, 1579 const char *zFrom, 1580 const char *zTbl, 1581 char **pzErrMsg 1582 ){ 1583 const char *zDb = pSession->zDb; 1584 int rc = pSession->rc; 1585 SessionDiffCtx d; 1586 1587 memset(&d, 0, sizeof(d)); 1588 sessionDiffHooks(pSession, &d); 1589 1590 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1591 if( pzErrMsg ) *pzErrMsg = 0; 1592 if( rc==SQLITE_OK ){ 1593 char *zExpr = 0; 1594 sqlite3 *db = pSession->db; 1595 SessionTable *pTo; /* Table zTbl */ 1596 1597 /* Locate and if necessary initialize the target table object */ 1598 rc = sessionFindTable(pSession, zTbl, &pTo); 1599 if( pTo==0 ) goto diff_out; 1600 if( sessionInitTable(pSession, pTo) ){ 1601 rc = pSession->rc; 1602 goto diff_out; 1603 } 1604 1605 /* Check the table schemas match */ 1606 if( rc==SQLITE_OK ){ 1607 int bHasPk = 0; 1608 int bMismatch = 0; 1609 int nCol; /* Columns in zFrom.zTbl */ 1610 u8 *abPK; 1611 const char **azCol = 0; 1612 rc = sessionTableInfo(db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1613 if( rc==SQLITE_OK ){ 1614 if( pTo->nCol!=nCol ){ 1615 bMismatch = 1; 1616 }else{ 1617 int i; 1618 for(i=0; i<nCol; i++){ 1619 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1620 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1621 if( abPK[i] ) bHasPk = 1; 1622 } 1623 } 1624 } 1625 sqlite3_free((char*)azCol); 1626 if( bMismatch ){ 1627 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1628 rc = SQLITE_SCHEMA; 1629 } 1630 if( bHasPk==0 ){ 1631 /* Ignore tables with no primary keys */ 1632 goto diff_out; 1633 } 1634 } 1635 1636 if( rc==SQLITE_OK ){ 1637 zExpr = sessionExprComparePK(pTo->nCol, 1638 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1639 ); 1640 } 1641 1642 /* Find new rows */ 1643 if( rc==SQLITE_OK ){ 1644 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1645 } 1646 1647 /* Find old rows */ 1648 if( rc==SQLITE_OK ){ 1649 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1650 } 1651 1652 /* Find modified rows */ 1653 if( rc==SQLITE_OK ){ 1654 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1655 } 1656 1657 sqlite3_free(zExpr); 1658 } 1659 1660 diff_out: 1661 sessionPreupdateHooks(pSession); 1662 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1663 return rc; 1664 } 1665 1666 /* 1667 ** Create a session object. This session object will record changes to 1668 ** database zDb attached to connection db. 1669 */ 1670 int sqlite3session_create( 1671 sqlite3 *db, /* Database handle */ 1672 const char *zDb, /* Name of db (e.g. "main") */ 1673 sqlite3_session **ppSession /* OUT: New session object */ 1674 ){ 1675 sqlite3_session *pNew; /* Newly allocated session object */ 1676 sqlite3_session *pOld; /* Session object already attached to db */ 1677 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1678 1679 /* Zero the output value in case an error occurs. */ 1680 *ppSession = 0; 1681 1682 /* Allocate and populate the new session object. */ 1683 pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1); 1684 if( !pNew ) return SQLITE_NOMEM; 1685 memset(pNew, 0, sizeof(sqlite3_session)); 1686 pNew->db = db; 1687 pNew->zDb = (char *)&pNew[1]; 1688 pNew->bEnable = 1; 1689 memcpy(pNew->zDb, zDb, nDb+1); 1690 sessionPreupdateHooks(pNew); 1691 1692 /* Add the new session object to the linked list of session objects 1693 ** attached to database handle $db. Do this under the cover of the db 1694 ** handle mutex. */ 1695 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1696 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1697 pNew->pNext = pOld; 1698 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1699 1700 *ppSession = pNew; 1701 return SQLITE_OK; 1702 } 1703 1704 /* 1705 ** Free the list of table objects passed as the first argument. The contents 1706 ** of the changed-rows hash tables are also deleted. 1707 */ 1708 static void sessionDeleteTable(SessionTable *pList){ 1709 SessionTable *pNext; 1710 SessionTable *pTab; 1711 1712 for(pTab=pList; pTab; pTab=pNext){ 1713 int i; 1714 pNext = pTab->pNext; 1715 for(i=0; i<pTab->nChange; i++){ 1716 SessionChange *p; 1717 SessionChange *pNextChange; 1718 for(p=pTab->apChange[i]; p; p=pNextChange){ 1719 pNextChange = p->pNext; 1720 sqlite3_free(p); 1721 } 1722 } 1723 sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */ 1724 sqlite3_free(pTab->apChange); 1725 sqlite3_free(pTab); 1726 } 1727 } 1728 1729 /* 1730 ** Delete a session object previously allocated using sqlite3session_create(). 1731 */ 1732 void sqlite3session_delete(sqlite3_session *pSession){ 1733 sqlite3 *db = pSession->db; 1734 sqlite3_session *pHead; 1735 sqlite3_session **pp; 1736 1737 /* Unlink the session from the linked list of sessions attached to the 1738 ** database handle. Hold the db mutex while doing so. */ 1739 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1740 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1741 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1742 if( (*pp)==pSession ){ 1743 *pp = (*pp)->pNext; 1744 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1745 break; 1746 } 1747 } 1748 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1749 sqlite3ValueFree(pSession->pZeroBlob); 1750 1751 /* Delete all attached table objects. And the contents of their 1752 ** associated hash-tables. */ 1753 sessionDeleteTable(pSession->pTable); 1754 1755 /* Free the session object itself. */ 1756 sqlite3_free(pSession); 1757 } 1758 1759 /* 1760 ** Set a table filter on a Session Object. 1761 */ 1762 void sqlite3session_table_filter( 1763 sqlite3_session *pSession, 1764 int(*xFilter)(void*, const char*), 1765 void *pCtx /* First argument passed to xFilter */ 1766 ){ 1767 pSession->bAutoAttach = 1; 1768 pSession->pFilterCtx = pCtx; 1769 pSession->xTableFilter = xFilter; 1770 } 1771 1772 /* 1773 ** Attach a table to a session. All subsequent changes made to the table 1774 ** while the session object is enabled will be recorded. 1775 ** 1776 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1777 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1778 ** or not. 1779 */ 1780 int sqlite3session_attach( 1781 sqlite3_session *pSession, /* Session object */ 1782 const char *zName /* Table name */ 1783 ){ 1784 int rc = SQLITE_OK; 1785 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1786 1787 if( !zName ){ 1788 pSession->bAutoAttach = 1; 1789 }else{ 1790 SessionTable *pTab; /* New table object (if required) */ 1791 int nName; /* Number of bytes in string zName */ 1792 1793 /* First search for an existing entry. If one is found, this call is 1794 ** a no-op. Return early. */ 1795 nName = sqlite3Strlen30(zName); 1796 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1797 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1798 } 1799 1800 if( !pTab ){ 1801 /* Allocate new SessionTable object. */ 1802 pTab = (SessionTable *)sqlite3_malloc64(sizeof(SessionTable) + nName + 1); 1803 if( !pTab ){ 1804 rc = SQLITE_NOMEM; 1805 }else{ 1806 /* Populate the new SessionTable object and link it into the list. 1807 ** The new object must be linked onto the end of the list, not 1808 ** simply added to the start of it in order to ensure that tables 1809 ** appear in the correct order when a changeset or patchset is 1810 ** eventually generated. */ 1811 SessionTable **ppTab; 1812 memset(pTab, 0, sizeof(SessionTable)); 1813 pTab->zName = (char *)&pTab[1]; 1814 memcpy(pTab->zName, zName, nName+1); 1815 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1816 *ppTab = pTab; 1817 } 1818 } 1819 } 1820 1821 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1822 return rc; 1823 } 1824 1825 /* 1826 ** Ensure that there is room in the buffer to append nByte bytes of data. 1827 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1828 ** 1829 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1830 ** set *pRc to SQLITE_NOMEM and return non-zero. 1831 */ 1832 static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ 1833 if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ 1834 u8 *aNew; 1835 i64 nNew = p->nAlloc ? p->nAlloc : 128; 1836 do { 1837 nNew = nNew*2; 1838 }while( (nNew-p->nBuf)<nByte ); 1839 1840 aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew); 1841 if( 0==aNew ){ 1842 *pRc = SQLITE_NOMEM; 1843 }else{ 1844 p->aBuf = aNew; 1845 p->nAlloc = nNew; 1846 } 1847 } 1848 return (*pRc!=SQLITE_OK); 1849 } 1850 1851 /* 1852 ** Append the value passed as the second argument to the buffer passed 1853 ** as the first. 1854 ** 1855 ** This function is a no-op if *pRc is non-zero when it is called. 1856 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 1857 ** before returning. 1858 */ 1859 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 1860 int rc = *pRc; 1861 if( rc==SQLITE_OK ){ 1862 sqlite3_int64 nByte = 0; 1863 rc = sessionSerializeValue(0, pVal, &nByte); 1864 sessionBufferGrow(p, nByte, &rc); 1865 if( rc==SQLITE_OK ){ 1866 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 1867 p->nBuf += nByte; 1868 }else{ 1869 *pRc = rc; 1870 } 1871 } 1872 } 1873 1874 /* 1875 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1876 ** called. Otherwise, append a single byte to the buffer. 1877 ** 1878 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1879 ** returning. 1880 */ 1881 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 1882 if( 0==sessionBufferGrow(p, 1, pRc) ){ 1883 p->aBuf[p->nBuf++] = v; 1884 } 1885 } 1886 1887 /* 1888 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1889 ** called. Otherwise, append a single varint to the buffer. 1890 ** 1891 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1892 ** returning. 1893 */ 1894 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 1895 if( 0==sessionBufferGrow(p, 9, pRc) ){ 1896 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 1897 } 1898 } 1899 1900 /* 1901 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1902 ** called. Otherwise, append a blob of data to the buffer. 1903 ** 1904 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1905 ** returning. 1906 */ 1907 static void sessionAppendBlob( 1908 SessionBuffer *p, 1909 const u8 *aBlob, 1910 int nBlob, 1911 int *pRc 1912 ){ 1913 if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){ 1914 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 1915 p->nBuf += nBlob; 1916 } 1917 } 1918 1919 /* 1920 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1921 ** called. Otherwise, append a string to the buffer. All bytes in the string 1922 ** up to (but not including) the nul-terminator are written to the buffer. 1923 ** 1924 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1925 ** returning. 1926 */ 1927 static void sessionAppendStr( 1928 SessionBuffer *p, 1929 const char *zStr, 1930 int *pRc 1931 ){ 1932 int nStr = sqlite3Strlen30(zStr); 1933 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1934 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 1935 p->nBuf += nStr; 1936 } 1937 } 1938 1939 /* 1940 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1941 ** called. Otherwise, append the string representation of integer iVal 1942 ** to the buffer. No nul-terminator is written. 1943 ** 1944 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1945 ** returning. 1946 */ 1947 static void sessionAppendInteger( 1948 SessionBuffer *p, /* Buffer to append to */ 1949 int iVal, /* Value to write the string rep. of */ 1950 int *pRc /* IN/OUT: Error code */ 1951 ){ 1952 char aBuf[24]; 1953 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 1954 sessionAppendStr(p, aBuf, pRc); 1955 } 1956 1957 /* 1958 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1959 ** called. Otherwise, append the string zStr enclosed in quotes (") and 1960 ** with any embedded quote characters escaped to the buffer. No 1961 ** nul-terminator byte is written. 1962 ** 1963 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 1964 ** returning. 1965 */ 1966 static void sessionAppendIdent( 1967 SessionBuffer *p, /* Buffer to a append to */ 1968 const char *zStr, /* String to quote, escape and append */ 1969 int *pRc /* IN/OUT: Error code */ 1970 ){ 1971 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 1972 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 1973 char *zOut = (char *)&p->aBuf[p->nBuf]; 1974 const char *zIn = zStr; 1975 *zOut++ = '"'; 1976 while( *zIn ){ 1977 if( *zIn=='"' ) *zOut++ = '"'; 1978 *zOut++ = *(zIn++); 1979 } 1980 *zOut++ = '"'; 1981 p->nBuf = (int)((u8 *)zOut - p->aBuf); 1982 } 1983 } 1984 1985 /* 1986 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 1987 ** called. Otherwse, it appends the serialized version of the value stored 1988 ** in column iCol of the row that SQL statement pStmt currently points 1989 ** to to the buffer. 1990 */ 1991 static void sessionAppendCol( 1992 SessionBuffer *p, /* Buffer to append to */ 1993 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 1994 int iCol, /* Column to read value from */ 1995 int *pRc /* IN/OUT: Error code */ 1996 ){ 1997 if( *pRc==SQLITE_OK ){ 1998 int eType = sqlite3_column_type(pStmt, iCol); 1999 sessionAppendByte(p, (u8)eType, pRc); 2000 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2001 sqlite3_int64 i; 2002 u8 aBuf[8]; 2003 if( eType==SQLITE_INTEGER ){ 2004 i = sqlite3_column_int64(pStmt, iCol); 2005 }else{ 2006 double r = sqlite3_column_double(pStmt, iCol); 2007 memcpy(&i, &r, 8); 2008 } 2009 sessionPutI64(aBuf, i); 2010 sessionAppendBlob(p, aBuf, 8, pRc); 2011 } 2012 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 2013 u8 *z; 2014 int nByte; 2015 if( eType==SQLITE_BLOB ){ 2016 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 2017 }else{ 2018 z = (u8 *)sqlite3_column_text(pStmt, iCol); 2019 } 2020 nByte = sqlite3_column_bytes(pStmt, iCol); 2021 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 2022 sessionAppendVarint(p, nByte, pRc); 2023 sessionAppendBlob(p, z, nByte, pRc); 2024 }else{ 2025 *pRc = SQLITE_NOMEM; 2026 } 2027 } 2028 } 2029 } 2030 2031 /* 2032 ** 2033 ** This function appends an update change to the buffer (see the comments 2034 ** under "CHANGESET FORMAT" at the top of the file). An update change 2035 ** consists of: 2036 ** 2037 ** 1 byte: SQLITE_UPDATE (0x17) 2038 ** n bytes: old.* record (see RECORD FORMAT) 2039 ** m bytes: new.* record (see RECORD FORMAT) 2040 ** 2041 ** The SessionChange object passed as the third argument contains the 2042 ** values that were stored in the row when the session began (the old.* 2043 ** values). The statement handle passed as the second argument points 2044 ** at the current version of the row (the new.* values). 2045 ** 2046 ** If all of the old.* values are equal to their corresponding new.* value 2047 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 2048 ** 2049 ** Otherwise, the old.* record contains all primary key values and the 2050 ** original values of any fields that have been modified. The new.* record 2051 ** contains the new values of only those fields that have been modified. 2052 */ 2053 static int sessionAppendUpdate( 2054 SessionBuffer *pBuf, /* Buffer to append to */ 2055 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2056 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 2057 SessionChange *p, /* Object containing old values */ 2058 u8 *abPK /* Boolean array - true for PK columns */ 2059 ){ 2060 int rc = SQLITE_OK; 2061 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 2062 int bNoop = 1; /* Set to zero if any values are modified */ 2063 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 2064 int i; /* Used to iterate through columns */ 2065 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 2066 2067 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 2068 sessionAppendByte(pBuf, p->bIndirect, &rc); 2069 for(i=0; i<sqlite3_column_count(pStmt); i++){ 2070 int bChanged = 0; 2071 int nAdvance; 2072 int eType = *pCsr; 2073 switch( eType ){ 2074 case SQLITE_NULL: 2075 nAdvance = 1; 2076 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 2077 bChanged = 1; 2078 } 2079 break; 2080 2081 case SQLITE_FLOAT: 2082 case SQLITE_INTEGER: { 2083 nAdvance = 9; 2084 if( eType==sqlite3_column_type(pStmt, i) ){ 2085 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 2086 if( eType==SQLITE_INTEGER ){ 2087 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 2088 }else{ 2089 double dVal; 2090 memcpy(&dVal, &iVal, 8); 2091 if( dVal==sqlite3_column_double(pStmt, i) ) break; 2092 } 2093 } 2094 bChanged = 1; 2095 break; 2096 } 2097 2098 default: { 2099 int n; 2100 int nHdr = 1 + sessionVarintGet(&pCsr[1], &n); 2101 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2102 nAdvance = nHdr + n; 2103 if( eType==sqlite3_column_type(pStmt, i) 2104 && n==sqlite3_column_bytes(pStmt, i) 2105 && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n)) 2106 ){ 2107 break; 2108 } 2109 bChanged = 1; 2110 } 2111 } 2112 2113 /* If at least one field has been modified, this is not a no-op. */ 2114 if( bChanged ) bNoop = 0; 2115 2116 /* Add a field to the old.* record. This is omitted if this modules is 2117 ** currently generating a patchset. */ 2118 if( bPatchset==0 ){ 2119 if( bChanged || abPK[i] ){ 2120 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 2121 }else{ 2122 sessionAppendByte(pBuf, 0, &rc); 2123 } 2124 } 2125 2126 /* Add a field to the new.* record. Or the only record if currently 2127 ** generating a patchset. */ 2128 if( bChanged || (bPatchset && abPK[i]) ){ 2129 sessionAppendCol(&buf2, pStmt, i, &rc); 2130 }else{ 2131 sessionAppendByte(&buf2, 0, &rc); 2132 } 2133 2134 pCsr += nAdvance; 2135 } 2136 2137 if( bNoop ){ 2138 pBuf->nBuf = nRewind; 2139 }else{ 2140 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2141 } 2142 sqlite3_free(buf2.aBuf); 2143 2144 return rc; 2145 } 2146 2147 /* 2148 ** Append a DELETE change to the buffer passed as the first argument. Use 2149 ** the changeset format if argument bPatchset is zero, or the patchset 2150 ** format otherwise. 2151 */ 2152 static int sessionAppendDelete( 2153 SessionBuffer *pBuf, /* Buffer to append to */ 2154 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2155 SessionChange *p, /* Object containing old values */ 2156 int nCol, /* Number of columns in table */ 2157 u8 *abPK /* Boolean array - true for PK columns */ 2158 ){ 2159 int rc = SQLITE_OK; 2160 2161 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2162 sessionAppendByte(pBuf, p->bIndirect, &rc); 2163 2164 if( bPatchset==0 ){ 2165 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2166 }else{ 2167 int i; 2168 u8 *a = p->aRecord; 2169 for(i=0; i<nCol; i++){ 2170 u8 *pStart = a; 2171 int eType = *a++; 2172 2173 switch( eType ){ 2174 case 0: 2175 case SQLITE_NULL: 2176 assert( abPK[i]==0 ); 2177 break; 2178 2179 case SQLITE_FLOAT: 2180 case SQLITE_INTEGER: 2181 a += 8; 2182 break; 2183 2184 default: { 2185 int n; 2186 a += sessionVarintGet(a, &n); 2187 a += n; 2188 break; 2189 } 2190 } 2191 if( abPK[i] ){ 2192 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2193 } 2194 } 2195 assert( (a - p->aRecord)==p->nRecord ); 2196 } 2197 2198 return rc; 2199 } 2200 2201 /* 2202 ** Formulate and prepare a SELECT statement to retrieve a row from table 2203 ** zTab in database zDb based on its primary key. i.e. 2204 ** 2205 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2206 */ 2207 static int sessionSelectStmt( 2208 sqlite3 *db, /* Database handle */ 2209 const char *zDb, /* Database name */ 2210 const char *zTab, /* Table name */ 2211 int nCol, /* Number of columns in table */ 2212 const char **azCol, /* Names of table columns */ 2213 u8 *abPK, /* PRIMARY KEY array */ 2214 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2215 ){ 2216 int rc = SQLITE_OK; 2217 char *zSql = 0; 2218 int nSql = -1; 2219 2220 if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){ 2221 zSql = sqlite3_mprintf( 2222 "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND " 2223 "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb 2224 ); 2225 if( zSql==0 ) rc = SQLITE_NOMEM; 2226 }else{ 2227 int i; 2228 const char *zSep = ""; 2229 SessionBuffer buf = {0, 0, 0}; 2230 2231 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2232 sessionAppendIdent(&buf, zDb, &rc); 2233 sessionAppendStr(&buf, ".", &rc); 2234 sessionAppendIdent(&buf, zTab, &rc); 2235 sessionAppendStr(&buf, " WHERE ", &rc); 2236 for(i=0; i<nCol; i++){ 2237 if( abPK[i] ){ 2238 sessionAppendStr(&buf, zSep, &rc); 2239 sessionAppendIdent(&buf, azCol[i], &rc); 2240 sessionAppendStr(&buf, " IS ?", &rc); 2241 sessionAppendInteger(&buf, i+1, &rc); 2242 zSep = " AND "; 2243 } 2244 } 2245 zSql = (char*)buf.aBuf; 2246 nSql = buf.nBuf; 2247 } 2248 2249 if( rc==SQLITE_OK ){ 2250 rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0); 2251 } 2252 sqlite3_free(zSql); 2253 return rc; 2254 } 2255 2256 /* 2257 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2258 ** to the SELECT statement passed as the first argument. The SELECT statement 2259 ** is as prepared by function sessionSelectStmt(). 2260 ** 2261 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2262 ** error code (e.g. SQLITE_NOMEM) otherwise. 2263 */ 2264 static int sessionSelectBind( 2265 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2266 int nCol, /* Number of columns in table */ 2267 u8 *abPK, /* PRIMARY KEY array */ 2268 SessionChange *pChange /* Change structure */ 2269 ){ 2270 int i; 2271 int rc = SQLITE_OK; 2272 u8 *a = pChange->aRecord; 2273 2274 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2275 int eType = *a++; 2276 2277 switch( eType ){ 2278 case 0: 2279 case SQLITE_NULL: 2280 assert( abPK[i]==0 ); 2281 break; 2282 2283 case SQLITE_INTEGER: { 2284 if( abPK[i] ){ 2285 i64 iVal = sessionGetI64(a); 2286 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2287 } 2288 a += 8; 2289 break; 2290 } 2291 2292 case SQLITE_FLOAT: { 2293 if( abPK[i] ){ 2294 double rVal; 2295 i64 iVal = sessionGetI64(a); 2296 memcpy(&rVal, &iVal, 8); 2297 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2298 } 2299 a += 8; 2300 break; 2301 } 2302 2303 case SQLITE_TEXT: { 2304 int n; 2305 a += sessionVarintGet(a, &n); 2306 if( abPK[i] ){ 2307 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2308 } 2309 a += n; 2310 break; 2311 } 2312 2313 default: { 2314 int n; 2315 assert( eType==SQLITE_BLOB ); 2316 a += sessionVarintGet(a, &n); 2317 if( abPK[i] ){ 2318 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2319 } 2320 a += n; 2321 break; 2322 } 2323 } 2324 } 2325 2326 return rc; 2327 } 2328 2329 /* 2330 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2331 ** is called. Otherwise, append a serialized table header (part of the binary 2332 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2333 ** SQLite error code before returning. 2334 */ 2335 static void sessionAppendTableHdr( 2336 SessionBuffer *pBuf, /* Append header to this buffer */ 2337 int bPatchset, /* Use the patchset format if true */ 2338 SessionTable *pTab, /* Table object to append header for */ 2339 int *pRc /* IN/OUT: Error code */ 2340 ){ 2341 /* Write a table header */ 2342 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2343 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2344 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2345 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2346 } 2347 2348 /* 2349 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2350 ** (if it is non-zero) based on the current contents of the session object 2351 ** passed as the first argument. 2352 ** 2353 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2354 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2355 ** occurs, an SQLite error code is returned and both output variables set 2356 ** to 0. 2357 */ 2358 static int sessionGenerateChangeset( 2359 sqlite3_session *pSession, /* Session object */ 2360 int bPatchset, /* True for patchset, false for changeset */ 2361 int (*xOutput)(void *pOut, const void *pData, int nData), 2362 void *pOut, /* First argument for xOutput */ 2363 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2364 void **ppChangeset /* OUT: Buffer containing changeset */ 2365 ){ 2366 sqlite3 *db = pSession->db; /* Source database handle */ 2367 SessionTable *pTab; /* Used to iterate through attached tables */ 2368 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2369 int rc; /* Return code */ 2370 2371 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0 ) ); 2372 2373 /* Zero the output variables in case an error occurs. If this session 2374 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2375 ** this call will be a no-op. */ 2376 if( xOutput==0 ){ 2377 *pnChangeset = 0; 2378 *ppChangeset = 0; 2379 } 2380 2381 if( pSession->rc ) return pSession->rc; 2382 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2383 if( rc!=SQLITE_OK ) return rc; 2384 2385 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2386 2387 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2388 if( pTab->nEntry ){ 2389 const char *zName = pTab->zName; 2390 int nCol; /* Number of columns in table */ 2391 u8 *abPK; /* Primary key array */ 2392 const char **azCol = 0; /* Table columns */ 2393 int i; /* Used to iterate through hash buckets */ 2394 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2395 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2396 int nNoop; /* Size of buffer after writing tbl header */ 2397 2398 /* Check the table schema is still Ok. */ 2399 rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK); 2400 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2401 rc = SQLITE_SCHEMA; 2402 } 2403 2404 /* Write a table header */ 2405 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2406 2407 /* Build and compile a statement to execute: */ 2408 if( rc==SQLITE_OK ){ 2409 rc = sessionSelectStmt( 2410 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2411 } 2412 2413 nNoop = buf.nBuf; 2414 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2415 SessionChange *p; /* Used to iterate through changes */ 2416 2417 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2418 rc = sessionSelectBind(pSel, nCol, abPK, p); 2419 if( rc!=SQLITE_OK ) continue; 2420 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2421 if( p->op==SQLITE_INSERT ){ 2422 int iCol; 2423 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2424 sessionAppendByte(&buf, p->bIndirect, &rc); 2425 for(iCol=0; iCol<nCol; iCol++){ 2426 sessionAppendCol(&buf, pSel, iCol, &rc); 2427 } 2428 }else{ 2429 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2430 } 2431 }else if( p->op!=SQLITE_INSERT ){ 2432 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2433 } 2434 if( rc==SQLITE_OK ){ 2435 rc = sqlite3_reset(pSel); 2436 } 2437 2438 /* If the buffer is now larger than sessions_strm_chunk_size, pass 2439 ** its contents to the xOutput() callback. */ 2440 if( xOutput 2441 && rc==SQLITE_OK 2442 && buf.nBuf>nNoop 2443 && buf.nBuf>sessions_strm_chunk_size 2444 ){ 2445 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2446 nNoop = -1; 2447 buf.nBuf = 0; 2448 } 2449 2450 } 2451 } 2452 2453 sqlite3_finalize(pSel); 2454 if( buf.nBuf==nNoop ){ 2455 buf.nBuf = nRewind; 2456 } 2457 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2458 } 2459 } 2460 2461 if( rc==SQLITE_OK ){ 2462 if( xOutput==0 ){ 2463 *pnChangeset = buf.nBuf; 2464 *ppChangeset = buf.aBuf; 2465 buf.aBuf = 0; 2466 }else if( buf.nBuf>0 ){ 2467 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2468 } 2469 } 2470 2471 sqlite3_free(buf.aBuf); 2472 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2473 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2474 return rc; 2475 } 2476 2477 /* 2478 ** Obtain a changeset object containing all changes recorded by the 2479 ** session object passed as the first argument. 2480 ** 2481 ** It is the responsibility of the caller to eventually free the buffer 2482 ** using sqlite3_free(). 2483 */ 2484 int sqlite3session_changeset( 2485 sqlite3_session *pSession, /* Session object */ 2486 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2487 void **ppChangeset /* OUT: Buffer containing changeset */ 2488 ){ 2489 return sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset); 2490 } 2491 2492 /* 2493 ** Streaming version of sqlite3session_changeset(). 2494 */ 2495 int sqlite3session_changeset_strm( 2496 sqlite3_session *pSession, 2497 int (*xOutput)(void *pOut, const void *pData, int nData), 2498 void *pOut 2499 ){ 2500 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2501 } 2502 2503 /* 2504 ** Streaming version of sqlite3session_patchset(). 2505 */ 2506 int sqlite3session_patchset_strm( 2507 sqlite3_session *pSession, 2508 int (*xOutput)(void *pOut, const void *pData, int nData), 2509 void *pOut 2510 ){ 2511 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2512 } 2513 2514 /* 2515 ** Obtain a patchset object containing all changes recorded by the 2516 ** session object passed as the first argument. 2517 ** 2518 ** It is the responsibility of the caller to eventually free the buffer 2519 ** using sqlite3_free(). 2520 */ 2521 int sqlite3session_patchset( 2522 sqlite3_session *pSession, /* Session object */ 2523 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2524 void **ppPatchset /* OUT: Buffer containing changeset */ 2525 ){ 2526 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2527 } 2528 2529 /* 2530 ** Enable or disable the session object passed as the first argument. 2531 */ 2532 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2533 int ret; 2534 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2535 if( bEnable>=0 ){ 2536 pSession->bEnable = bEnable; 2537 } 2538 ret = pSession->bEnable; 2539 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2540 return ret; 2541 } 2542 2543 /* 2544 ** Enable or disable the session object passed as the first argument. 2545 */ 2546 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2547 int ret; 2548 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2549 if( bIndirect>=0 ){ 2550 pSession->bIndirect = bIndirect; 2551 } 2552 ret = pSession->bIndirect; 2553 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2554 return ret; 2555 } 2556 2557 /* 2558 ** Return true if there have been no changes to monitored tables recorded 2559 ** by the session object passed as the only argument. 2560 */ 2561 int sqlite3session_isempty(sqlite3_session *pSession){ 2562 int ret = 0; 2563 SessionTable *pTab; 2564 2565 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2566 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2567 ret = (pTab->nEntry>0); 2568 } 2569 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2570 2571 return (ret==0); 2572 } 2573 2574 /* 2575 ** Do the work for either sqlite3changeset_start() or start_strm(). 2576 */ 2577 static int sessionChangesetStart( 2578 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2579 int (*xInput)(void *pIn, void *pData, int *pnData), 2580 void *pIn, 2581 int nChangeset, /* Size of buffer pChangeset in bytes */ 2582 void *pChangeset, /* Pointer to buffer containing changeset */ 2583 int bInvert /* True to invert changeset */ 2584 ){ 2585 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2586 int nByte; /* Number of bytes to allocate for iterator */ 2587 2588 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2589 2590 /* Zero the output variable in case an error occurs. */ 2591 *pp = 0; 2592 2593 /* Allocate and initialize the iterator structure. */ 2594 nByte = sizeof(sqlite3_changeset_iter); 2595 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2596 if( !pRet ) return SQLITE_NOMEM; 2597 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2598 pRet->in.aData = (u8 *)pChangeset; 2599 pRet->in.nData = nChangeset; 2600 pRet->in.xInput = xInput; 2601 pRet->in.pIn = pIn; 2602 pRet->in.bEof = (xInput ? 0 : 1); 2603 pRet->bInvert = bInvert; 2604 2605 /* Populate the output variable and return success. */ 2606 *pp = pRet; 2607 return SQLITE_OK; 2608 } 2609 2610 /* 2611 ** Create an iterator used to iterate through the contents of a changeset. 2612 */ 2613 int sqlite3changeset_start( 2614 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2615 int nChangeset, /* Size of buffer pChangeset in bytes */ 2616 void *pChangeset /* Pointer to buffer containing changeset */ 2617 ){ 2618 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0); 2619 } 2620 int sqlite3changeset_start_v2( 2621 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2622 int nChangeset, /* Size of buffer pChangeset in bytes */ 2623 void *pChangeset, /* Pointer to buffer containing changeset */ 2624 int flags 2625 ){ 2626 int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); 2627 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert); 2628 } 2629 2630 /* 2631 ** Streaming version of sqlite3changeset_start(). 2632 */ 2633 int sqlite3changeset_start_strm( 2634 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2635 int (*xInput)(void *pIn, void *pData, int *pnData), 2636 void *pIn 2637 ){ 2638 return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0); 2639 } 2640 int sqlite3changeset_start_v2_strm( 2641 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2642 int (*xInput)(void *pIn, void *pData, int *pnData), 2643 void *pIn, 2644 int flags 2645 ){ 2646 int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); 2647 return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert); 2648 } 2649 2650 /* 2651 ** If the SessionInput object passed as the only argument is a streaming 2652 ** object and the buffer is full, discard some data to free up space. 2653 */ 2654 static void sessionDiscardData(SessionInput *pIn){ 2655 if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){ 2656 int nMove = pIn->buf.nBuf - pIn->iNext; 2657 assert( nMove>=0 ); 2658 if( nMove>0 ){ 2659 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2660 } 2661 pIn->buf.nBuf -= pIn->iNext; 2662 pIn->iNext = 0; 2663 pIn->nData = pIn->buf.nBuf; 2664 } 2665 } 2666 2667 /* 2668 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2669 ** if there are not nByte bytes remaining in the input, that all available 2670 ** data is in the buffer. 2671 ** 2672 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2673 */ 2674 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2675 int rc = SQLITE_OK; 2676 if( pIn->xInput ){ 2677 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2678 int nNew = sessions_strm_chunk_size; 2679 2680 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2681 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2682 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2683 if( nNew==0 ){ 2684 pIn->bEof = 1; 2685 }else{ 2686 pIn->buf.nBuf += nNew; 2687 } 2688 } 2689 2690 pIn->aData = pIn->buf.aBuf; 2691 pIn->nData = pIn->buf.nBuf; 2692 } 2693 } 2694 return rc; 2695 } 2696 2697 /* 2698 ** When this function is called, *ppRec points to the start of a record 2699 ** that contains nCol values. This function advances the pointer *ppRec 2700 ** until it points to the byte immediately following that record. 2701 */ 2702 static void sessionSkipRecord( 2703 u8 **ppRec, /* IN/OUT: Record pointer */ 2704 int nCol /* Number of values in record */ 2705 ){ 2706 u8 *aRec = *ppRec; 2707 int i; 2708 for(i=0; i<nCol; i++){ 2709 int eType = *aRec++; 2710 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2711 int nByte; 2712 aRec += sessionVarintGet((u8*)aRec, &nByte); 2713 aRec += nByte; 2714 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2715 aRec += 8; 2716 } 2717 } 2718 2719 *ppRec = aRec; 2720 } 2721 2722 /* 2723 ** This function sets the value of the sqlite3_value object passed as the 2724 ** first argument to a copy of the string or blob held in the aData[] 2725 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2726 ** error occurs. 2727 */ 2728 static int sessionValueSetStr( 2729 sqlite3_value *pVal, /* Set the value of this object */ 2730 u8 *aData, /* Buffer containing string or blob data */ 2731 int nData, /* Size of buffer aData[] in bytes */ 2732 u8 enc /* String encoding (0 for blobs) */ 2733 ){ 2734 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2735 ** argument to sqlite3ValueSetStr() and have the copy created 2736 ** automatically. But doing so makes it difficult to detect any OOM 2737 ** error. Hence the code to create the copy externally. */ 2738 u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1); 2739 if( aCopy==0 ) return SQLITE_NOMEM; 2740 memcpy(aCopy, aData, nData); 2741 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2742 return SQLITE_OK; 2743 } 2744 2745 /* 2746 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2747 ** for details. 2748 ** 2749 ** When this function is called, *paChange points to the start of the record 2750 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2751 ** one byte after the end of the same record before this function returns. 2752 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2753 ** if abPK is other than NULL, then the record contains only the PK fields 2754 ** (in other words, it is a patchset DELETE record). 2755 ** 2756 ** If successful, each element of the apOut[] array (allocated by the caller) 2757 ** is set to point to an sqlite3_value object containing the value read 2758 ** from the corresponding position in the record. If that value is not 2759 ** included in the record (i.e. because the record is part of an UPDATE change 2760 ** and the field was not modified), the corresponding element of apOut[] is 2761 ** set to NULL. 2762 ** 2763 ** It is the responsibility of the caller to free all sqlite_value structures 2764 ** using sqlite3_free(). 2765 ** 2766 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 2767 ** The apOut[] array may have been partially populated in this case. 2768 */ 2769 static int sessionReadRecord( 2770 SessionInput *pIn, /* Input data */ 2771 int nCol, /* Number of values in record */ 2772 u8 *abPK, /* Array of primary key flags, or NULL */ 2773 sqlite3_value **apOut /* Write values to this array */ 2774 ){ 2775 int i; /* Used to iterate through columns */ 2776 int rc = SQLITE_OK; 2777 2778 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2779 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 2780 if( abPK && abPK[i]==0 ) continue; 2781 rc = sessionInputBuffer(pIn, 9); 2782 if( rc==SQLITE_OK ){ 2783 if( pIn->iNext>=pIn->nData ){ 2784 rc = SQLITE_CORRUPT_BKPT; 2785 }else{ 2786 eType = pIn->aData[pIn->iNext++]; 2787 assert( apOut[i]==0 ); 2788 if( eType ){ 2789 apOut[i] = sqlite3ValueNew(0); 2790 if( !apOut[i] ) rc = SQLITE_NOMEM; 2791 } 2792 } 2793 } 2794 2795 if( rc==SQLITE_OK ){ 2796 u8 *aVal = &pIn->aData[pIn->iNext]; 2797 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2798 int nByte; 2799 pIn->iNext += sessionVarintGet(aVal, &nByte); 2800 rc = sessionInputBuffer(pIn, nByte); 2801 if( rc==SQLITE_OK ){ 2802 if( nByte<0 || nByte>pIn->nData-pIn->iNext ){ 2803 rc = SQLITE_CORRUPT_BKPT; 2804 }else{ 2805 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 2806 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 2807 pIn->iNext += nByte; 2808 } 2809 } 2810 } 2811 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2812 sqlite3_int64 v = sessionGetI64(aVal); 2813 if( eType==SQLITE_INTEGER ){ 2814 sqlite3VdbeMemSetInt64(apOut[i], v); 2815 }else{ 2816 double d; 2817 memcpy(&d, &v, 8); 2818 sqlite3VdbeMemSetDouble(apOut[i], d); 2819 } 2820 pIn->iNext += 8; 2821 } 2822 } 2823 } 2824 2825 return rc; 2826 } 2827 2828 /* 2829 ** The input pointer currently points to the second byte of a table-header. 2830 ** Specifically, to the following: 2831 ** 2832 ** + number of columns in table (varint) 2833 ** + array of PK flags (1 byte per column), 2834 ** + table name (nul terminated). 2835 ** 2836 ** This function ensures that all of the above is present in the input 2837 ** buffer (i.e. that it can be accessed without any calls to xInput()). 2838 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2839 ** The input pointer is not moved. 2840 */ 2841 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 2842 int rc = SQLITE_OK; 2843 int nCol = 0; 2844 int nRead = 0; 2845 2846 rc = sessionInputBuffer(pIn, 9); 2847 if( rc==SQLITE_OK ){ 2848 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 2849 /* The hard upper limit for the number of columns in an SQLite 2850 ** database table is, according to sqliteLimit.h, 32676. So 2851 ** consider any table-header that purports to have more than 65536 2852 ** columns to be corrupt. This is convenient because otherwise, 2853 ** if the (nCol>65536) condition below were omitted, a sufficiently 2854 ** large value for nCol may cause nRead to wrap around and become 2855 ** negative. Leading to a crash. */ 2856 if( nCol<0 || nCol>65536 ){ 2857 rc = SQLITE_CORRUPT_BKPT; 2858 }else{ 2859 rc = sessionInputBuffer(pIn, nRead+nCol+100); 2860 nRead += nCol; 2861 } 2862 } 2863 2864 while( rc==SQLITE_OK ){ 2865 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 2866 nRead++; 2867 } 2868 if( (pIn->iNext + nRead)<pIn->nData ) break; 2869 rc = sessionInputBuffer(pIn, nRead + 100); 2870 } 2871 *pnByte = nRead+1; 2872 return rc; 2873 } 2874 2875 /* 2876 ** The input pointer currently points to the first byte of the first field 2877 ** of a record consisting of nCol columns. This function ensures the entire 2878 ** record is buffered. It does not move the input pointer. 2879 ** 2880 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 2881 ** the record in bytes. Otherwise, an SQLite error code is returned. The 2882 ** final value of *pnByte is undefined in this case. 2883 */ 2884 static int sessionChangesetBufferRecord( 2885 SessionInput *pIn, /* Input data */ 2886 int nCol, /* Number of columns in record */ 2887 int *pnByte /* OUT: Size of record in bytes */ 2888 ){ 2889 int rc = SQLITE_OK; 2890 int nByte = 0; 2891 int i; 2892 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 2893 int eType; 2894 rc = sessionInputBuffer(pIn, nByte + 10); 2895 if( rc==SQLITE_OK ){ 2896 eType = pIn->aData[pIn->iNext + nByte++]; 2897 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2898 int n; 2899 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 2900 nByte += n; 2901 rc = sessionInputBuffer(pIn, nByte); 2902 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2903 nByte += 8; 2904 } 2905 } 2906 } 2907 *pnByte = nByte; 2908 return rc; 2909 } 2910 2911 /* 2912 ** The input pointer currently points to the second byte of a table-header. 2913 ** Specifically, to the following: 2914 ** 2915 ** + number of columns in table (varint) 2916 ** + array of PK flags (1 byte per column), 2917 ** + table name (nul terminated). 2918 ** 2919 ** This function decodes the table-header and populates the p->nCol, 2920 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 2921 ** also allocated or resized according to the new value of p->nCol. The 2922 ** input pointer is left pointing to the byte following the table header. 2923 ** 2924 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 2925 ** is returned and the final values of the various fields enumerated above 2926 ** are undefined. 2927 */ 2928 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 2929 int rc; 2930 int nCopy; 2931 assert( p->rc==SQLITE_OK ); 2932 2933 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 2934 if( rc==SQLITE_OK ){ 2935 int nByte; 2936 int nVarint; 2937 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 2938 if( p->nCol>0 ){ 2939 nCopy -= nVarint; 2940 p->in.iNext += nVarint; 2941 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 2942 p->tblhdr.nBuf = 0; 2943 sessionBufferGrow(&p->tblhdr, nByte, &rc); 2944 }else{ 2945 rc = SQLITE_CORRUPT_BKPT; 2946 } 2947 } 2948 2949 if( rc==SQLITE_OK ){ 2950 int iPK = sizeof(sqlite3_value*)*p->nCol*2; 2951 memset(p->tblhdr.aBuf, 0, iPK); 2952 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 2953 p->in.iNext += nCopy; 2954 } 2955 2956 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 2957 p->abPK = (u8*)&p->apValue[p->nCol*2]; 2958 p->zTab = (char*)&p->abPK[p->nCol]; 2959 return (p->rc = rc); 2960 } 2961 2962 /* 2963 ** Advance the changeset iterator to the next change. 2964 ** 2965 ** If both paRec and pnRec are NULL, then this function works like the public 2966 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 2967 ** sqlite3changeset_new() and old() APIs may be used to query for values. 2968 ** 2969 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 2970 ** record is written to *paRec before returning and the number of bytes in 2971 ** the record to *pnRec. 2972 ** 2973 ** Either way, this function returns SQLITE_ROW if the iterator is 2974 ** successfully advanced to the next change in the changeset, an SQLite 2975 ** error code if an error occurs, or SQLITE_DONE if there are no further 2976 ** changes in the changeset. 2977 */ 2978 static int sessionChangesetNext( 2979 sqlite3_changeset_iter *p, /* Changeset iterator */ 2980 u8 **paRec, /* If non-NULL, store record pointer here */ 2981 int *pnRec, /* If non-NULL, store size of record here */ 2982 int *pbNew /* If non-NULL, true if new table */ 2983 ){ 2984 int i; 2985 u8 op; 2986 2987 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 2988 2989 /* If the iterator is in the error-state, return immediately. */ 2990 if( p->rc!=SQLITE_OK ) return p->rc; 2991 2992 /* Free the current contents of p->apValue[], if any. */ 2993 if( p->apValue ){ 2994 for(i=0; i<p->nCol*2; i++){ 2995 sqlite3ValueFree(p->apValue[i]); 2996 } 2997 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 2998 } 2999 3000 /* Make sure the buffer contains at least 10 bytes of input data, or all 3001 ** remaining data if there are less than 10 bytes available. This is 3002 ** sufficient either for the 'T' or 'P' byte and the varint that follows 3003 ** it, or for the two single byte values otherwise. */ 3004 p->rc = sessionInputBuffer(&p->in, 2); 3005 if( p->rc!=SQLITE_OK ) return p->rc; 3006 3007 /* If the iterator is already at the end of the changeset, return DONE. */ 3008 if( p->in.iNext>=p->in.nData ){ 3009 return SQLITE_DONE; 3010 } 3011 3012 sessionDiscardData(&p->in); 3013 p->in.iCurrent = p->in.iNext; 3014 3015 op = p->in.aData[p->in.iNext++]; 3016 while( op=='T' || op=='P' ){ 3017 if( pbNew ) *pbNew = 1; 3018 p->bPatchset = (op=='P'); 3019 if( sessionChangesetReadTblhdr(p) ) return p->rc; 3020 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 3021 p->in.iCurrent = p->in.iNext; 3022 if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; 3023 op = p->in.aData[p->in.iNext++]; 3024 } 3025 3026 if( p->zTab==0 || (p->bPatchset && p->bInvert) ){ 3027 /* The first record in the changeset is not a table header. Must be a 3028 ** corrupt changeset. */ 3029 assert( p->in.iNext==1 || p->zTab ); 3030 return (p->rc = SQLITE_CORRUPT_BKPT); 3031 } 3032 3033 p->op = op; 3034 p->bIndirect = p->in.aData[p->in.iNext++]; 3035 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 3036 return (p->rc = SQLITE_CORRUPT_BKPT); 3037 } 3038 3039 if( paRec ){ 3040 int nVal; /* Number of values to buffer */ 3041 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 3042 nVal = p->nCol * 2; 3043 }else if( p->bPatchset && op==SQLITE_DELETE ){ 3044 nVal = 0; 3045 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 3046 }else{ 3047 nVal = p->nCol; 3048 } 3049 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 3050 if( p->rc!=SQLITE_OK ) return p->rc; 3051 *paRec = &p->in.aData[p->in.iNext]; 3052 p->in.iNext += *pnRec; 3053 }else{ 3054 sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue); 3055 sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]); 3056 3057 /* If this is an UPDATE or DELETE, read the old.* record. */ 3058 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 3059 u8 *abPK = p->bPatchset ? p->abPK : 0; 3060 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld); 3061 if( p->rc!=SQLITE_OK ) return p->rc; 3062 } 3063 3064 /* If this is an INSERT or UPDATE, read the new.* record. */ 3065 if( p->op!=SQLITE_DELETE ){ 3066 p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew); 3067 if( p->rc!=SQLITE_OK ) return p->rc; 3068 } 3069 3070 if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){ 3071 /* If this is an UPDATE that is part of a patchset, then all PK and 3072 ** modified fields are present in the new.* record. The old.* record 3073 ** is currently completely empty. This block shifts the PK fields from 3074 ** new.* to old.*, to accommodate the code that reads these arrays. */ 3075 for(i=0; i<p->nCol; i++){ 3076 assert( p->bPatchset==0 || p->apValue[i]==0 ); 3077 if( p->abPK[i] ){ 3078 assert( p->apValue[i]==0 ); 3079 p->apValue[i] = p->apValue[i+p->nCol]; 3080 if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT); 3081 p->apValue[i+p->nCol] = 0; 3082 } 3083 } 3084 }else if( p->bInvert ){ 3085 if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE; 3086 else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT; 3087 } 3088 } 3089 3090 return SQLITE_ROW; 3091 } 3092 3093 /* 3094 ** Advance an iterator created by sqlite3changeset_start() to the next 3095 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 3096 ** or SQLITE_CORRUPT. 3097 ** 3098 ** This function may not be called on iterators passed to a conflict handler 3099 ** callback by changeset_apply(). 3100 */ 3101 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 3102 return sessionChangesetNext(p, 0, 0, 0); 3103 } 3104 3105 /* 3106 ** The following function extracts information on the current change 3107 ** from a changeset iterator. It may only be called after changeset_next() 3108 ** has returned SQLITE_ROW. 3109 */ 3110 int sqlite3changeset_op( 3111 sqlite3_changeset_iter *pIter, /* Iterator handle */ 3112 const char **pzTab, /* OUT: Pointer to table name */ 3113 int *pnCol, /* OUT: Number of columns in table */ 3114 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 3115 int *pbIndirect /* OUT: True if change is indirect */ 3116 ){ 3117 *pOp = pIter->op; 3118 *pnCol = pIter->nCol; 3119 *pzTab = pIter->zTab; 3120 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 3121 return SQLITE_OK; 3122 } 3123 3124 /* 3125 ** Return information regarding the PRIMARY KEY and number of columns in 3126 ** the database table affected by the change that pIter currently points 3127 ** to. This function may only be called after changeset_next() returns 3128 ** SQLITE_ROW. 3129 */ 3130 int sqlite3changeset_pk( 3131 sqlite3_changeset_iter *pIter, /* Iterator object */ 3132 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 3133 int *pnCol /* OUT: Number of entries in output array */ 3134 ){ 3135 *pabPK = pIter->abPK; 3136 if( pnCol ) *pnCol = pIter->nCol; 3137 return SQLITE_OK; 3138 } 3139 3140 /* 3141 ** This function may only be called while the iterator is pointing to an 3142 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 3143 ** Otherwise, SQLITE_MISUSE is returned. 3144 ** 3145 ** It sets *ppValue to point to an sqlite3_value structure containing the 3146 ** iVal'th value in the old.* record. Or, if that particular value is not 3147 ** included in the record (because the change is an UPDATE and the field 3148 ** was not modified and is not a PK column), set *ppValue to NULL. 3149 ** 3150 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3151 ** not modified. Otherwise, SQLITE_OK. 3152 */ 3153 int sqlite3changeset_old( 3154 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3155 int iVal, /* Index of old.* value to retrieve */ 3156 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 3157 ){ 3158 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 3159 return SQLITE_MISUSE; 3160 } 3161 if( iVal<0 || iVal>=pIter->nCol ){ 3162 return SQLITE_RANGE; 3163 } 3164 *ppValue = pIter->apValue[iVal]; 3165 return SQLITE_OK; 3166 } 3167 3168 /* 3169 ** This function may only be called while the iterator is pointing to an 3170 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 3171 ** Otherwise, SQLITE_MISUSE is returned. 3172 ** 3173 ** It sets *ppValue to point to an sqlite3_value structure containing the 3174 ** iVal'th value in the new.* record. Or, if that particular value is not 3175 ** included in the record (because the change is an UPDATE and the field 3176 ** was not modified), set *ppValue to NULL. 3177 ** 3178 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3179 ** not modified. Otherwise, SQLITE_OK. 3180 */ 3181 int sqlite3changeset_new( 3182 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3183 int iVal, /* Index of new.* value to retrieve */ 3184 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 3185 ){ 3186 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 3187 return SQLITE_MISUSE; 3188 } 3189 if( iVal<0 || iVal>=pIter->nCol ){ 3190 return SQLITE_RANGE; 3191 } 3192 *ppValue = pIter->apValue[pIter->nCol+iVal]; 3193 return SQLITE_OK; 3194 } 3195 3196 /* 3197 ** The following two macros are used internally. They are similar to the 3198 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3199 ** they omit all error checking and return a pointer to the requested value. 3200 */ 3201 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3202 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3203 3204 /* 3205 ** This function may only be called with a changeset iterator that has been 3206 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3207 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3208 ** 3209 ** If successful, *ppValue is set to point to an sqlite3_value structure 3210 ** containing the iVal'th value of the conflicting record. 3211 ** 3212 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3213 ** code is returned. Otherwise, SQLITE_OK. 3214 */ 3215 int sqlite3changeset_conflict( 3216 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3217 int iVal, /* Index of conflict record value to fetch */ 3218 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3219 ){ 3220 if( !pIter->pConflict ){ 3221 return SQLITE_MISUSE; 3222 } 3223 if( iVal<0 || iVal>=pIter->nCol ){ 3224 return SQLITE_RANGE; 3225 } 3226 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3227 return SQLITE_OK; 3228 } 3229 3230 /* 3231 ** This function may only be called with an iterator passed to an 3232 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3233 ** it sets the output variable to the total number of known foreign key 3234 ** violations in the destination database and returns SQLITE_OK. 3235 ** 3236 ** In all other cases this function returns SQLITE_MISUSE. 3237 */ 3238 int sqlite3changeset_fk_conflicts( 3239 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3240 int *pnOut /* OUT: Number of FK violations */ 3241 ){ 3242 if( pIter->pConflict || pIter->apValue ){ 3243 return SQLITE_MISUSE; 3244 } 3245 *pnOut = pIter->nCol; 3246 return SQLITE_OK; 3247 } 3248 3249 3250 /* 3251 ** Finalize an iterator allocated with sqlite3changeset_start(). 3252 ** 3253 ** This function may not be called on iterators passed to a conflict handler 3254 ** callback by changeset_apply(). 3255 */ 3256 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3257 int rc = SQLITE_OK; 3258 if( p ){ 3259 int i; /* Used to iterate through p->apValue[] */ 3260 rc = p->rc; 3261 if( p->apValue ){ 3262 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3263 } 3264 sqlite3_free(p->tblhdr.aBuf); 3265 sqlite3_free(p->in.buf.aBuf); 3266 sqlite3_free(p); 3267 } 3268 return rc; 3269 } 3270 3271 static int sessionChangesetInvert( 3272 SessionInput *pInput, /* Input changeset */ 3273 int (*xOutput)(void *pOut, const void *pData, int nData), 3274 void *pOut, 3275 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3276 void **ppInverted /* OUT: Inverse of pChangeset */ 3277 ){ 3278 int rc = SQLITE_OK; /* Return value */ 3279 SessionBuffer sOut; /* Output buffer */ 3280 int nCol = 0; /* Number of cols in current table */ 3281 u8 *abPK = 0; /* PK array for current table */ 3282 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3283 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3284 3285 /* Initialize the output buffer */ 3286 memset(&sOut, 0, sizeof(SessionBuffer)); 3287 3288 /* Zero the output variables in case an error occurs. */ 3289 if( ppInverted ){ 3290 *ppInverted = 0; 3291 *pnInverted = 0; 3292 } 3293 3294 while( 1 ){ 3295 u8 eType; 3296 3297 /* Test for EOF. */ 3298 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3299 if( pInput->iNext>=pInput->nData ) break; 3300 eType = pInput->aData[pInput->iNext]; 3301 3302 switch( eType ){ 3303 case 'T': { 3304 /* A 'table' record consists of: 3305 ** 3306 ** * A constant 'T' character, 3307 ** * Number of columns in said table (a varint), 3308 ** * An array of nCol bytes (sPK), 3309 ** * A nul-terminated table name. 3310 */ 3311 int nByte; 3312 int nVar; 3313 pInput->iNext++; 3314 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3315 goto finished_invert; 3316 } 3317 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3318 sPK.nBuf = 0; 3319 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3320 sessionAppendByte(&sOut, eType, &rc); 3321 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3322 if( rc ) goto finished_invert; 3323 3324 pInput->iNext += nByte; 3325 sqlite3_free(apVal); 3326 apVal = 0; 3327 abPK = sPK.aBuf; 3328 break; 3329 } 3330 3331 case SQLITE_INSERT: 3332 case SQLITE_DELETE: { 3333 int nByte; 3334 int bIndirect = pInput->aData[pInput->iNext+1]; 3335 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3336 pInput->iNext += 2; 3337 assert( rc==SQLITE_OK ); 3338 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3339 sessionAppendByte(&sOut, eType2, &rc); 3340 sessionAppendByte(&sOut, bIndirect, &rc); 3341 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3342 pInput->iNext += nByte; 3343 if( rc ) goto finished_invert; 3344 break; 3345 } 3346 3347 case SQLITE_UPDATE: { 3348 int iCol; 3349 3350 if( 0==apVal ){ 3351 apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2); 3352 if( 0==apVal ){ 3353 rc = SQLITE_NOMEM; 3354 goto finished_invert; 3355 } 3356 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3357 } 3358 3359 /* Write the header for the new UPDATE change. Same as the original. */ 3360 sessionAppendByte(&sOut, eType, &rc); 3361 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3362 3363 /* Read the old.* and new.* records for the update change. */ 3364 pInput->iNext += 2; 3365 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0]); 3366 if( rc==SQLITE_OK ){ 3367 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol]); 3368 } 3369 3370 /* Write the new old.* record. Consists of the PK columns from the 3371 ** original old.* record, and the other values from the original 3372 ** new.* record. */ 3373 for(iCol=0; iCol<nCol; iCol++){ 3374 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3375 sessionAppendValue(&sOut, pVal, &rc); 3376 } 3377 3378 /* Write the new new.* record. Consists of a copy of all values 3379 ** from the original old.* record, except for the PK columns, which 3380 ** are set to "undefined". */ 3381 for(iCol=0; iCol<nCol; iCol++){ 3382 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3383 sessionAppendValue(&sOut, pVal, &rc); 3384 } 3385 3386 for(iCol=0; iCol<nCol*2; iCol++){ 3387 sqlite3ValueFree(apVal[iCol]); 3388 } 3389 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3390 if( rc!=SQLITE_OK ){ 3391 goto finished_invert; 3392 } 3393 3394 break; 3395 } 3396 3397 default: 3398 rc = SQLITE_CORRUPT_BKPT; 3399 goto finished_invert; 3400 } 3401 3402 assert( rc==SQLITE_OK ); 3403 if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){ 3404 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3405 sOut.nBuf = 0; 3406 if( rc!=SQLITE_OK ) goto finished_invert; 3407 } 3408 } 3409 3410 assert( rc==SQLITE_OK ); 3411 if( pnInverted ){ 3412 *pnInverted = sOut.nBuf; 3413 *ppInverted = sOut.aBuf; 3414 sOut.aBuf = 0; 3415 }else if( sOut.nBuf>0 ){ 3416 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3417 } 3418 3419 finished_invert: 3420 sqlite3_free(sOut.aBuf); 3421 sqlite3_free(apVal); 3422 sqlite3_free(sPK.aBuf); 3423 return rc; 3424 } 3425 3426 3427 /* 3428 ** Invert a changeset object. 3429 */ 3430 int sqlite3changeset_invert( 3431 int nChangeset, /* Number of bytes in input */ 3432 const void *pChangeset, /* Input changeset */ 3433 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3434 void **ppInverted /* OUT: Inverse of pChangeset */ 3435 ){ 3436 SessionInput sInput; 3437 3438 /* Set up the input stream */ 3439 memset(&sInput, 0, sizeof(SessionInput)); 3440 sInput.nData = nChangeset; 3441 sInput.aData = (u8*)pChangeset; 3442 3443 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3444 } 3445 3446 /* 3447 ** Streaming version of sqlite3changeset_invert(). 3448 */ 3449 int sqlite3changeset_invert_strm( 3450 int (*xInput)(void *pIn, void *pData, int *pnData), 3451 void *pIn, 3452 int (*xOutput)(void *pOut, const void *pData, int nData), 3453 void *pOut 3454 ){ 3455 SessionInput sInput; 3456 int rc; 3457 3458 /* Set up the input stream */ 3459 memset(&sInput, 0, sizeof(SessionInput)); 3460 sInput.xInput = xInput; 3461 sInput.pIn = pIn; 3462 3463 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3464 sqlite3_free(sInput.buf.aBuf); 3465 return rc; 3466 } 3467 3468 typedef struct SessionApplyCtx SessionApplyCtx; 3469 struct SessionApplyCtx { 3470 sqlite3 *db; 3471 sqlite3_stmt *pDelete; /* DELETE statement */ 3472 sqlite3_stmt *pUpdate; /* UPDATE statement */ 3473 sqlite3_stmt *pInsert; /* INSERT statement */ 3474 sqlite3_stmt *pSelect; /* SELECT statement */ 3475 int nCol; /* Size of azCol[] and abPK[] arrays */ 3476 const char **azCol; /* Array of column names */ 3477 u8 *abPK; /* Boolean array - true if column is in PK */ 3478 int bStat1; /* True if table is sqlite_stat1 */ 3479 int bDeferConstraints; /* True to defer constraints */ 3480 SessionBuffer constraints; /* Deferred constraints are stored here */ 3481 SessionBuffer rebase; /* Rebase information (if any) here */ 3482 u8 bRebaseStarted; /* If table header is already in rebase */ 3483 u8 bRebase; /* True to collect rebase information */ 3484 }; 3485 3486 /* 3487 ** Formulate a statement to DELETE a row from database db. Assuming a table 3488 ** structure like this: 3489 ** 3490 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3491 ** 3492 ** The DELETE statement looks like this: 3493 ** 3494 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3495 ** 3496 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3497 ** matching b and d values, or 1 otherwise. The second case comes up if the 3498 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3499 ** 3500 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3501 ** pointing to the prepared version of the SQL statement. 3502 */ 3503 static int sessionDeleteRow( 3504 sqlite3 *db, /* Database handle */ 3505 const char *zTab, /* Table name */ 3506 SessionApplyCtx *p /* Session changeset-apply context */ 3507 ){ 3508 int i; 3509 const char *zSep = ""; 3510 int rc = SQLITE_OK; 3511 SessionBuffer buf = {0, 0, 0}; 3512 int nPk = 0; 3513 3514 sessionAppendStr(&buf, "DELETE FROM ", &rc); 3515 sessionAppendIdent(&buf, zTab, &rc); 3516 sessionAppendStr(&buf, " WHERE ", &rc); 3517 3518 for(i=0; i<p->nCol; i++){ 3519 if( p->abPK[i] ){ 3520 nPk++; 3521 sessionAppendStr(&buf, zSep, &rc); 3522 sessionAppendIdent(&buf, p->azCol[i], &rc); 3523 sessionAppendStr(&buf, " = ?", &rc); 3524 sessionAppendInteger(&buf, i+1, &rc); 3525 zSep = " AND "; 3526 } 3527 } 3528 3529 if( nPk<p->nCol ){ 3530 sessionAppendStr(&buf, " AND (?", &rc); 3531 sessionAppendInteger(&buf, p->nCol+1, &rc); 3532 sessionAppendStr(&buf, " OR ", &rc); 3533 3534 zSep = ""; 3535 for(i=0; i<p->nCol; i++){ 3536 if( !p->abPK[i] ){ 3537 sessionAppendStr(&buf, zSep, &rc); 3538 sessionAppendIdent(&buf, p->azCol[i], &rc); 3539 sessionAppendStr(&buf, " IS ?", &rc); 3540 sessionAppendInteger(&buf, i+1, &rc); 3541 zSep = "AND "; 3542 } 3543 } 3544 sessionAppendStr(&buf, ")", &rc); 3545 } 3546 3547 if( rc==SQLITE_OK ){ 3548 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3549 } 3550 sqlite3_free(buf.aBuf); 3551 3552 return rc; 3553 } 3554 3555 /* 3556 ** Formulate and prepare a statement to UPDATE a row from database db. 3557 ** Assuming a table structure like this: 3558 ** 3559 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3560 ** 3561 ** The UPDATE statement looks like this: 3562 ** 3563 ** UPDATE x SET 3564 ** a = CASE WHEN ?2 THEN ?3 ELSE a END, 3565 ** b = CASE WHEN ?5 THEN ?6 ELSE b END, 3566 ** c = CASE WHEN ?8 THEN ?9 ELSE c END, 3567 ** d = CASE WHEN ?11 THEN ?12 ELSE d END 3568 ** WHERE a = ?1 AND c = ?7 AND (?13 OR 3569 ** (?5==0 OR b IS ?4) AND (?11==0 OR d IS ?10) AND 3570 ** ) 3571 ** 3572 ** For each column in the table, there are three variables to bind: 3573 ** 3574 ** ?(i*3+1) The old.* value of the column, if any. 3575 ** ?(i*3+2) A boolean flag indicating that the value is being modified. 3576 ** ?(i*3+3) The new.* value of the column, if any. 3577 ** 3578 ** Also, a boolean flag that, if set to true, causes the statement to update 3579 ** a row even if the non-PK values do not match. This is required if the 3580 ** conflict-handler is invoked with CHANGESET_DATA and returns 3581 ** CHANGESET_REPLACE. This is variable "?(nCol*3+1)". 3582 ** 3583 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left 3584 ** pointing to the prepared version of the SQL statement. 3585 */ 3586 static int sessionUpdateRow( 3587 sqlite3 *db, /* Database handle */ 3588 const char *zTab, /* Table name */ 3589 SessionApplyCtx *p /* Session changeset-apply context */ 3590 ){ 3591 int rc = SQLITE_OK; 3592 int i; 3593 const char *zSep = ""; 3594 SessionBuffer buf = {0, 0, 0}; 3595 3596 /* Append "UPDATE tbl SET " */ 3597 sessionAppendStr(&buf, "UPDATE ", &rc); 3598 sessionAppendIdent(&buf, zTab, &rc); 3599 sessionAppendStr(&buf, " SET ", &rc); 3600 3601 /* Append the assignments */ 3602 for(i=0; i<p->nCol; i++){ 3603 sessionAppendStr(&buf, zSep, &rc); 3604 sessionAppendIdent(&buf, p->azCol[i], &rc); 3605 sessionAppendStr(&buf, " = CASE WHEN ?", &rc); 3606 sessionAppendInteger(&buf, i*3+2, &rc); 3607 sessionAppendStr(&buf, " THEN ?", &rc); 3608 sessionAppendInteger(&buf, i*3+3, &rc); 3609 sessionAppendStr(&buf, " ELSE ", &rc); 3610 sessionAppendIdent(&buf, p->azCol[i], &rc); 3611 sessionAppendStr(&buf, " END", &rc); 3612 zSep = ", "; 3613 } 3614 3615 /* Append the PK part of the WHERE clause */ 3616 sessionAppendStr(&buf, " WHERE ", &rc); 3617 for(i=0; i<p->nCol; i++){ 3618 if( p->abPK[i] ){ 3619 sessionAppendIdent(&buf, p->azCol[i], &rc); 3620 sessionAppendStr(&buf, " = ?", &rc); 3621 sessionAppendInteger(&buf, i*3+1, &rc); 3622 sessionAppendStr(&buf, " AND ", &rc); 3623 } 3624 } 3625 3626 /* Append the non-PK part of the WHERE clause */ 3627 sessionAppendStr(&buf, " (?", &rc); 3628 sessionAppendInteger(&buf, p->nCol*3+1, &rc); 3629 sessionAppendStr(&buf, " OR 1", &rc); 3630 for(i=0; i<p->nCol; i++){ 3631 if( !p->abPK[i] ){ 3632 sessionAppendStr(&buf, " AND (?", &rc); 3633 sessionAppendInteger(&buf, i*3+2, &rc); 3634 sessionAppendStr(&buf, "=0 OR ", &rc); 3635 sessionAppendIdent(&buf, p->azCol[i], &rc); 3636 sessionAppendStr(&buf, " IS ?", &rc); 3637 sessionAppendInteger(&buf, i*3+1, &rc); 3638 sessionAppendStr(&buf, ")", &rc); 3639 } 3640 } 3641 sessionAppendStr(&buf, ")", &rc); 3642 3643 if( rc==SQLITE_OK ){ 3644 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0); 3645 } 3646 sqlite3_free(buf.aBuf); 3647 3648 return rc; 3649 } 3650 3651 3652 /* 3653 ** Formulate and prepare an SQL statement to query table zTab by primary 3654 ** key. Assuming the following table structure: 3655 ** 3656 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3657 ** 3658 ** The SELECT statement looks like this: 3659 ** 3660 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 3661 ** 3662 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 3663 ** pointing to the prepared version of the SQL statement. 3664 */ 3665 static int sessionSelectRow( 3666 sqlite3 *db, /* Database handle */ 3667 const char *zTab, /* Table name */ 3668 SessionApplyCtx *p /* Session changeset-apply context */ 3669 ){ 3670 return sessionSelectStmt( 3671 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 3672 } 3673 3674 /* 3675 ** Formulate and prepare an INSERT statement to add a record to table zTab. 3676 ** For example: 3677 ** 3678 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 3679 ** 3680 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 3681 ** pointing to the prepared version of the SQL statement. 3682 */ 3683 static int sessionInsertRow( 3684 sqlite3 *db, /* Database handle */ 3685 const char *zTab, /* Table name */ 3686 SessionApplyCtx *p /* Session changeset-apply context */ 3687 ){ 3688 int rc = SQLITE_OK; 3689 int i; 3690 SessionBuffer buf = {0, 0, 0}; 3691 3692 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 3693 sessionAppendIdent(&buf, zTab, &rc); 3694 sessionAppendStr(&buf, "(", &rc); 3695 for(i=0; i<p->nCol; i++){ 3696 if( i!=0 ) sessionAppendStr(&buf, ", ", &rc); 3697 sessionAppendIdent(&buf, p->azCol[i], &rc); 3698 } 3699 3700 sessionAppendStr(&buf, ") VALUES(?", &rc); 3701 for(i=1; i<p->nCol; i++){ 3702 sessionAppendStr(&buf, ", ?", &rc); 3703 } 3704 sessionAppendStr(&buf, ")", &rc); 3705 3706 if( rc==SQLITE_OK ){ 3707 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 3708 } 3709 sqlite3_free(buf.aBuf); 3710 return rc; 3711 } 3712 3713 static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){ 3714 return sqlite3_prepare_v2(db, zSql, -1, pp, 0); 3715 } 3716 3717 /* 3718 ** Prepare statements for applying changes to the sqlite_stat1 table. 3719 ** These are similar to those created by sessionSelectRow(), 3720 ** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for 3721 ** other tables. 3722 */ 3723 static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){ 3724 int rc = sessionSelectRow(db, "sqlite_stat1", p); 3725 if( rc==SQLITE_OK ){ 3726 rc = sessionPrepare(db, &p->pInsert, 3727 "INSERT INTO main.sqlite_stat1 VALUES(?1, " 3728 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, " 3729 "?3)" 3730 ); 3731 } 3732 if( rc==SQLITE_OK ){ 3733 rc = sessionPrepare(db, &p->pUpdate, 3734 "UPDATE main.sqlite_stat1 SET " 3735 "tbl = CASE WHEN ?2 THEN ?3 ELSE tbl END, " 3736 "idx = CASE WHEN ?5 THEN ?6 ELSE idx END, " 3737 "stat = CASE WHEN ?8 THEN ?9 ELSE stat END " 3738 "WHERE tbl=?1 AND idx IS " 3739 "CASE WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL ELSE ?4 END " 3740 "AND (?10 OR ?8=0 OR stat IS ?7)" 3741 ); 3742 } 3743 if( rc==SQLITE_OK ){ 3744 rc = sessionPrepare(db, &p->pDelete, 3745 "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS " 3746 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END " 3747 "AND (?4 OR stat IS ?3)" 3748 ); 3749 } 3750 return rc; 3751 } 3752 3753 /* 3754 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 3755 ** See comments in the body of this function for details. 3756 */ 3757 static int sessionBindValue( 3758 sqlite3_stmt *pStmt, /* Statement to bind value to */ 3759 int i, /* Parameter number to bind to */ 3760 sqlite3_value *pVal /* Value to bind */ 3761 ){ 3762 int eType = sqlite3_value_type(pVal); 3763 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 3764 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 3765 ** the (pVal->z) variable remains as it was or the type of the value is 3766 ** set to SQLITE_NULL. */ 3767 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 3768 /* This condition occurs when an earlier OOM in a call to 3769 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 3770 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 3771 return SQLITE_NOMEM; 3772 } 3773 return sqlite3_bind_value(pStmt, i, pVal); 3774 } 3775 3776 /* 3777 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 3778 ** transfers new.* values from the current iterator entry to statement 3779 ** pStmt. The table being inserted into has nCol columns. 3780 ** 3781 ** New.* value $i from the iterator is bound to variable ($i+1) of 3782 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 3783 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 3784 ** to an array nCol elements in size. In this case only those values for 3785 ** which abPK[$i] is true are read from the iterator and bound to the 3786 ** statement. 3787 ** 3788 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 3789 */ 3790 static int sessionBindRow( 3791 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 3792 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 3793 int nCol, /* Number of columns */ 3794 u8 *abPK, /* If not NULL, bind only if true */ 3795 sqlite3_stmt *pStmt /* Bind values to this statement */ 3796 ){ 3797 int i; 3798 int rc = SQLITE_OK; 3799 3800 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 3801 ** argument iterator points to a suitable entry. Make sure that xValue 3802 ** is one of these to guarantee that it is safe to ignore the return 3803 ** in the code below. */ 3804 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 3805 3806 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3807 if( !abPK || abPK[i] ){ 3808 sqlite3_value *pVal; 3809 (void)xValue(pIter, i, &pVal); 3810 if( pVal==0 ){ 3811 /* The value in the changeset was "undefined". This indicates a 3812 ** corrupt changeset blob. */ 3813 rc = SQLITE_CORRUPT_BKPT; 3814 }else{ 3815 rc = sessionBindValue(pStmt, i+1, pVal); 3816 } 3817 } 3818 } 3819 return rc; 3820 } 3821 3822 /* 3823 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 3824 ** This function binds the primary key values from the change that changeset 3825 ** iterator pIter points to to the SELECT and attempts to seek to the table 3826 ** entry. If a row is found, the SELECT statement left pointing at the row 3827 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 3828 ** has occured, the statement is reset and SQLITE_OK is returned. If an 3829 ** error occurs, the statement is reset and an SQLite error code is returned. 3830 ** 3831 ** If this function returns SQLITE_ROW, the caller must eventually reset() 3832 ** statement pSelect. If any other value is returned, the statement does 3833 ** not require a reset(). 3834 ** 3835 ** If the iterator currently points to an INSERT record, bind values from the 3836 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 3837 ** UPDATE, bind values from the old.* record. 3838 */ 3839 static int sessionSeekToRow( 3840 sqlite3 *db, /* Database handle */ 3841 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3842 u8 *abPK, /* Primary key flags array */ 3843 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 3844 ){ 3845 int rc; /* Return code */ 3846 int nCol; /* Number of columns in table */ 3847 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 3848 const char *zDummy; /* Unused */ 3849 3850 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3851 rc = sessionBindRow(pIter, 3852 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 3853 nCol, abPK, pSelect 3854 ); 3855 3856 if( rc==SQLITE_OK ){ 3857 rc = sqlite3_step(pSelect); 3858 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 3859 } 3860 3861 return rc; 3862 } 3863 3864 /* 3865 ** This function is called from within sqlite3changset_apply_v2() when 3866 ** a conflict is encountered and resolved using conflict resolution 3867 ** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE).. 3868 ** It adds a conflict resolution record to the buffer in 3869 ** SessionApplyCtx.rebase, which will eventually be returned to the caller 3870 ** of apply_v2() as the "rebase" buffer. 3871 ** 3872 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. 3873 */ 3874 static int sessionRebaseAdd( 3875 SessionApplyCtx *p, /* Apply context */ 3876 int eType, /* Conflict resolution (OMIT or REPLACE) */ 3877 sqlite3_changeset_iter *pIter /* Iterator pointing at current change */ 3878 ){ 3879 int rc = SQLITE_OK; 3880 if( p->bRebase ){ 3881 int i; 3882 int eOp = pIter->op; 3883 if( p->bRebaseStarted==0 ){ 3884 /* Append a table-header to the rebase buffer */ 3885 const char *zTab = pIter->zTab; 3886 sessionAppendByte(&p->rebase, 'T', &rc); 3887 sessionAppendVarint(&p->rebase, p->nCol, &rc); 3888 sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc); 3889 sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc); 3890 p->bRebaseStarted = 1; 3891 } 3892 3893 assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT ); 3894 assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE ); 3895 3896 sessionAppendByte(&p->rebase, 3897 (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc 3898 ); 3899 sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc); 3900 for(i=0; i<p->nCol; i++){ 3901 sqlite3_value *pVal = 0; 3902 if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){ 3903 sqlite3changeset_old(pIter, i, &pVal); 3904 }else{ 3905 sqlite3changeset_new(pIter, i, &pVal); 3906 } 3907 sessionAppendValue(&p->rebase, pVal, &rc); 3908 } 3909 } 3910 return rc; 3911 } 3912 3913 /* 3914 ** Invoke the conflict handler for the change that the changeset iterator 3915 ** currently points to. 3916 ** 3917 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 3918 ** If argument pbReplace is NULL, then the type of conflict handler invoked 3919 ** depends solely on eType, as follows: 3920 ** 3921 ** eType value Value passed to xConflict 3922 ** ------------------------------------------------- 3923 ** CHANGESET_DATA CHANGESET_NOTFOUND 3924 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 3925 ** 3926 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 3927 ** record with the same primary key as the record about to be deleted, updated 3928 ** or inserted. If such a record can be found, it is available to the conflict 3929 ** handler as the "conflicting" record. In this case the type of conflict 3930 ** handler invoked is as follows: 3931 ** 3932 ** eType value PK Record found? Value passed to xConflict 3933 ** ---------------------------------------------------------------- 3934 ** CHANGESET_DATA Yes CHANGESET_DATA 3935 ** CHANGESET_DATA No CHANGESET_NOTFOUND 3936 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 3937 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 3938 ** 3939 ** If pbReplace is not NULL, and a record with a matching PK is found, and 3940 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 3941 ** is set to non-zero before returning SQLITE_OK. 3942 ** 3943 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 3944 ** returned. Or, if the conflict handler returns an invalid value, 3945 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 3946 ** this function returns SQLITE_OK. 3947 */ 3948 static int sessionConflictHandler( 3949 int eType, /* Either CHANGESET_DATA or CONFLICT */ 3950 SessionApplyCtx *p, /* changeset_apply() context */ 3951 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3952 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 3953 void *pCtx, /* First argument for conflict handler */ 3954 int *pbReplace /* OUT: Set to true if PK row is found */ 3955 ){ 3956 int res = 0; /* Value returned by conflict handler */ 3957 int rc; 3958 int nCol; 3959 int op; 3960 const char *zDummy; 3961 3962 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 3963 3964 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 3965 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 3966 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 3967 3968 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 3969 if( pbReplace ){ 3970 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 3971 }else{ 3972 rc = SQLITE_OK; 3973 } 3974 3975 if( rc==SQLITE_ROW ){ 3976 /* There exists another row with the new.* primary key. */ 3977 pIter->pConflict = p->pSelect; 3978 res = xConflict(pCtx, eType, pIter); 3979 pIter->pConflict = 0; 3980 rc = sqlite3_reset(p->pSelect); 3981 }else if( rc==SQLITE_OK ){ 3982 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 3983 /* Instead of invoking the conflict handler, append the change blob 3984 ** to the SessionApplyCtx.constraints buffer. */ 3985 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 3986 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 3987 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 3988 return SQLITE_OK; 3989 }else{ 3990 /* No other row with the new.* primary key. */ 3991 res = xConflict(pCtx, eType+1, pIter); 3992 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 3993 } 3994 } 3995 3996 if( rc==SQLITE_OK ){ 3997 switch( res ){ 3998 case SQLITE_CHANGESET_REPLACE: 3999 assert( pbReplace ); 4000 *pbReplace = 1; 4001 break; 4002 4003 case SQLITE_CHANGESET_OMIT: 4004 break; 4005 4006 case SQLITE_CHANGESET_ABORT: 4007 rc = SQLITE_ABORT; 4008 break; 4009 4010 default: 4011 rc = SQLITE_MISUSE; 4012 break; 4013 } 4014 if( rc==SQLITE_OK ){ 4015 rc = sessionRebaseAdd(p, res, pIter); 4016 } 4017 } 4018 4019 return rc; 4020 } 4021 4022 /* 4023 ** Attempt to apply the change that the iterator passed as the first argument 4024 ** currently points to to the database. If a conflict is encountered, invoke 4025 ** the conflict handler callback. 4026 ** 4027 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 4028 ** one is encountered, update or delete the row with the matching primary key 4029 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 4030 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 4031 ** to true before returning. In this case the caller will invoke this function 4032 ** again, this time with pbRetry set to NULL. 4033 ** 4034 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 4035 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 4036 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 4037 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 4038 ** before retrying. In this case the caller attempts to remove the conflicting 4039 ** row before invoking this function again, this time with pbReplace set 4040 ** to NULL. 4041 ** 4042 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 4043 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 4044 ** returned. 4045 */ 4046 static int sessionApplyOneOp( 4047 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 4048 SessionApplyCtx *p, /* changeset_apply() context */ 4049 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 4050 void *pCtx, /* First argument for the conflict handler */ 4051 int *pbReplace, /* OUT: True to remove PK row and retry */ 4052 int *pbRetry /* OUT: True to retry. */ 4053 ){ 4054 const char *zDummy; 4055 int op; 4056 int nCol; 4057 int rc = SQLITE_OK; 4058 4059 assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect ); 4060 assert( p->azCol && p->abPK ); 4061 assert( !pbReplace || *pbReplace==0 ); 4062 4063 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 4064 4065 if( op==SQLITE_DELETE ){ 4066 4067 /* Bind values to the DELETE statement. If conflict handling is required, 4068 ** bind values for all columns and set bound variable (nCol+1) to true. 4069 ** Or, if conflict handling is not required, bind just the PK column 4070 ** values and, if it exists, set (nCol+1) to false. Conflict handling 4071 ** is not required if: 4072 ** 4073 ** * this is a patchset, or 4074 ** * (pbRetry==0), or 4075 ** * all columns of the table are PK columns (in this case there is 4076 ** no (nCol+1) variable to bind to). 4077 */ 4078 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 4079 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 4080 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 4081 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 4082 } 4083 if( rc!=SQLITE_OK ) return rc; 4084 4085 sqlite3_step(p->pDelete); 4086 rc = sqlite3_reset(p->pDelete); 4087 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4088 rc = sessionConflictHandler( 4089 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4090 ); 4091 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4092 rc = sessionConflictHandler( 4093 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4094 ); 4095 } 4096 4097 }else if( op==SQLITE_UPDATE ){ 4098 int i; 4099 4100 /* Bind values to the UPDATE statement. */ 4101 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 4102 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 4103 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 4104 4105 sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew); 4106 if( pOld ){ 4107 rc = sessionBindValue(p->pUpdate, i*3+1, pOld); 4108 } 4109 if( rc==SQLITE_OK && pNew ){ 4110 rc = sessionBindValue(p->pUpdate, i*3+3, pNew); 4111 } 4112 } 4113 if( rc==SQLITE_OK ){ 4114 sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0 || pIter->bPatchset); 4115 } 4116 if( rc!=SQLITE_OK ) return rc; 4117 4118 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 4119 ** the result will be SQLITE_OK with 0 rows modified. */ 4120 sqlite3_step(p->pUpdate); 4121 rc = sqlite3_reset(p->pUpdate); 4122 4123 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4124 /* A NOTFOUND or DATA error. Search the table to see if it contains 4125 ** a row with a matching primary key. If so, this is a DATA conflict. 4126 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 4127 4128 rc = sessionConflictHandler( 4129 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4130 ); 4131 4132 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4133 /* This is always a CONSTRAINT conflict. */ 4134 rc = sessionConflictHandler( 4135 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4136 ); 4137 } 4138 4139 }else{ 4140 assert( op==SQLITE_INSERT ); 4141 if( p->bStat1 ){ 4142 /* Check if there is a conflicting row. For sqlite_stat1, this needs 4143 ** to be done using a SELECT, as there is no PRIMARY KEY in the 4144 ** database schema to throw an exception if a duplicate is inserted. */ 4145 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 4146 if( rc==SQLITE_ROW ){ 4147 rc = SQLITE_CONSTRAINT; 4148 sqlite3_reset(p->pSelect); 4149 } 4150 } 4151 4152 if( rc==SQLITE_OK ){ 4153 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 4154 if( rc!=SQLITE_OK ) return rc; 4155 4156 sqlite3_step(p->pInsert); 4157 rc = sqlite3_reset(p->pInsert); 4158 } 4159 4160 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4161 rc = sessionConflictHandler( 4162 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 4163 ); 4164 } 4165 } 4166 4167 return rc; 4168 } 4169 4170 /* 4171 ** Attempt to apply the change that the iterator passed as the first argument 4172 ** currently points to to the database. If a conflict is encountered, invoke 4173 ** the conflict handler callback. 4174 ** 4175 ** The difference between this function and sessionApplyOne() is that this 4176 ** function handles the case where the conflict-handler is invoked and 4177 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 4178 ** retried in some manner. 4179 */ 4180 static int sessionApplyOneWithRetry( 4181 sqlite3 *db, /* Apply change to "main" db of this handle */ 4182 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 4183 SessionApplyCtx *pApply, /* Apply context */ 4184 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4185 void *pCtx /* First argument passed to xConflict */ 4186 ){ 4187 int bReplace = 0; 4188 int bRetry = 0; 4189 int rc; 4190 4191 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 4192 if( rc==SQLITE_OK ){ 4193 /* If the bRetry flag is set, the change has not been applied due to an 4194 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 4195 ** a row with the correct PK is present in the db, but one or more other 4196 ** fields do not contain the expected values) and the conflict handler 4197 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 4198 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 4199 ** the SQLITE_CHANGESET_DATA problem. */ 4200 if( bRetry ){ 4201 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 4202 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4203 } 4204 4205 /* If the bReplace flag is set, the change is an INSERT that has not 4206 ** been performed because the database already contains a row with the 4207 ** specified primary key and the conflict handler returned 4208 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 4209 ** before reattempting the INSERT. */ 4210 else if( bReplace ){ 4211 assert( pIter->op==SQLITE_INSERT ); 4212 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 4213 if( rc==SQLITE_OK ){ 4214 rc = sessionBindRow(pIter, 4215 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 4216 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 4217 } 4218 if( rc==SQLITE_OK ){ 4219 sqlite3_step(pApply->pDelete); 4220 rc = sqlite3_reset(pApply->pDelete); 4221 } 4222 if( rc==SQLITE_OK ){ 4223 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4224 } 4225 if( rc==SQLITE_OK ){ 4226 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 4227 } 4228 } 4229 } 4230 4231 return rc; 4232 } 4233 4234 /* 4235 ** Retry the changes accumulated in the pApply->constraints buffer. 4236 */ 4237 static int sessionRetryConstraints( 4238 sqlite3 *db, 4239 int bPatchset, 4240 const char *zTab, 4241 SessionApplyCtx *pApply, 4242 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4243 void *pCtx /* First argument passed to xConflict */ 4244 ){ 4245 int rc = SQLITE_OK; 4246 4247 while( pApply->constraints.nBuf ){ 4248 sqlite3_changeset_iter *pIter2 = 0; 4249 SessionBuffer cons = pApply->constraints; 4250 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 4251 4252 rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf, 0); 4253 if( rc==SQLITE_OK ){ 4254 int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 4255 int rc2; 4256 pIter2->bPatchset = bPatchset; 4257 pIter2->zTab = (char*)zTab; 4258 pIter2->nCol = pApply->nCol; 4259 pIter2->abPK = pApply->abPK; 4260 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 4261 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 4262 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 4263 4264 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 4265 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 4266 } 4267 4268 rc2 = sqlite3changeset_finalize(pIter2); 4269 if( rc==SQLITE_OK ) rc = rc2; 4270 } 4271 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 4272 4273 sqlite3_free(cons.aBuf); 4274 if( rc!=SQLITE_OK ) break; 4275 if( pApply->constraints.nBuf>=cons.nBuf ){ 4276 /* No progress was made on the last round. */ 4277 pApply->bDeferConstraints = 0; 4278 } 4279 } 4280 4281 return rc; 4282 } 4283 4284 /* 4285 ** Argument pIter is a changeset iterator that has been initialized, but 4286 ** not yet passed to sqlite3changeset_next(). This function applies the 4287 ** changeset to the main database attached to handle "db". The supplied 4288 ** conflict handler callback is invoked to resolve any conflicts encountered 4289 ** while applying the change. 4290 */ 4291 static int sessionChangesetApply( 4292 sqlite3 *db, /* Apply change to "main" db of this handle */ 4293 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 4294 int(*xFilter)( 4295 void *pCtx, /* Copy of sixth arg to _apply() */ 4296 const char *zTab /* Table name */ 4297 ), 4298 int(*xConflict)( 4299 void *pCtx, /* Copy of fifth arg to _apply() */ 4300 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4301 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4302 ), 4303 void *pCtx, /* First argument passed to xConflict */ 4304 void **ppRebase, int *pnRebase, /* OUT: Rebase information */ 4305 int flags /* SESSION_APPLY_XXX flags */ 4306 ){ 4307 int schemaMismatch = 0; 4308 int rc = SQLITE_OK; /* Return code */ 4309 const char *zTab = 0; /* Name of current table */ 4310 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 4311 SessionApplyCtx sApply; /* changeset_apply() context object */ 4312 int bPatchset; 4313 4314 assert( xConflict!=0 ); 4315 4316 pIter->in.bNoDiscard = 1; 4317 memset(&sApply, 0, sizeof(sApply)); 4318 sApply.bRebase = (ppRebase && pnRebase); 4319 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4320 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4321 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4322 } 4323 if( rc==SQLITE_OK ){ 4324 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4325 } 4326 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4327 int nCol; 4328 int op; 4329 const char *zNew; 4330 4331 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4332 4333 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4334 u8 *abPK; 4335 4336 rc = sessionRetryConstraints( 4337 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4338 ); 4339 if( rc!=SQLITE_OK ) break; 4340 4341 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4342 sqlite3_finalize(sApply.pDelete); 4343 sqlite3_finalize(sApply.pUpdate); 4344 sqlite3_finalize(sApply.pInsert); 4345 sqlite3_finalize(sApply.pSelect); 4346 sApply.db = db; 4347 sApply.pDelete = 0; 4348 sApply.pUpdate = 0; 4349 sApply.pInsert = 0; 4350 sApply.pSelect = 0; 4351 sApply.nCol = 0; 4352 sApply.azCol = 0; 4353 sApply.abPK = 0; 4354 sApply.bStat1 = 0; 4355 sApply.bDeferConstraints = 1; 4356 sApply.bRebaseStarted = 0; 4357 memset(&sApply.constraints, 0, sizeof(SessionBuffer)); 4358 4359 /* If an xFilter() callback was specified, invoke it now. If the 4360 ** xFilter callback returns zero, skip this table. If it returns 4361 ** non-zero, proceed. */ 4362 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4363 if( schemaMismatch ){ 4364 zTab = sqlite3_mprintf("%s", zNew); 4365 if( zTab==0 ){ 4366 rc = SQLITE_NOMEM; 4367 break; 4368 } 4369 nTab = (int)strlen(zTab); 4370 sApply.azCol = (const char **)zTab; 4371 }else{ 4372 int nMinCol = 0; 4373 int i; 4374 4375 sqlite3changeset_pk(pIter, &abPK, 0); 4376 rc = sessionTableInfo( 4377 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4378 ); 4379 if( rc!=SQLITE_OK ) break; 4380 for(i=0; i<sApply.nCol; i++){ 4381 if( sApply.abPK[i] ) nMinCol = i+1; 4382 } 4383 4384 if( sApply.nCol==0 ){ 4385 schemaMismatch = 1; 4386 sqlite3_log(SQLITE_SCHEMA, 4387 "sqlite3changeset_apply(): no such table: %s", zTab 4388 ); 4389 } 4390 else if( sApply.nCol<nCol ){ 4391 schemaMismatch = 1; 4392 sqlite3_log(SQLITE_SCHEMA, 4393 "sqlite3changeset_apply(): table %s has %d columns, " 4394 "expected %d or more", 4395 zTab, sApply.nCol, nCol 4396 ); 4397 } 4398 else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4399 schemaMismatch = 1; 4400 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4401 "primary key mismatch for table %s", zTab 4402 ); 4403 } 4404 else{ 4405 sApply.nCol = nCol; 4406 if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){ 4407 if( (rc = sessionStat1Sql(db, &sApply) ) ){ 4408 break; 4409 } 4410 sApply.bStat1 = 1; 4411 }else{ 4412 if((rc = sessionSelectRow(db, zTab, &sApply)) 4413 || (rc = sessionUpdateRow(db, zTab, &sApply)) 4414 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4415 || (rc = sessionInsertRow(db, zTab, &sApply)) 4416 ){ 4417 break; 4418 } 4419 sApply.bStat1 = 0; 4420 } 4421 } 4422 nTab = sqlite3Strlen30(zTab); 4423 } 4424 } 4425 4426 /* If there is a schema mismatch on the current table, proceed to the 4427 ** next change. A log message has already been issued. */ 4428 if( schemaMismatch ) continue; 4429 4430 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4431 } 4432 4433 bPatchset = pIter->bPatchset; 4434 if( rc==SQLITE_OK ){ 4435 rc = sqlite3changeset_finalize(pIter); 4436 }else{ 4437 sqlite3changeset_finalize(pIter); 4438 } 4439 4440 if( rc==SQLITE_OK ){ 4441 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4442 } 4443 4444 if( rc==SQLITE_OK ){ 4445 int nFk, notUsed; 4446 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4447 if( nFk!=0 ){ 4448 int res = SQLITE_CHANGESET_ABORT; 4449 sqlite3_changeset_iter sIter; 4450 memset(&sIter, 0, sizeof(sIter)); 4451 sIter.nCol = nFk; 4452 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4453 if( res!=SQLITE_CHANGESET_OMIT ){ 4454 rc = SQLITE_CONSTRAINT; 4455 } 4456 } 4457 } 4458 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4459 4460 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4461 if( rc==SQLITE_OK ){ 4462 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4463 }else{ 4464 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4465 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4466 } 4467 } 4468 4469 assert( sApply.bRebase || sApply.rebase.nBuf==0 ); 4470 if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){ 4471 *ppRebase = (void*)sApply.rebase.aBuf; 4472 *pnRebase = sApply.rebase.nBuf; 4473 sApply.rebase.aBuf = 0; 4474 } 4475 sqlite3_finalize(sApply.pInsert); 4476 sqlite3_finalize(sApply.pDelete); 4477 sqlite3_finalize(sApply.pUpdate); 4478 sqlite3_finalize(sApply.pSelect); 4479 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4480 sqlite3_free((char*)sApply.constraints.aBuf); 4481 sqlite3_free((char*)sApply.rebase.aBuf); 4482 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4483 return rc; 4484 } 4485 4486 /* 4487 ** Apply the changeset passed via pChangeset/nChangeset to the main 4488 ** database attached to handle "db". 4489 */ 4490 int sqlite3changeset_apply_v2( 4491 sqlite3 *db, /* Apply change to "main" db of this handle */ 4492 int nChangeset, /* Size of changeset in bytes */ 4493 void *pChangeset, /* Changeset blob */ 4494 int(*xFilter)( 4495 void *pCtx, /* Copy of sixth arg to _apply() */ 4496 const char *zTab /* Table name */ 4497 ), 4498 int(*xConflict)( 4499 void *pCtx, /* Copy of sixth arg to _apply() */ 4500 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4501 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4502 ), 4503 void *pCtx, /* First argument passed to xConflict */ 4504 void **ppRebase, int *pnRebase, 4505 int flags 4506 ){ 4507 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4508 int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); 4509 int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset,bInverse); 4510 if( rc==SQLITE_OK ){ 4511 rc = sessionChangesetApply( 4512 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4513 ); 4514 } 4515 return rc; 4516 } 4517 4518 /* 4519 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4520 ** attached to handle "db". Invoke the supplied conflict handler callback 4521 ** to resolve any conflicts encountered while applying the change. 4522 */ 4523 int sqlite3changeset_apply( 4524 sqlite3 *db, /* Apply change to "main" db of this handle */ 4525 int nChangeset, /* Size of changeset in bytes */ 4526 void *pChangeset, /* Changeset blob */ 4527 int(*xFilter)( 4528 void *pCtx, /* Copy of sixth arg to _apply() */ 4529 const char *zTab /* Table name */ 4530 ), 4531 int(*xConflict)( 4532 void *pCtx, /* Copy of fifth arg to _apply() */ 4533 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4534 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4535 ), 4536 void *pCtx /* First argument passed to xConflict */ 4537 ){ 4538 return sqlite3changeset_apply_v2( 4539 db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0 4540 ); 4541 } 4542 4543 /* 4544 ** Apply the changeset passed via xInput/pIn to the main database 4545 ** attached to handle "db". Invoke the supplied conflict handler callback 4546 ** to resolve any conflicts encountered while applying the change. 4547 */ 4548 int sqlite3changeset_apply_v2_strm( 4549 sqlite3 *db, /* Apply change to "main" db of this handle */ 4550 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4551 void *pIn, /* First arg for xInput */ 4552 int(*xFilter)( 4553 void *pCtx, /* Copy of sixth arg to _apply() */ 4554 const char *zTab /* Table name */ 4555 ), 4556 int(*xConflict)( 4557 void *pCtx, /* Copy of sixth arg to _apply() */ 4558 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4559 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4560 ), 4561 void *pCtx, /* First argument passed to xConflict */ 4562 void **ppRebase, int *pnRebase, 4563 int flags 4564 ){ 4565 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4566 int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); 4567 int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse); 4568 if( rc==SQLITE_OK ){ 4569 rc = sessionChangesetApply( 4570 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4571 ); 4572 } 4573 return rc; 4574 } 4575 int sqlite3changeset_apply_strm( 4576 sqlite3 *db, /* Apply change to "main" db of this handle */ 4577 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4578 void *pIn, /* First arg for xInput */ 4579 int(*xFilter)( 4580 void *pCtx, /* Copy of sixth arg to _apply() */ 4581 const char *zTab /* Table name */ 4582 ), 4583 int(*xConflict)( 4584 void *pCtx, /* Copy of sixth arg to _apply() */ 4585 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4586 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4587 ), 4588 void *pCtx /* First argument passed to xConflict */ 4589 ){ 4590 return sqlite3changeset_apply_v2_strm( 4591 db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0 4592 ); 4593 } 4594 4595 /* 4596 ** sqlite3_changegroup handle. 4597 */ 4598 struct sqlite3_changegroup { 4599 int rc; /* Error code */ 4600 int bPatch; /* True to accumulate patchsets */ 4601 SessionTable *pList; /* List of tables in current patch */ 4602 }; 4603 4604 /* 4605 ** This function is called to merge two changes to the same row together as 4606 ** part of an sqlite3changeset_concat() operation. A new change object is 4607 ** allocated and a pointer to it stored in *ppNew. 4608 */ 4609 static int sessionChangeMerge( 4610 SessionTable *pTab, /* Table structure */ 4611 int bRebase, /* True for a rebase hash-table */ 4612 int bPatchset, /* True for patchsets */ 4613 SessionChange *pExist, /* Existing change */ 4614 int op2, /* Second change operation */ 4615 int bIndirect, /* True if second change is indirect */ 4616 u8 *aRec, /* Second change record */ 4617 int nRec, /* Number of bytes in aRec */ 4618 SessionChange **ppNew /* OUT: Merged change */ 4619 ){ 4620 SessionChange *pNew = 0; 4621 int rc = SQLITE_OK; 4622 4623 if( !pExist ){ 4624 pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec); 4625 if( !pNew ){ 4626 return SQLITE_NOMEM; 4627 } 4628 memset(pNew, 0, sizeof(SessionChange)); 4629 pNew->op = op2; 4630 pNew->bIndirect = bIndirect; 4631 pNew->aRecord = (u8*)&pNew[1]; 4632 if( bIndirect==0 || bRebase==0 ){ 4633 pNew->nRecord = nRec; 4634 memcpy(pNew->aRecord, aRec, nRec); 4635 }else{ 4636 int i; 4637 u8 *pIn = aRec; 4638 u8 *pOut = pNew->aRecord; 4639 for(i=0; i<pTab->nCol; i++){ 4640 int nIn = sessionSerialLen(pIn); 4641 if( *pIn==0 ){ 4642 *pOut++ = 0; 4643 }else if( pTab->abPK[i]==0 ){ 4644 *pOut++ = 0xFF; 4645 }else{ 4646 memcpy(pOut, pIn, nIn); 4647 pOut += nIn; 4648 } 4649 pIn += nIn; 4650 } 4651 pNew->nRecord = pOut - pNew->aRecord; 4652 } 4653 }else if( bRebase ){ 4654 if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){ 4655 *ppNew = pExist; 4656 }else{ 4657 sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange); 4658 pNew = (SessionChange*)sqlite3_malloc64(nByte); 4659 if( pNew==0 ){ 4660 rc = SQLITE_NOMEM; 4661 }else{ 4662 int i; 4663 u8 *a1 = pExist->aRecord; 4664 u8 *a2 = aRec; 4665 u8 *pOut; 4666 4667 memset(pNew, 0, nByte); 4668 pNew->bIndirect = bIndirect || pExist->bIndirect; 4669 pNew->op = op2; 4670 pOut = pNew->aRecord = (u8*)&pNew[1]; 4671 4672 for(i=0; i<pTab->nCol; i++){ 4673 int n1 = sessionSerialLen(a1); 4674 int n2 = sessionSerialLen(a2); 4675 if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){ 4676 *pOut++ = 0xFF; 4677 }else if( *a2==0 ){ 4678 memcpy(pOut, a1, n1); 4679 pOut += n1; 4680 }else{ 4681 memcpy(pOut, a2, n2); 4682 pOut += n2; 4683 } 4684 a1 += n1; 4685 a2 += n2; 4686 } 4687 pNew->nRecord = pOut - pNew->aRecord; 4688 } 4689 sqlite3_free(pExist); 4690 } 4691 }else{ 4692 int op1 = pExist->op; 4693 4694 /* 4695 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 4696 ** op1=INSERT, op2=UPDATE -> INSERT. 4697 ** op1=INSERT, op2=DELETE -> (none) 4698 ** 4699 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 4700 ** op1=UPDATE, op2=UPDATE -> UPDATE. 4701 ** op1=UPDATE, op2=DELETE -> DELETE. 4702 ** 4703 ** op1=DELETE, op2=INSERT -> UPDATE. 4704 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 4705 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 4706 */ 4707 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 4708 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 4709 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 4710 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 4711 ){ 4712 pNew = pExist; 4713 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 4714 sqlite3_free(pExist); 4715 assert( pNew==0 ); 4716 }else{ 4717 u8 *aExist = pExist->aRecord; 4718 sqlite3_int64 nByte; 4719 u8 *aCsr; 4720 4721 /* Allocate a new SessionChange object. Ensure that the aRecord[] 4722 ** buffer of the new object is large enough to hold any record that 4723 ** may be generated by combining the input records. */ 4724 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 4725 pNew = (SessionChange *)sqlite3_malloc64(nByte); 4726 if( !pNew ){ 4727 sqlite3_free(pExist); 4728 return SQLITE_NOMEM; 4729 } 4730 memset(pNew, 0, sizeof(SessionChange)); 4731 pNew->bIndirect = (bIndirect && pExist->bIndirect); 4732 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 4733 4734 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 4735 u8 *a1 = aRec; 4736 assert( op2==SQLITE_UPDATE ); 4737 pNew->op = SQLITE_INSERT; 4738 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 4739 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 4740 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 4741 assert( op2==SQLITE_INSERT ); 4742 pNew->op = SQLITE_UPDATE; 4743 if( bPatchset ){ 4744 memcpy(aCsr, aRec, nRec); 4745 aCsr += nRec; 4746 }else{ 4747 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 4748 sqlite3_free(pNew); 4749 pNew = 0; 4750 } 4751 } 4752 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 4753 u8 *a1 = aExist; 4754 u8 *a2 = aRec; 4755 assert( op1==SQLITE_UPDATE ); 4756 if( bPatchset==0 ){ 4757 sessionSkipRecord(&a1, pTab->nCol); 4758 sessionSkipRecord(&a2, pTab->nCol); 4759 } 4760 pNew->op = SQLITE_UPDATE; 4761 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 4762 sqlite3_free(pNew); 4763 pNew = 0; 4764 } 4765 }else{ /* UPDATE + DELETE */ 4766 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 4767 pNew->op = SQLITE_DELETE; 4768 if( bPatchset ){ 4769 memcpy(aCsr, aRec, nRec); 4770 aCsr += nRec; 4771 }else{ 4772 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 4773 } 4774 } 4775 4776 if( pNew ){ 4777 pNew->nRecord = (int)(aCsr - pNew->aRecord); 4778 } 4779 sqlite3_free(pExist); 4780 } 4781 } 4782 4783 *ppNew = pNew; 4784 return rc; 4785 } 4786 4787 /* 4788 ** Add all changes in the changeset traversed by the iterator passed as 4789 ** the first argument to the changegroup hash tables. 4790 */ 4791 static int sessionChangesetToHash( 4792 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 4793 sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */ 4794 int bRebase /* True if hash table is for rebasing */ 4795 ){ 4796 u8 *aRec; 4797 int nRec; 4798 int rc = SQLITE_OK; 4799 SessionTable *pTab = 0; 4800 4801 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){ 4802 const char *zNew; 4803 int nCol; 4804 int op; 4805 int iHash; 4806 int bIndirect; 4807 SessionChange *pChange; 4808 SessionChange *pExist = 0; 4809 SessionChange **pp; 4810 4811 if( pGrp->pList==0 ){ 4812 pGrp->bPatch = pIter->bPatchset; 4813 }else if( pIter->bPatchset!=pGrp->bPatch ){ 4814 rc = SQLITE_ERROR; 4815 break; 4816 } 4817 4818 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 4819 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 4820 /* Search the list for a matching table */ 4821 int nNew = (int)strlen(zNew); 4822 u8 *abPK; 4823 4824 sqlite3changeset_pk(pIter, &abPK, 0); 4825 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 4826 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 4827 } 4828 if( !pTab ){ 4829 SessionTable **ppTab; 4830 4831 pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1); 4832 if( !pTab ){ 4833 rc = SQLITE_NOMEM; 4834 break; 4835 } 4836 memset(pTab, 0, sizeof(SessionTable)); 4837 pTab->nCol = nCol; 4838 pTab->abPK = (u8*)&pTab[1]; 4839 memcpy(pTab->abPK, abPK, nCol); 4840 pTab->zName = (char*)&pTab->abPK[nCol]; 4841 memcpy(pTab->zName, zNew, nNew+1); 4842 4843 /* The new object must be linked on to the end of the list, not 4844 ** simply added to the start of it. This is to ensure that the 4845 ** tables within the output of sqlite3changegroup_output() are in 4846 ** the right order. */ 4847 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 4848 *ppTab = pTab; 4849 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 4850 rc = SQLITE_SCHEMA; 4851 break; 4852 } 4853 } 4854 4855 if( sessionGrowHash(pIter->bPatchset, pTab) ){ 4856 rc = SQLITE_NOMEM; 4857 break; 4858 } 4859 iHash = sessionChangeHash( 4860 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 4861 ); 4862 4863 /* Search for existing entry. If found, remove it from the hash table. 4864 ** Code below may link it back in. 4865 */ 4866 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 4867 int bPkOnly1 = 0; 4868 int bPkOnly2 = 0; 4869 if( pIter->bPatchset ){ 4870 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 4871 bPkOnly2 = op==SQLITE_DELETE; 4872 } 4873 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 4874 pExist = *pp; 4875 *pp = (*pp)->pNext; 4876 pTab->nEntry--; 4877 break; 4878 } 4879 } 4880 4881 rc = sessionChangeMerge(pTab, bRebase, 4882 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 4883 ); 4884 if( rc ) break; 4885 if( pChange ){ 4886 pChange->pNext = pTab->apChange[iHash]; 4887 pTab->apChange[iHash] = pChange; 4888 pTab->nEntry++; 4889 } 4890 } 4891 4892 if( rc==SQLITE_OK ) rc = pIter->rc; 4893 return rc; 4894 } 4895 4896 /* 4897 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 4898 ** added to the changegroup object passed as the first argument. 4899 ** 4900 ** If xOutput is not NULL, then the changeset/patchset is returned to the 4901 ** user via one or more calls to xOutput, as with the other streaming 4902 ** interfaces. 4903 ** 4904 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 4905 ** buffer containing the output changeset before this function returns. In 4906 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 4907 ** is the responsibility of the caller to free the output buffer using 4908 ** sqlite3_free() when it is no longer required. 4909 ** 4910 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 4911 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 4912 ** are both set to 0 before returning. 4913 */ 4914 static int sessionChangegroupOutput( 4915 sqlite3_changegroup *pGrp, 4916 int (*xOutput)(void *pOut, const void *pData, int nData), 4917 void *pOut, 4918 int *pnOut, 4919 void **ppOut 4920 ){ 4921 int rc = SQLITE_OK; 4922 SessionBuffer buf = {0, 0, 0}; 4923 SessionTable *pTab; 4924 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 4925 4926 /* Create the serialized output changeset based on the contents of the 4927 ** hash tables attached to the SessionTable objects in list p->pList. 4928 */ 4929 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 4930 int i; 4931 if( pTab->nEntry==0 ) continue; 4932 4933 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 4934 for(i=0; i<pTab->nChange; i++){ 4935 SessionChange *p; 4936 for(p=pTab->apChange[i]; p; p=p->pNext){ 4937 sessionAppendByte(&buf, p->op, &rc); 4938 sessionAppendByte(&buf, p->bIndirect, &rc); 4939 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 4940 if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){ 4941 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4942 buf.nBuf = 0; 4943 } 4944 } 4945 } 4946 } 4947 4948 if( rc==SQLITE_OK ){ 4949 if( xOutput ){ 4950 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 4951 }else{ 4952 *ppOut = buf.aBuf; 4953 *pnOut = buf.nBuf; 4954 buf.aBuf = 0; 4955 } 4956 } 4957 sqlite3_free(buf.aBuf); 4958 4959 return rc; 4960 } 4961 4962 /* 4963 ** Allocate a new, empty, sqlite3_changegroup. 4964 */ 4965 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 4966 int rc = SQLITE_OK; /* Return code */ 4967 sqlite3_changegroup *p; /* New object */ 4968 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 4969 if( p==0 ){ 4970 rc = SQLITE_NOMEM; 4971 }else{ 4972 memset(p, 0, sizeof(sqlite3_changegroup)); 4973 } 4974 *pp = p; 4975 return rc; 4976 } 4977 4978 /* 4979 ** Add the changeset currently stored in buffer pData, size nData bytes, 4980 ** to changeset-group p. 4981 */ 4982 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 4983 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 4984 int rc; /* Return code */ 4985 4986 rc = sqlite3changeset_start(&pIter, nData, pData); 4987 if( rc==SQLITE_OK ){ 4988 rc = sessionChangesetToHash(pIter, pGrp, 0); 4989 } 4990 sqlite3changeset_finalize(pIter); 4991 return rc; 4992 } 4993 4994 /* 4995 ** Obtain a buffer containing a changeset representing the concatenation 4996 ** of all changesets added to the group so far. 4997 */ 4998 int sqlite3changegroup_output( 4999 sqlite3_changegroup *pGrp, 5000 int *pnData, 5001 void **ppData 5002 ){ 5003 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 5004 } 5005 5006 /* 5007 ** Streaming versions of changegroup_add(). 5008 */ 5009 int sqlite3changegroup_add_strm( 5010 sqlite3_changegroup *pGrp, 5011 int (*xInput)(void *pIn, void *pData, int *pnData), 5012 void *pIn 5013 ){ 5014 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 5015 int rc; /* Return code */ 5016 5017 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 5018 if( rc==SQLITE_OK ){ 5019 rc = sessionChangesetToHash(pIter, pGrp, 0); 5020 } 5021 sqlite3changeset_finalize(pIter); 5022 return rc; 5023 } 5024 5025 /* 5026 ** Streaming versions of changegroup_output(). 5027 */ 5028 int sqlite3changegroup_output_strm( 5029 sqlite3_changegroup *pGrp, 5030 int (*xOutput)(void *pOut, const void *pData, int nData), 5031 void *pOut 5032 ){ 5033 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 5034 } 5035 5036 /* 5037 ** Delete a changegroup object. 5038 */ 5039 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 5040 if( pGrp ){ 5041 sessionDeleteTable(pGrp->pList); 5042 sqlite3_free(pGrp); 5043 } 5044 } 5045 5046 /* 5047 ** Combine two changesets together. 5048 */ 5049 int sqlite3changeset_concat( 5050 int nLeft, /* Number of bytes in lhs input */ 5051 void *pLeft, /* Lhs input changeset */ 5052 int nRight /* Number of bytes in rhs input */, 5053 void *pRight, /* Rhs input changeset */ 5054 int *pnOut, /* OUT: Number of bytes in output changeset */ 5055 void **ppOut /* OUT: changeset (left <concat> right) */ 5056 ){ 5057 sqlite3_changegroup *pGrp; 5058 int rc; 5059 5060 rc = sqlite3changegroup_new(&pGrp); 5061 if( rc==SQLITE_OK ){ 5062 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 5063 } 5064 if( rc==SQLITE_OK ){ 5065 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 5066 } 5067 if( rc==SQLITE_OK ){ 5068 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 5069 } 5070 sqlite3changegroup_delete(pGrp); 5071 5072 return rc; 5073 } 5074 5075 /* 5076 ** Streaming version of sqlite3changeset_concat(). 5077 */ 5078 int sqlite3changeset_concat_strm( 5079 int (*xInputA)(void *pIn, void *pData, int *pnData), 5080 void *pInA, 5081 int (*xInputB)(void *pIn, void *pData, int *pnData), 5082 void *pInB, 5083 int (*xOutput)(void *pOut, const void *pData, int nData), 5084 void *pOut 5085 ){ 5086 sqlite3_changegroup *pGrp; 5087 int rc; 5088 5089 rc = sqlite3changegroup_new(&pGrp); 5090 if( rc==SQLITE_OK ){ 5091 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 5092 } 5093 if( rc==SQLITE_OK ){ 5094 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 5095 } 5096 if( rc==SQLITE_OK ){ 5097 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 5098 } 5099 sqlite3changegroup_delete(pGrp); 5100 5101 return rc; 5102 } 5103 5104 /* 5105 ** Changeset rebaser handle. 5106 */ 5107 struct sqlite3_rebaser { 5108 sqlite3_changegroup grp; /* Hash table */ 5109 }; 5110 5111 /* 5112 ** Buffers a1 and a2 must both contain a sessions module record nCol 5113 ** fields in size. This function appends an nCol sessions module 5114 ** record to buffer pBuf that is a copy of a1, except that for 5115 ** each field that is undefined in a1[], swap in the field from a2[]. 5116 */ 5117 static void sessionAppendRecordMerge( 5118 SessionBuffer *pBuf, /* Buffer to append to */ 5119 int nCol, /* Number of columns in each record */ 5120 u8 *a1, int n1, /* Record 1 */ 5121 u8 *a2, int n2, /* Record 2 */ 5122 int *pRc /* IN/OUT: error code */ 5123 ){ 5124 sessionBufferGrow(pBuf, n1+n2, pRc); 5125 if( *pRc==SQLITE_OK ){ 5126 int i; 5127 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5128 for(i=0; i<nCol; i++){ 5129 int nn1 = sessionSerialLen(a1); 5130 int nn2 = sessionSerialLen(a2); 5131 if( *a1==0 || *a1==0xFF ){ 5132 memcpy(pOut, a2, nn2); 5133 pOut += nn2; 5134 }else{ 5135 memcpy(pOut, a1, nn1); 5136 pOut += nn1; 5137 } 5138 a1 += nn1; 5139 a2 += nn2; 5140 } 5141 5142 pBuf->nBuf = pOut-pBuf->aBuf; 5143 assert( pBuf->nBuf<=pBuf->nAlloc ); 5144 } 5145 } 5146 5147 /* 5148 ** This function is called when rebasing a local UPDATE change against one 5149 ** or more remote UPDATE changes. The aRec/nRec buffer contains the current 5150 ** old.* and new.* records for the change. The rebase buffer (a single 5151 ** record) is in aChange/nChange. The rebased change is appended to buffer 5152 ** pBuf. 5153 ** 5154 ** Rebasing the UPDATE involves: 5155 ** 5156 ** * Removing any changes to fields for which the corresponding field 5157 ** in the rebase buffer is set to "replaced" (type 0xFF). If this 5158 ** means the UPDATE change updates no fields, nothing is appended 5159 ** to the output buffer. 5160 ** 5161 ** * For each field modified by the local change for which the 5162 ** corresponding field in the rebase buffer is not "undefined" (0x00) 5163 ** or "replaced" (0xFF), the old.* value is replaced by the value 5164 ** in the rebase buffer. 5165 */ 5166 static void sessionAppendPartialUpdate( 5167 SessionBuffer *pBuf, /* Append record here */ 5168 sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */ 5169 u8 *aRec, int nRec, /* Local change */ 5170 u8 *aChange, int nChange, /* Record to rebase against */ 5171 int *pRc /* IN/OUT: Return Code */ 5172 ){ 5173 sessionBufferGrow(pBuf, 2+nRec+nChange, pRc); 5174 if( *pRc==SQLITE_OK ){ 5175 int bData = 0; 5176 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5177 int i; 5178 u8 *a1 = aRec; 5179 u8 *a2 = aChange; 5180 5181 *pOut++ = SQLITE_UPDATE; 5182 *pOut++ = pIter->bIndirect; 5183 for(i=0; i<pIter->nCol; i++){ 5184 int n1 = sessionSerialLen(a1); 5185 int n2 = sessionSerialLen(a2); 5186 if( pIter->abPK[i] || a2[0]==0 ){ 5187 if( !pIter->abPK[i] ) bData = 1; 5188 memcpy(pOut, a1, n1); 5189 pOut += n1; 5190 }else if( a2[0]!=0xFF ){ 5191 bData = 1; 5192 memcpy(pOut, a2, n2); 5193 pOut += n2; 5194 }else{ 5195 *pOut++ = '\0'; 5196 } 5197 a1 += n1; 5198 a2 += n2; 5199 } 5200 if( bData ){ 5201 a2 = aChange; 5202 for(i=0; i<pIter->nCol; i++){ 5203 int n1 = sessionSerialLen(a1); 5204 int n2 = sessionSerialLen(a2); 5205 if( pIter->abPK[i] || a2[0]!=0xFF ){ 5206 memcpy(pOut, a1, n1); 5207 pOut += n1; 5208 }else{ 5209 *pOut++ = '\0'; 5210 } 5211 a1 += n1; 5212 a2 += n2; 5213 } 5214 pBuf->nBuf = (pOut - pBuf->aBuf); 5215 } 5216 } 5217 } 5218 5219 /* 5220 ** pIter is configured to iterate through a changeset. This function rebases 5221 ** that changeset according to the current configuration of the rebaser 5222 ** object passed as the first argument. If no error occurs and argument xOutput 5223 ** is not NULL, then the changeset is returned to the caller by invoking 5224 ** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL, 5225 ** then (*ppOut) is set to point to a buffer containing the rebased changeset 5226 ** before this function returns. In this case (*pnOut) is set to the size of 5227 ** the buffer in bytes. It is the responsibility of the caller to eventually 5228 ** free the (*ppOut) buffer using sqlite3_free(). 5229 ** 5230 ** If an error occurs, an SQLite error code is returned. If ppOut and 5231 ** pnOut are not NULL, then the two output parameters are set to 0 before 5232 ** returning. 5233 */ 5234 static int sessionRebase( 5235 sqlite3_rebaser *p, /* Rebaser hash table */ 5236 sqlite3_changeset_iter *pIter, /* Input data */ 5237 int (*xOutput)(void *pOut, const void *pData, int nData), 5238 void *pOut, /* Context for xOutput callback */ 5239 int *pnOut, /* OUT: Number of bytes in output changeset */ 5240 void **ppOut /* OUT: Inverse of pChangeset */ 5241 ){ 5242 int rc = SQLITE_OK; 5243 u8 *aRec = 0; 5244 int nRec = 0; 5245 int bNew = 0; 5246 SessionTable *pTab = 0; 5247 SessionBuffer sOut = {0,0,0}; 5248 5249 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){ 5250 SessionChange *pChange = 0; 5251 int bDone = 0; 5252 5253 if( bNew ){ 5254 const char *zTab = pIter->zTab; 5255 for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){ 5256 if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break; 5257 } 5258 bNew = 0; 5259 5260 /* A patchset may not be rebased */ 5261 if( pIter->bPatchset ){ 5262 rc = SQLITE_ERROR; 5263 } 5264 5265 /* Append a table header to the output for this new table */ 5266 sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc); 5267 sessionAppendVarint(&sOut, pIter->nCol, &rc); 5268 sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc); 5269 sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc); 5270 } 5271 5272 if( pTab && rc==SQLITE_OK ){ 5273 int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange); 5274 5275 for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){ 5276 if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){ 5277 break; 5278 } 5279 } 5280 } 5281 5282 if( pChange ){ 5283 assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT ); 5284 switch( pIter->op ){ 5285 case SQLITE_INSERT: 5286 if( pChange->op==SQLITE_INSERT ){ 5287 bDone = 1; 5288 if( pChange->bIndirect==0 ){ 5289 sessionAppendByte(&sOut, SQLITE_UPDATE, &rc); 5290 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5291 sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc); 5292 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5293 } 5294 } 5295 break; 5296 5297 case SQLITE_UPDATE: 5298 bDone = 1; 5299 if( pChange->op==SQLITE_DELETE ){ 5300 if( pChange->bIndirect==0 ){ 5301 u8 *pCsr = aRec; 5302 sessionSkipRecord(&pCsr, pIter->nCol); 5303 sessionAppendByte(&sOut, SQLITE_INSERT, &rc); 5304 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5305 sessionAppendRecordMerge(&sOut, pIter->nCol, 5306 pCsr, nRec-(pCsr-aRec), 5307 pChange->aRecord, pChange->nRecord, &rc 5308 ); 5309 } 5310 }else{ 5311 sessionAppendPartialUpdate(&sOut, pIter, 5312 aRec, nRec, pChange->aRecord, pChange->nRecord, &rc 5313 ); 5314 } 5315 break; 5316 5317 default: 5318 assert( pIter->op==SQLITE_DELETE ); 5319 bDone = 1; 5320 if( pChange->op==SQLITE_INSERT ){ 5321 sessionAppendByte(&sOut, SQLITE_DELETE, &rc); 5322 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5323 sessionAppendRecordMerge(&sOut, pIter->nCol, 5324 pChange->aRecord, pChange->nRecord, aRec, nRec, &rc 5325 ); 5326 } 5327 break; 5328 } 5329 } 5330 5331 if( bDone==0 ){ 5332 sessionAppendByte(&sOut, pIter->op, &rc); 5333 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5334 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5335 } 5336 if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){ 5337 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5338 sOut.nBuf = 0; 5339 } 5340 if( rc ) break; 5341 } 5342 5343 if( rc!=SQLITE_OK ){ 5344 sqlite3_free(sOut.aBuf); 5345 memset(&sOut, 0, sizeof(sOut)); 5346 } 5347 5348 if( rc==SQLITE_OK ){ 5349 if( xOutput ){ 5350 if( sOut.nBuf>0 ){ 5351 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5352 } 5353 }else{ 5354 *ppOut = (void*)sOut.aBuf; 5355 *pnOut = sOut.nBuf; 5356 sOut.aBuf = 0; 5357 } 5358 } 5359 sqlite3_free(sOut.aBuf); 5360 return rc; 5361 } 5362 5363 /* 5364 ** Create a new rebaser object. 5365 */ 5366 int sqlite3rebaser_create(sqlite3_rebaser **ppNew){ 5367 int rc = SQLITE_OK; 5368 sqlite3_rebaser *pNew; 5369 5370 pNew = sqlite3_malloc(sizeof(sqlite3_rebaser)); 5371 if( pNew==0 ){ 5372 rc = SQLITE_NOMEM; 5373 }else{ 5374 memset(pNew, 0, sizeof(sqlite3_rebaser)); 5375 } 5376 *ppNew = pNew; 5377 return rc; 5378 } 5379 5380 /* 5381 ** Call this one or more times to configure a rebaser. 5382 */ 5383 int sqlite3rebaser_configure( 5384 sqlite3_rebaser *p, 5385 int nRebase, const void *pRebase 5386 ){ 5387 sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */ 5388 int rc; /* Return code */ 5389 rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase); 5390 if( rc==SQLITE_OK ){ 5391 rc = sessionChangesetToHash(pIter, &p->grp, 1); 5392 } 5393 sqlite3changeset_finalize(pIter); 5394 return rc; 5395 } 5396 5397 /* 5398 ** Rebase a changeset according to current rebaser configuration 5399 */ 5400 int sqlite3rebaser_rebase( 5401 sqlite3_rebaser *p, 5402 int nIn, const void *pIn, 5403 int *pnOut, void **ppOut 5404 ){ 5405 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5406 int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn); 5407 5408 if( rc==SQLITE_OK ){ 5409 rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut); 5410 sqlite3changeset_finalize(pIter); 5411 } 5412 5413 return rc; 5414 } 5415 5416 /* 5417 ** Rebase a changeset according to current rebaser configuration 5418 */ 5419 int sqlite3rebaser_rebase_strm( 5420 sqlite3_rebaser *p, 5421 int (*xInput)(void *pIn, void *pData, int *pnData), 5422 void *pIn, 5423 int (*xOutput)(void *pOut, const void *pData, int nData), 5424 void *pOut 5425 ){ 5426 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5427 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 5428 5429 if( rc==SQLITE_OK ){ 5430 rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0); 5431 sqlite3changeset_finalize(pIter); 5432 } 5433 5434 return rc; 5435 } 5436 5437 /* 5438 ** Destroy a rebaser object 5439 */ 5440 void sqlite3rebaser_delete(sqlite3_rebaser *p){ 5441 if( p ){ 5442 sessionDeleteTable(p->grp.pList); 5443 sqlite3_free(p); 5444 } 5445 } 5446 5447 /* 5448 ** Global configuration 5449 */ 5450 int sqlite3session_config(int op, void *pArg){ 5451 int rc = SQLITE_OK; 5452 switch( op ){ 5453 case SQLITE_SESSION_CONFIG_STRMSIZE: { 5454 int *pInt = (int*)pArg; 5455 if( *pInt>0 ){ 5456 sessions_strm_chunk_size = *pInt; 5457 } 5458 *pInt = sessions_strm_chunk_size; 5459 break; 5460 } 5461 default: 5462 rc = SQLITE_MISUSE; 5463 break; 5464 } 5465 return rc; 5466 } 5467 5468 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 5469