1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for implementations of the r-tree and r*-tree 13 ** algorithms packaged as an SQLite virtual table module. 14 */ 15 16 /* 17 ** Database Format of R-Tree Tables 18 ** -------------------------------- 19 ** 20 ** The data structure for a single virtual r-tree table is stored in three 21 ** native SQLite tables declared as follows. In each case, the '%' character 22 ** in the table name is replaced with the user-supplied name of the r-tree 23 ** table. 24 ** 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 28 ** 29 ** The data for each node of the r-tree structure is stored in the %_node 30 ** table. For each node that is not the root node of the r-tree, there is 31 ** an entry in the %_parent table associating the node with its parent. 32 ** And for each row of data in the table, there is an entry in the %_rowid 33 ** table that maps from the entries rowid to the id of the node that it 34 ** is stored on. If the r-tree contains auxiliary columns, those are stored 35 ** on the end of the %_rowid table. 36 ** 37 ** The root node of an r-tree always exists, even if the r-tree table is 38 ** empty. The nodeno of the root node is always 1. All other nodes in the 39 ** table must be the same size as the root node. The content of each node 40 ** is formatted as follows: 41 ** 42 ** 1. If the node is the root node (node 1), then the first 2 bytes 43 ** of the node contain the tree depth as a big-endian integer. 44 ** For non-root nodes, the first 2 bytes are left unused. 45 ** 46 ** 2. The next 2 bytes contain the number of entries currently 47 ** stored in the node. 48 ** 49 ** 3. The remainder of the node contains the node entries. Each entry 50 ** consists of a single 8-byte integer followed by an even number 51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid 52 ** of a record. For internal nodes it is the node number of a 53 ** child page. 54 */ 55 56 #if !defined(SQLITE_CORE) \ 57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE)) 58 59 #ifndef SQLITE_CORE 60 #include "sqlite3ext.h" 61 SQLITE_EXTENSION_INIT1 62 #else 63 #include "sqlite3.h" 64 #endif 65 int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */ 66 67 #ifndef SQLITE_AMALGAMATION 68 #include "sqlite3rtree.h" 69 typedef sqlite3_int64 i64; 70 typedef sqlite3_uint64 u64; 71 typedef unsigned char u8; 72 typedef unsigned short u16; 73 typedef unsigned int u32; 74 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 75 # define NDEBUG 1 76 #endif 77 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 78 # undef NDEBUG 79 #endif 80 #endif 81 82 #include <string.h> 83 #include <stdio.h> 84 #include <assert.h> 85 86 /* The following macro is used to suppress compiler warnings. 87 */ 88 #ifndef UNUSED_PARAMETER 89 # define UNUSED_PARAMETER(x) (void)(x) 90 #endif 91 92 typedef struct Rtree Rtree; 93 typedef struct RtreeCursor RtreeCursor; 94 typedef struct RtreeNode RtreeNode; 95 typedef struct RtreeCell RtreeCell; 96 typedef struct RtreeConstraint RtreeConstraint; 97 typedef struct RtreeMatchArg RtreeMatchArg; 98 typedef struct RtreeGeomCallback RtreeGeomCallback; 99 typedef union RtreeCoord RtreeCoord; 100 typedef struct RtreeSearchPoint RtreeSearchPoint; 101 102 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ 103 #define RTREE_MAX_DIMENSIONS 5 104 105 /* Maximum number of auxiliary columns */ 106 #define RTREE_MAX_AUX_COLUMN 100 107 108 /* Size of hash table Rtree.aHash. This hash table is not expected to 109 ** ever contain very many entries, so a fixed number of buckets is 110 ** used. 111 */ 112 #define HASHSIZE 97 113 114 /* The xBestIndex method of this virtual table requires an estimate of 115 ** the number of rows in the virtual table to calculate the costs of 116 ** various strategies. If possible, this estimate is loaded from the 117 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). 118 ** Otherwise, if no sqlite_stat1 entry is available, use 119 ** RTREE_DEFAULT_ROWEST. 120 */ 121 #define RTREE_DEFAULT_ROWEST 1048576 122 #define RTREE_MIN_ROWEST 100 123 124 /* 125 ** An rtree virtual-table object. 126 */ 127 struct Rtree { 128 sqlite3_vtab base; /* Base class. Must be first */ 129 sqlite3 *db; /* Host database connection */ 130 int iNodeSize; /* Size in bytes of each node in the node table */ 131 u8 nDim; /* Number of dimensions */ 132 u8 nDim2; /* Twice the number of dimensions */ 133 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ 134 u8 nBytesPerCell; /* Bytes consumed per cell */ 135 u8 inWrTrans; /* True if inside write transaction */ 136 u8 nAux; /* # of auxiliary columns in %_rowid */ 137 u8 nAuxNotNull; /* Number of initial not-null aux columns */ 138 #ifdef SQLITE_DEBUG 139 u8 bCorrupt; /* Shadow table corruption detected */ 140 #endif 141 int iDepth; /* Current depth of the r-tree structure */ 142 char *zDb; /* Name of database containing r-tree table */ 143 char *zName; /* Name of r-tree table */ 144 u32 nBusy; /* Current number of users of this structure */ 145 i64 nRowEst; /* Estimated number of rows in this table */ 146 u32 nCursor; /* Number of open cursors */ 147 u32 nNodeRef; /* Number RtreeNodes with positive nRef */ 148 char *zReadAuxSql; /* SQL for statement to read aux data */ 149 150 /* List of nodes removed during a CondenseTree operation. List is 151 ** linked together via the pointer normally used for hash chains - 152 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 153 ** headed by the node (leaf nodes have RtreeNode.iNode==0). 154 */ 155 RtreeNode *pDeleted; 156 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ 157 158 /* Blob I/O on xxx_node */ 159 sqlite3_blob *pNodeBlob; 160 161 /* Statements to read/write/delete a record from xxx_node */ 162 sqlite3_stmt *pWriteNode; 163 sqlite3_stmt *pDeleteNode; 164 165 /* Statements to read/write/delete a record from xxx_rowid */ 166 sqlite3_stmt *pReadRowid; 167 sqlite3_stmt *pWriteRowid; 168 sqlite3_stmt *pDeleteRowid; 169 170 /* Statements to read/write/delete a record from xxx_parent */ 171 sqlite3_stmt *pReadParent; 172 sqlite3_stmt *pWriteParent; 173 sqlite3_stmt *pDeleteParent; 174 175 /* Statement for writing to the "aux:" fields, if there are any */ 176 sqlite3_stmt *pWriteAux; 177 178 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 179 }; 180 181 /* Possible values for Rtree.eCoordType: */ 182 #define RTREE_COORD_REAL32 0 183 #define RTREE_COORD_INT32 1 184 185 /* 186 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will 187 ** only deal with integer coordinates. No floating point operations 188 ** will be done. 189 */ 190 #ifdef SQLITE_RTREE_INT_ONLY 191 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ 192 typedef int RtreeValue; /* Low accuracy coordinate */ 193 # define RTREE_ZERO 0 194 #else 195 typedef double RtreeDValue; /* High accuracy coordinate */ 196 typedef float RtreeValue; /* Low accuracy coordinate */ 197 # define RTREE_ZERO 0.0 198 #endif 199 200 /* 201 ** Set the Rtree.bCorrupt flag 202 */ 203 #ifdef SQLITE_DEBUG 204 # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) 205 #else 206 # define RTREE_IS_CORRUPT(X) 207 #endif 208 209 /* 210 ** When doing a search of an r-tree, instances of the following structure 211 ** record intermediate results from the tree walk. 212 ** 213 ** The id is always a node-id. For iLevel>=1 the id is the node-id of 214 ** the node that the RtreeSearchPoint represents. When iLevel==0, however, 215 ** the id is of the parent node and the cell that RtreeSearchPoint 216 ** represents is the iCell-th entry in the parent node. 217 */ 218 struct RtreeSearchPoint { 219 RtreeDValue rScore; /* The score for this node. Smallest goes first. */ 220 sqlite3_int64 id; /* Node ID */ 221 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ 222 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ 223 u8 iCell; /* Cell index within the node */ 224 }; 225 226 /* 227 ** The minimum number of cells allowed for a node is a third of the 228 ** maximum. In Gutman's notation: 229 ** 230 ** m = M/3 231 ** 232 ** If an R*-tree "Reinsert" operation is required, the same number of 233 ** cells are removed from the overfull node and reinserted into the tree. 234 */ 235 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) 236 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) 237 #define RTREE_MAXCELLS 51 238 239 /* 240 ** The smallest possible node-size is (512-64)==448 bytes. And the largest 241 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). 242 ** Therefore all non-root nodes must contain at least 3 entries. Since 243 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of 244 ** 40 or less. 245 */ 246 #define RTREE_MAX_DEPTH 40 247 248 249 /* 250 ** Number of entries in the cursor RtreeNode cache. The first entry is 251 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining 252 ** entries cache the RtreeNode for the first elements of the priority queue. 253 */ 254 #define RTREE_CACHE_SZ 5 255 256 /* 257 ** An rtree cursor object. 258 */ 259 struct RtreeCursor { 260 sqlite3_vtab_cursor base; /* Base class. Must be first */ 261 u8 atEOF; /* True if at end of search */ 262 u8 bPoint; /* True if sPoint is valid */ 263 u8 bAuxValid; /* True if pReadAux is valid */ 264 int iStrategy; /* Copy of idxNum search parameter */ 265 int nConstraint; /* Number of entries in aConstraint */ 266 RtreeConstraint *aConstraint; /* Search constraints. */ 267 int nPointAlloc; /* Number of slots allocated for aPoint[] */ 268 int nPoint; /* Number of slots used in aPoint[] */ 269 int mxLevel; /* iLevel value for root of the tree */ 270 RtreeSearchPoint *aPoint; /* Priority queue for search points */ 271 sqlite3_stmt *pReadAux; /* Statement to read aux-data */ 272 RtreeSearchPoint sPoint; /* Cached next search point */ 273 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ 274 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ 275 }; 276 277 /* Return the Rtree of a RtreeCursor */ 278 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) 279 280 /* 281 ** A coordinate can be either a floating point number or a integer. All 282 ** coordinates within a single R-Tree are always of the same time. 283 */ 284 union RtreeCoord { 285 RtreeValue f; /* Floating point value */ 286 int i; /* Integer value */ 287 u32 u; /* Unsigned for byte-order conversions */ 288 }; 289 290 /* 291 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord 292 ** formatted as a RtreeDValue (double or int64). This macro assumes that local 293 ** variable pRtree points to the Rtree structure associated with the 294 ** RtreeCoord. 295 */ 296 #ifdef SQLITE_RTREE_INT_ONLY 297 # define DCOORD(coord) ((RtreeDValue)coord.i) 298 #else 299 # define DCOORD(coord) ( \ 300 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ 301 ((double)coord.f) : \ 302 ((double)coord.i) \ 303 ) 304 #endif 305 306 /* 307 ** A search constraint. 308 */ 309 struct RtreeConstraint { 310 int iCoord; /* Index of constrained coordinate */ 311 int op; /* Constraining operation */ 312 union { 313 RtreeDValue rValue; /* Constraint value. */ 314 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); 315 int (*xQueryFunc)(sqlite3_rtree_query_info*); 316 } u; 317 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ 318 }; 319 320 /* Possible values for RtreeConstraint.op */ 321 #define RTREE_EQ 0x41 /* A */ 322 #define RTREE_LE 0x42 /* B */ 323 #define RTREE_LT 0x43 /* C */ 324 #define RTREE_GE 0x44 /* D */ 325 #define RTREE_GT 0x45 /* E */ 326 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ 327 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ 328 329 /* Special operators available only on cursors. Needs to be consecutive 330 ** with the normal values above, but must be less than RTREE_MATCH. These 331 ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or 332 ** x<'xyz' (RTREE_TRUE) */ 333 #define RTREE_TRUE 0x3f /* ? */ 334 #define RTREE_FALSE 0x40 /* @ */ 335 336 /* 337 ** An rtree structure node. 338 */ 339 struct RtreeNode { 340 RtreeNode *pParent; /* Parent node */ 341 i64 iNode; /* The node number */ 342 int nRef; /* Number of references to this node */ 343 int isDirty; /* True if the node needs to be written to disk */ 344 u8 *zData; /* Content of the node, as should be on disk */ 345 RtreeNode *pNext; /* Next node in this hash collision chain */ 346 }; 347 348 /* Return the number of cells in a node */ 349 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) 350 351 /* 352 ** A single cell from a node, deserialized 353 */ 354 struct RtreeCell { 355 i64 iRowid; /* Node or entry ID */ 356 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ 357 }; 358 359 360 /* 361 ** This object becomes the sqlite3_user_data() for the SQL functions 362 ** that are created by sqlite3_rtree_geometry_callback() and 363 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH 364 ** operators in order to constrain a search. 365 ** 366 ** xGeom and xQueryFunc are the callback functions. Exactly one of 367 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the 368 ** SQL function was created using sqlite3_rtree_geometry_callback() or 369 ** sqlite3_rtree_query_callback(). 370 ** 371 ** This object is deleted automatically by the destructor mechanism in 372 ** sqlite3_create_function_v2(). 373 */ 374 struct RtreeGeomCallback { 375 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); 376 int (*xQueryFunc)(sqlite3_rtree_query_info*); 377 void (*xDestructor)(void*); 378 void *pContext; 379 }; 380 381 /* 382 ** An instance of this structure (in the form of a BLOB) is returned by 383 ** the SQL functions that sqlite3_rtree_geometry_callback() and 384 ** sqlite3_rtree_query_callback() create, and is read as the right-hand 385 ** operand to the MATCH operator of an R-Tree. 386 */ 387 struct RtreeMatchArg { 388 u32 iSize; /* Size of this object */ 389 RtreeGeomCallback cb; /* Info about the callback functions */ 390 int nParam; /* Number of parameters to the SQL function */ 391 sqlite3_value **apSqlParam; /* Original SQL parameter values */ 392 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ 393 }; 394 395 #ifndef MAX 396 # define MAX(x,y) ((x) < (y) ? (y) : (x)) 397 #endif 398 #ifndef MIN 399 # define MIN(x,y) ((x) > (y) ? (y) : (x)) 400 #endif 401 402 /* What version of GCC is being used. 0 means GCC is not being used . 403 ** Note that the GCC_VERSION macro will also be set correctly when using 404 ** clang, since clang works hard to be gcc compatible. So the gcc 405 ** optimizations will also work when compiling with clang. 406 */ 407 #ifndef GCC_VERSION 408 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) 409 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 410 #else 411 # define GCC_VERSION 0 412 #endif 413 #endif 414 415 /* The testcase() macro should already be defined in the amalgamation. If 416 ** it is not, make it a no-op. 417 */ 418 #ifndef SQLITE_AMALGAMATION 419 # define testcase(X) 420 #endif 421 422 /* 423 ** Macros to determine whether the machine is big or little endian, 424 ** and whether or not that determination is run-time or compile-time. 425 ** 426 ** For best performance, an attempt is made to guess at the byte-order 427 ** using C-preprocessor macros. If that is unsuccessful, or if 428 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 429 ** at run-time. 430 */ 431 #ifndef SQLITE_BYTEORDER 432 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 433 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 434 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 435 defined(__arm__) 436 # define SQLITE_BYTEORDER 1234 437 #elif defined(sparc) || defined(__ppc__) 438 # define SQLITE_BYTEORDER 4321 439 #else 440 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 441 #endif 442 #endif 443 444 445 /* What version of MSVC is being used. 0 means MSVC is not being used */ 446 #ifndef MSVC_VERSION 447 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) 448 # define MSVC_VERSION _MSC_VER 449 #else 450 # define MSVC_VERSION 0 451 #endif 452 #endif 453 454 /* 455 ** Functions to deserialize a 16 bit integer, 32 bit real number and 456 ** 64 bit integer. The deserialized value is returned. 457 */ 458 static int readInt16(u8 *p){ 459 return (p[0]<<8) + p[1]; 460 } 461 static void readCoord(u8 *p, RtreeCoord *pCoord){ 462 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 463 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 464 pCoord->u = _byteswap_ulong(*(u32*)p); 465 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 466 pCoord->u = __builtin_bswap32(*(u32*)p); 467 #elif SQLITE_BYTEORDER==4321 468 pCoord->u = *(u32*)p; 469 #else 470 pCoord->u = ( 471 (((u32)p[0]) << 24) + 472 (((u32)p[1]) << 16) + 473 (((u32)p[2]) << 8) + 474 (((u32)p[3]) << 0) 475 ); 476 #endif 477 } 478 static i64 readInt64(u8 *p){ 479 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 480 u64 x; 481 memcpy(&x, p, 8); 482 return (i64)_byteswap_uint64(x); 483 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 484 u64 x; 485 memcpy(&x, p, 8); 486 return (i64)__builtin_bswap64(x); 487 #elif SQLITE_BYTEORDER==4321 488 i64 x; 489 memcpy(&x, p, 8); 490 return x; 491 #else 492 return (i64)( 493 (((u64)p[0]) << 56) + 494 (((u64)p[1]) << 48) + 495 (((u64)p[2]) << 40) + 496 (((u64)p[3]) << 32) + 497 (((u64)p[4]) << 24) + 498 (((u64)p[5]) << 16) + 499 (((u64)p[6]) << 8) + 500 (((u64)p[7]) << 0) 501 ); 502 #endif 503 } 504 505 /* 506 ** Functions to serialize a 16 bit integer, 32 bit real number and 507 ** 64 bit integer. The value returned is the number of bytes written 508 ** to the argument buffer (always 2, 4 and 8 respectively). 509 */ 510 static void writeInt16(u8 *p, int i){ 511 p[0] = (i>> 8)&0xFF; 512 p[1] = (i>> 0)&0xFF; 513 } 514 static int writeCoord(u8 *p, RtreeCoord *pCoord){ 515 u32 i; 516 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 517 assert( sizeof(RtreeCoord)==4 ); 518 assert( sizeof(u32)==4 ); 519 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 520 i = __builtin_bswap32(pCoord->u); 521 memcpy(p, &i, 4); 522 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 523 i = _byteswap_ulong(pCoord->u); 524 memcpy(p, &i, 4); 525 #elif SQLITE_BYTEORDER==4321 526 i = pCoord->u; 527 memcpy(p, &i, 4); 528 #else 529 i = pCoord->u; 530 p[0] = (i>>24)&0xFF; 531 p[1] = (i>>16)&0xFF; 532 p[2] = (i>> 8)&0xFF; 533 p[3] = (i>> 0)&0xFF; 534 #endif 535 return 4; 536 } 537 static int writeInt64(u8 *p, i64 i){ 538 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 539 i = (i64)__builtin_bswap64((u64)i); 540 memcpy(p, &i, 8); 541 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 542 i = (i64)_byteswap_uint64((u64)i); 543 memcpy(p, &i, 8); 544 #elif SQLITE_BYTEORDER==4321 545 memcpy(p, &i, 8); 546 #else 547 p[0] = (i>>56)&0xFF; 548 p[1] = (i>>48)&0xFF; 549 p[2] = (i>>40)&0xFF; 550 p[3] = (i>>32)&0xFF; 551 p[4] = (i>>24)&0xFF; 552 p[5] = (i>>16)&0xFF; 553 p[6] = (i>> 8)&0xFF; 554 p[7] = (i>> 0)&0xFF; 555 #endif 556 return 8; 557 } 558 559 /* 560 ** Increment the reference count of node p. 561 */ 562 static void nodeReference(RtreeNode *p){ 563 if( p ){ 564 assert( p->nRef>0 ); 565 p->nRef++; 566 } 567 } 568 569 /* 570 ** Clear the content of node p (set all bytes to 0x00). 571 */ 572 static void nodeZero(Rtree *pRtree, RtreeNode *p){ 573 memset(&p->zData[2], 0, pRtree->iNodeSize-2); 574 p->isDirty = 1; 575 } 576 577 /* 578 ** Given a node number iNode, return the corresponding key to use 579 ** in the Rtree.aHash table. 580 */ 581 static unsigned int nodeHash(i64 iNode){ 582 return ((unsigned)iNode) % HASHSIZE; 583 } 584 585 /* 586 ** Search the node hash table for node iNode. If found, return a pointer 587 ** to it. Otherwise, return 0. 588 */ 589 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ 590 RtreeNode *p; 591 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); 592 return p; 593 } 594 595 /* 596 ** Add node pNode to the node hash table. 597 */ 598 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ 599 int iHash; 600 assert( pNode->pNext==0 ); 601 iHash = nodeHash(pNode->iNode); 602 pNode->pNext = pRtree->aHash[iHash]; 603 pRtree->aHash[iHash] = pNode; 604 } 605 606 /* 607 ** Remove node pNode from the node hash table. 608 */ 609 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ 610 RtreeNode **pp; 611 if( pNode->iNode!=0 ){ 612 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; 613 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } 614 *pp = pNode->pNext; 615 pNode->pNext = 0; 616 } 617 } 618 619 /* 620 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), 621 ** indicating that node has not yet been assigned a node number. It is 622 ** assigned a node number when nodeWrite() is called to write the 623 ** node contents out to the database. 624 */ 625 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ 626 RtreeNode *pNode; 627 pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); 628 if( pNode ){ 629 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); 630 pNode->zData = (u8 *)&pNode[1]; 631 pNode->nRef = 1; 632 pRtree->nNodeRef++; 633 pNode->pParent = pParent; 634 pNode->isDirty = 1; 635 nodeReference(pParent); 636 } 637 return pNode; 638 } 639 640 /* 641 ** Clear the Rtree.pNodeBlob object 642 */ 643 static void nodeBlobReset(Rtree *pRtree){ 644 if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){ 645 sqlite3_blob *pBlob = pRtree->pNodeBlob; 646 pRtree->pNodeBlob = 0; 647 sqlite3_blob_close(pBlob); 648 } 649 } 650 651 /* 652 ** Check to see if pNode is the same as pParent or any of the parents 653 ** of pParent. 654 */ 655 static int nodeInParentChain(const RtreeNode *pNode, const RtreeNode *pParent){ 656 do{ 657 if( pNode==pParent ) return 1; 658 pParent = pParent->pParent; 659 }while( pParent ); 660 return 0; 661 } 662 663 /* 664 ** Obtain a reference to an r-tree node. 665 */ 666 static int nodeAcquire( 667 Rtree *pRtree, /* R-tree structure */ 668 i64 iNode, /* Node number to load */ 669 RtreeNode *pParent, /* Either the parent node or NULL */ 670 RtreeNode **ppNode /* OUT: Acquired node */ 671 ){ 672 int rc = SQLITE_OK; 673 RtreeNode *pNode = 0; 674 675 /* Check if the requested node is already in the hash table. If so, 676 ** increase its reference count and return it. 677 */ 678 if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ 679 if( pParent && !pNode->pParent ){ 680 if( nodeInParentChain(pNode, pParent) ){ 681 RTREE_IS_CORRUPT(pRtree); 682 return SQLITE_CORRUPT_VTAB; 683 } 684 pParent->nRef++; 685 pNode->pParent = pParent; 686 }else if( pParent && pNode->pParent && pParent!=pNode->pParent ){ 687 RTREE_IS_CORRUPT(pRtree); 688 return SQLITE_CORRUPT_VTAB; 689 } 690 pNode->nRef++; 691 *ppNode = pNode; 692 return SQLITE_OK; 693 } 694 695 if( pRtree->pNodeBlob ){ 696 sqlite3_blob *pBlob = pRtree->pNodeBlob; 697 pRtree->pNodeBlob = 0; 698 rc = sqlite3_blob_reopen(pBlob, iNode); 699 pRtree->pNodeBlob = pBlob; 700 if( rc ){ 701 nodeBlobReset(pRtree); 702 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; 703 } 704 } 705 if( pRtree->pNodeBlob==0 ){ 706 char *zTab = sqlite3_mprintf("%s_node", pRtree->zName); 707 if( zTab==0 ) return SQLITE_NOMEM; 708 rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0, 709 &pRtree->pNodeBlob); 710 sqlite3_free(zTab); 711 } 712 if( rc ){ 713 nodeBlobReset(pRtree); 714 *ppNode = 0; 715 /* If unable to open an sqlite3_blob on the desired row, that can only 716 ** be because the shadow tables hold erroneous data. */ 717 if( rc==SQLITE_ERROR ){ 718 rc = SQLITE_CORRUPT_VTAB; 719 RTREE_IS_CORRUPT(pRtree); 720 } 721 }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ 722 pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); 723 if( !pNode ){ 724 rc = SQLITE_NOMEM; 725 }else{ 726 pNode->pParent = pParent; 727 pNode->zData = (u8 *)&pNode[1]; 728 pNode->nRef = 1; 729 pRtree->nNodeRef++; 730 pNode->iNode = iNode; 731 pNode->isDirty = 0; 732 pNode->pNext = 0; 733 rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, 734 pRtree->iNodeSize, 0); 735 } 736 } 737 738 /* If the root node was just loaded, set pRtree->iDepth to the height 739 ** of the r-tree structure. A height of zero means all data is stored on 740 ** the root node. A height of one means the children of the root node 741 ** are the leaves, and so on. If the depth as specified on the root node 742 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. 743 */ 744 if( pNode && iNode==1 ){ 745 pRtree->iDepth = readInt16(pNode->zData); 746 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ 747 rc = SQLITE_CORRUPT_VTAB; 748 RTREE_IS_CORRUPT(pRtree); 749 } 750 } 751 752 /* If no error has occurred so far, check if the "number of entries" 753 ** field on the node is too large. If so, set the return code to 754 ** SQLITE_CORRUPT_VTAB. 755 */ 756 if( pNode && rc==SQLITE_OK ){ 757 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ 758 rc = SQLITE_CORRUPT_VTAB; 759 RTREE_IS_CORRUPT(pRtree); 760 } 761 } 762 763 if( rc==SQLITE_OK ){ 764 if( pNode!=0 ){ 765 nodeReference(pParent); 766 nodeHashInsert(pRtree, pNode); 767 }else{ 768 rc = SQLITE_CORRUPT_VTAB; 769 RTREE_IS_CORRUPT(pRtree); 770 } 771 *ppNode = pNode; 772 }else{ 773 if( pNode ){ 774 pRtree->nNodeRef--; 775 sqlite3_free(pNode); 776 } 777 *ppNode = 0; 778 } 779 780 return rc; 781 } 782 783 /* 784 ** Overwrite cell iCell of node pNode with the contents of pCell. 785 */ 786 static void nodeOverwriteCell( 787 Rtree *pRtree, /* The overall R-Tree */ 788 RtreeNode *pNode, /* The node into which the cell is to be written */ 789 RtreeCell *pCell, /* The cell to write */ 790 int iCell /* Index into pNode into which pCell is written */ 791 ){ 792 int ii; 793 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 794 p += writeInt64(p, pCell->iRowid); 795 for(ii=0; ii<pRtree->nDim2; ii++){ 796 p += writeCoord(p, &pCell->aCoord[ii]); 797 } 798 pNode->isDirty = 1; 799 } 800 801 /* 802 ** Remove the cell with index iCell from node pNode. 803 */ 804 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ 805 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 806 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; 807 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; 808 memmove(pDst, pSrc, nByte); 809 writeInt16(&pNode->zData[2], NCELL(pNode)-1); 810 pNode->isDirty = 1; 811 } 812 813 /* 814 ** Insert the contents of cell pCell into node pNode. If the insert 815 ** is successful, return SQLITE_OK. 816 ** 817 ** If there is not enough free space in pNode, return SQLITE_FULL. 818 */ 819 static int nodeInsertCell( 820 Rtree *pRtree, /* The overall R-Tree */ 821 RtreeNode *pNode, /* Write new cell into this node */ 822 RtreeCell *pCell /* The cell to be inserted */ 823 ){ 824 int nCell; /* Current number of cells in pNode */ 825 int nMaxCell; /* Maximum number of cells for pNode */ 826 827 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; 828 nCell = NCELL(pNode); 829 830 assert( nCell<=nMaxCell ); 831 if( nCell<nMaxCell ){ 832 nodeOverwriteCell(pRtree, pNode, pCell, nCell); 833 writeInt16(&pNode->zData[2], nCell+1); 834 pNode->isDirty = 1; 835 } 836 837 return (nCell==nMaxCell); 838 } 839 840 /* 841 ** If the node is dirty, write it out to the database. 842 */ 843 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ 844 int rc = SQLITE_OK; 845 if( pNode->isDirty ){ 846 sqlite3_stmt *p = pRtree->pWriteNode; 847 if( pNode->iNode ){ 848 sqlite3_bind_int64(p, 1, pNode->iNode); 849 }else{ 850 sqlite3_bind_null(p, 1); 851 } 852 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); 853 sqlite3_step(p); 854 pNode->isDirty = 0; 855 rc = sqlite3_reset(p); 856 sqlite3_bind_null(p, 2); 857 if( pNode->iNode==0 && rc==SQLITE_OK ){ 858 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); 859 nodeHashInsert(pRtree, pNode); 860 } 861 } 862 return rc; 863 } 864 865 /* 866 ** Release a reference to a node. If the node is dirty and the reference 867 ** count drops to zero, the node data is written to the database. 868 */ 869 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ 870 int rc = SQLITE_OK; 871 if( pNode ){ 872 assert( pNode->nRef>0 ); 873 assert( pRtree->nNodeRef>0 ); 874 pNode->nRef--; 875 if( pNode->nRef==0 ){ 876 pRtree->nNodeRef--; 877 if( pNode->iNode==1 ){ 878 pRtree->iDepth = -1; 879 } 880 if( pNode->pParent ){ 881 rc = nodeRelease(pRtree, pNode->pParent); 882 } 883 if( rc==SQLITE_OK ){ 884 rc = nodeWrite(pRtree, pNode); 885 } 886 nodeHashDelete(pRtree, pNode); 887 sqlite3_free(pNode); 888 } 889 } 890 return rc; 891 } 892 893 /* 894 ** Return the 64-bit integer value associated with cell iCell of 895 ** node pNode. If pNode is a leaf node, this is a rowid. If it is 896 ** an internal node, then the 64-bit integer is a child page number. 897 */ 898 static i64 nodeGetRowid( 899 Rtree *pRtree, /* The overall R-Tree */ 900 RtreeNode *pNode, /* The node from which to extract the ID */ 901 int iCell /* The cell index from which to extract the ID */ 902 ){ 903 assert( iCell<NCELL(pNode) ); 904 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); 905 } 906 907 /* 908 ** Return coordinate iCoord from cell iCell in node pNode. 909 */ 910 static void nodeGetCoord( 911 Rtree *pRtree, /* The overall R-Tree */ 912 RtreeNode *pNode, /* The node from which to extract a coordinate */ 913 int iCell, /* The index of the cell within the node */ 914 int iCoord, /* Which coordinate to extract */ 915 RtreeCoord *pCoord /* OUT: Space to write result to */ 916 ){ 917 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); 918 } 919 920 /* 921 ** Deserialize cell iCell of node pNode. Populate the structure pointed 922 ** to by pCell with the results. 923 */ 924 static void nodeGetCell( 925 Rtree *pRtree, /* The overall R-Tree */ 926 RtreeNode *pNode, /* The node containing the cell to be read */ 927 int iCell, /* Index of the cell within the node */ 928 RtreeCell *pCell /* OUT: Write the cell contents here */ 929 ){ 930 u8 *pData; 931 RtreeCoord *pCoord; 932 int ii = 0; 933 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); 934 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); 935 pCoord = pCell->aCoord; 936 do{ 937 readCoord(pData, &pCoord[ii]); 938 readCoord(pData+4, &pCoord[ii+1]); 939 pData += 8; 940 ii += 2; 941 }while( ii<pRtree->nDim2 ); 942 } 943 944 945 /* Forward declaration for the function that does the work of 946 ** the virtual table module xCreate() and xConnect() methods. 947 */ 948 static int rtreeInit( 949 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int 950 ); 951 952 /* 953 ** Rtree virtual table module xCreate method. 954 */ 955 static int rtreeCreate( 956 sqlite3 *db, 957 void *pAux, 958 int argc, const char *const*argv, 959 sqlite3_vtab **ppVtab, 960 char **pzErr 961 ){ 962 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); 963 } 964 965 /* 966 ** Rtree virtual table module xConnect method. 967 */ 968 static int rtreeConnect( 969 sqlite3 *db, 970 void *pAux, 971 int argc, const char *const*argv, 972 sqlite3_vtab **ppVtab, 973 char **pzErr 974 ){ 975 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); 976 } 977 978 /* 979 ** Increment the r-tree reference count. 980 */ 981 static void rtreeReference(Rtree *pRtree){ 982 pRtree->nBusy++; 983 } 984 985 /* 986 ** Decrement the r-tree reference count. When the reference count reaches 987 ** zero the structure is deleted. 988 */ 989 static void rtreeRelease(Rtree *pRtree){ 990 pRtree->nBusy--; 991 if( pRtree->nBusy==0 ){ 992 pRtree->inWrTrans = 0; 993 assert( pRtree->nCursor==0 ); 994 nodeBlobReset(pRtree); 995 assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); 996 sqlite3_finalize(pRtree->pWriteNode); 997 sqlite3_finalize(pRtree->pDeleteNode); 998 sqlite3_finalize(pRtree->pReadRowid); 999 sqlite3_finalize(pRtree->pWriteRowid); 1000 sqlite3_finalize(pRtree->pDeleteRowid); 1001 sqlite3_finalize(pRtree->pReadParent); 1002 sqlite3_finalize(pRtree->pWriteParent); 1003 sqlite3_finalize(pRtree->pDeleteParent); 1004 sqlite3_finalize(pRtree->pWriteAux); 1005 sqlite3_free(pRtree->zReadAuxSql); 1006 sqlite3_free(pRtree); 1007 } 1008 } 1009 1010 /* 1011 ** Rtree virtual table module xDisconnect method. 1012 */ 1013 static int rtreeDisconnect(sqlite3_vtab *pVtab){ 1014 rtreeRelease((Rtree *)pVtab); 1015 return SQLITE_OK; 1016 } 1017 1018 /* 1019 ** Rtree virtual table module xDestroy method. 1020 */ 1021 static int rtreeDestroy(sqlite3_vtab *pVtab){ 1022 Rtree *pRtree = (Rtree *)pVtab; 1023 int rc; 1024 char *zCreate = sqlite3_mprintf( 1025 "DROP TABLE '%q'.'%q_node';" 1026 "DROP TABLE '%q'.'%q_rowid';" 1027 "DROP TABLE '%q'.'%q_parent';", 1028 pRtree->zDb, pRtree->zName, 1029 pRtree->zDb, pRtree->zName, 1030 pRtree->zDb, pRtree->zName 1031 ); 1032 if( !zCreate ){ 1033 rc = SQLITE_NOMEM; 1034 }else{ 1035 nodeBlobReset(pRtree); 1036 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); 1037 sqlite3_free(zCreate); 1038 } 1039 if( rc==SQLITE_OK ){ 1040 rtreeRelease(pRtree); 1041 } 1042 1043 return rc; 1044 } 1045 1046 /* 1047 ** Rtree virtual table module xOpen method. 1048 */ 1049 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 1050 int rc = SQLITE_NOMEM; 1051 Rtree *pRtree = (Rtree *)pVTab; 1052 RtreeCursor *pCsr; 1053 1054 pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); 1055 if( pCsr ){ 1056 memset(pCsr, 0, sizeof(RtreeCursor)); 1057 pCsr->base.pVtab = pVTab; 1058 rc = SQLITE_OK; 1059 pRtree->nCursor++; 1060 } 1061 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 1062 1063 return rc; 1064 } 1065 1066 1067 /* 1068 ** Free the RtreeCursor.aConstraint[] array and its contents. 1069 */ 1070 static void freeCursorConstraints(RtreeCursor *pCsr){ 1071 if( pCsr->aConstraint ){ 1072 int i; /* Used to iterate through constraint array */ 1073 for(i=0; i<pCsr->nConstraint; i++){ 1074 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; 1075 if( pInfo ){ 1076 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); 1077 sqlite3_free(pInfo); 1078 } 1079 } 1080 sqlite3_free(pCsr->aConstraint); 1081 pCsr->aConstraint = 0; 1082 } 1083 } 1084 1085 /* 1086 ** Rtree virtual table module xClose method. 1087 */ 1088 static int rtreeClose(sqlite3_vtab_cursor *cur){ 1089 Rtree *pRtree = (Rtree *)(cur->pVtab); 1090 int ii; 1091 RtreeCursor *pCsr = (RtreeCursor *)cur; 1092 assert( pRtree->nCursor>0 ); 1093 freeCursorConstraints(pCsr); 1094 sqlite3_finalize(pCsr->pReadAux); 1095 sqlite3_free(pCsr->aPoint); 1096 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); 1097 sqlite3_free(pCsr); 1098 pRtree->nCursor--; 1099 nodeBlobReset(pRtree); 1100 return SQLITE_OK; 1101 } 1102 1103 /* 1104 ** Rtree virtual table module xEof method. 1105 ** 1106 ** Return non-zero if the cursor does not currently point to a valid 1107 ** record (i.e if the scan has finished), or zero otherwise. 1108 */ 1109 static int rtreeEof(sqlite3_vtab_cursor *cur){ 1110 RtreeCursor *pCsr = (RtreeCursor *)cur; 1111 return pCsr->atEOF; 1112 } 1113 1114 /* 1115 ** Convert raw bits from the on-disk RTree record into a coordinate value. 1116 ** The on-disk format is big-endian and needs to be converted for little- 1117 ** endian platforms. The on-disk record stores integer coordinates if 1118 ** eInt is true and it stores 32-bit floating point records if eInt is 1119 ** false. a[] is the four bytes of the on-disk record to be decoded. 1120 ** Store the results in "r". 1121 ** 1122 ** There are five versions of this macro. The last one is generic. The 1123 ** other four are various architectures-specific optimizations. 1124 */ 1125 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1126 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1127 RtreeCoord c; /* Coordinate decoded */ \ 1128 c.u = _byteswap_ulong(*(u32*)a); \ 1129 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1130 } 1131 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1132 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1133 RtreeCoord c; /* Coordinate decoded */ \ 1134 c.u = __builtin_bswap32(*(u32*)a); \ 1135 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1136 } 1137 #elif SQLITE_BYTEORDER==1234 1138 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1139 RtreeCoord c; /* Coordinate decoded */ \ 1140 memcpy(&c.u,a,4); \ 1141 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ 1142 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ 1143 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1144 } 1145 #elif SQLITE_BYTEORDER==4321 1146 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1147 RtreeCoord c; /* Coordinate decoded */ \ 1148 memcpy(&c.u,a,4); \ 1149 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1150 } 1151 #else 1152 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1153 RtreeCoord c; /* Coordinate decoded */ \ 1154 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ 1155 +((u32)a[2]<<8) + a[3]; \ 1156 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1157 } 1158 #endif 1159 1160 /* 1161 ** Check the RTree node or entry given by pCellData and p against the MATCH 1162 ** constraint pConstraint. 1163 */ 1164 static int rtreeCallbackConstraint( 1165 RtreeConstraint *pConstraint, /* The constraint to test */ 1166 int eInt, /* True if RTree holding integer coordinates */ 1167 u8 *pCellData, /* Raw cell content */ 1168 RtreeSearchPoint *pSearch, /* Container of this cell */ 1169 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ 1170 int *peWithin /* OUT: visibility of the cell */ 1171 ){ 1172 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ 1173 int nCoord = pInfo->nCoord; /* No. of coordinates */ 1174 int rc; /* Callback return code */ 1175 RtreeCoord c; /* Translator union */ 1176 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ 1177 1178 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); 1179 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); 1180 1181 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ 1182 pInfo->iRowid = readInt64(pCellData); 1183 } 1184 pCellData += 8; 1185 #ifndef SQLITE_RTREE_INT_ONLY 1186 if( eInt==0 ){ 1187 switch( nCoord ){ 1188 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; 1189 readCoord(pCellData+32, &c); aCoord[8] = c.f; 1190 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; 1191 readCoord(pCellData+24, &c); aCoord[6] = c.f; 1192 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; 1193 readCoord(pCellData+16, &c); aCoord[4] = c.f; 1194 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; 1195 readCoord(pCellData+8, &c); aCoord[2] = c.f; 1196 default: readCoord(pCellData+4, &c); aCoord[1] = c.f; 1197 readCoord(pCellData, &c); aCoord[0] = c.f; 1198 } 1199 }else 1200 #endif 1201 { 1202 switch( nCoord ){ 1203 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; 1204 readCoord(pCellData+32, &c); aCoord[8] = c.i; 1205 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; 1206 readCoord(pCellData+24, &c); aCoord[6] = c.i; 1207 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; 1208 readCoord(pCellData+16, &c); aCoord[4] = c.i; 1209 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; 1210 readCoord(pCellData+8, &c); aCoord[2] = c.i; 1211 default: readCoord(pCellData+4, &c); aCoord[1] = c.i; 1212 readCoord(pCellData, &c); aCoord[0] = c.i; 1213 } 1214 } 1215 if( pConstraint->op==RTREE_MATCH ){ 1216 int eWithin = 0; 1217 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, 1218 nCoord, aCoord, &eWithin); 1219 if( eWithin==0 ) *peWithin = NOT_WITHIN; 1220 *prScore = RTREE_ZERO; 1221 }else{ 1222 pInfo->aCoord = aCoord; 1223 pInfo->iLevel = pSearch->iLevel - 1; 1224 pInfo->rScore = pInfo->rParentScore = pSearch->rScore; 1225 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; 1226 rc = pConstraint->u.xQueryFunc(pInfo); 1227 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; 1228 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ 1229 *prScore = pInfo->rScore; 1230 } 1231 } 1232 return rc; 1233 } 1234 1235 /* 1236 ** Check the internal RTree node given by pCellData against constraint p. 1237 ** If this constraint cannot be satisfied by any child within the node, 1238 ** set *peWithin to NOT_WITHIN. 1239 */ 1240 static void rtreeNonleafConstraint( 1241 RtreeConstraint *p, /* The constraint to test */ 1242 int eInt, /* True if RTree holds integer coordinates */ 1243 u8 *pCellData, /* Raw cell content as appears on disk */ 1244 int *peWithin /* Adjust downward, as appropriate */ 1245 ){ 1246 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ 1247 1248 /* p->iCoord might point to either a lower or upper bound coordinate 1249 ** in a coordinate pair. But make pCellData point to the lower bound. 1250 */ 1251 pCellData += 8 + 4*(p->iCoord&0xfe); 1252 1253 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1254 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE 1255 || p->op==RTREE_FALSE ); 1256 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1257 switch( p->op ){ 1258 case RTREE_TRUE: return; /* Always satisfied */ 1259 case RTREE_FALSE: break; /* Never satisfied */ 1260 case RTREE_LE: 1261 case RTREE_LT: 1262 case RTREE_EQ: 1263 RTREE_DECODE_COORD(eInt, pCellData, val); 1264 /* val now holds the lower bound of the coordinate pair */ 1265 if( p->u.rValue>=val ) return; 1266 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ 1267 /* Fall through for the RTREE_EQ case */ 1268 1269 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ 1270 pCellData += 4; 1271 RTREE_DECODE_COORD(eInt, pCellData, val); 1272 /* val now holds the upper bound of the coordinate pair */ 1273 if( p->u.rValue<=val ) return; 1274 } 1275 *peWithin = NOT_WITHIN; 1276 } 1277 1278 /* 1279 ** Check the leaf RTree cell given by pCellData against constraint p. 1280 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. 1281 ** If the constraint is satisfied, leave *peWithin unchanged. 1282 ** 1283 ** The constraint is of the form: xN op $val 1284 ** 1285 ** The op is given by p->op. The xN is p->iCoord-th coordinate in 1286 ** pCellData. $val is given by p->u.rValue. 1287 */ 1288 static void rtreeLeafConstraint( 1289 RtreeConstraint *p, /* The constraint to test */ 1290 int eInt, /* True if RTree holds integer coordinates */ 1291 u8 *pCellData, /* Raw cell content as appears on disk */ 1292 int *peWithin /* Adjust downward, as appropriate */ 1293 ){ 1294 RtreeDValue xN; /* Coordinate value converted to a double */ 1295 1296 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1297 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE 1298 || p->op==RTREE_FALSE ); 1299 pCellData += 8 + p->iCoord*4; 1300 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1301 RTREE_DECODE_COORD(eInt, pCellData, xN); 1302 switch( p->op ){ 1303 case RTREE_TRUE: return; /* Always satisfied */ 1304 case RTREE_FALSE: break; /* Never satisfied */ 1305 case RTREE_LE: if( xN <= p->u.rValue ) return; break; 1306 case RTREE_LT: if( xN < p->u.rValue ) return; break; 1307 case RTREE_GE: if( xN >= p->u.rValue ) return; break; 1308 case RTREE_GT: if( xN > p->u.rValue ) return; break; 1309 default: if( xN == p->u.rValue ) return; break; 1310 } 1311 *peWithin = NOT_WITHIN; 1312 } 1313 1314 /* 1315 ** One of the cells in node pNode is guaranteed to have a 64-bit 1316 ** integer value equal to iRowid. Return the index of this cell. 1317 */ 1318 static int nodeRowidIndex( 1319 Rtree *pRtree, 1320 RtreeNode *pNode, 1321 i64 iRowid, 1322 int *piIndex 1323 ){ 1324 int ii; 1325 int nCell = NCELL(pNode); 1326 assert( nCell<200 ); 1327 for(ii=0; ii<nCell; ii++){ 1328 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ 1329 *piIndex = ii; 1330 return SQLITE_OK; 1331 } 1332 } 1333 RTREE_IS_CORRUPT(pRtree); 1334 return SQLITE_CORRUPT_VTAB; 1335 } 1336 1337 /* 1338 ** Return the index of the cell containing a pointer to node pNode 1339 ** in its parent. If pNode is the root node, return -1. 1340 */ 1341 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ 1342 RtreeNode *pParent = pNode->pParent; 1343 if( pParent ){ 1344 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); 1345 } 1346 *piIndex = -1; 1347 return SQLITE_OK; 1348 } 1349 1350 /* 1351 ** Compare two search points. Return negative, zero, or positive if the first 1352 ** is less than, equal to, or greater than the second. 1353 ** 1354 ** The rScore is the primary key. Smaller rScore values come first. 1355 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller 1356 ** iLevel values coming first. In this way, if rScore is the same for all 1357 ** SearchPoints, then iLevel becomes the deciding factor and the result 1358 ** is a depth-first search, which is the desired default behavior. 1359 */ 1360 static int rtreeSearchPointCompare( 1361 const RtreeSearchPoint *pA, 1362 const RtreeSearchPoint *pB 1363 ){ 1364 if( pA->rScore<pB->rScore ) return -1; 1365 if( pA->rScore>pB->rScore ) return +1; 1366 if( pA->iLevel<pB->iLevel ) return -1; 1367 if( pA->iLevel>pB->iLevel ) return +1; 1368 return 0; 1369 } 1370 1371 /* 1372 ** Interchange two search points in a cursor. 1373 */ 1374 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ 1375 RtreeSearchPoint t = p->aPoint[i]; 1376 assert( i<j ); 1377 p->aPoint[i] = p->aPoint[j]; 1378 p->aPoint[j] = t; 1379 i++; j++; 1380 if( i<RTREE_CACHE_SZ ){ 1381 if( j>=RTREE_CACHE_SZ ){ 1382 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1383 p->aNode[i] = 0; 1384 }else{ 1385 RtreeNode *pTemp = p->aNode[i]; 1386 p->aNode[i] = p->aNode[j]; 1387 p->aNode[j] = pTemp; 1388 } 1389 } 1390 } 1391 1392 /* 1393 ** Return the search point with the lowest current score. 1394 */ 1395 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ 1396 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; 1397 } 1398 1399 /* 1400 ** Get the RtreeNode for the search point with the lowest score. 1401 */ 1402 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ 1403 sqlite3_int64 id; 1404 int ii = 1 - pCur->bPoint; 1405 assert( ii==0 || ii==1 ); 1406 assert( pCur->bPoint || pCur->nPoint ); 1407 if( pCur->aNode[ii]==0 ){ 1408 assert( pRC!=0 ); 1409 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; 1410 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); 1411 } 1412 return pCur->aNode[ii]; 1413 } 1414 1415 /* 1416 ** Push a new element onto the priority queue 1417 */ 1418 static RtreeSearchPoint *rtreeEnqueue( 1419 RtreeCursor *pCur, /* The cursor */ 1420 RtreeDValue rScore, /* Score for the new search point */ 1421 u8 iLevel /* Level for the new search point */ 1422 ){ 1423 int i, j; 1424 RtreeSearchPoint *pNew; 1425 if( pCur->nPoint>=pCur->nPointAlloc ){ 1426 int nNew = pCur->nPointAlloc*2 + 8; 1427 pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); 1428 if( pNew==0 ) return 0; 1429 pCur->aPoint = pNew; 1430 pCur->nPointAlloc = nNew; 1431 } 1432 i = pCur->nPoint++; 1433 pNew = pCur->aPoint + i; 1434 pNew->rScore = rScore; 1435 pNew->iLevel = iLevel; 1436 assert( iLevel<=RTREE_MAX_DEPTH ); 1437 while( i>0 ){ 1438 RtreeSearchPoint *pParent; 1439 j = (i-1)/2; 1440 pParent = pCur->aPoint + j; 1441 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; 1442 rtreeSearchPointSwap(pCur, j, i); 1443 i = j; 1444 pNew = pParent; 1445 } 1446 return pNew; 1447 } 1448 1449 /* 1450 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return 1451 ** NULL if malloc fails. 1452 */ 1453 static RtreeSearchPoint *rtreeSearchPointNew( 1454 RtreeCursor *pCur, /* The cursor */ 1455 RtreeDValue rScore, /* Score for the new search point */ 1456 u8 iLevel /* Level for the new search point */ 1457 ){ 1458 RtreeSearchPoint *pNew, *pFirst; 1459 pFirst = rtreeSearchPointFirst(pCur); 1460 pCur->anQueue[iLevel]++; 1461 if( pFirst==0 1462 || pFirst->rScore>rScore 1463 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) 1464 ){ 1465 if( pCur->bPoint ){ 1466 int ii; 1467 pNew = rtreeEnqueue(pCur, rScore, iLevel); 1468 if( pNew==0 ) return 0; 1469 ii = (int)(pNew - pCur->aPoint) + 1; 1470 if( ii<RTREE_CACHE_SZ ){ 1471 assert( pCur->aNode[ii]==0 ); 1472 pCur->aNode[ii] = pCur->aNode[0]; 1473 }else{ 1474 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); 1475 } 1476 pCur->aNode[0] = 0; 1477 *pNew = pCur->sPoint; 1478 } 1479 pCur->sPoint.rScore = rScore; 1480 pCur->sPoint.iLevel = iLevel; 1481 pCur->bPoint = 1; 1482 return &pCur->sPoint; 1483 }else{ 1484 return rtreeEnqueue(pCur, rScore, iLevel); 1485 } 1486 } 1487 1488 #if 0 1489 /* Tracing routines for the RtreeSearchPoint queue */ 1490 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ 1491 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } 1492 printf(" %d.%05lld.%02d %g %d", 1493 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin 1494 ); 1495 idx++; 1496 if( idx<RTREE_CACHE_SZ ){ 1497 printf(" %p\n", pCur->aNode[idx]); 1498 }else{ 1499 printf("\n"); 1500 } 1501 } 1502 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ 1503 int ii; 1504 printf("=== %9s ", zPrefix); 1505 if( pCur->bPoint ){ 1506 tracePoint(&pCur->sPoint, -1, pCur); 1507 } 1508 for(ii=0; ii<pCur->nPoint; ii++){ 1509 if( ii>0 || pCur->bPoint ) printf(" "); 1510 tracePoint(&pCur->aPoint[ii], ii, pCur); 1511 } 1512 } 1513 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) 1514 #else 1515 # define RTREE_QUEUE_TRACE(A,B) /* no-op */ 1516 #endif 1517 1518 /* Remove the search point with the lowest current score. 1519 */ 1520 static void rtreeSearchPointPop(RtreeCursor *p){ 1521 int i, j, k, n; 1522 i = 1 - p->bPoint; 1523 assert( i==0 || i==1 ); 1524 if( p->aNode[i] ){ 1525 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1526 p->aNode[i] = 0; 1527 } 1528 if( p->bPoint ){ 1529 p->anQueue[p->sPoint.iLevel]--; 1530 p->bPoint = 0; 1531 }else if( p->nPoint ){ 1532 p->anQueue[p->aPoint[0].iLevel]--; 1533 n = --p->nPoint; 1534 p->aPoint[0] = p->aPoint[n]; 1535 if( n<RTREE_CACHE_SZ-1 ){ 1536 p->aNode[1] = p->aNode[n+1]; 1537 p->aNode[n+1] = 0; 1538 } 1539 i = 0; 1540 while( (j = i*2+1)<n ){ 1541 k = j+1; 1542 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ 1543 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ 1544 rtreeSearchPointSwap(p, i, k); 1545 i = k; 1546 }else{ 1547 break; 1548 } 1549 }else{ 1550 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ 1551 rtreeSearchPointSwap(p, i, j); 1552 i = j; 1553 }else{ 1554 break; 1555 } 1556 } 1557 } 1558 } 1559 } 1560 1561 1562 /* 1563 ** Continue the search on cursor pCur until the front of the queue 1564 ** contains an entry suitable for returning as a result-set row, 1565 ** or until the RtreeSearchPoint queue is empty, indicating that the 1566 ** query has completed. 1567 */ 1568 static int rtreeStepToLeaf(RtreeCursor *pCur){ 1569 RtreeSearchPoint *p; 1570 Rtree *pRtree = RTREE_OF_CURSOR(pCur); 1571 RtreeNode *pNode; 1572 int eWithin; 1573 int rc = SQLITE_OK; 1574 int nCell; 1575 int nConstraint = pCur->nConstraint; 1576 int ii; 1577 int eInt; 1578 RtreeSearchPoint x; 1579 1580 eInt = pRtree->eCoordType==RTREE_COORD_INT32; 1581 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ 1582 u8 *pCellData; 1583 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); 1584 if( rc ) return rc; 1585 nCell = NCELL(pNode); 1586 assert( nCell<200 ); 1587 pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); 1588 while( p->iCell<nCell ){ 1589 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; 1590 eWithin = FULLY_WITHIN; 1591 for(ii=0; ii<nConstraint; ii++){ 1592 RtreeConstraint *pConstraint = pCur->aConstraint + ii; 1593 if( pConstraint->op>=RTREE_MATCH ){ 1594 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, 1595 &rScore, &eWithin); 1596 if( rc ) return rc; 1597 }else if( p->iLevel==1 ){ 1598 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); 1599 }else{ 1600 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); 1601 } 1602 if( eWithin==NOT_WITHIN ){ 1603 p->iCell++; 1604 pCellData += pRtree->nBytesPerCell; 1605 break; 1606 } 1607 } 1608 if( eWithin==NOT_WITHIN ) continue; 1609 p->iCell++; 1610 x.iLevel = p->iLevel - 1; 1611 if( x.iLevel ){ 1612 x.id = readInt64(pCellData); 1613 for(ii=0; ii<pCur->nPoint; ii++){ 1614 if( pCur->aPoint[ii].id==x.id ){ 1615 RTREE_IS_CORRUPT(pRtree); 1616 return SQLITE_CORRUPT_VTAB; 1617 } 1618 } 1619 x.iCell = 0; 1620 }else{ 1621 x.id = p->id; 1622 x.iCell = p->iCell - 1; 1623 } 1624 if( p->iCell>=nCell ){ 1625 RTREE_QUEUE_TRACE(pCur, "POP-S:"); 1626 rtreeSearchPointPop(pCur); 1627 } 1628 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; 1629 p = rtreeSearchPointNew(pCur, rScore, x.iLevel); 1630 if( p==0 ) return SQLITE_NOMEM; 1631 p->eWithin = (u8)eWithin; 1632 p->id = x.id; 1633 p->iCell = x.iCell; 1634 RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); 1635 break; 1636 } 1637 if( p->iCell>=nCell ){ 1638 RTREE_QUEUE_TRACE(pCur, "POP-Se:"); 1639 rtreeSearchPointPop(pCur); 1640 } 1641 } 1642 pCur->atEOF = p==0; 1643 return SQLITE_OK; 1644 } 1645 1646 /* 1647 ** Rtree virtual table module xNext method. 1648 */ 1649 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ 1650 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1651 int rc = SQLITE_OK; 1652 1653 /* Move to the next entry that matches the configured constraints. */ 1654 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); 1655 if( pCsr->bAuxValid ){ 1656 pCsr->bAuxValid = 0; 1657 sqlite3_reset(pCsr->pReadAux); 1658 } 1659 rtreeSearchPointPop(pCsr); 1660 rc = rtreeStepToLeaf(pCsr); 1661 return rc; 1662 } 1663 1664 /* 1665 ** Rtree virtual table module xRowid method. 1666 */ 1667 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ 1668 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1669 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1670 int rc = SQLITE_OK; 1671 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1672 if( rc==SQLITE_OK && p ){ 1673 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); 1674 } 1675 return rc; 1676 } 1677 1678 /* 1679 ** Rtree virtual table module xColumn method. 1680 */ 1681 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1682 Rtree *pRtree = (Rtree *)cur->pVtab; 1683 RtreeCursor *pCsr = (RtreeCursor *)cur; 1684 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1685 RtreeCoord c; 1686 int rc = SQLITE_OK; 1687 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1688 1689 if( rc ) return rc; 1690 if( p==0 ) return SQLITE_OK; 1691 if( i==0 ){ 1692 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); 1693 }else if( i<=pRtree->nDim2 ){ 1694 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); 1695 #ifndef SQLITE_RTREE_INT_ONLY 1696 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1697 sqlite3_result_double(ctx, c.f); 1698 }else 1699 #endif 1700 { 1701 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); 1702 sqlite3_result_int(ctx, c.i); 1703 } 1704 }else{ 1705 if( !pCsr->bAuxValid ){ 1706 if( pCsr->pReadAux==0 ){ 1707 rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, 1708 &pCsr->pReadAux, 0); 1709 if( rc ) return rc; 1710 } 1711 sqlite3_bind_int64(pCsr->pReadAux, 1, 1712 nodeGetRowid(pRtree, pNode, p->iCell)); 1713 rc = sqlite3_step(pCsr->pReadAux); 1714 if( rc==SQLITE_ROW ){ 1715 pCsr->bAuxValid = 1; 1716 }else{ 1717 sqlite3_reset(pCsr->pReadAux); 1718 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 1719 return rc; 1720 } 1721 } 1722 sqlite3_result_value(ctx, 1723 sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); 1724 } 1725 return SQLITE_OK; 1726 } 1727 1728 /* 1729 ** Use nodeAcquire() to obtain the leaf node containing the record with 1730 ** rowid iRowid. If successful, set *ppLeaf to point to the node and 1731 ** return SQLITE_OK. If there is no such record in the table, set 1732 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf 1733 ** to zero and return an SQLite error code. 1734 */ 1735 static int findLeafNode( 1736 Rtree *pRtree, /* RTree to search */ 1737 i64 iRowid, /* The rowid searching for */ 1738 RtreeNode **ppLeaf, /* Write the node here */ 1739 sqlite3_int64 *piNode /* Write the node-id here */ 1740 ){ 1741 int rc; 1742 *ppLeaf = 0; 1743 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); 1744 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ 1745 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); 1746 if( piNode ) *piNode = iNode; 1747 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); 1748 sqlite3_reset(pRtree->pReadRowid); 1749 }else{ 1750 rc = sqlite3_reset(pRtree->pReadRowid); 1751 } 1752 return rc; 1753 } 1754 1755 /* 1756 ** This function is called to configure the RtreeConstraint object passed 1757 ** as the second argument for a MATCH constraint. The value passed as the 1758 ** first argument to this function is the right-hand operand to the MATCH 1759 ** operator. 1760 */ 1761 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ 1762 RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ 1763 sqlite3_rtree_query_info *pInfo; /* Callback information */ 1764 1765 pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); 1766 if( pSrc==0 ) return SQLITE_ERROR; 1767 pInfo = (sqlite3_rtree_query_info*) 1768 sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); 1769 if( !pInfo ) return SQLITE_NOMEM; 1770 memset(pInfo, 0, sizeof(*pInfo)); 1771 pBlob = (RtreeMatchArg*)&pInfo[1]; 1772 memcpy(pBlob, pSrc, pSrc->iSize); 1773 pInfo->pContext = pBlob->cb.pContext; 1774 pInfo->nParam = pBlob->nParam; 1775 pInfo->aParam = pBlob->aParam; 1776 pInfo->apSqlParam = pBlob->apSqlParam; 1777 1778 if( pBlob->cb.xGeom ){ 1779 pCons->u.xGeom = pBlob->cb.xGeom; 1780 }else{ 1781 pCons->op = RTREE_QUERY; 1782 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; 1783 } 1784 pCons->pInfo = pInfo; 1785 return SQLITE_OK; 1786 } 1787 1788 /* 1789 ** Rtree virtual table module xFilter method. 1790 */ 1791 static int rtreeFilter( 1792 sqlite3_vtab_cursor *pVtabCursor, 1793 int idxNum, const char *idxStr, 1794 int argc, sqlite3_value **argv 1795 ){ 1796 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; 1797 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1798 RtreeNode *pRoot = 0; 1799 int ii; 1800 int rc = SQLITE_OK; 1801 int iCell = 0; 1802 sqlite3_stmt *pStmt; 1803 1804 rtreeReference(pRtree); 1805 1806 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ 1807 freeCursorConstraints(pCsr); 1808 sqlite3_free(pCsr->aPoint); 1809 pStmt = pCsr->pReadAux; 1810 memset(pCsr, 0, sizeof(RtreeCursor)); 1811 pCsr->base.pVtab = (sqlite3_vtab*)pRtree; 1812 pCsr->pReadAux = pStmt; 1813 1814 pCsr->iStrategy = idxNum; 1815 if( idxNum==1 ){ 1816 /* Special case - lookup by rowid. */ 1817 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ 1818 RtreeSearchPoint *p; /* Search point for the leaf */ 1819 i64 iRowid = sqlite3_value_int64(argv[0]); 1820 i64 iNode = 0; 1821 int eType = sqlite3_value_numeric_type(argv[0]); 1822 if( eType==SQLITE_INTEGER 1823 || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid) 1824 ){ 1825 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); 1826 }else{ 1827 rc = SQLITE_OK; 1828 pLeaf = 0; 1829 } 1830 if( rc==SQLITE_OK && pLeaf!=0 ){ 1831 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); 1832 assert( p!=0 ); /* Always returns pCsr->sPoint */ 1833 pCsr->aNode[0] = pLeaf; 1834 p->id = iNode; 1835 p->eWithin = PARTLY_WITHIN; 1836 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); 1837 p->iCell = (u8)iCell; 1838 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); 1839 }else{ 1840 pCsr->atEOF = 1; 1841 } 1842 }else{ 1843 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 1844 ** with the configured constraints. 1845 */ 1846 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 1847 if( rc==SQLITE_OK && argc>0 ){ 1848 pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); 1849 pCsr->nConstraint = argc; 1850 if( !pCsr->aConstraint ){ 1851 rc = SQLITE_NOMEM; 1852 }else{ 1853 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); 1854 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); 1855 assert( (idxStr==0 && argc==0) 1856 || (idxStr && (int)strlen(idxStr)==argc*2) ); 1857 for(ii=0; ii<argc; ii++){ 1858 RtreeConstraint *p = &pCsr->aConstraint[ii]; 1859 int eType = sqlite3_value_numeric_type(argv[ii]); 1860 p->op = idxStr[ii*2]; 1861 p->iCoord = idxStr[ii*2+1]-'0'; 1862 if( p->op>=RTREE_MATCH ){ 1863 /* A MATCH operator. The right-hand-side must be a blob that 1864 ** can be cast into an RtreeMatchArg object. One created using 1865 ** an sqlite3_rtree_geometry_callback() SQL user function. 1866 */ 1867 rc = deserializeGeometry(argv[ii], p); 1868 if( rc!=SQLITE_OK ){ 1869 break; 1870 } 1871 p->pInfo->nCoord = pRtree->nDim2; 1872 p->pInfo->anQueue = pCsr->anQueue; 1873 p->pInfo->mxLevel = pRtree->iDepth + 1; 1874 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1875 #ifdef SQLITE_RTREE_INT_ONLY 1876 p->u.rValue = sqlite3_value_int64(argv[ii]); 1877 #else 1878 p->u.rValue = sqlite3_value_double(argv[ii]); 1879 #endif 1880 }else{ 1881 p->u.rValue = RTREE_ZERO; 1882 if( eType==SQLITE_NULL ){ 1883 p->op = RTREE_FALSE; 1884 }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ 1885 p->op = RTREE_TRUE; 1886 }else{ 1887 p->op = RTREE_FALSE; 1888 } 1889 } 1890 } 1891 } 1892 } 1893 if( rc==SQLITE_OK ){ 1894 RtreeSearchPoint *pNew; 1895 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); 1896 if( pNew==0 ) return SQLITE_NOMEM; 1897 pNew->id = 1; 1898 pNew->iCell = 0; 1899 pNew->eWithin = PARTLY_WITHIN; 1900 assert( pCsr->bPoint==1 ); 1901 pCsr->aNode[0] = pRoot; 1902 pRoot = 0; 1903 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); 1904 rc = rtreeStepToLeaf(pCsr); 1905 } 1906 } 1907 1908 nodeRelease(pRtree, pRoot); 1909 rtreeRelease(pRtree); 1910 return rc; 1911 } 1912 1913 /* 1914 ** Rtree virtual table module xBestIndex method. There are three 1915 ** table scan strategies to choose from (in order from most to 1916 ** least desirable): 1917 ** 1918 ** idxNum idxStr Strategy 1919 ** ------------------------------------------------ 1920 ** 1 Unused Direct lookup by rowid. 1921 ** 2 See below R-tree query or full-table scan. 1922 ** ------------------------------------------------ 1923 ** 1924 ** If strategy 1 is used, then idxStr is not meaningful. If strategy 1925 ** 2 is used, idxStr is formatted to contain 2 bytes for each 1926 ** constraint used. The first two bytes of idxStr correspond to 1927 ** the constraint in sqlite3_index_info.aConstraintUsage[] with 1928 ** (argvIndex==1) etc. 1929 ** 1930 ** The first of each pair of bytes in idxStr identifies the constraint 1931 ** operator as follows: 1932 ** 1933 ** Operator Byte Value 1934 ** ---------------------- 1935 ** = 0x41 ('A') 1936 ** <= 0x42 ('B') 1937 ** < 0x43 ('C') 1938 ** >= 0x44 ('D') 1939 ** > 0x45 ('E') 1940 ** MATCH 0x46 ('F') 1941 ** ---------------------- 1942 ** 1943 ** The second of each pair of bytes identifies the coordinate column 1944 ** to which the constraint applies. The leftmost coordinate column 1945 ** is 'a', the second from the left 'b' etc. 1946 */ 1947 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1948 Rtree *pRtree = (Rtree*)tab; 1949 int rc = SQLITE_OK; 1950 int ii; 1951 int bMatch = 0; /* True if there exists a MATCH constraint */ 1952 i64 nRow; /* Estimated rows returned by this scan */ 1953 1954 int iIdx = 0; 1955 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; 1956 memset(zIdxStr, 0, sizeof(zIdxStr)); 1957 1958 /* Check if there exists a MATCH constraint - even an unusable one. If there 1959 ** is, do not consider the lookup-by-rowid plan as using such a plan would 1960 ** require the VDBE to evaluate the MATCH constraint, which is not currently 1961 ** possible. */ 1962 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 1963 if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 1964 bMatch = 1; 1965 } 1966 } 1967 1968 assert( pIdxInfo->idxStr==0 ); 1969 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ 1970 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; 1971 1972 if( bMatch==0 && p->usable 1973 && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 1974 ){ 1975 /* We have an equality constraint on the rowid. Use strategy 1. */ 1976 int jj; 1977 for(jj=0; jj<ii; jj++){ 1978 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; 1979 pIdxInfo->aConstraintUsage[jj].omit = 0; 1980 } 1981 pIdxInfo->idxNum = 1; 1982 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; 1983 pIdxInfo->aConstraintUsage[jj].omit = 1; 1984 1985 /* This strategy involves a two rowid lookups on an B-Tree structures 1986 ** and then a linear search of an R-Tree node. This should be 1987 ** considered almost as quick as a direct rowid lookup (for which 1988 ** sqlite uses an internal cost of 0.0). It is expected to return 1989 ** a single row. 1990 */ 1991 pIdxInfo->estimatedCost = 30.0; 1992 pIdxInfo->estimatedRows = 1; 1993 pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; 1994 return SQLITE_OK; 1995 } 1996 1997 if( p->usable 1998 && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) 1999 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) 2000 ){ 2001 u8 op; 2002 switch( p->op ){ 2003 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; 2004 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; 2005 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; 2006 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; 2007 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; 2008 case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; 2009 default: op = 0; break; 2010 } 2011 if( op ){ 2012 zIdxStr[iIdx++] = op; 2013 zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); 2014 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); 2015 pIdxInfo->aConstraintUsage[ii].omit = 1; 2016 } 2017 } 2018 } 2019 2020 pIdxInfo->idxNum = 2; 2021 pIdxInfo->needToFreeIdxStr = 1; 2022 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ 2023 return SQLITE_NOMEM; 2024 } 2025 2026 nRow = pRtree->nRowEst >> (iIdx/2); 2027 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; 2028 pIdxInfo->estimatedRows = nRow; 2029 2030 return rc; 2031 } 2032 2033 /* 2034 ** Return the N-dimensional volumn of the cell stored in *p. 2035 */ 2036 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ 2037 RtreeDValue area = (RtreeDValue)1; 2038 assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); 2039 #ifndef SQLITE_RTREE_INT_ONLY 2040 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2041 switch( pRtree->nDim ){ 2042 case 5: area = p->aCoord[9].f - p->aCoord[8].f; 2043 case 4: area *= p->aCoord[7].f - p->aCoord[6].f; 2044 case 3: area *= p->aCoord[5].f - p->aCoord[4].f; 2045 case 2: area *= p->aCoord[3].f - p->aCoord[2].f; 2046 default: area *= p->aCoord[1].f - p->aCoord[0].f; 2047 } 2048 }else 2049 #endif 2050 { 2051 switch( pRtree->nDim ){ 2052 case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; 2053 case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; 2054 case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; 2055 case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; 2056 default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; 2057 } 2058 } 2059 return area; 2060 } 2061 2062 /* 2063 ** Return the margin length of cell p. The margin length is the sum 2064 ** of the objects size in each dimension. 2065 */ 2066 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ 2067 RtreeDValue margin = 0; 2068 int ii = pRtree->nDim2 - 2; 2069 do{ 2070 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); 2071 ii -= 2; 2072 }while( ii>=0 ); 2073 return margin; 2074 } 2075 2076 /* 2077 ** Store the union of cells p1 and p2 in p1. 2078 */ 2079 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2080 int ii = 0; 2081 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2082 do{ 2083 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); 2084 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); 2085 ii += 2; 2086 }while( ii<pRtree->nDim2 ); 2087 }else{ 2088 do{ 2089 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); 2090 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); 2091 ii += 2; 2092 }while( ii<pRtree->nDim2 ); 2093 } 2094 } 2095 2096 /* 2097 ** Return true if the area covered by p2 is a subset of the area covered 2098 ** by p1. False otherwise. 2099 */ 2100 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2101 int ii; 2102 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); 2103 for(ii=0; ii<pRtree->nDim2; ii+=2){ 2104 RtreeCoord *a1 = &p1->aCoord[ii]; 2105 RtreeCoord *a2 = &p2->aCoord[ii]; 2106 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 2107 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 2108 ){ 2109 return 0; 2110 } 2111 } 2112 return 1; 2113 } 2114 2115 /* 2116 ** Return the amount cell p would grow by if it were unioned with pCell. 2117 */ 2118 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ 2119 RtreeDValue area; 2120 RtreeCell cell; 2121 memcpy(&cell, p, sizeof(RtreeCell)); 2122 area = cellArea(pRtree, &cell); 2123 cellUnion(pRtree, &cell, pCell); 2124 return (cellArea(pRtree, &cell)-area); 2125 } 2126 2127 static RtreeDValue cellOverlap( 2128 Rtree *pRtree, 2129 RtreeCell *p, 2130 RtreeCell *aCell, 2131 int nCell 2132 ){ 2133 int ii; 2134 RtreeDValue overlap = RTREE_ZERO; 2135 for(ii=0; ii<nCell; ii++){ 2136 int jj; 2137 RtreeDValue o = (RtreeDValue)1; 2138 for(jj=0; jj<pRtree->nDim2; jj+=2){ 2139 RtreeDValue x1, x2; 2140 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); 2141 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); 2142 if( x2<x1 ){ 2143 o = (RtreeDValue)0; 2144 break; 2145 }else{ 2146 o = o * (x2-x1); 2147 } 2148 } 2149 overlap += o; 2150 } 2151 return overlap; 2152 } 2153 2154 2155 /* 2156 ** This function implements the ChooseLeaf algorithm from Gutman[84]. 2157 ** ChooseSubTree in r*tree terminology. 2158 */ 2159 static int ChooseLeaf( 2160 Rtree *pRtree, /* Rtree table */ 2161 RtreeCell *pCell, /* Cell to insert into rtree */ 2162 int iHeight, /* Height of sub-tree rooted at pCell */ 2163 RtreeNode **ppLeaf /* OUT: Selected leaf page */ 2164 ){ 2165 int rc; 2166 int ii; 2167 RtreeNode *pNode = 0; 2168 rc = nodeAcquire(pRtree, 1, 0, &pNode); 2169 2170 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ 2171 int iCell; 2172 sqlite3_int64 iBest = 0; 2173 2174 RtreeDValue fMinGrowth = RTREE_ZERO; 2175 RtreeDValue fMinArea = RTREE_ZERO; 2176 2177 int nCell = NCELL(pNode); 2178 RtreeCell cell; 2179 RtreeNode *pChild; 2180 2181 RtreeCell *aCell = 0; 2182 2183 /* Select the child node which will be enlarged the least if pCell 2184 ** is inserted into it. Resolve ties by choosing the entry with 2185 ** the smallest area. 2186 */ 2187 for(iCell=0; iCell<nCell; iCell++){ 2188 int bBest = 0; 2189 RtreeDValue growth; 2190 RtreeDValue area; 2191 nodeGetCell(pRtree, pNode, iCell, &cell); 2192 growth = cellGrowth(pRtree, &cell, pCell); 2193 area = cellArea(pRtree, &cell); 2194 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ 2195 bBest = 1; 2196 } 2197 if( bBest ){ 2198 fMinGrowth = growth; 2199 fMinArea = area; 2200 iBest = cell.iRowid; 2201 } 2202 } 2203 2204 sqlite3_free(aCell); 2205 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); 2206 nodeRelease(pRtree, pNode); 2207 pNode = pChild; 2208 } 2209 2210 *ppLeaf = pNode; 2211 return rc; 2212 } 2213 2214 /* 2215 ** A cell with the same content as pCell has just been inserted into 2216 ** the node pNode. This function updates the bounding box cells in 2217 ** all ancestor elements. 2218 */ 2219 static int AdjustTree( 2220 Rtree *pRtree, /* Rtree table */ 2221 RtreeNode *pNode, /* Adjust ancestry of this node. */ 2222 RtreeCell *pCell /* This cell was just inserted */ 2223 ){ 2224 RtreeNode *p = pNode; 2225 int cnt = 0; 2226 while( p->pParent ){ 2227 RtreeNode *pParent = p->pParent; 2228 RtreeCell cell; 2229 int iCell; 2230 2231 if( (++cnt)>1000 || nodeParentIndex(pRtree, p, &iCell) ){ 2232 RTREE_IS_CORRUPT(pRtree); 2233 return SQLITE_CORRUPT_VTAB; 2234 } 2235 2236 nodeGetCell(pRtree, pParent, iCell, &cell); 2237 if( !cellContains(pRtree, &cell, pCell) ){ 2238 cellUnion(pRtree, &cell, pCell); 2239 nodeOverwriteCell(pRtree, pParent, &cell, iCell); 2240 } 2241 2242 p = pParent; 2243 } 2244 return SQLITE_OK; 2245 } 2246 2247 /* 2248 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. 2249 */ 2250 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ 2251 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); 2252 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); 2253 sqlite3_step(pRtree->pWriteRowid); 2254 return sqlite3_reset(pRtree->pWriteRowid); 2255 } 2256 2257 /* 2258 ** Write mapping (iNode->iPar) to the <rtree>_parent table. 2259 */ 2260 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ 2261 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); 2262 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); 2263 sqlite3_step(pRtree->pWriteParent); 2264 return sqlite3_reset(pRtree->pWriteParent); 2265 } 2266 2267 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); 2268 2269 2270 /* 2271 ** Arguments aIdx, aDistance and aSpare all point to arrays of size 2272 ** nIdx. The aIdx array contains the set of integers from 0 to 2273 ** (nIdx-1) in no particular order. This function sorts the values 2274 ** in aIdx according to the indexed values in aDistance. For 2275 ** example, assuming the inputs: 2276 ** 2277 ** aIdx = { 0, 1, 2, 3 } 2278 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } 2279 ** 2280 ** this function sets the aIdx array to contain: 2281 ** 2282 ** aIdx = { 0, 1, 2, 3 } 2283 ** 2284 ** The aSpare array is used as temporary working space by the 2285 ** sorting algorithm. 2286 */ 2287 static void SortByDistance( 2288 int *aIdx, 2289 int nIdx, 2290 RtreeDValue *aDistance, 2291 int *aSpare 2292 ){ 2293 if( nIdx>1 ){ 2294 int iLeft = 0; 2295 int iRight = 0; 2296 2297 int nLeft = nIdx/2; 2298 int nRight = nIdx-nLeft; 2299 int *aLeft = aIdx; 2300 int *aRight = &aIdx[nLeft]; 2301 2302 SortByDistance(aLeft, nLeft, aDistance, aSpare); 2303 SortByDistance(aRight, nRight, aDistance, aSpare); 2304 2305 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2306 aLeft = aSpare; 2307 2308 while( iLeft<nLeft || iRight<nRight ){ 2309 if( iLeft==nLeft ){ 2310 aIdx[iLeft+iRight] = aRight[iRight]; 2311 iRight++; 2312 }else if( iRight==nRight ){ 2313 aIdx[iLeft+iRight] = aLeft[iLeft]; 2314 iLeft++; 2315 }else{ 2316 RtreeDValue fLeft = aDistance[aLeft[iLeft]]; 2317 RtreeDValue fRight = aDistance[aRight[iRight]]; 2318 if( fLeft<fRight ){ 2319 aIdx[iLeft+iRight] = aLeft[iLeft]; 2320 iLeft++; 2321 }else{ 2322 aIdx[iLeft+iRight] = aRight[iRight]; 2323 iRight++; 2324 } 2325 } 2326 } 2327 2328 #if 0 2329 /* Check that the sort worked */ 2330 { 2331 int jj; 2332 for(jj=1; jj<nIdx; jj++){ 2333 RtreeDValue left = aDistance[aIdx[jj-1]]; 2334 RtreeDValue right = aDistance[aIdx[jj]]; 2335 assert( left<=right ); 2336 } 2337 } 2338 #endif 2339 } 2340 } 2341 2342 /* 2343 ** Arguments aIdx, aCell and aSpare all point to arrays of size 2344 ** nIdx. The aIdx array contains the set of integers from 0 to 2345 ** (nIdx-1) in no particular order. This function sorts the values 2346 ** in aIdx according to dimension iDim of the cells in aCell. The 2347 ** minimum value of dimension iDim is considered first, the 2348 ** maximum used to break ties. 2349 ** 2350 ** The aSpare array is used as temporary working space by the 2351 ** sorting algorithm. 2352 */ 2353 static void SortByDimension( 2354 Rtree *pRtree, 2355 int *aIdx, 2356 int nIdx, 2357 int iDim, 2358 RtreeCell *aCell, 2359 int *aSpare 2360 ){ 2361 if( nIdx>1 ){ 2362 2363 int iLeft = 0; 2364 int iRight = 0; 2365 2366 int nLeft = nIdx/2; 2367 int nRight = nIdx-nLeft; 2368 int *aLeft = aIdx; 2369 int *aRight = &aIdx[nLeft]; 2370 2371 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); 2372 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); 2373 2374 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2375 aLeft = aSpare; 2376 while( iLeft<nLeft || iRight<nRight ){ 2377 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); 2378 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); 2379 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); 2380 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); 2381 if( (iLeft!=nLeft) && ((iRight==nRight) 2382 || (xleft1<xright1) 2383 || (xleft1==xright1 && xleft2<xright2) 2384 )){ 2385 aIdx[iLeft+iRight] = aLeft[iLeft]; 2386 iLeft++; 2387 }else{ 2388 aIdx[iLeft+iRight] = aRight[iRight]; 2389 iRight++; 2390 } 2391 } 2392 2393 #if 0 2394 /* Check that the sort worked */ 2395 { 2396 int jj; 2397 for(jj=1; jj<nIdx; jj++){ 2398 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; 2399 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; 2400 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; 2401 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; 2402 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); 2403 } 2404 } 2405 #endif 2406 } 2407 } 2408 2409 /* 2410 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. 2411 */ 2412 static int splitNodeStartree( 2413 Rtree *pRtree, 2414 RtreeCell *aCell, 2415 int nCell, 2416 RtreeNode *pLeft, 2417 RtreeNode *pRight, 2418 RtreeCell *pBboxLeft, 2419 RtreeCell *pBboxRight 2420 ){ 2421 int **aaSorted; 2422 int *aSpare; 2423 int ii; 2424 2425 int iBestDim = 0; 2426 int iBestSplit = 0; 2427 RtreeDValue fBestMargin = RTREE_ZERO; 2428 2429 sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); 2430 2431 aaSorted = (int **)sqlite3_malloc64(nByte); 2432 if( !aaSorted ){ 2433 return SQLITE_NOMEM; 2434 } 2435 2436 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; 2437 memset(aaSorted, 0, nByte); 2438 for(ii=0; ii<pRtree->nDim; ii++){ 2439 int jj; 2440 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; 2441 for(jj=0; jj<nCell; jj++){ 2442 aaSorted[ii][jj] = jj; 2443 } 2444 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); 2445 } 2446 2447 for(ii=0; ii<pRtree->nDim; ii++){ 2448 RtreeDValue margin = RTREE_ZERO; 2449 RtreeDValue fBestOverlap = RTREE_ZERO; 2450 RtreeDValue fBestArea = RTREE_ZERO; 2451 int iBestLeft = 0; 2452 int nLeft; 2453 2454 for( 2455 nLeft=RTREE_MINCELLS(pRtree); 2456 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 2457 nLeft++ 2458 ){ 2459 RtreeCell left; 2460 RtreeCell right; 2461 int kk; 2462 RtreeDValue overlap; 2463 RtreeDValue area; 2464 2465 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); 2466 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); 2467 for(kk=1; kk<(nCell-1); kk++){ 2468 if( kk<nLeft ){ 2469 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); 2470 }else{ 2471 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); 2472 } 2473 } 2474 margin += cellMargin(pRtree, &left); 2475 margin += cellMargin(pRtree, &right); 2476 overlap = cellOverlap(pRtree, &left, &right, 1); 2477 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); 2478 if( (nLeft==RTREE_MINCELLS(pRtree)) 2479 || (overlap<fBestOverlap) 2480 || (overlap==fBestOverlap && area<fBestArea) 2481 ){ 2482 iBestLeft = nLeft; 2483 fBestOverlap = overlap; 2484 fBestArea = area; 2485 } 2486 } 2487 2488 if( ii==0 || margin<fBestMargin ){ 2489 iBestDim = ii; 2490 fBestMargin = margin; 2491 iBestSplit = iBestLeft; 2492 } 2493 } 2494 2495 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); 2496 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); 2497 for(ii=0; ii<nCell; ii++){ 2498 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; 2499 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; 2500 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; 2501 nodeInsertCell(pRtree, pTarget, pCell); 2502 cellUnion(pRtree, pBbox, pCell); 2503 } 2504 2505 sqlite3_free(aaSorted); 2506 return SQLITE_OK; 2507 } 2508 2509 2510 static int updateMapping( 2511 Rtree *pRtree, 2512 i64 iRowid, 2513 RtreeNode *pNode, 2514 int iHeight 2515 ){ 2516 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); 2517 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); 2518 if( iHeight>0 ){ 2519 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); 2520 if( pChild ){ 2521 nodeRelease(pRtree, pChild->pParent); 2522 nodeReference(pNode); 2523 pChild->pParent = pNode; 2524 } 2525 } 2526 return xSetMapping(pRtree, iRowid, pNode->iNode); 2527 } 2528 2529 static int SplitNode( 2530 Rtree *pRtree, 2531 RtreeNode *pNode, 2532 RtreeCell *pCell, 2533 int iHeight 2534 ){ 2535 int i; 2536 int newCellIsRight = 0; 2537 2538 int rc = SQLITE_OK; 2539 int nCell = NCELL(pNode); 2540 RtreeCell *aCell; 2541 int *aiUsed; 2542 2543 RtreeNode *pLeft = 0; 2544 RtreeNode *pRight = 0; 2545 2546 RtreeCell leftbbox; 2547 RtreeCell rightbbox; 2548 2549 /* Allocate an array and populate it with a copy of pCell and 2550 ** all cells from node pLeft. Then zero the original node. 2551 */ 2552 aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); 2553 if( !aCell ){ 2554 rc = SQLITE_NOMEM; 2555 goto splitnode_out; 2556 } 2557 aiUsed = (int *)&aCell[nCell+1]; 2558 memset(aiUsed, 0, sizeof(int)*(nCell+1)); 2559 for(i=0; i<nCell; i++){ 2560 nodeGetCell(pRtree, pNode, i, &aCell[i]); 2561 } 2562 nodeZero(pRtree, pNode); 2563 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); 2564 nCell++; 2565 2566 if( pNode->iNode==1 ){ 2567 pRight = nodeNew(pRtree, pNode); 2568 pLeft = nodeNew(pRtree, pNode); 2569 pRtree->iDepth++; 2570 pNode->isDirty = 1; 2571 writeInt16(pNode->zData, pRtree->iDepth); 2572 }else{ 2573 pLeft = pNode; 2574 pRight = nodeNew(pRtree, pLeft->pParent); 2575 pLeft->nRef++; 2576 } 2577 2578 if( !pLeft || !pRight ){ 2579 rc = SQLITE_NOMEM; 2580 goto splitnode_out; 2581 } 2582 2583 memset(pLeft->zData, 0, pRtree->iNodeSize); 2584 memset(pRight->zData, 0, pRtree->iNodeSize); 2585 2586 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, 2587 &leftbbox, &rightbbox); 2588 if( rc!=SQLITE_OK ){ 2589 goto splitnode_out; 2590 } 2591 2592 /* Ensure both child nodes have node numbers assigned to them by calling 2593 ** nodeWrite(). Node pRight always needs a node number, as it was created 2594 ** by nodeNew() above. But node pLeft sometimes already has a node number. 2595 ** In this case avoid the all to nodeWrite(). 2596 */ 2597 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) 2598 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) 2599 ){ 2600 goto splitnode_out; 2601 } 2602 2603 rightbbox.iRowid = pRight->iNode; 2604 leftbbox.iRowid = pLeft->iNode; 2605 2606 if( pNode->iNode==1 ){ 2607 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); 2608 if( rc!=SQLITE_OK ){ 2609 goto splitnode_out; 2610 } 2611 }else{ 2612 RtreeNode *pParent = pLeft->pParent; 2613 int iCell; 2614 rc = nodeParentIndex(pRtree, pLeft, &iCell); 2615 if( rc==SQLITE_OK ){ 2616 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); 2617 rc = AdjustTree(pRtree, pParent, &leftbbox); 2618 } 2619 if( rc!=SQLITE_OK ){ 2620 goto splitnode_out; 2621 } 2622 } 2623 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ 2624 goto splitnode_out; 2625 } 2626 2627 for(i=0; i<NCELL(pRight); i++){ 2628 i64 iRowid = nodeGetRowid(pRtree, pRight, i); 2629 rc = updateMapping(pRtree, iRowid, pRight, iHeight); 2630 if( iRowid==pCell->iRowid ){ 2631 newCellIsRight = 1; 2632 } 2633 if( rc!=SQLITE_OK ){ 2634 goto splitnode_out; 2635 } 2636 } 2637 if( pNode->iNode==1 ){ 2638 for(i=0; i<NCELL(pLeft); i++){ 2639 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); 2640 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); 2641 if( rc!=SQLITE_OK ){ 2642 goto splitnode_out; 2643 } 2644 } 2645 }else if( newCellIsRight==0 ){ 2646 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); 2647 } 2648 2649 if( rc==SQLITE_OK ){ 2650 rc = nodeRelease(pRtree, pRight); 2651 pRight = 0; 2652 } 2653 if( rc==SQLITE_OK ){ 2654 rc = nodeRelease(pRtree, pLeft); 2655 pLeft = 0; 2656 } 2657 2658 splitnode_out: 2659 nodeRelease(pRtree, pRight); 2660 nodeRelease(pRtree, pLeft); 2661 sqlite3_free(aCell); 2662 return rc; 2663 } 2664 2665 /* 2666 ** If node pLeaf is not the root of the r-tree and its pParent pointer is 2667 ** still NULL, load all ancestor nodes of pLeaf into memory and populate 2668 ** the pLeaf->pParent chain all the way up to the root node. 2669 ** 2670 ** This operation is required when a row is deleted (or updated - an update 2671 ** is implemented as a delete followed by an insert). SQLite provides the 2672 ** rowid of the row to delete, which can be used to find the leaf on which 2673 ** the entry resides (argument pLeaf). Once the leaf is located, this 2674 ** function is called to determine its ancestry. 2675 */ 2676 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ 2677 int rc = SQLITE_OK; 2678 RtreeNode *pChild = pLeaf; 2679 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ 2680 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ 2681 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); 2682 rc = sqlite3_step(pRtree->pReadParent); 2683 if( rc==SQLITE_ROW ){ 2684 RtreeNode *pTest; /* Used to test for reference loops */ 2685 i64 iNode; /* Node number of parent node */ 2686 2687 /* Before setting pChild->pParent, test that we are not creating a 2688 ** loop of references (as we would if, say, pChild==pParent). We don't 2689 ** want to do this as it leads to a memory leak when trying to delete 2690 ** the referenced counted node structures. 2691 */ 2692 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); 2693 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); 2694 if( !pTest ){ 2695 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); 2696 } 2697 } 2698 rc = sqlite3_reset(pRtree->pReadParent); 2699 if( rc==SQLITE_OK ) rc = rc2; 2700 if( rc==SQLITE_OK && !pChild->pParent ){ 2701 RTREE_IS_CORRUPT(pRtree); 2702 rc = SQLITE_CORRUPT_VTAB; 2703 } 2704 pChild = pChild->pParent; 2705 } 2706 return rc; 2707 } 2708 2709 static int deleteCell(Rtree *, RtreeNode *, int, int); 2710 2711 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ 2712 int rc; 2713 int rc2; 2714 RtreeNode *pParent = 0; 2715 int iCell; 2716 2717 assert( pNode->nRef==1 ); 2718 2719 /* Remove the entry in the parent cell. */ 2720 rc = nodeParentIndex(pRtree, pNode, &iCell); 2721 if( rc==SQLITE_OK ){ 2722 pParent = pNode->pParent; 2723 pNode->pParent = 0; 2724 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); 2725 } 2726 rc2 = nodeRelease(pRtree, pParent); 2727 if( rc==SQLITE_OK ){ 2728 rc = rc2; 2729 } 2730 if( rc!=SQLITE_OK ){ 2731 return rc; 2732 } 2733 2734 /* Remove the xxx_node entry. */ 2735 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); 2736 sqlite3_step(pRtree->pDeleteNode); 2737 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ 2738 return rc; 2739 } 2740 2741 /* Remove the xxx_parent entry. */ 2742 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); 2743 sqlite3_step(pRtree->pDeleteParent); 2744 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ 2745 return rc; 2746 } 2747 2748 /* Remove the node from the in-memory hash table and link it into 2749 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. 2750 */ 2751 nodeHashDelete(pRtree, pNode); 2752 pNode->iNode = iHeight; 2753 pNode->pNext = pRtree->pDeleted; 2754 pNode->nRef++; 2755 pRtree->pDeleted = pNode; 2756 2757 return SQLITE_OK; 2758 } 2759 2760 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ 2761 RtreeNode *pParent = pNode->pParent; 2762 int rc = SQLITE_OK; 2763 if( pParent ){ 2764 int ii; 2765 int nCell = NCELL(pNode); 2766 RtreeCell box; /* Bounding box for pNode */ 2767 nodeGetCell(pRtree, pNode, 0, &box); 2768 for(ii=1; ii<nCell; ii++){ 2769 RtreeCell cell; 2770 nodeGetCell(pRtree, pNode, ii, &cell); 2771 cellUnion(pRtree, &box, &cell); 2772 } 2773 box.iRowid = pNode->iNode; 2774 rc = nodeParentIndex(pRtree, pNode, &ii); 2775 if( rc==SQLITE_OK ){ 2776 nodeOverwriteCell(pRtree, pParent, &box, ii); 2777 rc = fixBoundingBox(pRtree, pParent); 2778 } 2779 } 2780 return rc; 2781 } 2782 2783 /* 2784 ** Delete the cell at index iCell of node pNode. After removing the 2785 ** cell, adjust the r-tree data structure if required. 2786 */ 2787 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ 2788 RtreeNode *pParent; 2789 int rc; 2790 2791 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ 2792 return rc; 2793 } 2794 2795 /* Remove the cell from the node. This call just moves bytes around 2796 ** the in-memory node image, so it cannot fail. 2797 */ 2798 nodeDeleteCell(pRtree, pNode, iCell); 2799 2800 /* If the node is not the tree root and now has less than the minimum 2801 ** number of cells, remove it from the tree. Otherwise, update the 2802 ** cell in the parent node so that it tightly contains the updated 2803 ** node. 2804 */ 2805 pParent = pNode->pParent; 2806 assert( pParent || pNode->iNode==1 ); 2807 if( pParent ){ 2808 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ 2809 rc = removeNode(pRtree, pNode, iHeight); 2810 }else{ 2811 rc = fixBoundingBox(pRtree, pNode); 2812 } 2813 } 2814 2815 return rc; 2816 } 2817 2818 static int Reinsert( 2819 Rtree *pRtree, 2820 RtreeNode *pNode, 2821 RtreeCell *pCell, 2822 int iHeight 2823 ){ 2824 int *aOrder; 2825 int *aSpare; 2826 RtreeCell *aCell; 2827 RtreeDValue *aDistance; 2828 int nCell; 2829 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; 2830 int iDim; 2831 int ii; 2832 int rc = SQLITE_OK; 2833 int n; 2834 2835 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); 2836 2837 nCell = NCELL(pNode)+1; 2838 n = (nCell+1)&(~1); 2839 2840 /* Allocate the buffers used by this operation. The allocation is 2841 ** relinquished before this function returns. 2842 */ 2843 aCell = (RtreeCell *)sqlite3_malloc64(n * ( 2844 sizeof(RtreeCell) + /* aCell array */ 2845 sizeof(int) + /* aOrder array */ 2846 sizeof(int) + /* aSpare array */ 2847 sizeof(RtreeDValue) /* aDistance array */ 2848 )); 2849 if( !aCell ){ 2850 return SQLITE_NOMEM; 2851 } 2852 aOrder = (int *)&aCell[n]; 2853 aSpare = (int *)&aOrder[n]; 2854 aDistance = (RtreeDValue *)&aSpare[n]; 2855 2856 for(ii=0; ii<nCell; ii++){ 2857 if( ii==(nCell-1) ){ 2858 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); 2859 }else{ 2860 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); 2861 } 2862 aOrder[ii] = ii; 2863 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2864 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); 2865 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); 2866 } 2867 } 2868 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2869 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); 2870 } 2871 2872 for(ii=0; ii<nCell; ii++){ 2873 aDistance[ii] = RTREE_ZERO; 2874 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2875 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 2876 DCOORD(aCell[ii].aCoord[iDim*2])); 2877 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); 2878 } 2879 } 2880 2881 SortByDistance(aOrder, nCell, aDistance, aSpare); 2882 nodeZero(pRtree, pNode); 2883 2884 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ 2885 RtreeCell *p = &aCell[aOrder[ii]]; 2886 nodeInsertCell(pRtree, pNode, p); 2887 if( p->iRowid==pCell->iRowid ){ 2888 if( iHeight==0 ){ 2889 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); 2890 }else{ 2891 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); 2892 } 2893 } 2894 } 2895 if( rc==SQLITE_OK ){ 2896 rc = fixBoundingBox(pRtree, pNode); 2897 } 2898 for(; rc==SQLITE_OK && ii<nCell; ii++){ 2899 /* Find a node to store this cell in. pNode->iNode currently contains 2900 ** the height of the sub-tree headed by the cell. 2901 */ 2902 RtreeNode *pInsert; 2903 RtreeCell *p = &aCell[aOrder[ii]]; 2904 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); 2905 if( rc==SQLITE_OK ){ 2906 int rc2; 2907 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); 2908 rc2 = nodeRelease(pRtree, pInsert); 2909 if( rc==SQLITE_OK ){ 2910 rc = rc2; 2911 } 2912 } 2913 } 2914 2915 sqlite3_free(aCell); 2916 return rc; 2917 } 2918 2919 /* 2920 ** Insert cell pCell into node pNode. Node pNode is the head of a 2921 ** subtree iHeight high (leaf nodes have iHeight==0). 2922 */ 2923 static int rtreeInsertCell( 2924 Rtree *pRtree, 2925 RtreeNode *pNode, 2926 RtreeCell *pCell, 2927 int iHeight 2928 ){ 2929 int rc = SQLITE_OK; 2930 if( iHeight>0 ){ 2931 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); 2932 if( pChild ){ 2933 nodeRelease(pRtree, pChild->pParent); 2934 nodeReference(pNode); 2935 pChild->pParent = pNode; 2936 } 2937 } 2938 if( nodeInsertCell(pRtree, pNode, pCell) ){ 2939 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ 2940 rc = SplitNode(pRtree, pNode, pCell, iHeight); 2941 }else{ 2942 pRtree->iReinsertHeight = iHeight; 2943 rc = Reinsert(pRtree, pNode, pCell, iHeight); 2944 } 2945 }else{ 2946 rc = AdjustTree(pRtree, pNode, pCell); 2947 if( rc==SQLITE_OK ){ 2948 if( iHeight==0 ){ 2949 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); 2950 }else{ 2951 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); 2952 } 2953 } 2954 } 2955 return rc; 2956 } 2957 2958 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ 2959 int ii; 2960 int rc = SQLITE_OK; 2961 int nCell = NCELL(pNode); 2962 2963 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ 2964 RtreeNode *pInsert; 2965 RtreeCell cell; 2966 nodeGetCell(pRtree, pNode, ii, &cell); 2967 2968 /* Find a node to store this cell in. pNode->iNode currently contains 2969 ** the height of the sub-tree headed by the cell. 2970 */ 2971 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); 2972 if( rc==SQLITE_OK ){ 2973 int rc2; 2974 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); 2975 rc2 = nodeRelease(pRtree, pInsert); 2976 if( rc==SQLITE_OK ){ 2977 rc = rc2; 2978 } 2979 } 2980 } 2981 return rc; 2982 } 2983 2984 /* 2985 ** Select a currently unused rowid for a new r-tree record. 2986 */ 2987 static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ 2988 int rc; 2989 sqlite3_bind_null(pRtree->pWriteRowid, 1); 2990 sqlite3_bind_null(pRtree->pWriteRowid, 2); 2991 sqlite3_step(pRtree->pWriteRowid); 2992 rc = sqlite3_reset(pRtree->pWriteRowid); 2993 *piRowid = sqlite3_last_insert_rowid(pRtree->db); 2994 return rc; 2995 } 2996 2997 /* 2998 ** Remove the entry with rowid=iDelete from the r-tree structure. 2999 */ 3000 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ 3001 int rc; /* Return code */ 3002 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ 3003 int iCell; /* Index of iDelete cell in pLeaf */ 3004 RtreeNode *pRoot = 0; /* Root node of rtree structure */ 3005 3006 3007 /* Obtain a reference to the root node to initialize Rtree.iDepth */ 3008 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 3009 3010 /* Obtain a reference to the leaf node that contains the entry 3011 ** about to be deleted. 3012 */ 3013 if( rc==SQLITE_OK ){ 3014 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); 3015 } 3016 3017 #ifdef CORRUPT_DB 3018 assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); 3019 #endif 3020 3021 /* Delete the cell in question from the leaf node. */ 3022 if( rc==SQLITE_OK && pLeaf ){ 3023 int rc2; 3024 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); 3025 if( rc==SQLITE_OK ){ 3026 rc = deleteCell(pRtree, pLeaf, iCell, 0); 3027 } 3028 rc2 = nodeRelease(pRtree, pLeaf); 3029 if( rc==SQLITE_OK ){ 3030 rc = rc2; 3031 } 3032 } 3033 3034 /* Delete the corresponding entry in the <rtree>_rowid table. */ 3035 if( rc==SQLITE_OK ){ 3036 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); 3037 sqlite3_step(pRtree->pDeleteRowid); 3038 rc = sqlite3_reset(pRtree->pDeleteRowid); 3039 } 3040 3041 /* Check if the root node now has exactly one child. If so, remove 3042 ** it, schedule the contents of the child for reinsertion and 3043 ** reduce the tree height by one. 3044 ** 3045 ** This is equivalent to copying the contents of the child into 3046 ** the root node (the operation that Gutman's paper says to perform 3047 ** in this scenario). 3048 */ 3049 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ 3050 int rc2; 3051 RtreeNode *pChild = 0; 3052 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); 3053 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); 3054 if( rc==SQLITE_OK ){ 3055 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); 3056 } 3057 rc2 = nodeRelease(pRtree, pChild); 3058 if( rc==SQLITE_OK ) rc = rc2; 3059 if( rc==SQLITE_OK ){ 3060 pRtree->iDepth--; 3061 writeInt16(pRoot->zData, pRtree->iDepth); 3062 pRoot->isDirty = 1; 3063 } 3064 } 3065 3066 /* Re-insert the contents of any underfull nodes removed from the tree. */ 3067 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ 3068 if( rc==SQLITE_OK ){ 3069 rc = reinsertNodeContent(pRtree, pLeaf); 3070 } 3071 pRtree->pDeleted = pLeaf->pNext; 3072 pRtree->nNodeRef--; 3073 sqlite3_free(pLeaf); 3074 } 3075 3076 /* Release the reference to the root node. */ 3077 if( rc==SQLITE_OK ){ 3078 rc = nodeRelease(pRtree, pRoot); 3079 }else{ 3080 nodeRelease(pRtree, pRoot); 3081 } 3082 3083 return rc; 3084 } 3085 3086 /* 3087 ** Rounding constants for float->double conversion. 3088 */ 3089 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ 3090 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ 3091 3092 #if !defined(SQLITE_RTREE_INT_ONLY) 3093 /* 3094 ** Convert an sqlite3_value into an RtreeValue (presumably a float) 3095 ** while taking care to round toward negative or positive, respectively. 3096 */ 3097 static RtreeValue rtreeValueDown(sqlite3_value *v){ 3098 double d = sqlite3_value_double(v); 3099 float f = (float)d; 3100 if( f>d ){ 3101 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); 3102 } 3103 return f; 3104 } 3105 static RtreeValue rtreeValueUp(sqlite3_value *v){ 3106 double d = sqlite3_value_double(v); 3107 float f = (float)d; 3108 if( f<d ){ 3109 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); 3110 } 3111 return f; 3112 } 3113 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */ 3114 3115 /* 3116 ** A constraint has failed while inserting a row into an rtree table. 3117 ** Assuming no OOM error occurs, this function sets the error message 3118 ** (at pRtree->base.zErrMsg) to an appropriate value and returns 3119 ** SQLITE_CONSTRAINT. 3120 ** 3121 ** Parameter iCol is the index of the leftmost column involved in the 3122 ** constraint failure. If it is 0, then the constraint that failed is 3123 ** the unique constraint on the id column. Otherwise, it is the rtree 3124 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. 3125 ** 3126 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. 3127 */ 3128 static int rtreeConstraintError(Rtree *pRtree, int iCol){ 3129 sqlite3_stmt *pStmt = 0; 3130 char *zSql; 3131 int rc; 3132 3133 assert( iCol==0 || iCol%2 ); 3134 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); 3135 if( zSql ){ 3136 rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); 3137 }else{ 3138 rc = SQLITE_NOMEM; 3139 } 3140 sqlite3_free(zSql); 3141 3142 if( rc==SQLITE_OK ){ 3143 if( iCol==0 ){ 3144 const char *zCol = sqlite3_column_name(pStmt, 0); 3145 pRtree->base.zErrMsg = sqlite3_mprintf( 3146 "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol 3147 ); 3148 }else{ 3149 const char *zCol1 = sqlite3_column_name(pStmt, iCol); 3150 const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); 3151 pRtree->base.zErrMsg = sqlite3_mprintf( 3152 "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 3153 ); 3154 } 3155 } 3156 3157 sqlite3_finalize(pStmt); 3158 return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); 3159 } 3160 3161 3162 3163 /* 3164 ** The xUpdate method for rtree module virtual tables. 3165 */ 3166 static int rtreeUpdate( 3167 sqlite3_vtab *pVtab, 3168 int nData, 3169 sqlite3_value **aData, 3170 sqlite_int64 *pRowid 3171 ){ 3172 Rtree *pRtree = (Rtree *)pVtab; 3173 int rc = SQLITE_OK; 3174 RtreeCell cell; /* New cell to insert if nData>1 */ 3175 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ 3176 3177 if( pRtree->nNodeRef ){ 3178 /* Unable to write to the btree while another cursor is reading from it, 3179 ** since the write might do a rebalance which would disrupt the read 3180 ** cursor. */ 3181 return SQLITE_LOCKED_VTAB; 3182 } 3183 rtreeReference(pRtree); 3184 assert(nData>=1); 3185 3186 cell.iRowid = 0; /* Used only to suppress a compiler warning */ 3187 3188 /* Constraint handling. A write operation on an r-tree table may return 3189 ** SQLITE_CONSTRAINT for two reasons: 3190 ** 3191 ** 1. A duplicate rowid value, or 3192 ** 2. The supplied data violates the "x2>=x1" constraint. 3193 ** 3194 ** In the first case, if the conflict-handling mode is REPLACE, then 3195 ** the conflicting row can be removed before proceeding. In the second 3196 ** case, SQLITE_CONSTRAINT must be returned regardless of the 3197 ** conflict-handling mode specified by the user. 3198 */ 3199 if( nData>1 ){ 3200 int ii; 3201 int nn = nData - 4; 3202 3203 if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; 3204 /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. 3205 ** 3206 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared 3207 ** with "column" that are interpreted as table constraints. 3208 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); 3209 ** This problem was discovered after years of use, so we silently ignore 3210 ** these kinds of misdeclared tables to avoid breaking any legacy. 3211 */ 3212 3213 #ifndef SQLITE_RTREE_INT_ONLY 3214 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 3215 for(ii=0; ii<nn; ii+=2){ 3216 cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]); 3217 cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]); 3218 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ 3219 rc = rtreeConstraintError(pRtree, ii+1); 3220 goto constraint; 3221 } 3222 } 3223 }else 3224 #endif 3225 { 3226 for(ii=0; ii<nn; ii+=2){ 3227 cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]); 3228 cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]); 3229 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ 3230 rc = rtreeConstraintError(pRtree, ii+1); 3231 goto constraint; 3232 } 3233 } 3234 } 3235 3236 /* If a rowid value was supplied, check if it is already present in 3237 ** the table. If so, the constraint has failed. */ 3238 if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ 3239 cell.iRowid = sqlite3_value_int64(aData[2]); 3240 if( sqlite3_value_type(aData[0])==SQLITE_NULL 3241 || sqlite3_value_int64(aData[0])!=cell.iRowid 3242 ){ 3243 int steprc; 3244 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); 3245 steprc = sqlite3_step(pRtree->pReadRowid); 3246 rc = sqlite3_reset(pRtree->pReadRowid); 3247 if( SQLITE_ROW==steprc ){ 3248 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ 3249 rc = rtreeDeleteRowid(pRtree, cell.iRowid); 3250 }else{ 3251 rc = rtreeConstraintError(pRtree, 0); 3252 goto constraint; 3253 } 3254 } 3255 } 3256 bHaveRowid = 1; 3257 } 3258 } 3259 3260 /* If aData[0] is not an SQL NULL value, it is the rowid of a 3261 ** record to delete from the r-tree table. The following block does 3262 ** just that. 3263 */ 3264 if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ 3265 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); 3266 } 3267 3268 /* If the aData[] array contains more than one element, elements 3269 ** (aData[2]..aData[argc-1]) contain a new record to insert into 3270 ** the r-tree structure. 3271 */ 3272 if( rc==SQLITE_OK && nData>1 ){ 3273 /* Insert the new record into the r-tree */ 3274 RtreeNode *pLeaf = 0; 3275 3276 /* Figure out the rowid of the new row. */ 3277 if( bHaveRowid==0 ){ 3278 rc = rtreeNewRowid(pRtree, &cell.iRowid); 3279 } 3280 *pRowid = cell.iRowid; 3281 3282 if( rc==SQLITE_OK ){ 3283 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); 3284 } 3285 if( rc==SQLITE_OK ){ 3286 int rc2; 3287 pRtree->iReinsertHeight = -1; 3288 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); 3289 rc2 = nodeRelease(pRtree, pLeaf); 3290 if( rc==SQLITE_OK ){ 3291 rc = rc2; 3292 } 3293 } 3294 if( rc==SQLITE_OK && pRtree->nAux ){ 3295 sqlite3_stmt *pUp = pRtree->pWriteAux; 3296 int jj; 3297 sqlite3_bind_int64(pUp, 1, *pRowid); 3298 for(jj=0; jj<pRtree->nAux; jj++){ 3299 sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); 3300 } 3301 sqlite3_step(pUp); 3302 rc = sqlite3_reset(pUp); 3303 } 3304 } 3305 3306 constraint: 3307 rtreeRelease(pRtree); 3308 return rc; 3309 } 3310 3311 /* 3312 ** Called when a transaction starts. 3313 */ 3314 static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ 3315 Rtree *pRtree = (Rtree *)pVtab; 3316 assert( pRtree->inWrTrans==0 ); 3317 pRtree->inWrTrans++; 3318 return SQLITE_OK; 3319 } 3320 3321 /* 3322 ** Called when a transaction completes (either by COMMIT or ROLLBACK). 3323 ** The sqlite3_blob object should be released at this point. 3324 */ 3325 static int rtreeEndTransaction(sqlite3_vtab *pVtab){ 3326 Rtree *pRtree = (Rtree *)pVtab; 3327 pRtree->inWrTrans = 0; 3328 nodeBlobReset(pRtree); 3329 return SQLITE_OK; 3330 } 3331 3332 /* 3333 ** The xRename method for rtree module virtual tables. 3334 */ 3335 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ 3336 Rtree *pRtree = (Rtree *)pVtab; 3337 int rc = SQLITE_NOMEM; 3338 char *zSql = sqlite3_mprintf( 3339 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" 3340 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" 3341 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" 3342 , pRtree->zDb, pRtree->zName, zNewName 3343 , pRtree->zDb, pRtree->zName, zNewName 3344 , pRtree->zDb, pRtree->zName, zNewName 3345 ); 3346 if( zSql ){ 3347 nodeBlobReset(pRtree); 3348 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); 3349 sqlite3_free(zSql); 3350 } 3351 return rc; 3352 } 3353 3354 /* 3355 ** The xSavepoint method. 3356 ** 3357 ** This module does not need to do anything to support savepoints. However, 3358 ** it uses this hook to close any open blob handle. This is done because a 3359 ** DROP TABLE command - which fortunately always opens a savepoint - cannot 3360 ** succeed if there are any open blob handles. i.e. if the blob handle were 3361 ** not closed here, the following would fail: 3362 ** 3363 ** BEGIN; 3364 ** INSERT INTO rtree... 3365 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED 3366 ** COMMIT; 3367 */ 3368 static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ 3369 Rtree *pRtree = (Rtree *)pVtab; 3370 u8 iwt = pRtree->inWrTrans; 3371 UNUSED_PARAMETER(iSavepoint); 3372 pRtree->inWrTrans = 0; 3373 nodeBlobReset(pRtree); 3374 pRtree->inWrTrans = iwt; 3375 return SQLITE_OK; 3376 } 3377 3378 /* 3379 ** This function populates the pRtree->nRowEst variable with an estimate 3380 ** of the number of rows in the virtual table. If possible, this is based 3381 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. 3382 */ 3383 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ 3384 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; 3385 char *zSql; 3386 sqlite3_stmt *p; 3387 int rc; 3388 i64 nRow = 0; 3389 3390 rc = sqlite3_table_column_metadata( 3391 db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 3392 ); 3393 if( rc!=SQLITE_OK ){ 3394 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; 3395 return rc==SQLITE_ERROR ? SQLITE_OK : rc; 3396 } 3397 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); 3398 if( zSql==0 ){ 3399 rc = SQLITE_NOMEM; 3400 }else{ 3401 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); 3402 if( rc==SQLITE_OK ){ 3403 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); 3404 rc = sqlite3_finalize(p); 3405 }else if( rc!=SQLITE_NOMEM ){ 3406 rc = SQLITE_OK; 3407 } 3408 3409 if( rc==SQLITE_OK ){ 3410 if( nRow==0 ){ 3411 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; 3412 }else{ 3413 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); 3414 } 3415 } 3416 sqlite3_free(zSql); 3417 } 3418 3419 return rc; 3420 } 3421 3422 3423 /* 3424 ** Return true if zName is the extension on one of the shadow tables used 3425 ** by this module. 3426 */ 3427 static int rtreeShadowName(const char *zName){ 3428 static const char *azName[] = { 3429 "node", "parent", "rowid" 3430 }; 3431 unsigned int i; 3432 for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ 3433 if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; 3434 } 3435 return 0; 3436 } 3437 3438 static sqlite3_module rtreeModule = { 3439 3, /* iVersion */ 3440 rtreeCreate, /* xCreate - create a table */ 3441 rtreeConnect, /* xConnect - connect to an existing table */ 3442 rtreeBestIndex, /* xBestIndex - Determine search strategy */ 3443 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ 3444 rtreeDestroy, /* xDestroy - Drop a table */ 3445 rtreeOpen, /* xOpen - open a cursor */ 3446 rtreeClose, /* xClose - close a cursor */ 3447 rtreeFilter, /* xFilter - configure scan constraints */ 3448 rtreeNext, /* xNext - advance a cursor */ 3449 rtreeEof, /* xEof */ 3450 rtreeColumn, /* xColumn - read data */ 3451 rtreeRowid, /* xRowid - read data */ 3452 rtreeUpdate, /* xUpdate - write data */ 3453 rtreeBeginTransaction, /* xBegin - begin transaction */ 3454 rtreeEndTransaction, /* xSync - sync transaction */ 3455 rtreeEndTransaction, /* xCommit - commit transaction */ 3456 rtreeEndTransaction, /* xRollback - rollback transaction */ 3457 0, /* xFindFunction - function overloading */ 3458 rtreeRename, /* xRename - rename the table */ 3459 rtreeSavepoint, /* xSavepoint */ 3460 0, /* xRelease */ 3461 0, /* xRollbackTo */ 3462 rtreeShadowName /* xShadowName */ 3463 }; 3464 3465 static int rtreeSqlInit( 3466 Rtree *pRtree, 3467 sqlite3 *db, 3468 const char *zDb, 3469 const char *zPrefix, 3470 int isCreate 3471 ){ 3472 int rc = SQLITE_OK; 3473 3474 #define N_STATEMENT 8 3475 static const char *azSql[N_STATEMENT] = { 3476 /* Write the xxx_node table */ 3477 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)", 3478 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1", 3479 3480 /* Read and write the xxx_rowid table */ 3481 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3482 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)", 3483 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3484 3485 /* Read and write the xxx_parent table */ 3486 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1", 3487 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)", 3488 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1" 3489 }; 3490 sqlite3_stmt **appStmt[N_STATEMENT]; 3491 int i; 3492 const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; 3493 3494 pRtree->db = db; 3495 3496 if( isCreate ){ 3497 char *zCreate; 3498 sqlite3_str *p = sqlite3_str_new(db); 3499 int ii; 3500 sqlite3_str_appendf(p, 3501 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", 3502 zDb, zPrefix); 3503 for(ii=0; ii<pRtree->nAux; ii++){ 3504 sqlite3_str_appendf(p,",a%d",ii); 3505 } 3506 sqlite3_str_appendf(p, 3507 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", 3508 zDb, zPrefix); 3509 sqlite3_str_appendf(p, 3510 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", 3511 zDb, zPrefix); 3512 sqlite3_str_appendf(p, 3513 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", 3514 zDb, zPrefix, pRtree->iNodeSize); 3515 zCreate = sqlite3_str_finish(p); 3516 if( !zCreate ){ 3517 return SQLITE_NOMEM; 3518 } 3519 rc = sqlite3_exec(db, zCreate, 0, 0, 0); 3520 sqlite3_free(zCreate); 3521 if( rc!=SQLITE_OK ){ 3522 return rc; 3523 } 3524 } 3525 3526 appStmt[0] = &pRtree->pWriteNode; 3527 appStmt[1] = &pRtree->pDeleteNode; 3528 appStmt[2] = &pRtree->pReadRowid; 3529 appStmt[3] = &pRtree->pWriteRowid; 3530 appStmt[4] = &pRtree->pDeleteRowid; 3531 appStmt[5] = &pRtree->pReadParent; 3532 appStmt[6] = &pRtree->pWriteParent; 3533 appStmt[7] = &pRtree->pDeleteParent; 3534 3535 rc = rtreeQueryStat1(db, pRtree); 3536 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ 3537 char *zSql; 3538 const char *zFormat; 3539 if( i!=3 || pRtree->nAux==0 ){ 3540 zFormat = azSql[i]; 3541 }else { 3542 /* An UPSERT is very slightly slower than REPLACE, but it is needed 3543 ** if there are auxiliary columns */ 3544 zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" 3545 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; 3546 } 3547 zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); 3548 if( zSql ){ 3549 rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); 3550 }else{ 3551 rc = SQLITE_NOMEM; 3552 } 3553 sqlite3_free(zSql); 3554 } 3555 if( pRtree->nAux ){ 3556 pRtree->zReadAuxSql = sqlite3_mprintf( 3557 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", 3558 zDb, zPrefix); 3559 if( pRtree->zReadAuxSql==0 ){ 3560 rc = SQLITE_NOMEM; 3561 }else{ 3562 sqlite3_str *p = sqlite3_str_new(db); 3563 int ii; 3564 char *zSql; 3565 sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); 3566 for(ii=0; ii<pRtree->nAux; ii++){ 3567 if( ii ) sqlite3_str_append(p, ",", 1); 3568 if( ii<pRtree->nAuxNotNull ){ 3569 sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); 3570 }else{ 3571 sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); 3572 } 3573 } 3574 sqlite3_str_appendf(p, " WHERE rowid=?1"); 3575 zSql = sqlite3_str_finish(p); 3576 if( zSql==0 ){ 3577 rc = SQLITE_NOMEM; 3578 }else{ 3579 rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); 3580 sqlite3_free(zSql); 3581 } 3582 } 3583 } 3584 3585 return rc; 3586 } 3587 3588 /* 3589 ** The second argument to this function contains the text of an SQL statement 3590 ** that returns a single integer value. The statement is compiled and executed 3591 ** using database connection db. If successful, the integer value returned 3592 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error 3593 ** code is returned and the value of *piVal after returning is not defined. 3594 */ 3595 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ 3596 int rc = SQLITE_NOMEM; 3597 if( zSql ){ 3598 sqlite3_stmt *pStmt = 0; 3599 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 3600 if( rc==SQLITE_OK ){ 3601 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3602 *piVal = sqlite3_column_int(pStmt, 0); 3603 } 3604 rc = sqlite3_finalize(pStmt); 3605 } 3606 } 3607 return rc; 3608 } 3609 3610 /* 3611 ** This function is called from within the xConnect() or xCreate() method to 3612 ** determine the node-size used by the rtree table being created or connected 3613 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. 3614 ** Otherwise, an SQLite error code is returned. 3615 ** 3616 ** If this function is being called as part of an xConnect(), then the rtree 3617 ** table already exists. In this case the node-size is determined by inspecting 3618 ** the root node of the tree. 3619 ** 3620 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 3621 ** This ensures that each node is stored on a single database page. If the 3622 ** database page-size is so large that more than RTREE_MAXCELLS entries 3623 ** would fit in a single node, use a smaller node-size. 3624 */ 3625 static int getNodeSize( 3626 sqlite3 *db, /* Database handle */ 3627 Rtree *pRtree, /* Rtree handle */ 3628 int isCreate, /* True for xCreate, false for xConnect */ 3629 char **pzErr /* OUT: Error message, if any */ 3630 ){ 3631 int rc; 3632 char *zSql; 3633 if( isCreate ){ 3634 int iPageSize = 0; 3635 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); 3636 rc = getIntFromStmt(db, zSql, &iPageSize); 3637 if( rc==SQLITE_OK ){ 3638 pRtree->iNodeSize = iPageSize-64; 3639 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ 3640 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; 3641 } 3642 }else{ 3643 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3644 } 3645 }else{ 3646 zSql = sqlite3_mprintf( 3647 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", 3648 pRtree->zDb, pRtree->zName 3649 ); 3650 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); 3651 if( rc!=SQLITE_OK ){ 3652 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3653 }else if( pRtree->iNodeSize<(512-64) ){ 3654 rc = SQLITE_CORRUPT_VTAB; 3655 RTREE_IS_CORRUPT(pRtree); 3656 *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", 3657 pRtree->zName); 3658 } 3659 } 3660 3661 sqlite3_free(zSql); 3662 return rc; 3663 } 3664 3665 /* 3666 ** Return the length of a token 3667 */ 3668 static int rtreeTokenLength(const char *z){ 3669 int dummy = 0; 3670 return sqlite3GetToken((const unsigned char*)z,&dummy); 3671 } 3672 3673 /* 3674 ** This function is the implementation of both the xConnect and xCreate 3675 ** methods of the r-tree virtual table. 3676 ** 3677 ** argv[0] -> module name 3678 ** argv[1] -> database name 3679 ** argv[2] -> table name 3680 ** argv[...] -> column names... 3681 */ 3682 static int rtreeInit( 3683 sqlite3 *db, /* Database connection */ 3684 void *pAux, /* One of the RTREE_COORD_* constants */ 3685 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ 3686 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ 3687 char **pzErr, /* OUT: Error message, if any */ 3688 int isCreate /* True for xCreate, false for xConnect */ 3689 ){ 3690 int rc = SQLITE_OK; 3691 Rtree *pRtree; 3692 int nDb; /* Length of string argv[1] */ 3693 int nName; /* Length of string argv[2] */ 3694 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); 3695 sqlite3_str *pSql; 3696 char *zSql; 3697 int ii = 4; 3698 int iErr; 3699 3700 const char *aErrMsg[] = { 3701 0, /* 0 */ 3702 "Wrong number of columns for an rtree table", /* 1 */ 3703 "Too few columns for an rtree table", /* 2 */ 3704 "Too many columns for an rtree table", /* 3 */ 3705 "Auxiliary rtree columns must be last" /* 4 */ 3706 }; 3707 3708 assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ 3709 if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){ 3710 *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]); 3711 return SQLITE_ERROR; 3712 } 3713 3714 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); 3715 3716 /* Allocate the sqlite3_vtab structure */ 3717 nDb = (int)strlen(argv[1]); 3718 nName = (int)strlen(argv[2]); 3719 pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2); 3720 if( !pRtree ){ 3721 return SQLITE_NOMEM; 3722 } 3723 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); 3724 pRtree->nBusy = 1; 3725 pRtree->base.pModule = &rtreeModule; 3726 pRtree->zDb = (char *)&pRtree[1]; 3727 pRtree->zName = &pRtree->zDb[nDb+1]; 3728 pRtree->eCoordType = (u8)eCoordType; 3729 memcpy(pRtree->zDb, argv[1], nDb); 3730 memcpy(pRtree->zName, argv[2], nName); 3731 3732 3733 /* Create/Connect to the underlying relational database schema. If 3734 ** that is successful, call sqlite3_declare_vtab() to configure 3735 ** the r-tree table schema. 3736 */ 3737 pSql = sqlite3_str_new(db); 3738 sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT", 3739 rtreeTokenLength(argv[3]), argv[3]); 3740 for(ii=4; ii<argc; ii++){ 3741 const char *zArg = argv[ii]; 3742 if( zArg[0]=='+' ){ 3743 pRtree->nAux++; 3744 sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1); 3745 }else if( pRtree->nAux>0 ){ 3746 break; 3747 }else{ 3748 pRtree->nDim2++; 3749 sqlite3_str_appendf(pSql, ",%.*s NUM", rtreeTokenLength(zArg), zArg); 3750 } 3751 } 3752 sqlite3_str_appendf(pSql, ");"); 3753 zSql = sqlite3_str_finish(pSql); 3754 if( !zSql ){ 3755 rc = SQLITE_NOMEM; 3756 }else if( ii<argc ){ 3757 *pzErr = sqlite3_mprintf("%s", aErrMsg[4]); 3758 rc = SQLITE_ERROR; 3759 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ 3760 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3761 } 3762 sqlite3_free(zSql); 3763 if( rc ) goto rtreeInit_fail; 3764 pRtree->nDim = pRtree->nDim2/2; 3765 if( pRtree->nDim<1 ){ 3766 iErr = 2; 3767 }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ 3768 iErr = 3; 3769 }else if( pRtree->nDim2 % 2 ){ 3770 iErr = 1; 3771 }else{ 3772 iErr = 0; 3773 } 3774 if( iErr ){ 3775 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); 3776 goto rtreeInit_fail; 3777 } 3778 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; 3779 3780 /* Figure out the node size to use. */ 3781 rc = getNodeSize(db, pRtree, isCreate, pzErr); 3782 if( rc ) goto rtreeInit_fail; 3783 rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); 3784 if( rc ){ 3785 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3786 goto rtreeInit_fail; 3787 } 3788 3789 *ppVtab = (sqlite3_vtab *)pRtree; 3790 return SQLITE_OK; 3791 3792 rtreeInit_fail: 3793 if( rc==SQLITE_OK ) rc = SQLITE_ERROR; 3794 assert( *ppVtab==0 ); 3795 assert( pRtree->nBusy==1 ); 3796 rtreeRelease(pRtree); 3797 return rc; 3798 } 3799 3800 3801 /* 3802 ** Implementation of a scalar function that decodes r-tree nodes to 3803 ** human readable strings. This can be used for debugging and analysis. 3804 ** 3805 ** The scalar function takes two arguments: (1) the number of dimensions 3806 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing 3807 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to 3808 ** deserialize all nodes, a statement like: 3809 ** 3810 ** SELECT rtreenode(2, data) FROM rt_node; 3811 ** 3812 ** The human readable string takes the form of a Tcl list with one 3813 ** entry for each cell in the r-tree node. Each entry is itself a 3814 ** list, containing the 8-byte rowid/pageno followed by the 3815 ** <num-dimension>*2 coordinates. 3816 */ 3817 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3818 RtreeNode node; 3819 Rtree tree; 3820 int ii; 3821 int nData; 3822 int errCode; 3823 sqlite3_str *pOut; 3824 3825 UNUSED_PARAMETER(nArg); 3826 memset(&node, 0, sizeof(RtreeNode)); 3827 memset(&tree, 0, sizeof(Rtree)); 3828 tree.nDim = (u8)sqlite3_value_int(apArg[0]); 3829 if( tree.nDim<1 || tree.nDim>5 ) return; 3830 tree.nDim2 = tree.nDim*2; 3831 tree.nBytesPerCell = 8 + 8 * tree.nDim; 3832 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); 3833 nData = sqlite3_value_bytes(apArg[1]); 3834 if( nData<4 ) return; 3835 if( nData<NCELL(&node)*tree.nBytesPerCell ) return; 3836 3837 pOut = sqlite3_str_new(0); 3838 for(ii=0; ii<NCELL(&node); ii++){ 3839 RtreeCell cell; 3840 int jj; 3841 3842 nodeGetCell(&tree, &node, ii, &cell); 3843 if( ii>0 ) sqlite3_str_append(pOut, " ", 1); 3844 sqlite3_str_appendf(pOut, "{%lld", cell.iRowid); 3845 for(jj=0; jj<tree.nDim2; jj++){ 3846 #ifndef SQLITE_RTREE_INT_ONLY 3847 sqlite3_str_appendf(pOut, " %g", (double)cell.aCoord[jj].f); 3848 #else 3849 sqlite3_str_appendf(pOut, " %d", cell.aCoord[jj].i); 3850 #endif 3851 } 3852 sqlite3_str_append(pOut, "}", 1); 3853 } 3854 errCode = sqlite3_str_errcode(pOut); 3855 sqlite3_result_text(ctx, sqlite3_str_finish(pOut), -1, sqlite3_free); 3856 sqlite3_result_error_code(ctx, errCode); 3857 } 3858 3859 /* This routine implements an SQL function that returns the "depth" parameter 3860 ** from the front of a blob that is an r-tree node. For example: 3861 ** 3862 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; 3863 ** 3864 ** The depth value is 0 for all nodes other than the root node, and the root 3865 ** node always has nodeno=1, so the example above is the primary use for this 3866 ** routine. This routine is intended for testing and analysis only. 3867 */ 3868 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3869 UNUSED_PARAMETER(nArg); 3870 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 3871 || sqlite3_value_bytes(apArg[0])<2 3872 ){ 3873 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 3874 }else{ 3875 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); 3876 sqlite3_result_int(ctx, readInt16(zBlob)); 3877 } 3878 } 3879 3880 /* 3881 ** Context object passed between the various routines that make up the 3882 ** implementation of integrity-check function rtreecheck(). 3883 */ 3884 typedef struct RtreeCheck RtreeCheck; 3885 struct RtreeCheck { 3886 sqlite3 *db; /* Database handle */ 3887 const char *zDb; /* Database containing rtree table */ 3888 const char *zTab; /* Name of rtree table */ 3889 int bInt; /* True for rtree_i32 table */ 3890 int nDim; /* Number of dimensions for this rtree tbl */ 3891 sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */ 3892 sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */ 3893 int nLeaf; /* Number of leaf cells in table */ 3894 int nNonLeaf; /* Number of non-leaf cells in table */ 3895 int rc; /* Return code */ 3896 char *zReport; /* Message to report */ 3897 int nErr; /* Number of lines in zReport */ 3898 }; 3899 3900 #define RTREE_CHECK_MAX_ERROR 100 3901 3902 /* 3903 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error, 3904 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code. 3905 */ 3906 static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){ 3907 int rc = sqlite3_reset(pStmt); 3908 if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc; 3909 } 3910 3911 /* 3912 ** The second and subsequent arguments to this function are a format string 3913 ** and printf style arguments. This function formats the string and attempts 3914 ** to compile it as an SQL statement. 3915 ** 3916 ** If successful, a pointer to the new SQL statement is returned. Otherwise, 3917 ** NULL is returned and an error code left in RtreeCheck.rc. 3918 */ 3919 static sqlite3_stmt *rtreeCheckPrepare( 3920 RtreeCheck *pCheck, /* RtreeCheck object */ 3921 const char *zFmt, ... /* Format string and trailing args */ 3922 ){ 3923 va_list ap; 3924 char *z; 3925 sqlite3_stmt *pRet = 0; 3926 3927 va_start(ap, zFmt); 3928 z = sqlite3_vmprintf(zFmt, ap); 3929 3930 if( pCheck->rc==SQLITE_OK ){ 3931 if( z==0 ){ 3932 pCheck->rc = SQLITE_NOMEM; 3933 }else{ 3934 pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); 3935 } 3936 } 3937 3938 sqlite3_free(z); 3939 va_end(ap); 3940 return pRet; 3941 } 3942 3943 /* 3944 ** The second and subsequent arguments to this function are a printf() 3945 ** style format string and arguments. This function formats the string and 3946 ** appends it to the report being accumuated in pCheck. 3947 */ 3948 static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ 3949 va_list ap; 3950 va_start(ap, zFmt); 3951 if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){ 3952 char *z = sqlite3_vmprintf(zFmt, ap); 3953 if( z==0 ){ 3954 pCheck->rc = SQLITE_NOMEM; 3955 }else{ 3956 pCheck->zReport = sqlite3_mprintf("%z%s%z", 3957 pCheck->zReport, (pCheck->zReport ? "\n" : ""), z 3958 ); 3959 if( pCheck->zReport==0 ){ 3960 pCheck->rc = SQLITE_NOMEM; 3961 } 3962 } 3963 pCheck->nErr++; 3964 } 3965 va_end(ap); 3966 } 3967 3968 /* 3969 ** This function is a no-op if there is already an error code stored 3970 ** in the RtreeCheck object indicated by the first argument. NULL is 3971 ** returned in this case. 3972 ** 3973 ** Otherwise, the contents of rtree table node iNode are loaded from 3974 ** the database and copied into a buffer obtained from sqlite3_malloc(). 3975 ** If no error occurs, a pointer to the buffer is returned and (*pnNode) 3976 ** is set to the size of the buffer in bytes. 3977 ** 3978 ** Or, if an error does occur, NULL is returned and an error code left 3979 ** in the RtreeCheck object. The final value of *pnNode is undefined in 3980 ** this case. 3981 */ 3982 static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ 3983 u8 *pRet = 0; /* Return value */ 3984 3985 if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ 3986 pCheck->pGetNode = rtreeCheckPrepare(pCheck, 3987 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", 3988 pCheck->zDb, pCheck->zTab 3989 ); 3990 } 3991 3992 if( pCheck->rc==SQLITE_OK ){ 3993 sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); 3994 if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ 3995 int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); 3996 const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); 3997 pRet = sqlite3_malloc64(nNode); 3998 if( pRet==0 ){ 3999 pCheck->rc = SQLITE_NOMEM; 4000 }else{ 4001 memcpy(pRet, pNode, nNode); 4002 *pnNode = nNode; 4003 } 4004 } 4005 rtreeCheckReset(pCheck, pCheck->pGetNode); 4006 if( pCheck->rc==SQLITE_OK && pRet==0 ){ 4007 rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); 4008 } 4009 } 4010 4011 return pRet; 4012 } 4013 4014 /* 4015 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid 4016 ** (if bLeaf==1) table contains a specified entry. The schemas of the 4017 ** two tables are: 4018 ** 4019 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 4020 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 4021 ** 4022 ** In both cases, this function checks that there exists an entry with 4023 ** IPK value iKey and the second column set to iVal. 4024 ** 4025 */ 4026 static void rtreeCheckMapping( 4027 RtreeCheck *pCheck, /* RtreeCheck object */ 4028 int bLeaf, /* True for a leaf cell, false for interior */ 4029 i64 iKey, /* Key for mapping */ 4030 i64 iVal /* Expected value for mapping */ 4031 ){ 4032 int rc; 4033 sqlite3_stmt *pStmt; 4034 const char *azSql[2] = { 4035 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", 4036 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" 4037 }; 4038 4039 assert( bLeaf==0 || bLeaf==1 ); 4040 if( pCheck->aCheckMapping[bLeaf]==0 ){ 4041 pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, 4042 azSql[bLeaf], pCheck->zDb, pCheck->zTab 4043 ); 4044 } 4045 if( pCheck->rc!=SQLITE_OK ) return; 4046 4047 pStmt = pCheck->aCheckMapping[bLeaf]; 4048 sqlite3_bind_int64(pStmt, 1, iKey); 4049 rc = sqlite3_step(pStmt); 4050 if( rc==SQLITE_DONE ){ 4051 rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", 4052 iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") 4053 ); 4054 }else if( rc==SQLITE_ROW ){ 4055 i64 ii = sqlite3_column_int64(pStmt, 0); 4056 if( ii!=iVal ){ 4057 rtreeCheckAppendMsg(pCheck, 4058 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", 4059 iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal 4060 ); 4061 } 4062 } 4063 rtreeCheckReset(pCheck, pStmt); 4064 } 4065 4066 /* 4067 ** Argument pCell points to an array of coordinates stored on an rtree page. 4068 ** This function checks that the coordinates are internally consistent (no 4069 ** x1>x2 conditions) and adds an error message to the RtreeCheck object 4070 ** if they are not. 4071 ** 4072 ** Additionally, if pParent is not NULL, then it is assumed to point to 4073 ** the array of coordinates on the parent page that bound the page 4074 ** containing pCell. In this case it is also verified that the two 4075 ** sets of coordinates are mutually consistent and an error message added 4076 ** to the RtreeCheck object if they are not. 4077 */ 4078 static void rtreeCheckCellCoord( 4079 RtreeCheck *pCheck, 4080 i64 iNode, /* Node id to use in error messages */ 4081 int iCell, /* Cell number to use in error messages */ 4082 u8 *pCell, /* Pointer to cell coordinates */ 4083 u8 *pParent /* Pointer to parent coordinates */ 4084 ){ 4085 RtreeCoord c1, c2; 4086 RtreeCoord p1, p2; 4087 int i; 4088 4089 for(i=0; i<pCheck->nDim; i++){ 4090 readCoord(&pCell[4*2*i], &c1); 4091 readCoord(&pCell[4*(2*i + 1)], &c2); 4092 4093 /* printf("%e, %e\n", c1.u.f, c2.u.f); */ 4094 if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ 4095 rtreeCheckAppendMsg(pCheck, 4096 "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode 4097 ); 4098 } 4099 4100 if( pParent ){ 4101 readCoord(&pParent[4*2*i], &p1); 4102 readCoord(&pParent[4*(2*i + 1)], &p2); 4103 4104 if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f) 4105 || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f) 4106 ){ 4107 rtreeCheckAppendMsg(pCheck, 4108 "Dimension %d of cell %d on node %lld is corrupt relative to parent" 4109 , i, iCell, iNode 4110 ); 4111 } 4112 } 4113 } 4114 } 4115 4116 /* 4117 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within 4118 ** the r-tree structure. Argument aParent points to the array of coordinates 4119 ** that bound node iNode on the parent node. 4120 ** 4121 ** If any problems are discovered, an error message is appended to the 4122 ** report accumulated in the RtreeCheck object. 4123 */ 4124 static void rtreeCheckNode( 4125 RtreeCheck *pCheck, 4126 int iDepth, /* Depth of iNode (0==leaf) */ 4127 u8 *aParent, /* Buffer containing parent coords */ 4128 i64 iNode /* Node to check */ 4129 ){ 4130 u8 *aNode = 0; 4131 int nNode = 0; 4132 4133 assert( iNode==1 || aParent!=0 ); 4134 assert( pCheck->nDim>0 ); 4135 4136 aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); 4137 if( aNode ){ 4138 if( nNode<4 ){ 4139 rtreeCheckAppendMsg(pCheck, 4140 "Node %lld is too small (%d bytes)", iNode, nNode 4141 ); 4142 }else{ 4143 int nCell; /* Number of cells on page */ 4144 int i; /* Used to iterate through cells */ 4145 if( aParent==0 ){ 4146 iDepth = readInt16(aNode); 4147 if( iDepth>RTREE_MAX_DEPTH ){ 4148 rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); 4149 sqlite3_free(aNode); 4150 return; 4151 } 4152 } 4153 nCell = readInt16(&aNode[2]); 4154 if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ 4155 rtreeCheckAppendMsg(pCheck, 4156 "Node %lld is too small for cell count of %d (%d bytes)", 4157 iNode, nCell, nNode 4158 ); 4159 }else{ 4160 for(i=0; i<nCell; i++){ 4161 u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)]; 4162 i64 iVal = readInt64(pCell); 4163 rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); 4164 4165 if( iDepth>0 ){ 4166 rtreeCheckMapping(pCheck, 0, iVal, iNode); 4167 rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); 4168 pCheck->nNonLeaf++; 4169 }else{ 4170 rtreeCheckMapping(pCheck, 1, iVal, iNode); 4171 pCheck->nLeaf++; 4172 } 4173 } 4174 } 4175 } 4176 sqlite3_free(aNode); 4177 } 4178 } 4179 4180 /* 4181 ** The second argument to this function must be either "_rowid" or 4182 ** "_parent". This function checks that the number of entries in the 4183 ** %_rowid or %_parent table is exactly nExpect. If not, it adds 4184 ** an error message to the report in the RtreeCheck object indicated 4185 ** by the first argument. 4186 */ 4187 static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ 4188 if( pCheck->rc==SQLITE_OK ){ 4189 sqlite3_stmt *pCount; 4190 pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", 4191 pCheck->zDb, pCheck->zTab, zTbl 4192 ); 4193 if( pCount ){ 4194 if( sqlite3_step(pCount)==SQLITE_ROW ){ 4195 i64 nActual = sqlite3_column_int64(pCount, 0); 4196 if( nActual!=nExpect ){ 4197 rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" 4198 " - expected %lld, actual %lld" , zTbl, nExpect, nActual 4199 ); 4200 } 4201 } 4202 pCheck->rc = sqlite3_finalize(pCount); 4203 } 4204 } 4205 } 4206 4207 /* 4208 ** This function does the bulk of the work for the rtree integrity-check. 4209 ** It is called by rtreecheck(), which is the SQL function implementation. 4210 */ 4211 static int rtreeCheckTable( 4212 sqlite3 *db, /* Database handle to access db through */ 4213 const char *zDb, /* Name of db ("main", "temp" etc.) */ 4214 const char *zTab, /* Name of rtree table to check */ 4215 char **pzReport /* OUT: sqlite3_malloc'd report text */ 4216 ){ 4217 RtreeCheck check; /* Common context for various routines */ 4218 sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ 4219 int bEnd = 0; /* True if transaction should be closed */ 4220 int nAux = 0; /* Number of extra columns. */ 4221 4222 /* Initialize the context object */ 4223 memset(&check, 0, sizeof(check)); 4224 check.db = db; 4225 check.zDb = zDb; 4226 check.zTab = zTab; 4227 4228 /* If there is not already an open transaction, open one now. This is 4229 ** to ensure that the queries run as part of this integrity-check operate 4230 ** on a consistent snapshot. */ 4231 if( sqlite3_get_autocommit(db) ){ 4232 check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); 4233 bEnd = 1; 4234 } 4235 4236 /* Find the number of auxiliary columns */ 4237 if( check.rc==SQLITE_OK ){ 4238 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); 4239 if( pStmt ){ 4240 nAux = sqlite3_column_count(pStmt) - 2; 4241 sqlite3_finalize(pStmt); 4242 } 4243 check.rc = SQLITE_OK; 4244 } 4245 4246 /* Find number of dimensions in the rtree table. */ 4247 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); 4248 if( pStmt ){ 4249 int rc; 4250 check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; 4251 if( check.nDim<1 ){ 4252 rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); 4253 }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ 4254 check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); 4255 } 4256 rc = sqlite3_finalize(pStmt); 4257 if( rc!=SQLITE_CORRUPT ) check.rc = rc; 4258 } 4259 4260 /* Do the actual integrity-check */ 4261 if( check.nDim>=1 ){ 4262 if( check.rc==SQLITE_OK ){ 4263 rtreeCheckNode(&check, 0, 0, 1); 4264 } 4265 rtreeCheckCount(&check, "_rowid", check.nLeaf); 4266 rtreeCheckCount(&check, "_parent", check.nNonLeaf); 4267 } 4268 4269 /* Finalize SQL statements used by the integrity-check */ 4270 sqlite3_finalize(check.pGetNode); 4271 sqlite3_finalize(check.aCheckMapping[0]); 4272 sqlite3_finalize(check.aCheckMapping[1]); 4273 4274 /* If one was opened, close the transaction */ 4275 if( bEnd ){ 4276 int rc = sqlite3_exec(db, "END", 0, 0, 0); 4277 if( check.rc==SQLITE_OK ) check.rc = rc; 4278 } 4279 *pzReport = check.zReport; 4280 return check.rc; 4281 } 4282 4283 /* 4284 ** Usage: 4285 ** 4286 ** rtreecheck(<rtree-table>); 4287 ** rtreecheck(<database>, <rtree-table>); 4288 ** 4289 ** Invoking this SQL function runs an integrity-check on the named rtree 4290 ** table. The integrity-check verifies the following: 4291 ** 4292 ** 1. For each cell in the r-tree structure (%_node table), that: 4293 ** 4294 ** a) for each dimension, (coord1 <= coord2). 4295 ** 4296 ** b) unless the cell is on the root node, that the cell is bounded 4297 ** by the parent cell on the parent node. 4298 ** 4299 ** c) for leaf nodes, that there is an entry in the %_rowid 4300 ** table corresponding to the cell's rowid value that 4301 ** points to the correct node. 4302 ** 4303 ** d) for cells on non-leaf nodes, that there is an entry in the 4304 ** %_parent table mapping from the cell's child node to the 4305 ** node that it resides on. 4306 ** 4307 ** 2. That there are the same number of entries in the %_rowid table 4308 ** as there are leaf cells in the r-tree structure, and that there 4309 ** is a leaf cell that corresponds to each entry in the %_rowid table. 4310 ** 4311 ** 3. That there are the same number of entries in the %_parent table 4312 ** as there are non-leaf cells in the r-tree structure, and that 4313 ** there is a non-leaf cell that corresponds to each entry in the 4314 ** %_parent table. 4315 */ 4316 static void rtreecheck( 4317 sqlite3_context *ctx, 4318 int nArg, 4319 sqlite3_value **apArg 4320 ){ 4321 if( nArg!=1 && nArg!=2 ){ 4322 sqlite3_result_error(ctx, 4323 "wrong number of arguments to function rtreecheck()", -1 4324 ); 4325 }else{ 4326 int rc; 4327 char *zReport = 0; 4328 const char *zDb = (const char*)sqlite3_value_text(apArg[0]); 4329 const char *zTab; 4330 if( nArg==1 ){ 4331 zTab = zDb; 4332 zDb = "main"; 4333 }else{ 4334 zTab = (const char*)sqlite3_value_text(apArg[1]); 4335 } 4336 rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); 4337 if( rc==SQLITE_OK ){ 4338 sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); 4339 }else{ 4340 sqlite3_result_error_code(ctx, rc); 4341 } 4342 sqlite3_free(zReport); 4343 } 4344 } 4345 4346 /* Conditionally include the geopoly code */ 4347 #ifdef SQLITE_ENABLE_GEOPOLY 4348 # include "geopoly.c" 4349 #endif 4350 4351 /* 4352 ** Register the r-tree module with database handle db. This creates the 4353 ** virtual table module "rtree" and the debugging/analysis scalar 4354 ** function "rtreenode". 4355 */ 4356 int sqlite3RtreeInit(sqlite3 *db){ 4357 const int utf8 = SQLITE_UTF8; 4358 int rc; 4359 4360 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); 4361 if( rc==SQLITE_OK ){ 4362 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); 4363 } 4364 if( rc==SQLITE_OK ){ 4365 rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0); 4366 } 4367 if( rc==SQLITE_OK ){ 4368 #ifdef SQLITE_RTREE_INT_ONLY 4369 void *c = (void *)RTREE_COORD_INT32; 4370 #else 4371 void *c = (void *)RTREE_COORD_REAL32; 4372 #endif 4373 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); 4374 } 4375 if( rc==SQLITE_OK ){ 4376 void *c = (void *)RTREE_COORD_INT32; 4377 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); 4378 } 4379 #ifdef SQLITE_ENABLE_GEOPOLY 4380 if( rc==SQLITE_OK ){ 4381 rc = sqlite3_geopoly_init(db); 4382 } 4383 #endif 4384 4385 return rc; 4386 } 4387 4388 /* 4389 ** This routine deletes the RtreeGeomCallback object that was attached 4390 ** one of the SQL functions create by sqlite3_rtree_geometry_callback() 4391 ** or sqlite3_rtree_query_callback(). In other words, this routine is the 4392 ** destructor for an RtreeGeomCallback objecct. This routine is called when 4393 ** the corresponding SQL function is deleted. 4394 */ 4395 static void rtreeFreeCallback(void *p){ 4396 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; 4397 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); 4398 sqlite3_free(p); 4399 } 4400 4401 /* 4402 ** This routine frees the BLOB that is returned by geomCallback(). 4403 */ 4404 static void rtreeMatchArgFree(void *pArg){ 4405 int i; 4406 RtreeMatchArg *p = (RtreeMatchArg*)pArg; 4407 for(i=0; i<p->nParam; i++){ 4408 sqlite3_value_free(p->apSqlParam[i]); 4409 } 4410 sqlite3_free(p); 4411 } 4412 4413 /* 4414 ** Each call to sqlite3_rtree_geometry_callback() or 4415 ** sqlite3_rtree_query_callback() creates an ordinary SQLite 4416 ** scalar function that is implemented by this routine. 4417 ** 4418 ** All this function does is construct an RtreeMatchArg object that 4419 ** contains the geometry-checking callback routines and a list of 4420 ** parameters to this function, then return that RtreeMatchArg object 4421 ** as a BLOB. 4422 ** 4423 ** The R-Tree MATCH operator will read the returned BLOB, deserialize 4424 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure 4425 ** out which elements of the R-Tree should be returned by the query. 4426 */ 4427 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ 4428 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); 4429 RtreeMatchArg *pBlob; 4430 sqlite3_int64 nBlob; 4431 int memErr = 0; 4432 4433 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) 4434 + nArg*sizeof(sqlite3_value*); 4435 pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob); 4436 if( !pBlob ){ 4437 sqlite3_result_error_nomem(ctx); 4438 }else{ 4439 int i; 4440 pBlob->iSize = nBlob; 4441 pBlob->cb = pGeomCtx[0]; 4442 pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; 4443 pBlob->nParam = nArg; 4444 for(i=0; i<nArg; i++){ 4445 pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]); 4446 if( pBlob->apSqlParam[i]==0 ) memErr = 1; 4447 #ifdef SQLITE_RTREE_INT_ONLY 4448 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); 4449 #else 4450 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); 4451 #endif 4452 } 4453 if( memErr ){ 4454 sqlite3_result_error_nomem(ctx); 4455 rtreeMatchArgFree(pBlob); 4456 }else{ 4457 sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); 4458 } 4459 } 4460 } 4461 4462 /* 4463 ** Register a new geometry function for use with the r-tree MATCH operator. 4464 */ 4465 int sqlite3_rtree_geometry_callback( 4466 sqlite3 *db, /* Register SQL function on this connection */ 4467 const char *zGeom, /* Name of the new SQL function */ 4468 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ 4469 void *pContext /* Extra data associated with the callback */ 4470 ){ 4471 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4472 4473 /* Allocate and populate the context object. */ 4474 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4475 if( !pGeomCtx ) return SQLITE_NOMEM; 4476 pGeomCtx->xGeom = xGeom; 4477 pGeomCtx->xQueryFunc = 0; 4478 pGeomCtx->xDestructor = 0; 4479 pGeomCtx->pContext = pContext; 4480 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 4481 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4482 ); 4483 } 4484 4485 /* 4486 ** Register a new 2nd-generation geometry function for use with the 4487 ** r-tree MATCH operator. 4488 */ 4489 int sqlite3_rtree_query_callback( 4490 sqlite3 *db, /* Register SQL function on this connection */ 4491 const char *zQueryFunc, /* Name of new SQL function */ 4492 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ 4493 void *pContext, /* Extra data passed into the callback */ 4494 void (*xDestructor)(void*) /* Destructor for the extra data */ 4495 ){ 4496 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4497 4498 /* Allocate and populate the context object. */ 4499 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4500 if( !pGeomCtx ) return SQLITE_NOMEM; 4501 pGeomCtx->xGeom = 0; 4502 pGeomCtx->xQueryFunc = xQueryFunc; 4503 pGeomCtx->xDestructor = xDestructor; 4504 pGeomCtx->pContext = pContext; 4505 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, 4506 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4507 ); 4508 } 4509 4510 #if !SQLITE_CORE 4511 #ifdef _WIN32 4512 __declspec(dllexport) 4513 #endif 4514 int sqlite3_rtree_init( 4515 sqlite3 *db, 4516 char **pzErrMsg, 4517 const sqlite3_api_routines *pApi 4518 ){ 4519 SQLITE_EXTENSION_INIT2(pApi) 4520 return sqlite3RtreeInit(db); 4521 } 4522 #endif 4523 4524 #endif 4525