1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for implementations of the r-tree and r*-tree 13 ** algorithms packaged as an SQLite virtual table module. 14 */ 15 16 /* 17 ** Database Format of R-Tree Tables 18 ** -------------------------------- 19 ** 20 ** The data structure for a single virtual r-tree table is stored in three 21 ** native SQLite tables declared as follows. In each case, the '%' character 22 ** in the table name is replaced with the user-supplied name of the r-tree 23 ** table. 24 ** 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 28 ** 29 ** The data for each node of the r-tree structure is stored in the %_node 30 ** table. For each node that is not the root node of the r-tree, there is 31 ** an entry in the %_parent table associating the node with its parent. 32 ** And for each row of data in the table, there is an entry in the %_rowid 33 ** table that maps from the entries rowid to the id of the node that it 34 ** is stored on. If the r-tree contains auxiliary columns, those are stored 35 ** on the end of the %_rowid table. 36 ** 37 ** The root node of an r-tree always exists, even if the r-tree table is 38 ** empty. The nodeno of the root node is always 1. All other nodes in the 39 ** table must be the same size as the root node. The content of each node 40 ** is formatted as follows: 41 ** 42 ** 1. If the node is the root node (node 1), then the first 2 bytes 43 ** of the node contain the tree depth as a big-endian integer. 44 ** For non-root nodes, the first 2 bytes are left unused. 45 ** 46 ** 2. The next 2 bytes contain the number of entries currently 47 ** stored in the node. 48 ** 49 ** 3. The remainder of the node contains the node entries. Each entry 50 ** consists of a single 8-byte integer followed by an even number 51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid 52 ** of a record. For internal nodes it is the node number of a 53 ** child page. 54 */ 55 56 #if !defined(SQLITE_CORE) \ 57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE)) 58 59 #ifndef SQLITE_CORE 60 #include "sqlite3ext.h" 61 SQLITE_EXTENSION_INIT1 62 #else 63 #include "sqlite3.h" 64 #endif 65 int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */ 66 67 /* 68 ** If building separately, we will need some setup that is normally 69 ** found in sqliteInt.h 70 */ 71 #if !defined(SQLITE_AMALGAMATION) 72 #include "sqlite3rtree.h" 73 typedef sqlite3_int64 i64; 74 typedef sqlite3_uint64 u64; 75 typedef unsigned char u8; 76 typedef unsigned short u16; 77 typedef unsigned int u32; 78 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 79 # define NDEBUG 1 80 #endif 81 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 82 # undef NDEBUG 83 #endif 84 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) 85 # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 86 #endif 87 #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) 88 # define ALWAYS(X) (1) 89 # define NEVER(X) (0) 90 #elif !defined(NDEBUG) 91 # define ALWAYS(X) ((X)?1:(assert(0),0)) 92 # define NEVER(X) ((X)?(assert(0),1):0) 93 #else 94 # define ALWAYS(X) (X) 95 # define NEVER(X) (X) 96 #endif 97 #endif /* !defined(SQLITE_AMALGAMATION) */ 98 99 #include <string.h> 100 #include <stdio.h> 101 #include <assert.h> 102 #include <stdlib.h> 103 104 /* The following macro is used to suppress compiler warnings. 105 */ 106 #ifndef UNUSED_PARAMETER 107 # define UNUSED_PARAMETER(x) (void)(x) 108 #endif 109 110 typedef struct Rtree Rtree; 111 typedef struct RtreeCursor RtreeCursor; 112 typedef struct RtreeNode RtreeNode; 113 typedef struct RtreeCell RtreeCell; 114 typedef struct RtreeConstraint RtreeConstraint; 115 typedef struct RtreeMatchArg RtreeMatchArg; 116 typedef struct RtreeGeomCallback RtreeGeomCallback; 117 typedef union RtreeCoord RtreeCoord; 118 typedef struct RtreeSearchPoint RtreeSearchPoint; 119 120 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ 121 #define RTREE_MAX_DIMENSIONS 5 122 123 /* Maximum number of auxiliary columns */ 124 #define RTREE_MAX_AUX_COLUMN 100 125 126 /* Size of hash table Rtree.aHash. This hash table is not expected to 127 ** ever contain very many entries, so a fixed number of buckets is 128 ** used. 129 */ 130 #define HASHSIZE 97 131 132 /* The xBestIndex method of this virtual table requires an estimate of 133 ** the number of rows in the virtual table to calculate the costs of 134 ** various strategies. If possible, this estimate is loaded from the 135 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). 136 ** Otherwise, if no sqlite_stat1 entry is available, use 137 ** RTREE_DEFAULT_ROWEST. 138 */ 139 #define RTREE_DEFAULT_ROWEST 1048576 140 #define RTREE_MIN_ROWEST 100 141 142 /* 143 ** An rtree virtual-table object. 144 */ 145 struct Rtree { 146 sqlite3_vtab base; /* Base class. Must be first */ 147 sqlite3 *db; /* Host database connection */ 148 int iNodeSize; /* Size in bytes of each node in the node table */ 149 u8 nDim; /* Number of dimensions */ 150 u8 nDim2; /* Twice the number of dimensions */ 151 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ 152 u8 nBytesPerCell; /* Bytes consumed per cell */ 153 u8 inWrTrans; /* True if inside write transaction */ 154 u8 nAux; /* # of auxiliary columns in %_rowid */ 155 #ifdef SQLITE_ENABLE_GEOPOLY 156 u8 nAuxNotNull; /* Number of initial not-null aux columns */ 157 #endif 158 #ifdef SQLITE_DEBUG 159 u8 bCorrupt; /* Shadow table corruption detected */ 160 #endif 161 int iDepth; /* Current depth of the r-tree structure */ 162 char *zDb; /* Name of database containing r-tree table */ 163 char *zName; /* Name of r-tree table */ 164 u32 nBusy; /* Current number of users of this structure */ 165 i64 nRowEst; /* Estimated number of rows in this table */ 166 u32 nCursor; /* Number of open cursors */ 167 u32 nNodeRef; /* Number RtreeNodes with positive nRef */ 168 char *zReadAuxSql; /* SQL for statement to read aux data */ 169 170 /* List of nodes removed during a CondenseTree operation. List is 171 ** linked together via the pointer normally used for hash chains - 172 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 173 ** headed by the node (leaf nodes have RtreeNode.iNode==0). 174 */ 175 RtreeNode *pDeleted; 176 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ 177 178 /* Blob I/O on xxx_node */ 179 sqlite3_blob *pNodeBlob; 180 181 /* Statements to read/write/delete a record from xxx_node */ 182 sqlite3_stmt *pWriteNode; 183 sqlite3_stmt *pDeleteNode; 184 185 /* Statements to read/write/delete a record from xxx_rowid */ 186 sqlite3_stmt *pReadRowid; 187 sqlite3_stmt *pWriteRowid; 188 sqlite3_stmt *pDeleteRowid; 189 190 /* Statements to read/write/delete a record from xxx_parent */ 191 sqlite3_stmt *pReadParent; 192 sqlite3_stmt *pWriteParent; 193 sqlite3_stmt *pDeleteParent; 194 195 /* Statement for writing to the "aux:" fields, if there are any */ 196 sqlite3_stmt *pWriteAux; 197 198 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 199 }; 200 201 /* Possible values for Rtree.eCoordType: */ 202 #define RTREE_COORD_REAL32 0 203 #define RTREE_COORD_INT32 1 204 205 /* 206 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will 207 ** only deal with integer coordinates. No floating point operations 208 ** will be done. 209 */ 210 #ifdef SQLITE_RTREE_INT_ONLY 211 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ 212 typedef int RtreeValue; /* Low accuracy coordinate */ 213 # define RTREE_ZERO 0 214 #else 215 typedef double RtreeDValue; /* High accuracy coordinate */ 216 typedef float RtreeValue; /* Low accuracy coordinate */ 217 # define RTREE_ZERO 0.0 218 #endif 219 220 /* 221 ** Set the Rtree.bCorrupt flag 222 */ 223 #ifdef SQLITE_DEBUG 224 # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) 225 #else 226 # define RTREE_IS_CORRUPT(X) 227 #endif 228 229 /* 230 ** When doing a search of an r-tree, instances of the following structure 231 ** record intermediate results from the tree walk. 232 ** 233 ** The id is always a node-id. For iLevel>=1 the id is the node-id of 234 ** the node that the RtreeSearchPoint represents. When iLevel==0, however, 235 ** the id is of the parent node and the cell that RtreeSearchPoint 236 ** represents is the iCell-th entry in the parent node. 237 */ 238 struct RtreeSearchPoint { 239 RtreeDValue rScore; /* The score for this node. Smallest goes first. */ 240 sqlite3_int64 id; /* Node ID */ 241 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ 242 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ 243 u8 iCell; /* Cell index within the node */ 244 }; 245 246 /* 247 ** The minimum number of cells allowed for a node is a third of the 248 ** maximum. In Gutman's notation: 249 ** 250 ** m = M/3 251 ** 252 ** If an R*-tree "Reinsert" operation is required, the same number of 253 ** cells are removed from the overfull node and reinserted into the tree. 254 */ 255 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) 256 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) 257 #define RTREE_MAXCELLS 51 258 259 /* 260 ** The smallest possible node-size is (512-64)==448 bytes. And the largest 261 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). 262 ** Therefore all non-root nodes must contain at least 3 entries. Since 263 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of 264 ** 40 or less. 265 */ 266 #define RTREE_MAX_DEPTH 40 267 268 269 /* 270 ** Number of entries in the cursor RtreeNode cache. The first entry is 271 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining 272 ** entries cache the RtreeNode for the first elements of the priority queue. 273 */ 274 #define RTREE_CACHE_SZ 5 275 276 /* 277 ** An rtree cursor object. 278 */ 279 struct RtreeCursor { 280 sqlite3_vtab_cursor base; /* Base class. Must be first */ 281 u8 atEOF; /* True if at end of search */ 282 u8 bPoint; /* True if sPoint is valid */ 283 u8 bAuxValid; /* True if pReadAux is valid */ 284 int iStrategy; /* Copy of idxNum search parameter */ 285 int nConstraint; /* Number of entries in aConstraint */ 286 RtreeConstraint *aConstraint; /* Search constraints. */ 287 int nPointAlloc; /* Number of slots allocated for aPoint[] */ 288 int nPoint; /* Number of slots used in aPoint[] */ 289 int mxLevel; /* iLevel value for root of the tree */ 290 RtreeSearchPoint *aPoint; /* Priority queue for search points */ 291 sqlite3_stmt *pReadAux; /* Statement to read aux-data */ 292 RtreeSearchPoint sPoint; /* Cached next search point */ 293 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ 294 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ 295 }; 296 297 /* Return the Rtree of a RtreeCursor */ 298 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) 299 300 /* 301 ** A coordinate can be either a floating point number or a integer. All 302 ** coordinates within a single R-Tree are always of the same time. 303 */ 304 union RtreeCoord { 305 RtreeValue f; /* Floating point value */ 306 int i; /* Integer value */ 307 u32 u; /* Unsigned for byte-order conversions */ 308 }; 309 310 /* 311 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord 312 ** formatted as a RtreeDValue (double or int64). This macro assumes that local 313 ** variable pRtree points to the Rtree structure associated with the 314 ** RtreeCoord. 315 */ 316 #ifdef SQLITE_RTREE_INT_ONLY 317 # define DCOORD(coord) ((RtreeDValue)coord.i) 318 #else 319 # define DCOORD(coord) ( \ 320 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ 321 ((double)coord.f) : \ 322 ((double)coord.i) \ 323 ) 324 #endif 325 326 /* 327 ** A search constraint. 328 */ 329 struct RtreeConstraint { 330 int iCoord; /* Index of constrained coordinate */ 331 int op; /* Constraining operation */ 332 union { 333 RtreeDValue rValue; /* Constraint value. */ 334 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); 335 int (*xQueryFunc)(sqlite3_rtree_query_info*); 336 } u; 337 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ 338 }; 339 340 /* Possible values for RtreeConstraint.op */ 341 #define RTREE_EQ 0x41 /* A */ 342 #define RTREE_LE 0x42 /* B */ 343 #define RTREE_LT 0x43 /* C */ 344 #define RTREE_GE 0x44 /* D */ 345 #define RTREE_GT 0x45 /* E */ 346 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ 347 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ 348 349 /* Special operators available only on cursors. Needs to be consecutive 350 ** with the normal values above, but must be less than RTREE_MATCH. These 351 ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or 352 ** x<'xyz' (RTREE_TRUE) */ 353 #define RTREE_TRUE 0x3f /* ? */ 354 #define RTREE_FALSE 0x40 /* @ */ 355 356 /* 357 ** An rtree structure node. 358 */ 359 struct RtreeNode { 360 RtreeNode *pParent; /* Parent node */ 361 i64 iNode; /* The node number */ 362 int nRef; /* Number of references to this node */ 363 int isDirty; /* True if the node needs to be written to disk */ 364 u8 *zData; /* Content of the node, as should be on disk */ 365 RtreeNode *pNext; /* Next node in this hash collision chain */ 366 }; 367 368 /* Return the number of cells in a node */ 369 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) 370 371 /* 372 ** A single cell from a node, deserialized 373 */ 374 struct RtreeCell { 375 i64 iRowid; /* Node or entry ID */ 376 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ 377 }; 378 379 380 /* 381 ** This object becomes the sqlite3_user_data() for the SQL functions 382 ** that are created by sqlite3_rtree_geometry_callback() and 383 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH 384 ** operators in order to constrain a search. 385 ** 386 ** xGeom and xQueryFunc are the callback functions. Exactly one of 387 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the 388 ** SQL function was created using sqlite3_rtree_geometry_callback() or 389 ** sqlite3_rtree_query_callback(). 390 ** 391 ** This object is deleted automatically by the destructor mechanism in 392 ** sqlite3_create_function_v2(). 393 */ 394 struct RtreeGeomCallback { 395 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); 396 int (*xQueryFunc)(sqlite3_rtree_query_info*); 397 void (*xDestructor)(void*); 398 void *pContext; 399 }; 400 401 /* 402 ** An instance of this structure (in the form of a BLOB) is returned by 403 ** the SQL functions that sqlite3_rtree_geometry_callback() and 404 ** sqlite3_rtree_query_callback() create, and is read as the right-hand 405 ** operand to the MATCH operator of an R-Tree. 406 */ 407 struct RtreeMatchArg { 408 u32 iSize; /* Size of this object */ 409 RtreeGeomCallback cb; /* Info about the callback functions */ 410 int nParam; /* Number of parameters to the SQL function */ 411 sqlite3_value **apSqlParam; /* Original SQL parameter values */ 412 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ 413 }; 414 415 #ifndef MAX 416 # define MAX(x,y) ((x) < (y) ? (y) : (x)) 417 #endif 418 #ifndef MIN 419 # define MIN(x,y) ((x) > (y) ? (y) : (x)) 420 #endif 421 422 /* What version of GCC is being used. 0 means GCC is not being used . 423 ** Note that the GCC_VERSION macro will also be set correctly when using 424 ** clang, since clang works hard to be gcc compatible. So the gcc 425 ** optimizations will also work when compiling with clang. 426 */ 427 #ifndef GCC_VERSION 428 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) 429 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 430 #else 431 # define GCC_VERSION 0 432 #endif 433 #endif 434 435 /* The testcase() macro should already be defined in the amalgamation. If 436 ** it is not, make it a no-op. 437 */ 438 #ifndef SQLITE_AMALGAMATION 439 # ifdef SQLITE_COVERAGE_TEST 440 unsigned int sqlite3RtreeTestcase = 0; 441 # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; } 442 # else 443 # define testcase(X) 444 # endif 445 #endif 446 447 /* 448 ** Make sure that the compiler intrinsics we desire are enabled when 449 ** compiling with an appropriate version of MSVC unless prevented by 450 ** the SQLITE_DISABLE_INTRINSIC define. 451 */ 452 #if !defined(SQLITE_DISABLE_INTRINSIC) 453 # if defined(_MSC_VER) && _MSC_VER>=1400 454 # if !defined(_WIN32_WCE) 455 # include <intrin.h> 456 # pragma intrinsic(_byteswap_ulong) 457 # pragma intrinsic(_byteswap_uint64) 458 # else 459 # include <cmnintrin.h> 460 # endif 461 # endif 462 #endif 463 464 /* 465 ** Macros to determine whether the machine is big or little endian, 466 ** and whether or not that determination is run-time or compile-time. 467 ** 468 ** For best performance, an attempt is made to guess at the byte-order 469 ** using C-preprocessor macros. If that is unsuccessful, or if 470 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 471 ** at run-time. 472 */ 473 #ifndef SQLITE_BYTEORDER 474 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 475 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 476 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 477 defined(__arm__) 478 # define SQLITE_BYTEORDER 1234 479 #elif defined(sparc) || defined(__ppc__) 480 # define SQLITE_BYTEORDER 4321 481 #else 482 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 483 #endif 484 #endif 485 486 487 /* What version of MSVC is being used. 0 means MSVC is not being used */ 488 #ifndef MSVC_VERSION 489 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) 490 # define MSVC_VERSION _MSC_VER 491 #else 492 # define MSVC_VERSION 0 493 #endif 494 #endif 495 496 /* 497 ** Functions to deserialize a 16 bit integer, 32 bit real number and 498 ** 64 bit integer. The deserialized value is returned. 499 */ 500 static int readInt16(u8 *p){ 501 return (p[0]<<8) + p[1]; 502 } 503 static void readCoord(u8 *p, RtreeCoord *pCoord){ 504 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 505 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 506 pCoord->u = _byteswap_ulong(*(u32*)p); 507 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 508 pCoord->u = __builtin_bswap32(*(u32*)p); 509 #elif SQLITE_BYTEORDER==4321 510 pCoord->u = *(u32*)p; 511 #else 512 pCoord->u = ( 513 (((u32)p[0]) << 24) + 514 (((u32)p[1]) << 16) + 515 (((u32)p[2]) << 8) + 516 (((u32)p[3]) << 0) 517 ); 518 #endif 519 } 520 static i64 readInt64(u8 *p){ 521 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 522 u64 x; 523 memcpy(&x, p, 8); 524 return (i64)_byteswap_uint64(x); 525 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 526 u64 x; 527 memcpy(&x, p, 8); 528 return (i64)__builtin_bswap64(x); 529 #elif SQLITE_BYTEORDER==4321 530 i64 x; 531 memcpy(&x, p, 8); 532 return x; 533 #else 534 return (i64)( 535 (((u64)p[0]) << 56) + 536 (((u64)p[1]) << 48) + 537 (((u64)p[2]) << 40) + 538 (((u64)p[3]) << 32) + 539 (((u64)p[4]) << 24) + 540 (((u64)p[5]) << 16) + 541 (((u64)p[6]) << 8) + 542 (((u64)p[7]) << 0) 543 ); 544 #endif 545 } 546 547 /* 548 ** Functions to serialize a 16 bit integer, 32 bit real number and 549 ** 64 bit integer. The value returned is the number of bytes written 550 ** to the argument buffer (always 2, 4 and 8 respectively). 551 */ 552 static void writeInt16(u8 *p, int i){ 553 p[0] = (i>> 8)&0xFF; 554 p[1] = (i>> 0)&0xFF; 555 } 556 static int writeCoord(u8 *p, RtreeCoord *pCoord){ 557 u32 i; 558 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 559 assert( sizeof(RtreeCoord)==4 ); 560 assert( sizeof(u32)==4 ); 561 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 562 i = __builtin_bswap32(pCoord->u); 563 memcpy(p, &i, 4); 564 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 565 i = _byteswap_ulong(pCoord->u); 566 memcpy(p, &i, 4); 567 #elif SQLITE_BYTEORDER==4321 568 i = pCoord->u; 569 memcpy(p, &i, 4); 570 #else 571 i = pCoord->u; 572 p[0] = (i>>24)&0xFF; 573 p[1] = (i>>16)&0xFF; 574 p[2] = (i>> 8)&0xFF; 575 p[3] = (i>> 0)&0xFF; 576 #endif 577 return 4; 578 } 579 static int writeInt64(u8 *p, i64 i){ 580 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 581 i = (i64)__builtin_bswap64((u64)i); 582 memcpy(p, &i, 8); 583 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 584 i = (i64)_byteswap_uint64((u64)i); 585 memcpy(p, &i, 8); 586 #elif SQLITE_BYTEORDER==4321 587 memcpy(p, &i, 8); 588 #else 589 p[0] = (i>>56)&0xFF; 590 p[1] = (i>>48)&0xFF; 591 p[2] = (i>>40)&0xFF; 592 p[3] = (i>>32)&0xFF; 593 p[4] = (i>>24)&0xFF; 594 p[5] = (i>>16)&0xFF; 595 p[6] = (i>> 8)&0xFF; 596 p[7] = (i>> 0)&0xFF; 597 #endif 598 return 8; 599 } 600 601 /* 602 ** Increment the reference count of node p. 603 */ 604 static void nodeReference(RtreeNode *p){ 605 if( p ){ 606 assert( p->nRef>0 ); 607 p->nRef++; 608 } 609 } 610 611 /* 612 ** Clear the content of node p (set all bytes to 0x00). 613 */ 614 static void nodeZero(Rtree *pRtree, RtreeNode *p){ 615 memset(&p->zData[2], 0, pRtree->iNodeSize-2); 616 p->isDirty = 1; 617 } 618 619 /* 620 ** Given a node number iNode, return the corresponding key to use 621 ** in the Rtree.aHash table. 622 */ 623 static unsigned int nodeHash(i64 iNode){ 624 return ((unsigned)iNode) % HASHSIZE; 625 } 626 627 /* 628 ** Search the node hash table for node iNode. If found, return a pointer 629 ** to it. Otherwise, return 0. 630 */ 631 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ 632 RtreeNode *p; 633 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); 634 return p; 635 } 636 637 /* 638 ** Add node pNode to the node hash table. 639 */ 640 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ 641 int iHash; 642 assert( pNode->pNext==0 ); 643 iHash = nodeHash(pNode->iNode); 644 pNode->pNext = pRtree->aHash[iHash]; 645 pRtree->aHash[iHash] = pNode; 646 } 647 648 /* 649 ** Remove node pNode from the node hash table. 650 */ 651 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ 652 RtreeNode **pp; 653 if( pNode->iNode!=0 ){ 654 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; 655 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } 656 *pp = pNode->pNext; 657 pNode->pNext = 0; 658 } 659 } 660 661 /* 662 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), 663 ** indicating that node has not yet been assigned a node number. It is 664 ** assigned a node number when nodeWrite() is called to write the 665 ** node contents out to the database. 666 */ 667 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ 668 RtreeNode *pNode; 669 pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); 670 if( pNode ){ 671 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); 672 pNode->zData = (u8 *)&pNode[1]; 673 pNode->nRef = 1; 674 pRtree->nNodeRef++; 675 pNode->pParent = pParent; 676 pNode->isDirty = 1; 677 nodeReference(pParent); 678 } 679 return pNode; 680 } 681 682 /* 683 ** Clear the Rtree.pNodeBlob object 684 */ 685 static void nodeBlobReset(Rtree *pRtree){ 686 if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){ 687 sqlite3_blob *pBlob = pRtree->pNodeBlob; 688 pRtree->pNodeBlob = 0; 689 sqlite3_blob_close(pBlob); 690 } 691 } 692 693 /* 694 ** Obtain a reference to an r-tree node. 695 */ 696 static int nodeAcquire( 697 Rtree *pRtree, /* R-tree structure */ 698 i64 iNode, /* Node number to load */ 699 RtreeNode *pParent, /* Either the parent node or NULL */ 700 RtreeNode **ppNode /* OUT: Acquired node */ 701 ){ 702 int rc = SQLITE_OK; 703 RtreeNode *pNode = 0; 704 705 /* Check if the requested node is already in the hash table. If so, 706 ** increase its reference count and return it. 707 */ 708 if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ 709 if( pParent && pParent!=pNode->pParent ){ 710 RTREE_IS_CORRUPT(pRtree); 711 return SQLITE_CORRUPT_VTAB; 712 } 713 pNode->nRef++; 714 *ppNode = pNode; 715 return SQLITE_OK; 716 } 717 718 if( pRtree->pNodeBlob ){ 719 sqlite3_blob *pBlob = pRtree->pNodeBlob; 720 pRtree->pNodeBlob = 0; 721 rc = sqlite3_blob_reopen(pBlob, iNode); 722 pRtree->pNodeBlob = pBlob; 723 if( rc ){ 724 nodeBlobReset(pRtree); 725 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; 726 } 727 } 728 if( pRtree->pNodeBlob==0 ){ 729 char *zTab = sqlite3_mprintf("%s_node", pRtree->zName); 730 if( zTab==0 ) return SQLITE_NOMEM; 731 rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0, 732 &pRtree->pNodeBlob); 733 sqlite3_free(zTab); 734 } 735 if( rc ){ 736 nodeBlobReset(pRtree); 737 *ppNode = 0; 738 /* If unable to open an sqlite3_blob on the desired row, that can only 739 ** be because the shadow tables hold erroneous data. */ 740 if( rc==SQLITE_ERROR ){ 741 rc = SQLITE_CORRUPT_VTAB; 742 RTREE_IS_CORRUPT(pRtree); 743 } 744 }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ 745 pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); 746 if( !pNode ){ 747 rc = SQLITE_NOMEM; 748 }else{ 749 pNode->pParent = pParent; 750 pNode->zData = (u8 *)&pNode[1]; 751 pNode->nRef = 1; 752 pRtree->nNodeRef++; 753 pNode->iNode = iNode; 754 pNode->isDirty = 0; 755 pNode->pNext = 0; 756 rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, 757 pRtree->iNodeSize, 0); 758 } 759 } 760 761 /* If the root node was just loaded, set pRtree->iDepth to the height 762 ** of the r-tree structure. A height of zero means all data is stored on 763 ** the root node. A height of one means the children of the root node 764 ** are the leaves, and so on. If the depth as specified on the root node 765 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. 766 */ 767 if( rc==SQLITE_OK && pNode && iNode==1 ){ 768 pRtree->iDepth = readInt16(pNode->zData); 769 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ 770 rc = SQLITE_CORRUPT_VTAB; 771 RTREE_IS_CORRUPT(pRtree); 772 } 773 } 774 775 /* If no error has occurred so far, check if the "number of entries" 776 ** field on the node is too large. If so, set the return code to 777 ** SQLITE_CORRUPT_VTAB. 778 */ 779 if( pNode && rc==SQLITE_OK ){ 780 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ 781 rc = SQLITE_CORRUPT_VTAB; 782 RTREE_IS_CORRUPT(pRtree); 783 } 784 } 785 786 if( rc==SQLITE_OK ){ 787 if( pNode!=0 ){ 788 nodeReference(pParent); 789 nodeHashInsert(pRtree, pNode); 790 }else{ 791 rc = SQLITE_CORRUPT_VTAB; 792 RTREE_IS_CORRUPT(pRtree); 793 } 794 *ppNode = pNode; 795 }else{ 796 if( pNode ){ 797 pRtree->nNodeRef--; 798 sqlite3_free(pNode); 799 } 800 *ppNode = 0; 801 } 802 803 return rc; 804 } 805 806 /* 807 ** Overwrite cell iCell of node pNode with the contents of pCell. 808 */ 809 static void nodeOverwriteCell( 810 Rtree *pRtree, /* The overall R-Tree */ 811 RtreeNode *pNode, /* The node into which the cell is to be written */ 812 RtreeCell *pCell, /* The cell to write */ 813 int iCell /* Index into pNode into which pCell is written */ 814 ){ 815 int ii; 816 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 817 p += writeInt64(p, pCell->iRowid); 818 for(ii=0; ii<pRtree->nDim2; ii++){ 819 p += writeCoord(p, &pCell->aCoord[ii]); 820 } 821 pNode->isDirty = 1; 822 } 823 824 /* 825 ** Remove the cell with index iCell from node pNode. 826 */ 827 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ 828 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 829 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; 830 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; 831 memmove(pDst, pSrc, nByte); 832 writeInt16(&pNode->zData[2], NCELL(pNode)-1); 833 pNode->isDirty = 1; 834 } 835 836 /* 837 ** Insert the contents of cell pCell into node pNode. If the insert 838 ** is successful, return SQLITE_OK. 839 ** 840 ** If there is not enough free space in pNode, return SQLITE_FULL. 841 */ 842 static int nodeInsertCell( 843 Rtree *pRtree, /* The overall R-Tree */ 844 RtreeNode *pNode, /* Write new cell into this node */ 845 RtreeCell *pCell /* The cell to be inserted */ 846 ){ 847 int nCell; /* Current number of cells in pNode */ 848 int nMaxCell; /* Maximum number of cells for pNode */ 849 850 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; 851 nCell = NCELL(pNode); 852 853 assert( nCell<=nMaxCell ); 854 if( nCell<nMaxCell ){ 855 nodeOverwriteCell(pRtree, pNode, pCell, nCell); 856 writeInt16(&pNode->zData[2], nCell+1); 857 pNode->isDirty = 1; 858 } 859 860 return (nCell==nMaxCell); 861 } 862 863 /* 864 ** If the node is dirty, write it out to the database. 865 */ 866 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ 867 int rc = SQLITE_OK; 868 if( pNode->isDirty ){ 869 sqlite3_stmt *p = pRtree->pWriteNode; 870 if( pNode->iNode ){ 871 sqlite3_bind_int64(p, 1, pNode->iNode); 872 }else{ 873 sqlite3_bind_null(p, 1); 874 } 875 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); 876 sqlite3_step(p); 877 pNode->isDirty = 0; 878 rc = sqlite3_reset(p); 879 sqlite3_bind_null(p, 2); 880 if( pNode->iNode==0 && rc==SQLITE_OK ){ 881 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); 882 nodeHashInsert(pRtree, pNode); 883 } 884 } 885 return rc; 886 } 887 888 /* 889 ** Release a reference to a node. If the node is dirty and the reference 890 ** count drops to zero, the node data is written to the database. 891 */ 892 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ 893 int rc = SQLITE_OK; 894 if( pNode ){ 895 assert( pNode->nRef>0 ); 896 assert( pRtree->nNodeRef>0 ); 897 pNode->nRef--; 898 if( pNode->nRef==0 ){ 899 pRtree->nNodeRef--; 900 if( pNode->iNode==1 ){ 901 pRtree->iDepth = -1; 902 } 903 if( pNode->pParent ){ 904 rc = nodeRelease(pRtree, pNode->pParent); 905 } 906 if( rc==SQLITE_OK ){ 907 rc = nodeWrite(pRtree, pNode); 908 } 909 nodeHashDelete(pRtree, pNode); 910 sqlite3_free(pNode); 911 } 912 } 913 return rc; 914 } 915 916 /* 917 ** Return the 64-bit integer value associated with cell iCell of 918 ** node pNode. If pNode is a leaf node, this is a rowid. If it is 919 ** an internal node, then the 64-bit integer is a child page number. 920 */ 921 static i64 nodeGetRowid( 922 Rtree *pRtree, /* The overall R-Tree */ 923 RtreeNode *pNode, /* The node from which to extract the ID */ 924 int iCell /* The cell index from which to extract the ID */ 925 ){ 926 assert( iCell<NCELL(pNode) ); 927 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); 928 } 929 930 /* 931 ** Return coordinate iCoord from cell iCell in node pNode. 932 */ 933 static void nodeGetCoord( 934 Rtree *pRtree, /* The overall R-Tree */ 935 RtreeNode *pNode, /* The node from which to extract a coordinate */ 936 int iCell, /* The index of the cell within the node */ 937 int iCoord, /* Which coordinate to extract */ 938 RtreeCoord *pCoord /* OUT: Space to write result to */ 939 ){ 940 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); 941 } 942 943 /* 944 ** Deserialize cell iCell of node pNode. Populate the structure pointed 945 ** to by pCell with the results. 946 */ 947 static void nodeGetCell( 948 Rtree *pRtree, /* The overall R-Tree */ 949 RtreeNode *pNode, /* The node containing the cell to be read */ 950 int iCell, /* Index of the cell within the node */ 951 RtreeCell *pCell /* OUT: Write the cell contents here */ 952 ){ 953 u8 *pData; 954 RtreeCoord *pCoord; 955 int ii = 0; 956 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); 957 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); 958 pCoord = pCell->aCoord; 959 do{ 960 readCoord(pData, &pCoord[ii]); 961 readCoord(pData+4, &pCoord[ii+1]); 962 pData += 8; 963 ii += 2; 964 }while( ii<pRtree->nDim2 ); 965 } 966 967 968 /* Forward declaration for the function that does the work of 969 ** the virtual table module xCreate() and xConnect() methods. 970 */ 971 static int rtreeInit( 972 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int 973 ); 974 975 /* 976 ** Rtree virtual table module xCreate method. 977 */ 978 static int rtreeCreate( 979 sqlite3 *db, 980 void *pAux, 981 int argc, const char *const*argv, 982 sqlite3_vtab **ppVtab, 983 char **pzErr 984 ){ 985 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); 986 } 987 988 /* 989 ** Rtree virtual table module xConnect method. 990 */ 991 static int rtreeConnect( 992 sqlite3 *db, 993 void *pAux, 994 int argc, const char *const*argv, 995 sqlite3_vtab **ppVtab, 996 char **pzErr 997 ){ 998 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); 999 } 1000 1001 /* 1002 ** Increment the r-tree reference count. 1003 */ 1004 static void rtreeReference(Rtree *pRtree){ 1005 pRtree->nBusy++; 1006 } 1007 1008 /* 1009 ** Decrement the r-tree reference count. When the reference count reaches 1010 ** zero the structure is deleted. 1011 */ 1012 static void rtreeRelease(Rtree *pRtree){ 1013 pRtree->nBusy--; 1014 if( pRtree->nBusy==0 ){ 1015 pRtree->inWrTrans = 0; 1016 assert( pRtree->nCursor==0 ); 1017 nodeBlobReset(pRtree); 1018 assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); 1019 sqlite3_finalize(pRtree->pWriteNode); 1020 sqlite3_finalize(pRtree->pDeleteNode); 1021 sqlite3_finalize(pRtree->pReadRowid); 1022 sqlite3_finalize(pRtree->pWriteRowid); 1023 sqlite3_finalize(pRtree->pDeleteRowid); 1024 sqlite3_finalize(pRtree->pReadParent); 1025 sqlite3_finalize(pRtree->pWriteParent); 1026 sqlite3_finalize(pRtree->pDeleteParent); 1027 sqlite3_finalize(pRtree->pWriteAux); 1028 sqlite3_free(pRtree->zReadAuxSql); 1029 sqlite3_free(pRtree); 1030 } 1031 } 1032 1033 /* 1034 ** Rtree virtual table module xDisconnect method. 1035 */ 1036 static int rtreeDisconnect(sqlite3_vtab *pVtab){ 1037 rtreeRelease((Rtree *)pVtab); 1038 return SQLITE_OK; 1039 } 1040 1041 /* 1042 ** Rtree virtual table module xDestroy method. 1043 */ 1044 static int rtreeDestroy(sqlite3_vtab *pVtab){ 1045 Rtree *pRtree = (Rtree *)pVtab; 1046 int rc; 1047 char *zCreate = sqlite3_mprintf( 1048 "DROP TABLE '%q'.'%q_node';" 1049 "DROP TABLE '%q'.'%q_rowid';" 1050 "DROP TABLE '%q'.'%q_parent';", 1051 pRtree->zDb, pRtree->zName, 1052 pRtree->zDb, pRtree->zName, 1053 pRtree->zDb, pRtree->zName 1054 ); 1055 if( !zCreate ){ 1056 rc = SQLITE_NOMEM; 1057 }else{ 1058 nodeBlobReset(pRtree); 1059 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); 1060 sqlite3_free(zCreate); 1061 } 1062 if( rc==SQLITE_OK ){ 1063 rtreeRelease(pRtree); 1064 } 1065 1066 return rc; 1067 } 1068 1069 /* 1070 ** Rtree virtual table module xOpen method. 1071 */ 1072 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 1073 int rc = SQLITE_NOMEM; 1074 Rtree *pRtree = (Rtree *)pVTab; 1075 RtreeCursor *pCsr; 1076 1077 pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); 1078 if( pCsr ){ 1079 memset(pCsr, 0, sizeof(RtreeCursor)); 1080 pCsr->base.pVtab = pVTab; 1081 rc = SQLITE_OK; 1082 pRtree->nCursor++; 1083 } 1084 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 1085 1086 return rc; 1087 } 1088 1089 1090 /* 1091 ** Reset a cursor back to its initial state. 1092 */ 1093 static void resetCursor(RtreeCursor *pCsr){ 1094 Rtree *pRtree = (Rtree *)(pCsr->base.pVtab); 1095 int ii; 1096 sqlite3_stmt *pStmt; 1097 if( pCsr->aConstraint ){ 1098 int i; /* Used to iterate through constraint array */ 1099 for(i=0; i<pCsr->nConstraint; i++){ 1100 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; 1101 if( pInfo ){ 1102 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); 1103 sqlite3_free(pInfo); 1104 } 1105 } 1106 sqlite3_free(pCsr->aConstraint); 1107 pCsr->aConstraint = 0; 1108 } 1109 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); 1110 sqlite3_free(pCsr->aPoint); 1111 pStmt = pCsr->pReadAux; 1112 memset(pCsr, 0, sizeof(RtreeCursor)); 1113 pCsr->base.pVtab = (sqlite3_vtab*)pRtree; 1114 pCsr->pReadAux = pStmt; 1115 1116 } 1117 1118 /* 1119 ** Rtree virtual table module xClose method. 1120 */ 1121 static int rtreeClose(sqlite3_vtab_cursor *cur){ 1122 Rtree *pRtree = (Rtree *)(cur->pVtab); 1123 RtreeCursor *pCsr = (RtreeCursor *)cur; 1124 assert( pRtree->nCursor>0 ); 1125 resetCursor(pCsr); 1126 sqlite3_finalize(pCsr->pReadAux); 1127 sqlite3_free(pCsr); 1128 pRtree->nCursor--; 1129 nodeBlobReset(pRtree); 1130 return SQLITE_OK; 1131 } 1132 1133 /* 1134 ** Rtree virtual table module xEof method. 1135 ** 1136 ** Return non-zero if the cursor does not currently point to a valid 1137 ** record (i.e if the scan has finished), or zero otherwise. 1138 */ 1139 static int rtreeEof(sqlite3_vtab_cursor *cur){ 1140 RtreeCursor *pCsr = (RtreeCursor *)cur; 1141 return pCsr->atEOF; 1142 } 1143 1144 /* 1145 ** Convert raw bits from the on-disk RTree record into a coordinate value. 1146 ** The on-disk format is big-endian and needs to be converted for little- 1147 ** endian platforms. The on-disk record stores integer coordinates if 1148 ** eInt is true and it stores 32-bit floating point records if eInt is 1149 ** false. a[] is the four bytes of the on-disk record to be decoded. 1150 ** Store the results in "r". 1151 ** 1152 ** There are five versions of this macro. The last one is generic. The 1153 ** other four are various architectures-specific optimizations. 1154 */ 1155 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1156 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1157 RtreeCoord c; /* Coordinate decoded */ \ 1158 c.u = _byteswap_ulong(*(u32*)a); \ 1159 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1160 } 1161 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1162 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1163 RtreeCoord c; /* Coordinate decoded */ \ 1164 c.u = __builtin_bswap32(*(u32*)a); \ 1165 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1166 } 1167 #elif SQLITE_BYTEORDER==1234 1168 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1169 RtreeCoord c; /* Coordinate decoded */ \ 1170 memcpy(&c.u,a,4); \ 1171 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ 1172 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ 1173 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1174 } 1175 #elif SQLITE_BYTEORDER==4321 1176 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1177 RtreeCoord c; /* Coordinate decoded */ \ 1178 memcpy(&c.u,a,4); \ 1179 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1180 } 1181 #else 1182 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1183 RtreeCoord c; /* Coordinate decoded */ \ 1184 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ 1185 +((u32)a[2]<<8) + a[3]; \ 1186 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1187 } 1188 #endif 1189 1190 /* 1191 ** Check the RTree node or entry given by pCellData and p against the MATCH 1192 ** constraint pConstraint. 1193 */ 1194 static int rtreeCallbackConstraint( 1195 RtreeConstraint *pConstraint, /* The constraint to test */ 1196 int eInt, /* True if RTree holding integer coordinates */ 1197 u8 *pCellData, /* Raw cell content */ 1198 RtreeSearchPoint *pSearch, /* Container of this cell */ 1199 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ 1200 int *peWithin /* OUT: visibility of the cell */ 1201 ){ 1202 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ 1203 int nCoord = pInfo->nCoord; /* No. of coordinates */ 1204 int rc; /* Callback return code */ 1205 RtreeCoord c; /* Translator union */ 1206 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ 1207 1208 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); 1209 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); 1210 1211 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ 1212 pInfo->iRowid = readInt64(pCellData); 1213 } 1214 pCellData += 8; 1215 #ifndef SQLITE_RTREE_INT_ONLY 1216 if( eInt==0 ){ 1217 switch( nCoord ){ 1218 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; 1219 readCoord(pCellData+32, &c); aCoord[8] = c.f; 1220 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; 1221 readCoord(pCellData+24, &c); aCoord[6] = c.f; 1222 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; 1223 readCoord(pCellData+16, &c); aCoord[4] = c.f; 1224 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; 1225 readCoord(pCellData+8, &c); aCoord[2] = c.f; 1226 default: readCoord(pCellData+4, &c); aCoord[1] = c.f; 1227 readCoord(pCellData, &c); aCoord[0] = c.f; 1228 } 1229 }else 1230 #endif 1231 { 1232 switch( nCoord ){ 1233 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; 1234 readCoord(pCellData+32, &c); aCoord[8] = c.i; 1235 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; 1236 readCoord(pCellData+24, &c); aCoord[6] = c.i; 1237 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; 1238 readCoord(pCellData+16, &c); aCoord[4] = c.i; 1239 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; 1240 readCoord(pCellData+8, &c); aCoord[2] = c.i; 1241 default: readCoord(pCellData+4, &c); aCoord[1] = c.i; 1242 readCoord(pCellData, &c); aCoord[0] = c.i; 1243 } 1244 } 1245 if( pConstraint->op==RTREE_MATCH ){ 1246 int eWithin = 0; 1247 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, 1248 nCoord, aCoord, &eWithin); 1249 if( eWithin==0 ) *peWithin = NOT_WITHIN; 1250 *prScore = RTREE_ZERO; 1251 }else{ 1252 pInfo->aCoord = aCoord; 1253 pInfo->iLevel = pSearch->iLevel - 1; 1254 pInfo->rScore = pInfo->rParentScore = pSearch->rScore; 1255 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; 1256 rc = pConstraint->u.xQueryFunc(pInfo); 1257 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; 1258 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ 1259 *prScore = pInfo->rScore; 1260 } 1261 } 1262 return rc; 1263 } 1264 1265 /* 1266 ** Check the internal RTree node given by pCellData against constraint p. 1267 ** If this constraint cannot be satisfied by any child within the node, 1268 ** set *peWithin to NOT_WITHIN. 1269 */ 1270 static void rtreeNonleafConstraint( 1271 RtreeConstraint *p, /* The constraint to test */ 1272 int eInt, /* True if RTree holds integer coordinates */ 1273 u8 *pCellData, /* Raw cell content as appears on disk */ 1274 int *peWithin /* Adjust downward, as appropriate */ 1275 ){ 1276 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ 1277 1278 /* p->iCoord might point to either a lower or upper bound coordinate 1279 ** in a coordinate pair. But make pCellData point to the lower bound. 1280 */ 1281 pCellData += 8 + 4*(p->iCoord&0xfe); 1282 1283 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1284 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE 1285 || p->op==RTREE_FALSE ); 1286 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1287 switch( p->op ){ 1288 case RTREE_TRUE: return; /* Always satisfied */ 1289 case RTREE_FALSE: break; /* Never satisfied */ 1290 case RTREE_LE: 1291 case RTREE_LT: 1292 case RTREE_EQ: 1293 RTREE_DECODE_COORD(eInt, pCellData, val); 1294 /* val now holds the lower bound of the coordinate pair */ 1295 if( p->u.rValue>=val ) return; 1296 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ 1297 /* Fall through for the RTREE_EQ case */ 1298 1299 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ 1300 pCellData += 4; 1301 RTREE_DECODE_COORD(eInt, pCellData, val); 1302 /* val now holds the upper bound of the coordinate pair */ 1303 if( p->u.rValue<=val ) return; 1304 } 1305 *peWithin = NOT_WITHIN; 1306 } 1307 1308 /* 1309 ** Check the leaf RTree cell given by pCellData against constraint p. 1310 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. 1311 ** If the constraint is satisfied, leave *peWithin unchanged. 1312 ** 1313 ** The constraint is of the form: xN op $val 1314 ** 1315 ** The op is given by p->op. The xN is p->iCoord-th coordinate in 1316 ** pCellData. $val is given by p->u.rValue. 1317 */ 1318 static void rtreeLeafConstraint( 1319 RtreeConstraint *p, /* The constraint to test */ 1320 int eInt, /* True if RTree holds integer coordinates */ 1321 u8 *pCellData, /* Raw cell content as appears on disk */ 1322 int *peWithin /* Adjust downward, as appropriate */ 1323 ){ 1324 RtreeDValue xN; /* Coordinate value converted to a double */ 1325 1326 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1327 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE 1328 || p->op==RTREE_FALSE ); 1329 pCellData += 8 + p->iCoord*4; 1330 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1331 RTREE_DECODE_COORD(eInt, pCellData, xN); 1332 switch( p->op ){ 1333 case RTREE_TRUE: return; /* Always satisfied */ 1334 case RTREE_FALSE: break; /* Never satisfied */ 1335 case RTREE_LE: if( xN <= p->u.rValue ) return; break; 1336 case RTREE_LT: if( xN < p->u.rValue ) return; break; 1337 case RTREE_GE: if( xN >= p->u.rValue ) return; break; 1338 case RTREE_GT: if( xN > p->u.rValue ) return; break; 1339 default: if( xN == p->u.rValue ) return; break; 1340 } 1341 *peWithin = NOT_WITHIN; 1342 } 1343 1344 /* 1345 ** One of the cells in node pNode is guaranteed to have a 64-bit 1346 ** integer value equal to iRowid. Return the index of this cell. 1347 */ 1348 static int nodeRowidIndex( 1349 Rtree *pRtree, 1350 RtreeNode *pNode, 1351 i64 iRowid, 1352 int *piIndex 1353 ){ 1354 int ii; 1355 int nCell = NCELL(pNode); 1356 assert( nCell<200 ); 1357 for(ii=0; ii<nCell; ii++){ 1358 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ 1359 *piIndex = ii; 1360 return SQLITE_OK; 1361 } 1362 } 1363 RTREE_IS_CORRUPT(pRtree); 1364 return SQLITE_CORRUPT_VTAB; 1365 } 1366 1367 /* 1368 ** Return the index of the cell containing a pointer to node pNode 1369 ** in its parent. If pNode is the root node, return -1. 1370 */ 1371 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ 1372 RtreeNode *pParent = pNode->pParent; 1373 if( ALWAYS(pParent) ){ 1374 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); 1375 }else{ 1376 *piIndex = -1; 1377 return SQLITE_OK; 1378 } 1379 } 1380 1381 /* 1382 ** Compare two search points. Return negative, zero, or positive if the first 1383 ** is less than, equal to, or greater than the second. 1384 ** 1385 ** The rScore is the primary key. Smaller rScore values come first. 1386 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller 1387 ** iLevel values coming first. In this way, if rScore is the same for all 1388 ** SearchPoints, then iLevel becomes the deciding factor and the result 1389 ** is a depth-first search, which is the desired default behavior. 1390 */ 1391 static int rtreeSearchPointCompare( 1392 const RtreeSearchPoint *pA, 1393 const RtreeSearchPoint *pB 1394 ){ 1395 if( pA->rScore<pB->rScore ) return -1; 1396 if( pA->rScore>pB->rScore ) return +1; 1397 if( pA->iLevel<pB->iLevel ) return -1; 1398 if( pA->iLevel>pB->iLevel ) return +1; 1399 return 0; 1400 } 1401 1402 /* 1403 ** Interchange two search points in a cursor. 1404 */ 1405 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ 1406 RtreeSearchPoint t = p->aPoint[i]; 1407 assert( i<j ); 1408 p->aPoint[i] = p->aPoint[j]; 1409 p->aPoint[j] = t; 1410 i++; j++; 1411 if( i<RTREE_CACHE_SZ ){ 1412 if( j>=RTREE_CACHE_SZ ){ 1413 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1414 p->aNode[i] = 0; 1415 }else{ 1416 RtreeNode *pTemp = p->aNode[i]; 1417 p->aNode[i] = p->aNode[j]; 1418 p->aNode[j] = pTemp; 1419 } 1420 } 1421 } 1422 1423 /* 1424 ** Return the search point with the lowest current score. 1425 */ 1426 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ 1427 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; 1428 } 1429 1430 /* 1431 ** Get the RtreeNode for the search point with the lowest score. 1432 */ 1433 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ 1434 sqlite3_int64 id; 1435 int ii = 1 - pCur->bPoint; 1436 assert( ii==0 || ii==1 ); 1437 assert( pCur->bPoint || pCur->nPoint ); 1438 if( pCur->aNode[ii]==0 ){ 1439 assert( pRC!=0 ); 1440 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; 1441 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); 1442 } 1443 return pCur->aNode[ii]; 1444 } 1445 1446 /* 1447 ** Push a new element onto the priority queue 1448 */ 1449 static RtreeSearchPoint *rtreeEnqueue( 1450 RtreeCursor *pCur, /* The cursor */ 1451 RtreeDValue rScore, /* Score for the new search point */ 1452 u8 iLevel /* Level for the new search point */ 1453 ){ 1454 int i, j; 1455 RtreeSearchPoint *pNew; 1456 if( pCur->nPoint>=pCur->nPointAlloc ){ 1457 int nNew = pCur->nPointAlloc*2 + 8; 1458 pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); 1459 if( pNew==0 ) return 0; 1460 pCur->aPoint = pNew; 1461 pCur->nPointAlloc = nNew; 1462 } 1463 i = pCur->nPoint++; 1464 pNew = pCur->aPoint + i; 1465 pNew->rScore = rScore; 1466 pNew->iLevel = iLevel; 1467 assert( iLevel<=RTREE_MAX_DEPTH ); 1468 while( i>0 ){ 1469 RtreeSearchPoint *pParent; 1470 j = (i-1)/2; 1471 pParent = pCur->aPoint + j; 1472 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; 1473 rtreeSearchPointSwap(pCur, j, i); 1474 i = j; 1475 pNew = pParent; 1476 } 1477 return pNew; 1478 } 1479 1480 /* 1481 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return 1482 ** NULL if malloc fails. 1483 */ 1484 static RtreeSearchPoint *rtreeSearchPointNew( 1485 RtreeCursor *pCur, /* The cursor */ 1486 RtreeDValue rScore, /* Score for the new search point */ 1487 u8 iLevel /* Level for the new search point */ 1488 ){ 1489 RtreeSearchPoint *pNew, *pFirst; 1490 pFirst = rtreeSearchPointFirst(pCur); 1491 pCur->anQueue[iLevel]++; 1492 if( pFirst==0 1493 || pFirst->rScore>rScore 1494 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) 1495 ){ 1496 if( pCur->bPoint ){ 1497 int ii; 1498 pNew = rtreeEnqueue(pCur, rScore, iLevel); 1499 if( pNew==0 ) return 0; 1500 ii = (int)(pNew - pCur->aPoint) + 1; 1501 assert( ii==1 ); 1502 if( ALWAYS(ii<RTREE_CACHE_SZ) ){ 1503 assert( pCur->aNode[ii]==0 ); 1504 pCur->aNode[ii] = pCur->aNode[0]; 1505 }else{ 1506 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); 1507 } 1508 pCur->aNode[0] = 0; 1509 *pNew = pCur->sPoint; 1510 } 1511 pCur->sPoint.rScore = rScore; 1512 pCur->sPoint.iLevel = iLevel; 1513 pCur->bPoint = 1; 1514 return &pCur->sPoint; 1515 }else{ 1516 return rtreeEnqueue(pCur, rScore, iLevel); 1517 } 1518 } 1519 1520 #if 0 1521 /* Tracing routines for the RtreeSearchPoint queue */ 1522 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ 1523 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } 1524 printf(" %d.%05lld.%02d %g %d", 1525 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin 1526 ); 1527 idx++; 1528 if( idx<RTREE_CACHE_SZ ){ 1529 printf(" %p\n", pCur->aNode[idx]); 1530 }else{ 1531 printf("\n"); 1532 } 1533 } 1534 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ 1535 int ii; 1536 printf("=== %9s ", zPrefix); 1537 if( pCur->bPoint ){ 1538 tracePoint(&pCur->sPoint, -1, pCur); 1539 } 1540 for(ii=0; ii<pCur->nPoint; ii++){ 1541 if( ii>0 || pCur->bPoint ) printf(" "); 1542 tracePoint(&pCur->aPoint[ii], ii, pCur); 1543 } 1544 } 1545 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) 1546 #else 1547 # define RTREE_QUEUE_TRACE(A,B) /* no-op */ 1548 #endif 1549 1550 /* Remove the search point with the lowest current score. 1551 */ 1552 static void rtreeSearchPointPop(RtreeCursor *p){ 1553 int i, j, k, n; 1554 i = 1 - p->bPoint; 1555 assert( i==0 || i==1 ); 1556 if( p->aNode[i] ){ 1557 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1558 p->aNode[i] = 0; 1559 } 1560 if( p->bPoint ){ 1561 p->anQueue[p->sPoint.iLevel]--; 1562 p->bPoint = 0; 1563 }else if( ALWAYS(p->nPoint) ){ 1564 p->anQueue[p->aPoint[0].iLevel]--; 1565 n = --p->nPoint; 1566 p->aPoint[0] = p->aPoint[n]; 1567 if( n<RTREE_CACHE_SZ-1 ){ 1568 p->aNode[1] = p->aNode[n+1]; 1569 p->aNode[n+1] = 0; 1570 } 1571 i = 0; 1572 while( (j = i*2+1)<n ){ 1573 k = j+1; 1574 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ 1575 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ 1576 rtreeSearchPointSwap(p, i, k); 1577 i = k; 1578 }else{ 1579 break; 1580 } 1581 }else{ 1582 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ 1583 rtreeSearchPointSwap(p, i, j); 1584 i = j; 1585 }else{ 1586 break; 1587 } 1588 } 1589 } 1590 } 1591 } 1592 1593 1594 /* 1595 ** Continue the search on cursor pCur until the front of the queue 1596 ** contains an entry suitable for returning as a result-set row, 1597 ** or until the RtreeSearchPoint queue is empty, indicating that the 1598 ** query has completed. 1599 */ 1600 static int rtreeStepToLeaf(RtreeCursor *pCur){ 1601 RtreeSearchPoint *p; 1602 Rtree *pRtree = RTREE_OF_CURSOR(pCur); 1603 RtreeNode *pNode; 1604 int eWithin; 1605 int rc = SQLITE_OK; 1606 int nCell; 1607 int nConstraint = pCur->nConstraint; 1608 int ii; 1609 int eInt; 1610 RtreeSearchPoint x; 1611 1612 eInt = pRtree->eCoordType==RTREE_COORD_INT32; 1613 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ 1614 u8 *pCellData; 1615 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); 1616 if( rc ) return rc; 1617 nCell = NCELL(pNode); 1618 assert( nCell<200 ); 1619 pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); 1620 while( p->iCell<nCell ){ 1621 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; 1622 eWithin = FULLY_WITHIN; 1623 for(ii=0; ii<nConstraint; ii++){ 1624 RtreeConstraint *pConstraint = pCur->aConstraint + ii; 1625 if( pConstraint->op>=RTREE_MATCH ){ 1626 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, 1627 &rScore, &eWithin); 1628 if( rc ) return rc; 1629 }else if( p->iLevel==1 ){ 1630 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); 1631 }else{ 1632 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); 1633 } 1634 if( eWithin==NOT_WITHIN ){ 1635 p->iCell++; 1636 pCellData += pRtree->nBytesPerCell; 1637 break; 1638 } 1639 } 1640 if( eWithin==NOT_WITHIN ) continue; 1641 p->iCell++; 1642 x.iLevel = p->iLevel - 1; 1643 if( x.iLevel ){ 1644 x.id = readInt64(pCellData); 1645 for(ii=0; ii<pCur->nPoint; ii++){ 1646 if( pCur->aPoint[ii].id==x.id ){ 1647 RTREE_IS_CORRUPT(pRtree); 1648 return SQLITE_CORRUPT_VTAB; 1649 } 1650 } 1651 x.iCell = 0; 1652 }else{ 1653 x.id = p->id; 1654 x.iCell = p->iCell - 1; 1655 } 1656 if( p->iCell>=nCell ){ 1657 RTREE_QUEUE_TRACE(pCur, "POP-S:"); 1658 rtreeSearchPointPop(pCur); 1659 } 1660 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; 1661 p = rtreeSearchPointNew(pCur, rScore, x.iLevel); 1662 if( p==0 ) return SQLITE_NOMEM; 1663 p->eWithin = (u8)eWithin; 1664 p->id = x.id; 1665 p->iCell = x.iCell; 1666 RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); 1667 break; 1668 } 1669 if( p->iCell>=nCell ){ 1670 RTREE_QUEUE_TRACE(pCur, "POP-Se:"); 1671 rtreeSearchPointPop(pCur); 1672 } 1673 } 1674 pCur->atEOF = p==0; 1675 return SQLITE_OK; 1676 } 1677 1678 /* 1679 ** Rtree virtual table module xNext method. 1680 */ 1681 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ 1682 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1683 int rc = SQLITE_OK; 1684 1685 /* Move to the next entry that matches the configured constraints. */ 1686 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); 1687 if( pCsr->bAuxValid ){ 1688 pCsr->bAuxValid = 0; 1689 sqlite3_reset(pCsr->pReadAux); 1690 } 1691 rtreeSearchPointPop(pCsr); 1692 rc = rtreeStepToLeaf(pCsr); 1693 return rc; 1694 } 1695 1696 /* 1697 ** Rtree virtual table module xRowid method. 1698 */ 1699 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ 1700 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1701 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1702 int rc = SQLITE_OK; 1703 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1704 if( rc==SQLITE_OK && ALWAYS(p) ){ 1705 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); 1706 } 1707 return rc; 1708 } 1709 1710 /* 1711 ** Rtree virtual table module xColumn method. 1712 */ 1713 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1714 Rtree *pRtree = (Rtree *)cur->pVtab; 1715 RtreeCursor *pCsr = (RtreeCursor *)cur; 1716 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1717 RtreeCoord c; 1718 int rc = SQLITE_OK; 1719 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1720 1721 if( rc ) return rc; 1722 if( NEVER(p==0) ) return SQLITE_OK; 1723 if( i==0 ){ 1724 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); 1725 }else if( i<=pRtree->nDim2 ){ 1726 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); 1727 #ifndef SQLITE_RTREE_INT_ONLY 1728 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1729 sqlite3_result_double(ctx, c.f); 1730 }else 1731 #endif 1732 { 1733 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); 1734 sqlite3_result_int(ctx, c.i); 1735 } 1736 }else{ 1737 if( !pCsr->bAuxValid ){ 1738 if( pCsr->pReadAux==0 ){ 1739 rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, 1740 &pCsr->pReadAux, 0); 1741 if( rc ) return rc; 1742 } 1743 sqlite3_bind_int64(pCsr->pReadAux, 1, 1744 nodeGetRowid(pRtree, pNode, p->iCell)); 1745 rc = sqlite3_step(pCsr->pReadAux); 1746 if( rc==SQLITE_ROW ){ 1747 pCsr->bAuxValid = 1; 1748 }else{ 1749 sqlite3_reset(pCsr->pReadAux); 1750 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 1751 return rc; 1752 } 1753 } 1754 sqlite3_result_value(ctx, 1755 sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); 1756 } 1757 return SQLITE_OK; 1758 } 1759 1760 /* 1761 ** Use nodeAcquire() to obtain the leaf node containing the record with 1762 ** rowid iRowid. If successful, set *ppLeaf to point to the node and 1763 ** return SQLITE_OK. If there is no such record in the table, set 1764 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf 1765 ** to zero and return an SQLite error code. 1766 */ 1767 static int findLeafNode( 1768 Rtree *pRtree, /* RTree to search */ 1769 i64 iRowid, /* The rowid searching for */ 1770 RtreeNode **ppLeaf, /* Write the node here */ 1771 sqlite3_int64 *piNode /* Write the node-id here */ 1772 ){ 1773 int rc; 1774 *ppLeaf = 0; 1775 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); 1776 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ 1777 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); 1778 if( piNode ) *piNode = iNode; 1779 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); 1780 sqlite3_reset(pRtree->pReadRowid); 1781 }else{ 1782 rc = sqlite3_reset(pRtree->pReadRowid); 1783 } 1784 return rc; 1785 } 1786 1787 /* 1788 ** This function is called to configure the RtreeConstraint object passed 1789 ** as the second argument for a MATCH constraint. The value passed as the 1790 ** first argument to this function is the right-hand operand to the MATCH 1791 ** operator. 1792 */ 1793 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ 1794 RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ 1795 sqlite3_rtree_query_info *pInfo; /* Callback information */ 1796 1797 pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); 1798 if( pSrc==0 ) return SQLITE_ERROR; 1799 pInfo = (sqlite3_rtree_query_info*) 1800 sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); 1801 if( !pInfo ) return SQLITE_NOMEM; 1802 memset(pInfo, 0, sizeof(*pInfo)); 1803 pBlob = (RtreeMatchArg*)&pInfo[1]; 1804 memcpy(pBlob, pSrc, pSrc->iSize); 1805 pInfo->pContext = pBlob->cb.pContext; 1806 pInfo->nParam = pBlob->nParam; 1807 pInfo->aParam = pBlob->aParam; 1808 pInfo->apSqlParam = pBlob->apSqlParam; 1809 1810 if( pBlob->cb.xGeom ){ 1811 pCons->u.xGeom = pBlob->cb.xGeom; 1812 }else{ 1813 pCons->op = RTREE_QUERY; 1814 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; 1815 } 1816 pCons->pInfo = pInfo; 1817 return SQLITE_OK; 1818 } 1819 1820 /* 1821 ** Rtree virtual table module xFilter method. 1822 */ 1823 static int rtreeFilter( 1824 sqlite3_vtab_cursor *pVtabCursor, 1825 int idxNum, const char *idxStr, 1826 int argc, sqlite3_value **argv 1827 ){ 1828 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; 1829 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1830 RtreeNode *pRoot = 0; 1831 int ii; 1832 int rc = SQLITE_OK; 1833 int iCell = 0; 1834 1835 rtreeReference(pRtree); 1836 1837 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ 1838 resetCursor(pCsr); 1839 1840 pCsr->iStrategy = idxNum; 1841 if( idxNum==1 ){ 1842 /* Special case - lookup by rowid. */ 1843 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ 1844 RtreeSearchPoint *p; /* Search point for the leaf */ 1845 i64 iRowid = sqlite3_value_int64(argv[0]); 1846 i64 iNode = 0; 1847 int eType = sqlite3_value_numeric_type(argv[0]); 1848 if( eType==SQLITE_INTEGER 1849 || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid) 1850 ){ 1851 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); 1852 }else{ 1853 rc = SQLITE_OK; 1854 pLeaf = 0; 1855 } 1856 if( rc==SQLITE_OK && pLeaf!=0 ){ 1857 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); 1858 assert( p!=0 ); /* Always returns pCsr->sPoint */ 1859 pCsr->aNode[0] = pLeaf; 1860 p->id = iNode; 1861 p->eWithin = PARTLY_WITHIN; 1862 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); 1863 p->iCell = (u8)iCell; 1864 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); 1865 }else{ 1866 pCsr->atEOF = 1; 1867 } 1868 }else{ 1869 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 1870 ** with the configured constraints. 1871 */ 1872 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 1873 if( rc==SQLITE_OK && argc>0 ){ 1874 pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); 1875 pCsr->nConstraint = argc; 1876 if( !pCsr->aConstraint ){ 1877 rc = SQLITE_NOMEM; 1878 }else{ 1879 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); 1880 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); 1881 assert( (idxStr==0 && argc==0) 1882 || (idxStr && (int)strlen(idxStr)==argc*2) ); 1883 for(ii=0; ii<argc; ii++){ 1884 RtreeConstraint *p = &pCsr->aConstraint[ii]; 1885 int eType = sqlite3_value_numeric_type(argv[ii]); 1886 p->op = idxStr[ii*2]; 1887 p->iCoord = idxStr[ii*2+1]-'0'; 1888 if( p->op>=RTREE_MATCH ){ 1889 /* A MATCH operator. The right-hand-side must be a blob that 1890 ** can be cast into an RtreeMatchArg object. One created using 1891 ** an sqlite3_rtree_geometry_callback() SQL user function. 1892 */ 1893 rc = deserializeGeometry(argv[ii], p); 1894 if( rc!=SQLITE_OK ){ 1895 break; 1896 } 1897 p->pInfo->nCoord = pRtree->nDim2; 1898 p->pInfo->anQueue = pCsr->anQueue; 1899 p->pInfo->mxLevel = pRtree->iDepth + 1; 1900 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 1901 #ifdef SQLITE_RTREE_INT_ONLY 1902 p->u.rValue = sqlite3_value_int64(argv[ii]); 1903 #else 1904 p->u.rValue = sqlite3_value_double(argv[ii]); 1905 #endif 1906 }else{ 1907 p->u.rValue = RTREE_ZERO; 1908 if( eType==SQLITE_NULL ){ 1909 p->op = RTREE_FALSE; 1910 }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ 1911 p->op = RTREE_TRUE; 1912 }else{ 1913 p->op = RTREE_FALSE; 1914 } 1915 } 1916 } 1917 } 1918 } 1919 if( rc==SQLITE_OK ){ 1920 RtreeSearchPoint *pNew; 1921 assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */ 1922 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); 1923 if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */ 1924 return SQLITE_NOMEM; 1925 } 1926 pNew->id = 1; 1927 pNew->iCell = 0; 1928 pNew->eWithin = PARTLY_WITHIN; 1929 assert( pCsr->bPoint==1 ); 1930 pCsr->aNode[0] = pRoot; 1931 pRoot = 0; 1932 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); 1933 rc = rtreeStepToLeaf(pCsr); 1934 } 1935 } 1936 1937 nodeRelease(pRtree, pRoot); 1938 rtreeRelease(pRtree); 1939 return rc; 1940 } 1941 1942 /* 1943 ** Rtree virtual table module xBestIndex method. There are three 1944 ** table scan strategies to choose from (in order from most to 1945 ** least desirable): 1946 ** 1947 ** idxNum idxStr Strategy 1948 ** ------------------------------------------------ 1949 ** 1 Unused Direct lookup by rowid. 1950 ** 2 See below R-tree query or full-table scan. 1951 ** ------------------------------------------------ 1952 ** 1953 ** If strategy 1 is used, then idxStr is not meaningful. If strategy 1954 ** 2 is used, idxStr is formatted to contain 2 bytes for each 1955 ** constraint used. The first two bytes of idxStr correspond to 1956 ** the constraint in sqlite3_index_info.aConstraintUsage[] with 1957 ** (argvIndex==1) etc. 1958 ** 1959 ** The first of each pair of bytes in idxStr identifies the constraint 1960 ** operator as follows: 1961 ** 1962 ** Operator Byte Value 1963 ** ---------------------- 1964 ** = 0x41 ('A') 1965 ** <= 0x42 ('B') 1966 ** < 0x43 ('C') 1967 ** >= 0x44 ('D') 1968 ** > 0x45 ('E') 1969 ** MATCH 0x46 ('F') 1970 ** ---------------------- 1971 ** 1972 ** The second of each pair of bytes identifies the coordinate column 1973 ** to which the constraint applies. The leftmost coordinate column 1974 ** is 'a', the second from the left 'b' etc. 1975 */ 1976 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1977 Rtree *pRtree = (Rtree*)tab; 1978 int rc = SQLITE_OK; 1979 int ii; 1980 int bMatch = 0; /* True if there exists a MATCH constraint */ 1981 i64 nRow; /* Estimated rows returned by this scan */ 1982 1983 int iIdx = 0; 1984 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; 1985 memset(zIdxStr, 0, sizeof(zIdxStr)); 1986 1987 /* Check if there exists a MATCH constraint - even an unusable one. If there 1988 ** is, do not consider the lookup-by-rowid plan as using such a plan would 1989 ** require the VDBE to evaluate the MATCH constraint, which is not currently 1990 ** possible. */ 1991 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 1992 if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 1993 bMatch = 1; 1994 } 1995 } 1996 1997 assert( pIdxInfo->idxStr==0 ); 1998 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ 1999 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; 2000 2001 if( bMatch==0 && p->usable 2002 && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 2003 ){ 2004 /* We have an equality constraint on the rowid. Use strategy 1. */ 2005 int jj; 2006 for(jj=0; jj<ii; jj++){ 2007 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; 2008 pIdxInfo->aConstraintUsage[jj].omit = 0; 2009 } 2010 pIdxInfo->idxNum = 1; 2011 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; 2012 pIdxInfo->aConstraintUsage[jj].omit = 1; 2013 2014 /* This strategy involves a two rowid lookups on an B-Tree structures 2015 ** and then a linear search of an R-Tree node. This should be 2016 ** considered almost as quick as a direct rowid lookup (for which 2017 ** sqlite uses an internal cost of 0.0). It is expected to return 2018 ** a single row. 2019 */ 2020 pIdxInfo->estimatedCost = 30.0; 2021 pIdxInfo->estimatedRows = 1; 2022 pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; 2023 return SQLITE_OK; 2024 } 2025 2026 if( p->usable 2027 && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) 2028 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) 2029 ){ 2030 u8 op; 2031 switch( p->op ){ 2032 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; 2033 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; 2034 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; 2035 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; 2036 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; 2037 case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; 2038 default: op = 0; break; 2039 } 2040 if( op ){ 2041 zIdxStr[iIdx++] = op; 2042 zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); 2043 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); 2044 pIdxInfo->aConstraintUsage[ii].omit = 1; 2045 } 2046 } 2047 } 2048 2049 pIdxInfo->idxNum = 2; 2050 pIdxInfo->needToFreeIdxStr = 1; 2051 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ 2052 return SQLITE_NOMEM; 2053 } 2054 2055 nRow = pRtree->nRowEst >> (iIdx/2); 2056 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; 2057 pIdxInfo->estimatedRows = nRow; 2058 2059 return rc; 2060 } 2061 2062 /* 2063 ** Return the N-dimensional volumn of the cell stored in *p. 2064 */ 2065 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ 2066 RtreeDValue area = (RtreeDValue)1; 2067 assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); 2068 #ifndef SQLITE_RTREE_INT_ONLY 2069 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2070 switch( pRtree->nDim ){ 2071 case 5: area = p->aCoord[9].f - p->aCoord[8].f; 2072 case 4: area *= p->aCoord[7].f - p->aCoord[6].f; 2073 case 3: area *= p->aCoord[5].f - p->aCoord[4].f; 2074 case 2: area *= p->aCoord[3].f - p->aCoord[2].f; 2075 default: area *= p->aCoord[1].f - p->aCoord[0].f; 2076 } 2077 }else 2078 #endif 2079 { 2080 switch( pRtree->nDim ){ 2081 case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; 2082 case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; 2083 case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; 2084 case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; 2085 default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; 2086 } 2087 } 2088 return area; 2089 } 2090 2091 /* 2092 ** Return the margin length of cell p. The margin length is the sum 2093 ** of the objects size in each dimension. 2094 */ 2095 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ 2096 RtreeDValue margin = 0; 2097 int ii = pRtree->nDim2 - 2; 2098 do{ 2099 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); 2100 ii -= 2; 2101 }while( ii>=0 ); 2102 return margin; 2103 } 2104 2105 /* 2106 ** Store the union of cells p1 and p2 in p1. 2107 */ 2108 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2109 int ii = 0; 2110 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2111 do{ 2112 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); 2113 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); 2114 ii += 2; 2115 }while( ii<pRtree->nDim2 ); 2116 }else{ 2117 do{ 2118 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); 2119 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); 2120 ii += 2; 2121 }while( ii<pRtree->nDim2 ); 2122 } 2123 } 2124 2125 /* 2126 ** Return true if the area covered by p2 is a subset of the area covered 2127 ** by p1. False otherwise. 2128 */ 2129 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2130 int ii; 2131 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); 2132 for(ii=0; ii<pRtree->nDim2; ii+=2){ 2133 RtreeCoord *a1 = &p1->aCoord[ii]; 2134 RtreeCoord *a2 = &p2->aCoord[ii]; 2135 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 2136 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 2137 ){ 2138 return 0; 2139 } 2140 } 2141 return 1; 2142 } 2143 2144 /* 2145 ** Return the amount cell p would grow by if it were unioned with pCell. 2146 */ 2147 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ 2148 RtreeDValue area; 2149 RtreeCell cell; 2150 memcpy(&cell, p, sizeof(RtreeCell)); 2151 area = cellArea(pRtree, &cell); 2152 cellUnion(pRtree, &cell, pCell); 2153 return (cellArea(pRtree, &cell)-area); 2154 } 2155 2156 static RtreeDValue cellOverlap( 2157 Rtree *pRtree, 2158 RtreeCell *p, 2159 RtreeCell *aCell, 2160 int nCell 2161 ){ 2162 int ii; 2163 RtreeDValue overlap = RTREE_ZERO; 2164 for(ii=0; ii<nCell; ii++){ 2165 int jj; 2166 RtreeDValue o = (RtreeDValue)1; 2167 for(jj=0; jj<pRtree->nDim2; jj+=2){ 2168 RtreeDValue x1, x2; 2169 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); 2170 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); 2171 if( x2<x1 ){ 2172 o = (RtreeDValue)0; 2173 break; 2174 }else{ 2175 o = o * (x2-x1); 2176 } 2177 } 2178 overlap += o; 2179 } 2180 return overlap; 2181 } 2182 2183 2184 /* 2185 ** This function implements the ChooseLeaf algorithm from Gutman[84]. 2186 ** ChooseSubTree in r*tree terminology. 2187 */ 2188 static int ChooseLeaf( 2189 Rtree *pRtree, /* Rtree table */ 2190 RtreeCell *pCell, /* Cell to insert into rtree */ 2191 int iHeight, /* Height of sub-tree rooted at pCell */ 2192 RtreeNode **ppLeaf /* OUT: Selected leaf page */ 2193 ){ 2194 int rc; 2195 int ii; 2196 RtreeNode *pNode = 0; 2197 rc = nodeAcquire(pRtree, 1, 0, &pNode); 2198 2199 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ 2200 int iCell; 2201 sqlite3_int64 iBest = 0; 2202 2203 RtreeDValue fMinGrowth = RTREE_ZERO; 2204 RtreeDValue fMinArea = RTREE_ZERO; 2205 2206 int nCell = NCELL(pNode); 2207 RtreeCell cell; 2208 RtreeNode *pChild = 0; 2209 2210 RtreeCell *aCell = 0; 2211 2212 /* Select the child node which will be enlarged the least if pCell 2213 ** is inserted into it. Resolve ties by choosing the entry with 2214 ** the smallest area. 2215 */ 2216 for(iCell=0; iCell<nCell; iCell++){ 2217 int bBest = 0; 2218 RtreeDValue growth; 2219 RtreeDValue area; 2220 nodeGetCell(pRtree, pNode, iCell, &cell); 2221 growth = cellGrowth(pRtree, &cell, pCell); 2222 area = cellArea(pRtree, &cell); 2223 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ 2224 bBest = 1; 2225 } 2226 if( bBest ){ 2227 fMinGrowth = growth; 2228 fMinArea = area; 2229 iBest = cell.iRowid; 2230 } 2231 } 2232 2233 sqlite3_free(aCell); 2234 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); 2235 nodeRelease(pRtree, pNode); 2236 pNode = pChild; 2237 } 2238 2239 *ppLeaf = pNode; 2240 return rc; 2241 } 2242 2243 /* 2244 ** A cell with the same content as pCell has just been inserted into 2245 ** the node pNode. This function updates the bounding box cells in 2246 ** all ancestor elements. 2247 */ 2248 static int AdjustTree( 2249 Rtree *pRtree, /* Rtree table */ 2250 RtreeNode *pNode, /* Adjust ancestry of this node. */ 2251 RtreeCell *pCell /* This cell was just inserted */ 2252 ){ 2253 RtreeNode *p = pNode; 2254 int cnt = 0; 2255 int rc; 2256 while( p->pParent ){ 2257 RtreeNode *pParent = p->pParent; 2258 RtreeCell cell; 2259 int iCell; 2260 2261 cnt++; 2262 if( NEVER(cnt>100) ){ 2263 RTREE_IS_CORRUPT(pRtree); 2264 return SQLITE_CORRUPT_VTAB; 2265 } 2266 rc = nodeParentIndex(pRtree, p, &iCell); 2267 if( NEVER(rc!=SQLITE_OK) ){ 2268 RTREE_IS_CORRUPT(pRtree); 2269 return SQLITE_CORRUPT_VTAB; 2270 } 2271 2272 nodeGetCell(pRtree, pParent, iCell, &cell); 2273 if( !cellContains(pRtree, &cell, pCell) ){ 2274 cellUnion(pRtree, &cell, pCell); 2275 nodeOverwriteCell(pRtree, pParent, &cell, iCell); 2276 } 2277 2278 p = pParent; 2279 } 2280 return SQLITE_OK; 2281 } 2282 2283 /* 2284 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. 2285 */ 2286 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ 2287 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); 2288 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); 2289 sqlite3_step(pRtree->pWriteRowid); 2290 return sqlite3_reset(pRtree->pWriteRowid); 2291 } 2292 2293 /* 2294 ** Write mapping (iNode->iPar) to the <rtree>_parent table. 2295 */ 2296 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ 2297 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); 2298 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); 2299 sqlite3_step(pRtree->pWriteParent); 2300 return sqlite3_reset(pRtree->pWriteParent); 2301 } 2302 2303 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); 2304 2305 2306 /* 2307 ** Arguments aIdx, aDistance and aSpare all point to arrays of size 2308 ** nIdx. The aIdx array contains the set of integers from 0 to 2309 ** (nIdx-1) in no particular order. This function sorts the values 2310 ** in aIdx according to the indexed values in aDistance. For 2311 ** example, assuming the inputs: 2312 ** 2313 ** aIdx = { 0, 1, 2, 3 } 2314 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } 2315 ** 2316 ** this function sets the aIdx array to contain: 2317 ** 2318 ** aIdx = { 0, 1, 2, 3 } 2319 ** 2320 ** The aSpare array is used as temporary working space by the 2321 ** sorting algorithm. 2322 */ 2323 static void SortByDistance( 2324 int *aIdx, 2325 int nIdx, 2326 RtreeDValue *aDistance, 2327 int *aSpare 2328 ){ 2329 if( nIdx>1 ){ 2330 int iLeft = 0; 2331 int iRight = 0; 2332 2333 int nLeft = nIdx/2; 2334 int nRight = nIdx-nLeft; 2335 int *aLeft = aIdx; 2336 int *aRight = &aIdx[nLeft]; 2337 2338 SortByDistance(aLeft, nLeft, aDistance, aSpare); 2339 SortByDistance(aRight, nRight, aDistance, aSpare); 2340 2341 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2342 aLeft = aSpare; 2343 2344 while( iLeft<nLeft || iRight<nRight ){ 2345 if( iLeft==nLeft ){ 2346 aIdx[iLeft+iRight] = aRight[iRight]; 2347 iRight++; 2348 }else if( iRight==nRight ){ 2349 aIdx[iLeft+iRight] = aLeft[iLeft]; 2350 iLeft++; 2351 }else{ 2352 RtreeDValue fLeft = aDistance[aLeft[iLeft]]; 2353 RtreeDValue fRight = aDistance[aRight[iRight]]; 2354 if( fLeft<fRight ){ 2355 aIdx[iLeft+iRight] = aLeft[iLeft]; 2356 iLeft++; 2357 }else{ 2358 aIdx[iLeft+iRight] = aRight[iRight]; 2359 iRight++; 2360 } 2361 } 2362 } 2363 2364 #if 0 2365 /* Check that the sort worked */ 2366 { 2367 int jj; 2368 for(jj=1; jj<nIdx; jj++){ 2369 RtreeDValue left = aDistance[aIdx[jj-1]]; 2370 RtreeDValue right = aDistance[aIdx[jj]]; 2371 assert( left<=right ); 2372 } 2373 } 2374 #endif 2375 } 2376 } 2377 2378 /* 2379 ** Arguments aIdx, aCell and aSpare all point to arrays of size 2380 ** nIdx. The aIdx array contains the set of integers from 0 to 2381 ** (nIdx-1) in no particular order. This function sorts the values 2382 ** in aIdx according to dimension iDim of the cells in aCell. The 2383 ** minimum value of dimension iDim is considered first, the 2384 ** maximum used to break ties. 2385 ** 2386 ** The aSpare array is used as temporary working space by the 2387 ** sorting algorithm. 2388 */ 2389 static void SortByDimension( 2390 Rtree *pRtree, 2391 int *aIdx, 2392 int nIdx, 2393 int iDim, 2394 RtreeCell *aCell, 2395 int *aSpare 2396 ){ 2397 if( nIdx>1 ){ 2398 2399 int iLeft = 0; 2400 int iRight = 0; 2401 2402 int nLeft = nIdx/2; 2403 int nRight = nIdx-nLeft; 2404 int *aLeft = aIdx; 2405 int *aRight = &aIdx[nLeft]; 2406 2407 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); 2408 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); 2409 2410 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2411 aLeft = aSpare; 2412 while( iLeft<nLeft || iRight<nRight ){ 2413 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); 2414 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); 2415 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); 2416 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); 2417 if( (iLeft!=nLeft) && ((iRight==nRight) 2418 || (xleft1<xright1) 2419 || (xleft1==xright1 && xleft2<xright2) 2420 )){ 2421 aIdx[iLeft+iRight] = aLeft[iLeft]; 2422 iLeft++; 2423 }else{ 2424 aIdx[iLeft+iRight] = aRight[iRight]; 2425 iRight++; 2426 } 2427 } 2428 2429 #if 0 2430 /* Check that the sort worked */ 2431 { 2432 int jj; 2433 for(jj=1; jj<nIdx; jj++){ 2434 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; 2435 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; 2436 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; 2437 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; 2438 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); 2439 } 2440 } 2441 #endif 2442 } 2443 } 2444 2445 /* 2446 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. 2447 */ 2448 static int splitNodeStartree( 2449 Rtree *pRtree, 2450 RtreeCell *aCell, 2451 int nCell, 2452 RtreeNode *pLeft, 2453 RtreeNode *pRight, 2454 RtreeCell *pBboxLeft, 2455 RtreeCell *pBboxRight 2456 ){ 2457 int **aaSorted; 2458 int *aSpare; 2459 int ii; 2460 2461 int iBestDim = 0; 2462 int iBestSplit = 0; 2463 RtreeDValue fBestMargin = RTREE_ZERO; 2464 2465 sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); 2466 2467 aaSorted = (int **)sqlite3_malloc64(nByte); 2468 if( !aaSorted ){ 2469 return SQLITE_NOMEM; 2470 } 2471 2472 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; 2473 memset(aaSorted, 0, nByte); 2474 for(ii=0; ii<pRtree->nDim; ii++){ 2475 int jj; 2476 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; 2477 for(jj=0; jj<nCell; jj++){ 2478 aaSorted[ii][jj] = jj; 2479 } 2480 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); 2481 } 2482 2483 for(ii=0; ii<pRtree->nDim; ii++){ 2484 RtreeDValue margin = RTREE_ZERO; 2485 RtreeDValue fBestOverlap = RTREE_ZERO; 2486 RtreeDValue fBestArea = RTREE_ZERO; 2487 int iBestLeft = 0; 2488 int nLeft; 2489 2490 for( 2491 nLeft=RTREE_MINCELLS(pRtree); 2492 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 2493 nLeft++ 2494 ){ 2495 RtreeCell left; 2496 RtreeCell right; 2497 int kk; 2498 RtreeDValue overlap; 2499 RtreeDValue area; 2500 2501 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); 2502 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); 2503 for(kk=1; kk<(nCell-1); kk++){ 2504 if( kk<nLeft ){ 2505 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); 2506 }else{ 2507 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); 2508 } 2509 } 2510 margin += cellMargin(pRtree, &left); 2511 margin += cellMargin(pRtree, &right); 2512 overlap = cellOverlap(pRtree, &left, &right, 1); 2513 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); 2514 if( (nLeft==RTREE_MINCELLS(pRtree)) 2515 || (overlap<fBestOverlap) 2516 || (overlap==fBestOverlap && area<fBestArea) 2517 ){ 2518 iBestLeft = nLeft; 2519 fBestOverlap = overlap; 2520 fBestArea = area; 2521 } 2522 } 2523 2524 if( ii==0 || margin<fBestMargin ){ 2525 iBestDim = ii; 2526 fBestMargin = margin; 2527 iBestSplit = iBestLeft; 2528 } 2529 } 2530 2531 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); 2532 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); 2533 for(ii=0; ii<nCell; ii++){ 2534 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; 2535 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; 2536 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; 2537 nodeInsertCell(pRtree, pTarget, pCell); 2538 cellUnion(pRtree, pBbox, pCell); 2539 } 2540 2541 sqlite3_free(aaSorted); 2542 return SQLITE_OK; 2543 } 2544 2545 2546 static int updateMapping( 2547 Rtree *pRtree, 2548 i64 iRowid, 2549 RtreeNode *pNode, 2550 int iHeight 2551 ){ 2552 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); 2553 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); 2554 if( iHeight>0 ){ 2555 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); 2556 RtreeNode *p; 2557 for(p=pNode; p; p=p->pParent){ 2558 if( p==pChild ) return SQLITE_CORRUPT_VTAB; 2559 } 2560 if( pChild ){ 2561 nodeRelease(pRtree, pChild->pParent); 2562 nodeReference(pNode); 2563 pChild->pParent = pNode; 2564 } 2565 } 2566 if( NEVER(pNode==0) ) return SQLITE_ERROR; 2567 return xSetMapping(pRtree, iRowid, pNode->iNode); 2568 } 2569 2570 static int SplitNode( 2571 Rtree *pRtree, 2572 RtreeNode *pNode, 2573 RtreeCell *pCell, 2574 int iHeight 2575 ){ 2576 int i; 2577 int newCellIsRight = 0; 2578 2579 int rc = SQLITE_OK; 2580 int nCell = NCELL(pNode); 2581 RtreeCell *aCell; 2582 int *aiUsed; 2583 2584 RtreeNode *pLeft = 0; 2585 RtreeNode *pRight = 0; 2586 2587 RtreeCell leftbbox; 2588 RtreeCell rightbbox; 2589 2590 /* Allocate an array and populate it with a copy of pCell and 2591 ** all cells from node pLeft. Then zero the original node. 2592 */ 2593 aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); 2594 if( !aCell ){ 2595 rc = SQLITE_NOMEM; 2596 goto splitnode_out; 2597 } 2598 aiUsed = (int *)&aCell[nCell+1]; 2599 memset(aiUsed, 0, sizeof(int)*(nCell+1)); 2600 for(i=0; i<nCell; i++){ 2601 nodeGetCell(pRtree, pNode, i, &aCell[i]); 2602 } 2603 nodeZero(pRtree, pNode); 2604 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); 2605 nCell++; 2606 2607 if( pNode->iNode==1 ){ 2608 pRight = nodeNew(pRtree, pNode); 2609 pLeft = nodeNew(pRtree, pNode); 2610 pRtree->iDepth++; 2611 pNode->isDirty = 1; 2612 writeInt16(pNode->zData, pRtree->iDepth); 2613 }else{ 2614 pLeft = pNode; 2615 pRight = nodeNew(pRtree, pLeft->pParent); 2616 pLeft->nRef++; 2617 } 2618 2619 if( !pLeft || !pRight ){ 2620 rc = SQLITE_NOMEM; 2621 goto splitnode_out; 2622 } 2623 2624 memset(pLeft->zData, 0, pRtree->iNodeSize); 2625 memset(pRight->zData, 0, pRtree->iNodeSize); 2626 2627 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, 2628 &leftbbox, &rightbbox); 2629 if( rc!=SQLITE_OK ){ 2630 goto splitnode_out; 2631 } 2632 2633 /* Ensure both child nodes have node numbers assigned to them by calling 2634 ** nodeWrite(). Node pRight always needs a node number, as it was created 2635 ** by nodeNew() above. But node pLeft sometimes already has a node number. 2636 ** In this case avoid the all to nodeWrite(). 2637 */ 2638 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) 2639 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) 2640 ){ 2641 goto splitnode_out; 2642 } 2643 2644 rightbbox.iRowid = pRight->iNode; 2645 leftbbox.iRowid = pLeft->iNode; 2646 2647 if( pNode->iNode==1 ){ 2648 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); 2649 if( rc!=SQLITE_OK ){ 2650 goto splitnode_out; 2651 } 2652 }else{ 2653 RtreeNode *pParent = pLeft->pParent; 2654 int iCell; 2655 rc = nodeParentIndex(pRtree, pLeft, &iCell); 2656 if( ALWAYS(rc==SQLITE_OK) ){ 2657 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); 2658 rc = AdjustTree(pRtree, pParent, &leftbbox); 2659 assert( rc==SQLITE_OK ); 2660 } 2661 if( NEVER(rc!=SQLITE_OK) ){ 2662 goto splitnode_out; 2663 } 2664 } 2665 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ 2666 goto splitnode_out; 2667 } 2668 2669 for(i=0; i<NCELL(pRight); i++){ 2670 i64 iRowid = nodeGetRowid(pRtree, pRight, i); 2671 rc = updateMapping(pRtree, iRowid, pRight, iHeight); 2672 if( iRowid==pCell->iRowid ){ 2673 newCellIsRight = 1; 2674 } 2675 if( rc!=SQLITE_OK ){ 2676 goto splitnode_out; 2677 } 2678 } 2679 if( pNode->iNode==1 ){ 2680 for(i=0; i<NCELL(pLeft); i++){ 2681 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); 2682 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); 2683 if( rc!=SQLITE_OK ){ 2684 goto splitnode_out; 2685 } 2686 } 2687 }else if( newCellIsRight==0 ){ 2688 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); 2689 } 2690 2691 if( rc==SQLITE_OK ){ 2692 rc = nodeRelease(pRtree, pRight); 2693 pRight = 0; 2694 } 2695 if( rc==SQLITE_OK ){ 2696 rc = nodeRelease(pRtree, pLeft); 2697 pLeft = 0; 2698 } 2699 2700 splitnode_out: 2701 nodeRelease(pRtree, pRight); 2702 nodeRelease(pRtree, pLeft); 2703 sqlite3_free(aCell); 2704 return rc; 2705 } 2706 2707 /* 2708 ** If node pLeaf is not the root of the r-tree and its pParent pointer is 2709 ** still NULL, load all ancestor nodes of pLeaf into memory and populate 2710 ** the pLeaf->pParent chain all the way up to the root node. 2711 ** 2712 ** This operation is required when a row is deleted (or updated - an update 2713 ** is implemented as a delete followed by an insert). SQLite provides the 2714 ** rowid of the row to delete, which can be used to find the leaf on which 2715 ** the entry resides (argument pLeaf). Once the leaf is located, this 2716 ** function is called to determine its ancestry. 2717 */ 2718 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ 2719 int rc = SQLITE_OK; 2720 RtreeNode *pChild = pLeaf; 2721 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ 2722 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ 2723 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); 2724 rc = sqlite3_step(pRtree->pReadParent); 2725 if( rc==SQLITE_ROW ){ 2726 RtreeNode *pTest; /* Used to test for reference loops */ 2727 i64 iNode; /* Node number of parent node */ 2728 2729 /* Before setting pChild->pParent, test that we are not creating a 2730 ** loop of references (as we would if, say, pChild==pParent). We don't 2731 ** want to do this as it leads to a memory leak when trying to delete 2732 ** the referenced counted node structures. 2733 */ 2734 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); 2735 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); 2736 if( pTest==0 ){ 2737 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); 2738 } 2739 } 2740 rc = sqlite3_reset(pRtree->pReadParent); 2741 if( rc==SQLITE_OK ) rc = rc2; 2742 if( rc==SQLITE_OK && !pChild->pParent ){ 2743 RTREE_IS_CORRUPT(pRtree); 2744 rc = SQLITE_CORRUPT_VTAB; 2745 } 2746 pChild = pChild->pParent; 2747 } 2748 return rc; 2749 } 2750 2751 static int deleteCell(Rtree *, RtreeNode *, int, int); 2752 2753 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ 2754 int rc; 2755 int rc2; 2756 RtreeNode *pParent = 0; 2757 int iCell; 2758 2759 assert( pNode->nRef==1 ); 2760 2761 /* Remove the entry in the parent cell. */ 2762 rc = nodeParentIndex(pRtree, pNode, &iCell); 2763 if( rc==SQLITE_OK ){ 2764 pParent = pNode->pParent; 2765 pNode->pParent = 0; 2766 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); 2767 testcase( rc!=SQLITE_OK ); 2768 } 2769 rc2 = nodeRelease(pRtree, pParent); 2770 if( rc==SQLITE_OK ){ 2771 rc = rc2; 2772 } 2773 if( rc!=SQLITE_OK ){ 2774 return rc; 2775 } 2776 2777 /* Remove the xxx_node entry. */ 2778 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); 2779 sqlite3_step(pRtree->pDeleteNode); 2780 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ 2781 return rc; 2782 } 2783 2784 /* Remove the xxx_parent entry. */ 2785 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); 2786 sqlite3_step(pRtree->pDeleteParent); 2787 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ 2788 return rc; 2789 } 2790 2791 /* Remove the node from the in-memory hash table and link it into 2792 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. 2793 */ 2794 nodeHashDelete(pRtree, pNode); 2795 pNode->iNode = iHeight; 2796 pNode->pNext = pRtree->pDeleted; 2797 pNode->nRef++; 2798 pRtree->pDeleted = pNode; 2799 2800 return SQLITE_OK; 2801 } 2802 2803 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ 2804 RtreeNode *pParent = pNode->pParent; 2805 int rc = SQLITE_OK; 2806 if( pParent ){ 2807 int ii; 2808 int nCell = NCELL(pNode); 2809 RtreeCell box; /* Bounding box for pNode */ 2810 nodeGetCell(pRtree, pNode, 0, &box); 2811 for(ii=1; ii<nCell; ii++){ 2812 RtreeCell cell; 2813 nodeGetCell(pRtree, pNode, ii, &cell); 2814 cellUnion(pRtree, &box, &cell); 2815 } 2816 box.iRowid = pNode->iNode; 2817 rc = nodeParentIndex(pRtree, pNode, &ii); 2818 if( rc==SQLITE_OK ){ 2819 nodeOverwriteCell(pRtree, pParent, &box, ii); 2820 rc = fixBoundingBox(pRtree, pParent); 2821 } 2822 } 2823 return rc; 2824 } 2825 2826 /* 2827 ** Delete the cell at index iCell of node pNode. After removing the 2828 ** cell, adjust the r-tree data structure if required. 2829 */ 2830 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ 2831 RtreeNode *pParent; 2832 int rc; 2833 2834 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ 2835 return rc; 2836 } 2837 2838 /* Remove the cell from the node. This call just moves bytes around 2839 ** the in-memory node image, so it cannot fail. 2840 */ 2841 nodeDeleteCell(pRtree, pNode, iCell); 2842 2843 /* If the node is not the tree root and now has less than the minimum 2844 ** number of cells, remove it from the tree. Otherwise, update the 2845 ** cell in the parent node so that it tightly contains the updated 2846 ** node. 2847 */ 2848 pParent = pNode->pParent; 2849 assert( pParent || pNode->iNode==1 ); 2850 if( pParent ){ 2851 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ 2852 rc = removeNode(pRtree, pNode, iHeight); 2853 }else{ 2854 rc = fixBoundingBox(pRtree, pNode); 2855 } 2856 } 2857 2858 return rc; 2859 } 2860 2861 static int Reinsert( 2862 Rtree *pRtree, 2863 RtreeNode *pNode, 2864 RtreeCell *pCell, 2865 int iHeight 2866 ){ 2867 int *aOrder; 2868 int *aSpare; 2869 RtreeCell *aCell; 2870 RtreeDValue *aDistance; 2871 int nCell; 2872 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; 2873 int iDim; 2874 int ii; 2875 int rc = SQLITE_OK; 2876 int n; 2877 2878 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); 2879 2880 nCell = NCELL(pNode)+1; 2881 n = (nCell+1)&(~1); 2882 2883 /* Allocate the buffers used by this operation. The allocation is 2884 ** relinquished before this function returns. 2885 */ 2886 aCell = (RtreeCell *)sqlite3_malloc64(n * ( 2887 sizeof(RtreeCell) + /* aCell array */ 2888 sizeof(int) + /* aOrder array */ 2889 sizeof(int) + /* aSpare array */ 2890 sizeof(RtreeDValue) /* aDistance array */ 2891 )); 2892 if( !aCell ){ 2893 return SQLITE_NOMEM; 2894 } 2895 aOrder = (int *)&aCell[n]; 2896 aSpare = (int *)&aOrder[n]; 2897 aDistance = (RtreeDValue *)&aSpare[n]; 2898 2899 for(ii=0; ii<nCell; ii++){ 2900 if( ii==(nCell-1) ){ 2901 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); 2902 }else{ 2903 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); 2904 } 2905 aOrder[ii] = ii; 2906 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2907 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); 2908 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); 2909 } 2910 } 2911 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2912 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); 2913 } 2914 2915 for(ii=0; ii<nCell; ii++){ 2916 aDistance[ii] = RTREE_ZERO; 2917 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2918 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 2919 DCOORD(aCell[ii].aCoord[iDim*2])); 2920 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); 2921 } 2922 } 2923 2924 SortByDistance(aOrder, nCell, aDistance, aSpare); 2925 nodeZero(pRtree, pNode); 2926 2927 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ 2928 RtreeCell *p = &aCell[aOrder[ii]]; 2929 nodeInsertCell(pRtree, pNode, p); 2930 if( p->iRowid==pCell->iRowid ){ 2931 if( iHeight==0 ){ 2932 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); 2933 }else{ 2934 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); 2935 } 2936 } 2937 } 2938 if( rc==SQLITE_OK ){ 2939 rc = fixBoundingBox(pRtree, pNode); 2940 } 2941 for(; rc==SQLITE_OK && ii<nCell; ii++){ 2942 /* Find a node to store this cell in. pNode->iNode currently contains 2943 ** the height of the sub-tree headed by the cell. 2944 */ 2945 RtreeNode *pInsert; 2946 RtreeCell *p = &aCell[aOrder[ii]]; 2947 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); 2948 if( rc==SQLITE_OK ){ 2949 int rc2; 2950 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); 2951 rc2 = nodeRelease(pRtree, pInsert); 2952 if( rc==SQLITE_OK ){ 2953 rc = rc2; 2954 } 2955 } 2956 } 2957 2958 sqlite3_free(aCell); 2959 return rc; 2960 } 2961 2962 /* 2963 ** Insert cell pCell into node pNode. Node pNode is the head of a 2964 ** subtree iHeight high (leaf nodes have iHeight==0). 2965 */ 2966 static int rtreeInsertCell( 2967 Rtree *pRtree, 2968 RtreeNode *pNode, 2969 RtreeCell *pCell, 2970 int iHeight 2971 ){ 2972 int rc = SQLITE_OK; 2973 if( iHeight>0 ){ 2974 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); 2975 if( pChild ){ 2976 nodeRelease(pRtree, pChild->pParent); 2977 nodeReference(pNode); 2978 pChild->pParent = pNode; 2979 } 2980 } 2981 if( nodeInsertCell(pRtree, pNode, pCell) ){ 2982 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ 2983 rc = SplitNode(pRtree, pNode, pCell, iHeight); 2984 }else{ 2985 pRtree->iReinsertHeight = iHeight; 2986 rc = Reinsert(pRtree, pNode, pCell, iHeight); 2987 } 2988 }else{ 2989 rc = AdjustTree(pRtree, pNode, pCell); 2990 if( ALWAYS(rc==SQLITE_OK) ){ 2991 if( iHeight==0 ){ 2992 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); 2993 }else{ 2994 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); 2995 } 2996 } 2997 } 2998 return rc; 2999 } 3000 3001 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ 3002 int ii; 3003 int rc = SQLITE_OK; 3004 int nCell = NCELL(pNode); 3005 3006 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ 3007 RtreeNode *pInsert; 3008 RtreeCell cell; 3009 nodeGetCell(pRtree, pNode, ii, &cell); 3010 3011 /* Find a node to store this cell in. pNode->iNode currently contains 3012 ** the height of the sub-tree headed by the cell. 3013 */ 3014 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); 3015 if( rc==SQLITE_OK ){ 3016 int rc2; 3017 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); 3018 rc2 = nodeRelease(pRtree, pInsert); 3019 if( rc==SQLITE_OK ){ 3020 rc = rc2; 3021 } 3022 } 3023 } 3024 return rc; 3025 } 3026 3027 /* 3028 ** Select a currently unused rowid for a new r-tree record. 3029 */ 3030 static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ 3031 int rc; 3032 sqlite3_bind_null(pRtree->pWriteRowid, 1); 3033 sqlite3_bind_null(pRtree->pWriteRowid, 2); 3034 sqlite3_step(pRtree->pWriteRowid); 3035 rc = sqlite3_reset(pRtree->pWriteRowid); 3036 *piRowid = sqlite3_last_insert_rowid(pRtree->db); 3037 return rc; 3038 } 3039 3040 /* 3041 ** Remove the entry with rowid=iDelete from the r-tree structure. 3042 */ 3043 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ 3044 int rc; /* Return code */ 3045 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ 3046 int iCell; /* Index of iDelete cell in pLeaf */ 3047 RtreeNode *pRoot = 0; /* Root node of rtree structure */ 3048 3049 3050 /* Obtain a reference to the root node to initialize Rtree.iDepth */ 3051 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 3052 3053 /* Obtain a reference to the leaf node that contains the entry 3054 ** about to be deleted. 3055 */ 3056 if( rc==SQLITE_OK ){ 3057 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); 3058 } 3059 3060 #ifdef CORRUPT_DB 3061 assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); 3062 #endif 3063 3064 /* Delete the cell in question from the leaf node. */ 3065 if( rc==SQLITE_OK && pLeaf ){ 3066 int rc2; 3067 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); 3068 if( rc==SQLITE_OK ){ 3069 rc = deleteCell(pRtree, pLeaf, iCell, 0); 3070 } 3071 rc2 = nodeRelease(pRtree, pLeaf); 3072 if( rc==SQLITE_OK ){ 3073 rc = rc2; 3074 } 3075 } 3076 3077 /* Delete the corresponding entry in the <rtree>_rowid table. */ 3078 if( rc==SQLITE_OK ){ 3079 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); 3080 sqlite3_step(pRtree->pDeleteRowid); 3081 rc = sqlite3_reset(pRtree->pDeleteRowid); 3082 } 3083 3084 /* Check if the root node now has exactly one child. If so, remove 3085 ** it, schedule the contents of the child for reinsertion and 3086 ** reduce the tree height by one. 3087 ** 3088 ** This is equivalent to copying the contents of the child into 3089 ** the root node (the operation that Gutman's paper says to perform 3090 ** in this scenario). 3091 */ 3092 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ 3093 int rc2; 3094 RtreeNode *pChild = 0; 3095 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); 3096 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */ 3097 if( rc==SQLITE_OK ){ 3098 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); 3099 } 3100 rc2 = nodeRelease(pRtree, pChild); 3101 if( rc==SQLITE_OK ) rc = rc2; 3102 if( rc==SQLITE_OK ){ 3103 pRtree->iDepth--; 3104 writeInt16(pRoot->zData, pRtree->iDepth); 3105 pRoot->isDirty = 1; 3106 } 3107 } 3108 3109 /* Re-insert the contents of any underfull nodes removed from the tree. */ 3110 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ 3111 if( rc==SQLITE_OK ){ 3112 rc = reinsertNodeContent(pRtree, pLeaf); 3113 } 3114 pRtree->pDeleted = pLeaf->pNext; 3115 pRtree->nNodeRef--; 3116 sqlite3_free(pLeaf); 3117 } 3118 3119 /* Release the reference to the root node. */ 3120 if( rc==SQLITE_OK ){ 3121 rc = nodeRelease(pRtree, pRoot); 3122 }else{ 3123 nodeRelease(pRtree, pRoot); 3124 } 3125 3126 return rc; 3127 } 3128 3129 /* 3130 ** Rounding constants for float->double conversion. 3131 */ 3132 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ 3133 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ 3134 3135 #if !defined(SQLITE_RTREE_INT_ONLY) 3136 /* 3137 ** Convert an sqlite3_value into an RtreeValue (presumably a float) 3138 ** while taking care to round toward negative or positive, respectively. 3139 */ 3140 static RtreeValue rtreeValueDown(sqlite3_value *v){ 3141 double d = sqlite3_value_double(v); 3142 float f = (float)d; 3143 if( f>d ){ 3144 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); 3145 } 3146 return f; 3147 } 3148 static RtreeValue rtreeValueUp(sqlite3_value *v){ 3149 double d = sqlite3_value_double(v); 3150 float f = (float)d; 3151 if( f<d ){ 3152 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); 3153 } 3154 return f; 3155 } 3156 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */ 3157 3158 /* 3159 ** A constraint has failed while inserting a row into an rtree table. 3160 ** Assuming no OOM error occurs, this function sets the error message 3161 ** (at pRtree->base.zErrMsg) to an appropriate value and returns 3162 ** SQLITE_CONSTRAINT. 3163 ** 3164 ** Parameter iCol is the index of the leftmost column involved in the 3165 ** constraint failure. If it is 0, then the constraint that failed is 3166 ** the unique constraint on the id column. Otherwise, it is the rtree 3167 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. 3168 ** 3169 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. 3170 */ 3171 static int rtreeConstraintError(Rtree *pRtree, int iCol){ 3172 sqlite3_stmt *pStmt = 0; 3173 char *zSql; 3174 int rc; 3175 3176 assert( iCol==0 || iCol%2 ); 3177 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); 3178 if( zSql ){ 3179 rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); 3180 }else{ 3181 rc = SQLITE_NOMEM; 3182 } 3183 sqlite3_free(zSql); 3184 3185 if( rc==SQLITE_OK ){ 3186 if( iCol==0 ){ 3187 const char *zCol = sqlite3_column_name(pStmt, 0); 3188 pRtree->base.zErrMsg = sqlite3_mprintf( 3189 "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol 3190 ); 3191 }else{ 3192 const char *zCol1 = sqlite3_column_name(pStmt, iCol); 3193 const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); 3194 pRtree->base.zErrMsg = sqlite3_mprintf( 3195 "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 3196 ); 3197 } 3198 } 3199 3200 sqlite3_finalize(pStmt); 3201 return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); 3202 } 3203 3204 3205 3206 /* 3207 ** The xUpdate method for rtree module virtual tables. 3208 */ 3209 static int rtreeUpdate( 3210 sqlite3_vtab *pVtab, 3211 int nData, 3212 sqlite3_value **aData, 3213 sqlite_int64 *pRowid 3214 ){ 3215 Rtree *pRtree = (Rtree *)pVtab; 3216 int rc = SQLITE_OK; 3217 RtreeCell cell; /* New cell to insert if nData>1 */ 3218 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ 3219 3220 if( pRtree->nNodeRef ){ 3221 /* Unable to write to the btree while another cursor is reading from it, 3222 ** since the write might do a rebalance which would disrupt the read 3223 ** cursor. */ 3224 return SQLITE_LOCKED_VTAB; 3225 } 3226 rtreeReference(pRtree); 3227 assert(nData>=1); 3228 3229 cell.iRowid = 0; /* Used only to suppress a compiler warning */ 3230 3231 /* Constraint handling. A write operation on an r-tree table may return 3232 ** SQLITE_CONSTRAINT for two reasons: 3233 ** 3234 ** 1. A duplicate rowid value, or 3235 ** 2. The supplied data violates the "x2>=x1" constraint. 3236 ** 3237 ** In the first case, if the conflict-handling mode is REPLACE, then 3238 ** the conflicting row can be removed before proceeding. In the second 3239 ** case, SQLITE_CONSTRAINT must be returned regardless of the 3240 ** conflict-handling mode specified by the user. 3241 */ 3242 if( nData>1 ){ 3243 int ii; 3244 int nn = nData - 4; 3245 3246 if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; 3247 /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. 3248 ** 3249 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared 3250 ** with "column" that are interpreted as table constraints. 3251 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); 3252 ** This problem was discovered after years of use, so we silently ignore 3253 ** these kinds of misdeclared tables to avoid breaking any legacy. 3254 */ 3255 3256 #ifndef SQLITE_RTREE_INT_ONLY 3257 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 3258 for(ii=0; ii<nn; ii+=2){ 3259 cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]); 3260 cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]); 3261 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ 3262 rc = rtreeConstraintError(pRtree, ii+1); 3263 goto constraint; 3264 } 3265 } 3266 }else 3267 #endif 3268 { 3269 for(ii=0; ii<nn; ii+=2){ 3270 cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]); 3271 cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]); 3272 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ 3273 rc = rtreeConstraintError(pRtree, ii+1); 3274 goto constraint; 3275 } 3276 } 3277 } 3278 3279 /* If a rowid value was supplied, check if it is already present in 3280 ** the table. If so, the constraint has failed. */ 3281 if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ 3282 cell.iRowid = sqlite3_value_int64(aData[2]); 3283 if( sqlite3_value_type(aData[0])==SQLITE_NULL 3284 || sqlite3_value_int64(aData[0])!=cell.iRowid 3285 ){ 3286 int steprc; 3287 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); 3288 steprc = sqlite3_step(pRtree->pReadRowid); 3289 rc = sqlite3_reset(pRtree->pReadRowid); 3290 if( SQLITE_ROW==steprc ){ 3291 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ 3292 rc = rtreeDeleteRowid(pRtree, cell.iRowid); 3293 }else{ 3294 rc = rtreeConstraintError(pRtree, 0); 3295 goto constraint; 3296 } 3297 } 3298 } 3299 bHaveRowid = 1; 3300 } 3301 } 3302 3303 /* If aData[0] is not an SQL NULL value, it is the rowid of a 3304 ** record to delete from the r-tree table. The following block does 3305 ** just that. 3306 */ 3307 if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ 3308 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); 3309 } 3310 3311 /* If the aData[] array contains more than one element, elements 3312 ** (aData[2]..aData[argc-1]) contain a new record to insert into 3313 ** the r-tree structure. 3314 */ 3315 if( rc==SQLITE_OK && nData>1 ){ 3316 /* Insert the new record into the r-tree */ 3317 RtreeNode *pLeaf = 0; 3318 3319 /* Figure out the rowid of the new row. */ 3320 if( bHaveRowid==0 ){ 3321 rc = rtreeNewRowid(pRtree, &cell.iRowid); 3322 } 3323 *pRowid = cell.iRowid; 3324 3325 if( rc==SQLITE_OK ){ 3326 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); 3327 } 3328 if( rc==SQLITE_OK ){ 3329 int rc2; 3330 pRtree->iReinsertHeight = -1; 3331 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); 3332 rc2 = nodeRelease(pRtree, pLeaf); 3333 if( rc==SQLITE_OK ){ 3334 rc = rc2; 3335 } 3336 } 3337 if( rc==SQLITE_OK && pRtree->nAux ){ 3338 sqlite3_stmt *pUp = pRtree->pWriteAux; 3339 int jj; 3340 sqlite3_bind_int64(pUp, 1, *pRowid); 3341 for(jj=0; jj<pRtree->nAux; jj++){ 3342 sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); 3343 } 3344 sqlite3_step(pUp); 3345 rc = sqlite3_reset(pUp); 3346 } 3347 } 3348 3349 constraint: 3350 rtreeRelease(pRtree); 3351 return rc; 3352 } 3353 3354 /* 3355 ** Called when a transaction starts. 3356 */ 3357 static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ 3358 Rtree *pRtree = (Rtree *)pVtab; 3359 assert( pRtree->inWrTrans==0 ); 3360 pRtree->inWrTrans++; 3361 return SQLITE_OK; 3362 } 3363 3364 /* 3365 ** Called when a transaction completes (either by COMMIT or ROLLBACK). 3366 ** The sqlite3_blob object should be released at this point. 3367 */ 3368 static int rtreeEndTransaction(sqlite3_vtab *pVtab){ 3369 Rtree *pRtree = (Rtree *)pVtab; 3370 pRtree->inWrTrans = 0; 3371 nodeBlobReset(pRtree); 3372 return SQLITE_OK; 3373 } 3374 3375 /* 3376 ** The xRename method for rtree module virtual tables. 3377 */ 3378 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ 3379 Rtree *pRtree = (Rtree *)pVtab; 3380 int rc = SQLITE_NOMEM; 3381 char *zSql = sqlite3_mprintf( 3382 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" 3383 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" 3384 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" 3385 , pRtree->zDb, pRtree->zName, zNewName 3386 , pRtree->zDb, pRtree->zName, zNewName 3387 , pRtree->zDb, pRtree->zName, zNewName 3388 ); 3389 if( zSql ){ 3390 nodeBlobReset(pRtree); 3391 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); 3392 sqlite3_free(zSql); 3393 } 3394 return rc; 3395 } 3396 3397 /* 3398 ** The xSavepoint method. 3399 ** 3400 ** This module does not need to do anything to support savepoints. However, 3401 ** it uses this hook to close any open blob handle. This is done because a 3402 ** DROP TABLE command - which fortunately always opens a savepoint - cannot 3403 ** succeed if there are any open blob handles. i.e. if the blob handle were 3404 ** not closed here, the following would fail: 3405 ** 3406 ** BEGIN; 3407 ** INSERT INTO rtree... 3408 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED 3409 ** COMMIT; 3410 */ 3411 static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ 3412 Rtree *pRtree = (Rtree *)pVtab; 3413 u8 iwt = pRtree->inWrTrans; 3414 UNUSED_PARAMETER(iSavepoint); 3415 pRtree->inWrTrans = 0; 3416 nodeBlobReset(pRtree); 3417 pRtree->inWrTrans = iwt; 3418 return SQLITE_OK; 3419 } 3420 3421 /* 3422 ** This function populates the pRtree->nRowEst variable with an estimate 3423 ** of the number of rows in the virtual table. If possible, this is based 3424 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. 3425 */ 3426 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ 3427 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; 3428 char *zSql; 3429 sqlite3_stmt *p; 3430 int rc; 3431 i64 nRow = RTREE_MIN_ROWEST; 3432 3433 rc = sqlite3_table_column_metadata( 3434 db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 3435 ); 3436 if( rc!=SQLITE_OK ){ 3437 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; 3438 return rc==SQLITE_ERROR ? SQLITE_OK : rc; 3439 } 3440 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); 3441 if( zSql==0 ){ 3442 rc = SQLITE_NOMEM; 3443 }else{ 3444 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); 3445 if( rc==SQLITE_OK ){ 3446 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); 3447 rc = sqlite3_finalize(p); 3448 } 3449 sqlite3_free(zSql); 3450 } 3451 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); 3452 return rc; 3453 } 3454 3455 3456 /* 3457 ** Return true if zName is the extension on one of the shadow tables used 3458 ** by this module. 3459 */ 3460 static int rtreeShadowName(const char *zName){ 3461 static const char *azName[] = { 3462 "node", "parent", "rowid" 3463 }; 3464 unsigned int i; 3465 for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ 3466 if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; 3467 } 3468 return 0; 3469 } 3470 3471 static sqlite3_module rtreeModule = { 3472 3, /* iVersion */ 3473 rtreeCreate, /* xCreate - create a table */ 3474 rtreeConnect, /* xConnect - connect to an existing table */ 3475 rtreeBestIndex, /* xBestIndex - Determine search strategy */ 3476 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ 3477 rtreeDestroy, /* xDestroy - Drop a table */ 3478 rtreeOpen, /* xOpen - open a cursor */ 3479 rtreeClose, /* xClose - close a cursor */ 3480 rtreeFilter, /* xFilter - configure scan constraints */ 3481 rtreeNext, /* xNext - advance a cursor */ 3482 rtreeEof, /* xEof */ 3483 rtreeColumn, /* xColumn - read data */ 3484 rtreeRowid, /* xRowid - read data */ 3485 rtreeUpdate, /* xUpdate - write data */ 3486 rtreeBeginTransaction, /* xBegin - begin transaction */ 3487 rtreeEndTransaction, /* xSync - sync transaction */ 3488 rtreeEndTransaction, /* xCommit - commit transaction */ 3489 rtreeEndTransaction, /* xRollback - rollback transaction */ 3490 0, /* xFindFunction - function overloading */ 3491 rtreeRename, /* xRename - rename the table */ 3492 rtreeSavepoint, /* xSavepoint */ 3493 0, /* xRelease */ 3494 0, /* xRollbackTo */ 3495 rtreeShadowName /* xShadowName */ 3496 }; 3497 3498 static int rtreeSqlInit( 3499 Rtree *pRtree, 3500 sqlite3 *db, 3501 const char *zDb, 3502 const char *zPrefix, 3503 int isCreate 3504 ){ 3505 int rc = SQLITE_OK; 3506 3507 #define N_STATEMENT 8 3508 static const char *azSql[N_STATEMENT] = { 3509 /* Write the xxx_node table */ 3510 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)", 3511 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1", 3512 3513 /* Read and write the xxx_rowid table */ 3514 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3515 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)", 3516 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3517 3518 /* Read and write the xxx_parent table */ 3519 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1", 3520 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)", 3521 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1" 3522 }; 3523 sqlite3_stmt **appStmt[N_STATEMENT]; 3524 int i; 3525 const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; 3526 3527 pRtree->db = db; 3528 3529 if( isCreate ){ 3530 char *zCreate; 3531 sqlite3_str *p = sqlite3_str_new(db); 3532 int ii; 3533 sqlite3_str_appendf(p, 3534 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", 3535 zDb, zPrefix); 3536 for(ii=0; ii<pRtree->nAux; ii++){ 3537 sqlite3_str_appendf(p,",a%d",ii); 3538 } 3539 sqlite3_str_appendf(p, 3540 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", 3541 zDb, zPrefix); 3542 sqlite3_str_appendf(p, 3543 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", 3544 zDb, zPrefix); 3545 sqlite3_str_appendf(p, 3546 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", 3547 zDb, zPrefix, pRtree->iNodeSize); 3548 zCreate = sqlite3_str_finish(p); 3549 if( !zCreate ){ 3550 return SQLITE_NOMEM; 3551 } 3552 rc = sqlite3_exec(db, zCreate, 0, 0, 0); 3553 sqlite3_free(zCreate); 3554 if( rc!=SQLITE_OK ){ 3555 return rc; 3556 } 3557 } 3558 3559 appStmt[0] = &pRtree->pWriteNode; 3560 appStmt[1] = &pRtree->pDeleteNode; 3561 appStmt[2] = &pRtree->pReadRowid; 3562 appStmt[3] = &pRtree->pWriteRowid; 3563 appStmt[4] = &pRtree->pDeleteRowid; 3564 appStmt[5] = &pRtree->pReadParent; 3565 appStmt[6] = &pRtree->pWriteParent; 3566 appStmt[7] = &pRtree->pDeleteParent; 3567 3568 rc = rtreeQueryStat1(db, pRtree); 3569 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ 3570 char *zSql; 3571 const char *zFormat; 3572 if( i!=3 || pRtree->nAux==0 ){ 3573 zFormat = azSql[i]; 3574 }else { 3575 /* An UPSERT is very slightly slower than REPLACE, but it is needed 3576 ** if there are auxiliary columns */ 3577 zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" 3578 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; 3579 } 3580 zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); 3581 if( zSql ){ 3582 rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); 3583 }else{ 3584 rc = SQLITE_NOMEM; 3585 } 3586 sqlite3_free(zSql); 3587 } 3588 if( pRtree->nAux ){ 3589 pRtree->zReadAuxSql = sqlite3_mprintf( 3590 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", 3591 zDb, zPrefix); 3592 if( pRtree->zReadAuxSql==0 ){ 3593 rc = SQLITE_NOMEM; 3594 }else{ 3595 sqlite3_str *p = sqlite3_str_new(db); 3596 int ii; 3597 char *zSql; 3598 sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); 3599 for(ii=0; ii<pRtree->nAux; ii++){ 3600 if( ii ) sqlite3_str_append(p, ",", 1); 3601 #ifdef SQLITE_ENABLE_GEOPOLY 3602 if( ii<pRtree->nAuxNotNull ){ 3603 sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); 3604 }else 3605 #endif 3606 { 3607 sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); 3608 } 3609 } 3610 sqlite3_str_appendf(p, " WHERE rowid=?1"); 3611 zSql = sqlite3_str_finish(p); 3612 if( zSql==0 ){ 3613 rc = SQLITE_NOMEM; 3614 }else{ 3615 rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); 3616 sqlite3_free(zSql); 3617 } 3618 } 3619 } 3620 3621 return rc; 3622 } 3623 3624 /* 3625 ** The second argument to this function contains the text of an SQL statement 3626 ** that returns a single integer value. The statement is compiled and executed 3627 ** using database connection db. If successful, the integer value returned 3628 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error 3629 ** code is returned and the value of *piVal after returning is not defined. 3630 */ 3631 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ 3632 int rc = SQLITE_NOMEM; 3633 if( zSql ){ 3634 sqlite3_stmt *pStmt = 0; 3635 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 3636 if( rc==SQLITE_OK ){ 3637 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3638 *piVal = sqlite3_column_int(pStmt, 0); 3639 } 3640 rc = sqlite3_finalize(pStmt); 3641 } 3642 } 3643 return rc; 3644 } 3645 3646 /* 3647 ** This function is called from within the xConnect() or xCreate() method to 3648 ** determine the node-size used by the rtree table being created or connected 3649 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. 3650 ** Otherwise, an SQLite error code is returned. 3651 ** 3652 ** If this function is being called as part of an xConnect(), then the rtree 3653 ** table already exists. In this case the node-size is determined by inspecting 3654 ** the root node of the tree. 3655 ** 3656 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 3657 ** This ensures that each node is stored on a single database page. If the 3658 ** database page-size is so large that more than RTREE_MAXCELLS entries 3659 ** would fit in a single node, use a smaller node-size. 3660 */ 3661 static int getNodeSize( 3662 sqlite3 *db, /* Database handle */ 3663 Rtree *pRtree, /* Rtree handle */ 3664 int isCreate, /* True for xCreate, false for xConnect */ 3665 char **pzErr /* OUT: Error message, if any */ 3666 ){ 3667 int rc; 3668 char *zSql; 3669 if( isCreate ){ 3670 int iPageSize = 0; 3671 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); 3672 rc = getIntFromStmt(db, zSql, &iPageSize); 3673 if( rc==SQLITE_OK ){ 3674 pRtree->iNodeSize = iPageSize-64; 3675 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ 3676 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; 3677 } 3678 }else{ 3679 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3680 } 3681 }else{ 3682 zSql = sqlite3_mprintf( 3683 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", 3684 pRtree->zDb, pRtree->zName 3685 ); 3686 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); 3687 if( rc!=SQLITE_OK ){ 3688 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3689 }else if( pRtree->iNodeSize<(512-64) ){ 3690 rc = SQLITE_CORRUPT_VTAB; 3691 RTREE_IS_CORRUPT(pRtree); 3692 *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", 3693 pRtree->zName); 3694 } 3695 } 3696 3697 sqlite3_free(zSql); 3698 return rc; 3699 } 3700 3701 /* 3702 ** Return the length of a token 3703 */ 3704 static int rtreeTokenLength(const char *z){ 3705 int dummy = 0; 3706 return sqlite3GetToken((const unsigned char*)z,&dummy); 3707 } 3708 3709 /* 3710 ** This function is the implementation of both the xConnect and xCreate 3711 ** methods of the r-tree virtual table. 3712 ** 3713 ** argv[0] -> module name 3714 ** argv[1] -> database name 3715 ** argv[2] -> table name 3716 ** argv[...] -> column names... 3717 */ 3718 static int rtreeInit( 3719 sqlite3 *db, /* Database connection */ 3720 void *pAux, /* One of the RTREE_COORD_* constants */ 3721 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ 3722 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ 3723 char **pzErr, /* OUT: Error message, if any */ 3724 int isCreate /* True for xCreate, false for xConnect */ 3725 ){ 3726 int rc = SQLITE_OK; 3727 Rtree *pRtree; 3728 int nDb; /* Length of string argv[1] */ 3729 int nName; /* Length of string argv[2] */ 3730 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); 3731 sqlite3_str *pSql; 3732 char *zSql; 3733 int ii = 4; 3734 int iErr; 3735 3736 const char *aErrMsg[] = { 3737 0, /* 0 */ 3738 "Wrong number of columns for an rtree table", /* 1 */ 3739 "Too few columns for an rtree table", /* 2 */ 3740 "Too many columns for an rtree table", /* 3 */ 3741 "Auxiliary rtree columns must be last" /* 4 */ 3742 }; 3743 3744 assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ 3745 if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){ 3746 *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]); 3747 return SQLITE_ERROR; 3748 } 3749 3750 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); 3751 3752 /* Allocate the sqlite3_vtab structure */ 3753 nDb = (int)strlen(argv[1]); 3754 nName = (int)strlen(argv[2]); 3755 pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2); 3756 if( !pRtree ){ 3757 return SQLITE_NOMEM; 3758 } 3759 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); 3760 pRtree->nBusy = 1; 3761 pRtree->base.pModule = &rtreeModule; 3762 pRtree->zDb = (char *)&pRtree[1]; 3763 pRtree->zName = &pRtree->zDb[nDb+1]; 3764 pRtree->eCoordType = (u8)eCoordType; 3765 memcpy(pRtree->zDb, argv[1], nDb); 3766 memcpy(pRtree->zName, argv[2], nName); 3767 3768 3769 /* Create/Connect to the underlying relational database schema. If 3770 ** that is successful, call sqlite3_declare_vtab() to configure 3771 ** the r-tree table schema. 3772 */ 3773 pSql = sqlite3_str_new(db); 3774 sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT", 3775 rtreeTokenLength(argv[3]), argv[3]); 3776 for(ii=4; ii<argc; ii++){ 3777 const char *zArg = argv[ii]; 3778 if( zArg[0]=='+' ){ 3779 pRtree->nAux++; 3780 sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1); 3781 }else if( pRtree->nAux>0 ){ 3782 break; 3783 }else{ 3784 static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"}; 3785 pRtree->nDim2++; 3786 sqlite3_str_appendf(pSql, azFormat[eCoordType], 3787 rtreeTokenLength(zArg), zArg); 3788 } 3789 } 3790 sqlite3_str_appendf(pSql, ");"); 3791 zSql = sqlite3_str_finish(pSql); 3792 if( !zSql ){ 3793 rc = SQLITE_NOMEM; 3794 }else if( ii<argc ){ 3795 *pzErr = sqlite3_mprintf("%s", aErrMsg[4]); 3796 rc = SQLITE_ERROR; 3797 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ 3798 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3799 } 3800 sqlite3_free(zSql); 3801 if( rc ) goto rtreeInit_fail; 3802 pRtree->nDim = pRtree->nDim2/2; 3803 if( pRtree->nDim<1 ){ 3804 iErr = 2; 3805 }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ 3806 iErr = 3; 3807 }else if( pRtree->nDim2 % 2 ){ 3808 iErr = 1; 3809 }else{ 3810 iErr = 0; 3811 } 3812 if( iErr ){ 3813 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); 3814 goto rtreeInit_fail; 3815 } 3816 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; 3817 3818 /* Figure out the node size to use. */ 3819 rc = getNodeSize(db, pRtree, isCreate, pzErr); 3820 if( rc ) goto rtreeInit_fail; 3821 rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); 3822 if( rc ){ 3823 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3824 goto rtreeInit_fail; 3825 } 3826 3827 *ppVtab = (sqlite3_vtab *)pRtree; 3828 return SQLITE_OK; 3829 3830 rtreeInit_fail: 3831 if( rc==SQLITE_OK ) rc = SQLITE_ERROR; 3832 assert( *ppVtab==0 ); 3833 assert( pRtree->nBusy==1 ); 3834 rtreeRelease(pRtree); 3835 return rc; 3836 } 3837 3838 3839 /* 3840 ** Implementation of a scalar function that decodes r-tree nodes to 3841 ** human readable strings. This can be used for debugging and analysis. 3842 ** 3843 ** The scalar function takes two arguments: (1) the number of dimensions 3844 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing 3845 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to 3846 ** deserialize all nodes, a statement like: 3847 ** 3848 ** SELECT rtreenode(2, data) FROM rt_node; 3849 ** 3850 ** The human readable string takes the form of a Tcl list with one 3851 ** entry for each cell in the r-tree node. Each entry is itself a 3852 ** list, containing the 8-byte rowid/pageno followed by the 3853 ** <num-dimension>*2 coordinates. 3854 */ 3855 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3856 RtreeNode node; 3857 Rtree tree; 3858 int ii; 3859 int nData; 3860 int errCode; 3861 sqlite3_str *pOut; 3862 3863 UNUSED_PARAMETER(nArg); 3864 memset(&node, 0, sizeof(RtreeNode)); 3865 memset(&tree, 0, sizeof(Rtree)); 3866 tree.nDim = (u8)sqlite3_value_int(apArg[0]); 3867 if( tree.nDim<1 || tree.nDim>5 ) return; 3868 tree.nDim2 = tree.nDim*2; 3869 tree.nBytesPerCell = 8 + 8 * tree.nDim; 3870 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); 3871 if( node.zData==0 ) return; 3872 nData = sqlite3_value_bytes(apArg[1]); 3873 if( nData<4 ) return; 3874 if( nData<NCELL(&node)*tree.nBytesPerCell ) return; 3875 3876 pOut = sqlite3_str_new(0); 3877 for(ii=0; ii<NCELL(&node); ii++){ 3878 RtreeCell cell; 3879 int jj; 3880 3881 nodeGetCell(&tree, &node, ii, &cell); 3882 if( ii>0 ) sqlite3_str_append(pOut, " ", 1); 3883 sqlite3_str_appendf(pOut, "{%lld", cell.iRowid); 3884 for(jj=0; jj<tree.nDim2; jj++){ 3885 #ifndef SQLITE_RTREE_INT_ONLY 3886 sqlite3_str_appendf(pOut, " %g", (double)cell.aCoord[jj].f); 3887 #else 3888 sqlite3_str_appendf(pOut, " %d", cell.aCoord[jj].i); 3889 #endif 3890 } 3891 sqlite3_str_append(pOut, "}", 1); 3892 } 3893 errCode = sqlite3_str_errcode(pOut); 3894 sqlite3_result_text(ctx, sqlite3_str_finish(pOut), -1, sqlite3_free); 3895 sqlite3_result_error_code(ctx, errCode); 3896 } 3897 3898 /* This routine implements an SQL function that returns the "depth" parameter 3899 ** from the front of a blob that is an r-tree node. For example: 3900 ** 3901 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; 3902 ** 3903 ** The depth value is 0 for all nodes other than the root node, and the root 3904 ** node always has nodeno=1, so the example above is the primary use for this 3905 ** routine. This routine is intended for testing and analysis only. 3906 */ 3907 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3908 UNUSED_PARAMETER(nArg); 3909 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 3910 || sqlite3_value_bytes(apArg[0])<2 3911 3912 ){ 3913 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 3914 }else{ 3915 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); 3916 if( zBlob ){ 3917 sqlite3_result_int(ctx, readInt16(zBlob)); 3918 }else{ 3919 sqlite3_result_error_nomem(ctx); 3920 } 3921 } 3922 } 3923 3924 /* 3925 ** Context object passed between the various routines that make up the 3926 ** implementation of integrity-check function rtreecheck(). 3927 */ 3928 typedef struct RtreeCheck RtreeCheck; 3929 struct RtreeCheck { 3930 sqlite3 *db; /* Database handle */ 3931 const char *zDb; /* Database containing rtree table */ 3932 const char *zTab; /* Name of rtree table */ 3933 int bInt; /* True for rtree_i32 table */ 3934 int nDim; /* Number of dimensions for this rtree tbl */ 3935 sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */ 3936 sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */ 3937 int nLeaf; /* Number of leaf cells in table */ 3938 int nNonLeaf; /* Number of non-leaf cells in table */ 3939 int rc; /* Return code */ 3940 char *zReport; /* Message to report */ 3941 int nErr; /* Number of lines in zReport */ 3942 }; 3943 3944 #define RTREE_CHECK_MAX_ERROR 100 3945 3946 /* 3947 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error, 3948 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code. 3949 */ 3950 static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){ 3951 int rc = sqlite3_reset(pStmt); 3952 if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc; 3953 } 3954 3955 /* 3956 ** The second and subsequent arguments to this function are a format string 3957 ** and printf style arguments. This function formats the string and attempts 3958 ** to compile it as an SQL statement. 3959 ** 3960 ** If successful, a pointer to the new SQL statement is returned. Otherwise, 3961 ** NULL is returned and an error code left in RtreeCheck.rc. 3962 */ 3963 static sqlite3_stmt *rtreeCheckPrepare( 3964 RtreeCheck *pCheck, /* RtreeCheck object */ 3965 const char *zFmt, ... /* Format string and trailing args */ 3966 ){ 3967 va_list ap; 3968 char *z; 3969 sqlite3_stmt *pRet = 0; 3970 3971 va_start(ap, zFmt); 3972 z = sqlite3_vmprintf(zFmt, ap); 3973 3974 if( pCheck->rc==SQLITE_OK ){ 3975 if( z==0 ){ 3976 pCheck->rc = SQLITE_NOMEM; 3977 }else{ 3978 pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); 3979 } 3980 } 3981 3982 sqlite3_free(z); 3983 va_end(ap); 3984 return pRet; 3985 } 3986 3987 /* 3988 ** The second and subsequent arguments to this function are a printf() 3989 ** style format string and arguments. This function formats the string and 3990 ** appends it to the report being accumuated in pCheck. 3991 */ 3992 static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ 3993 va_list ap; 3994 va_start(ap, zFmt); 3995 if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){ 3996 char *z = sqlite3_vmprintf(zFmt, ap); 3997 if( z==0 ){ 3998 pCheck->rc = SQLITE_NOMEM; 3999 }else{ 4000 pCheck->zReport = sqlite3_mprintf("%z%s%z", 4001 pCheck->zReport, (pCheck->zReport ? "\n" : ""), z 4002 ); 4003 if( pCheck->zReport==0 ){ 4004 pCheck->rc = SQLITE_NOMEM; 4005 } 4006 } 4007 pCheck->nErr++; 4008 } 4009 va_end(ap); 4010 } 4011 4012 /* 4013 ** This function is a no-op if there is already an error code stored 4014 ** in the RtreeCheck object indicated by the first argument. NULL is 4015 ** returned in this case. 4016 ** 4017 ** Otherwise, the contents of rtree table node iNode are loaded from 4018 ** the database and copied into a buffer obtained from sqlite3_malloc(). 4019 ** If no error occurs, a pointer to the buffer is returned and (*pnNode) 4020 ** is set to the size of the buffer in bytes. 4021 ** 4022 ** Or, if an error does occur, NULL is returned and an error code left 4023 ** in the RtreeCheck object. The final value of *pnNode is undefined in 4024 ** this case. 4025 */ 4026 static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ 4027 u8 *pRet = 0; /* Return value */ 4028 4029 if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ 4030 pCheck->pGetNode = rtreeCheckPrepare(pCheck, 4031 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", 4032 pCheck->zDb, pCheck->zTab 4033 ); 4034 } 4035 4036 if( pCheck->rc==SQLITE_OK ){ 4037 sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); 4038 if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ 4039 int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); 4040 const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); 4041 pRet = sqlite3_malloc64(nNode); 4042 if( pRet==0 ){ 4043 pCheck->rc = SQLITE_NOMEM; 4044 }else{ 4045 memcpy(pRet, pNode, nNode); 4046 *pnNode = nNode; 4047 } 4048 } 4049 rtreeCheckReset(pCheck, pCheck->pGetNode); 4050 if( pCheck->rc==SQLITE_OK && pRet==0 ){ 4051 rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); 4052 } 4053 } 4054 4055 return pRet; 4056 } 4057 4058 /* 4059 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid 4060 ** (if bLeaf==1) table contains a specified entry. The schemas of the 4061 ** two tables are: 4062 ** 4063 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 4064 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 4065 ** 4066 ** In both cases, this function checks that there exists an entry with 4067 ** IPK value iKey and the second column set to iVal. 4068 ** 4069 */ 4070 static void rtreeCheckMapping( 4071 RtreeCheck *pCheck, /* RtreeCheck object */ 4072 int bLeaf, /* True for a leaf cell, false for interior */ 4073 i64 iKey, /* Key for mapping */ 4074 i64 iVal /* Expected value for mapping */ 4075 ){ 4076 int rc; 4077 sqlite3_stmt *pStmt; 4078 const char *azSql[2] = { 4079 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", 4080 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" 4081 }; 4082 4083 assert( bLeaf==0 || bLeaf==1 ); 4084 if( pCheck->aCheckMapping[bLeaf]==0 ){ 4085 pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, 4086 azSql[bLeaf], pCheck->zDb, pCheck->zTab 4087 ); 4088 } 4089 if( pCheck->rc!=SQLITE_OK ) return; 4090 4091 pStmt = pCheck->aCheckMapping[bLeaf]; 4092 sqlite3_bind_int64(pStmt, 1, iKey); 4093 rc = sqlite3_step(pStmt); 4094 if( rc==SQLITE_DONE ){ 4095 rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", 4096 iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") 4097 ); 4098 }else if( rc==SQLITE_ROW ){ 4099 i64 ii = sqlite3_column_int64(pStmt, 0); 4100 if( ii!=iVal ){ 4101 rtreeCheckAppendMsg(pCheck, 4102 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", 4103 iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal 4104 ); 4105 } 4106 } 4107 rtreeCheckReset(pCheck, pStmt); 4108 } 4109 4110 /* 4111 ** Argument pCell points to an array of coordinates stored on an rtree page. 4112 ** This function checks that the coordinates are internally consistent (no 4113 ** x1>x2 conditions) and adds an error message to the RtreeCheck object 4114 ** if they are not. 4115 ** 4116 ** Additionally, if pParent is not NULL, then it is assumed to point to 4117 ** the array of coordinates on the parent page that bound the page 4118 ** containing pCell. In this case it is also verified that the two 4119 ** sets of coordinates are mutually consistent and an error message added 4120 ** to the RtreeCheck object if they are not. 4121 */ 4122 static void rtreeCheckCellCoord( 4123 RtreeCheck *pCheck, 4124 i64 iNode, /* Node id to use in error messages */ 4125 int iCell, /* Cell number to use in error messages */ 4126 u8 *pCell, /* Pointer to cell coordinates */ 4127 u8 *pParent /* Pointer to parent coordinates */ 4128 ){ 4129 RtreeCoord c1, c2; 4130 RtreeCoord p1, p2; 4131 int i; 4132 4133 for(i=0; i<pCheck->nDim; i++){ 4134 readCoord(&pCell[4*2*i], &c1); 4135 readCoord(&pCell[4*(2*i + 1)], &c2); 4136 4137 /* printf("%e, %e\n", c1.u.f, c2.u.f); */ 4138 if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ 4139 rtreeCheckAppendMsg(pCheck, 4140 "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode 4141 ); 4142 } 4143 4144 if( pParent ){ 4145 readCoord(&pParent[4*2*i], &p1); 4146 readCoord(&pParent[4*(2*i + 1)], &p2); 4147 4148 if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f) 4149 || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f) 4150 ){ 4151 rtreeCheckAppendMsg(pCheck, 4152 "Dimension %d of cell %d on node %lld is corrupt relative to parent" 4153 , i, iCell, iNode 4154 ); 4155 } 4156 } 4157 } 4158 } 4159 4160 /* 4161 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within 4162 ** the r-tree structure. Argument aParent points to the array of coordinates 4163 ** that bound node iNode on the parent node. 4164 ** 4165 ** If any problems are discovered, an error message is appended to the 4166 ** report accumulated in the RtreeCheck object. 4167 */ 4168 static void rtreeCheckNode( 4169 RtreeCheck *pCheck, 4170 int iDepth, /* Depth of iNode (0==leaf) */ 4171 u8 *aParent, /* Buffer containing parent coords */ 4172 i64 iNode /* Node to check */ 4173 ){ 4174 u8 *aNode = 0; 4175 int nNode = 0; 4176 4177 assert( iNode==1 || aParent!=0 ); 4178 assert( pCheck->nDim>0 ); 4179 4180 aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); 4181 if( aNode ){ 4182 if( nNode<4 ){ 4183 rtreeCheckAppendMsg(pCheck, 4184 "Node %lld is too small (%d bytes)", iNode, nNode 4185 ); 4186 }else{ 4187 int nCell; /* Number of cells on page */ 4188 int i; /* Used to iterate through cells */ 4189 if( aParent==0 ){ 4190 iDepth = readInt16(aNode); 4191 if( iDepth>RTREE_MAX_DEPTH ){ 4192 rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); 4193 sqlite3_free(aNode); 4194 return; 4195 } 4196 } 4197 nCell = readInt16(&aNode[2]); 4198 if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ 4199 rtreeCheckAppendMsg(pCheck, 4200 "Node %lld is too small for cell count of %d (%d bytes)", 4201 iNode, nCell, nNode 4202 ); 4203 }else{ 4204 for(i=0; i<nCell; i++){ 4205 u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)]; 4206 i64 iVal = readInt64(pCell); 4207 rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); 4208 4209 if( iDepth>0 ){ 4210 rtreeCheckMapping(pCheck, 0, iVal, iNode); 4211 rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); 4212 pCheck->nNonLeaf++; 4213 }else{ 4214 rtreeCheckMapping(pCheck, 1, iVal, iNode); 4215 pCheck->nLeaf++; 4216 } 4217 } 4218 } 4219 } 4220 sqlite3_free(aNode); 4221 } 4222 } 4223 4224 /* 4225 ** The second argument to this function must be either "_rowid" or 4226 ** "_parent". This function checks that the number of entries in the 4227 ** %_rowid or %_parent table is exactly nExpect. If not, it adds 4228 ** an error message to the report in the RtreeCheck object indicated 4229 ** by the first argument. 4230 */ 4231 static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ 4232 if( pCheck->rc==SQLITE_OK ){ 4233 sqlite3_stmt *pCount; 4234 pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", 4235 pCheck->zDb, pCheck->zTab, zTbl 4236 ); 4237 if( pCount ){ 4238 if( sqlite3_step(pCount)==SQLITE_ROW ){ 4239 i64 nActual = sqlite3_column_int64(pCount, 0); 4240 if( nActual!=nExpect ){ 4241 rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" 4242 " - expected %lld, actual %lld" , zTbl, nExpect, nActual 4243 ); 4244 } 4245 } 4246 pCheck->rc = sqlite3_finalize(pCount); 4247 } 4248 } 4249 } 4250 4251 /* 4252 ** This function does the bulk of the work for the rtree integrity-check. 4253 ** It is called by rtreecheck(), which is the SQL function implementation. 4254 */ 4255 static int rtreeCheckTable( 4256 sqlite3 *db, /* Database handle to access db through */ 4257 const char *zDb, /* Name of db ("main", "temp" etc.) */ 4258 const char *zTab, /* Name of rtree table to check */ 4259 char **pzReport /* OUT: sqlite3_malloc'd report text */ 4260 ){ 4261 RtreeCheck check; /* Common context for various routines */ 4262 sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ 4263 int bEnd = 0; /* True if transaction should be closed */ 4264 int nAux = 0; /* Number of extra columns. */ 4265 4266 /* Initialize the context object */ 4267 memset(&check, 0, sizeof(check)); 4268 check.db = db; 4269 check.zDb = zDb; 4270 check.zTab = zTab; 4271 4272 /* If there is not already an open transaction, open one now. This is 4273 ** to ensure that the queries run as part of this integrity-check operate 4274 ** on a consistent snapshot. */ 4275 if( sqlite3_get_autocommit(db) ){ 4276 check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); 4277 bEnd = 1; 4278 } 4279 4280 /* Find the number of auxiliary columns */ 4281 if( check.rc==SQLITE_OK ){ 4282 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); 4283 if( pStmt ){ 4284 nAux = sqlite3_column_count(pStmt) - 2; 4285 sqlite3_finalize(pStmt); 4286 }else 4287 if( check.rc!=SQLITE_NOMEM ){ 4288 check.rc = SQLITE_OK; 4289 } 4290 } 4291 4292 /* Find number of dimensions in the rtree table. */ 4293 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); 4294 if( pStmt ){ 4295 int rc; 4296 check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; 4297 if( check.nDim<1 ){ 4298 rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); 4299 }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ 4300 check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); 4301 } 4302 rc = sqlite3_finalize(pStmt); 4303 if( rc!=SQLITE_CORRUPT ) check.rc = rc; 4304 } 4305 4306 /* Do the actual integrity-check */ 4307 if( check.nDim>=1 ){ 4308 if( check.rc==SQLITE_OK ){ 4309 rtreeCheckNode(&check, 0, 0, 1); 4310 } 4311 rtreeCheckCount(&check, "_rowid", check.nLeaf); 4312 rtreeCheckCount(&check, "_parent", check.nNonLeaf); 4313 } 4314 4315 /* Finalize SQL statements used by the integrity-check */ 4316 sqlite3_finalize(check.pGetNode); 4317 sqlite3_finalize(check.aCheckMapping[0]); 4318 sqlite3_finalize(check.aCheckMapping[1]); 4319 4320 /* If one was opened, close the transaction */ 4321 if( bEnd ){ 4322 int rc = sqlite3_exec(db, "END", 0, 0, 0); 4323 if( check.rc==SQLITE_OK ) check.rc = rc; 4324 } 4325 *pzReport = check.zReport; 4326 return check.rc; 4327 } 4328 4329 /* 4330 ** Usage: 4331 ** 4332 ** rtreecheck(<rtree-table>); 4333 ** rtreecheck(<database>, <rtree-table>); 4334 ** 4335 ** Invoking this SQL function runs an integrity-check on the named rtree 4336 ** table. The integrity-check verifies the following: 4337 ** 4338 ** 1. For each cell in the r-tree structure (%_node table), that: 4339 ** 4340 ** a) for each dimension, (coord1 <= coord2). 4341 ** 4342 ** b) unless the cell is on the root node, that the cell is bounded 4343 ** by the parent cell on the parent node. 4344 ** 4345 ** c) for leaf nodes, that there is an entry in the %_rowid 4346 ** table corresponding to the cell's rowid value that 4347 ** points to the correct node. 4348 ** 4349 ** d) for cells on non-leaf nodes, that there is an entry in the 4350 ** %_parent table mapping from the cell's child node to the 4351 ** node that it resides on. 4352 ** 4353 ** 2. That there are the same number of entries in the %_rowid table 4354 ** as there are leaf cells in the r-tree structure, and that there 4355 ** is a leaf cell that corresponds to each entry in the %_rowid table. 4356 ** 4357 ** 3. That there are the same number of entries in the %_parent table 4358 ** as there are non-leaf cells in the r-tree structure, and that 4359 ** there is a non-leaf cell that corresponds to each entry in the 4360 ** %_parent table. 4361 */ 4362 static void rtreecheck( 4363 sqlite3_context *ctx, 4364 int nArg, 4365 sqlite3_value **apArg 4366 ){ 4367 if( nArg!=1 && nArg!=2 ){ 4368 sqlite3_result_error(ctx, 4369 "wrong number of arguments to function rtreecheck()", -1 4370 ); 4371 }else{ 4372 int rc; 4373 char *zReport = 0; 4374 const char *zDb = (const char*)sqlite3_value_text(apArg[0]); 4375 const char *zTab; 4376 if( nArg==1 ){ 4377 zTab = zDb; 4378 zDb = "main"; 4379 }else{ 4380 zTab = (const char*)sqlite3_value_text(apArg[1]); 4381 } 4382 rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); 4383 if( rc==SQLITE_OK ){ 4384 sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); 4385 }else{ 4386 sqlite3_result_error_code(ctx, rc); 4387 } 4388 sqlite3_free(zReport); 4389 } 4390 } 4391 4392 /* Conditionally include the geopoly code */ 4393 #ifdef SQLITE_ENABLE_GEOPOLY 4394 # include "geopoly.c" 4395 #endif 4396 4397 /* 4398 ** Register the r-tree module with database handle db. This creates the 4399 ** virtual table module "rtree" and the debugging/analysis scalar 4400 ** function "rtreenode". 4401 */ 4402 int sqlite3RtreeInit(sqlite3 *db){ 4403 const int utf8 = SQLITE_UTF8; 4404 int rc; 4405 4406 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); 4407 if( rc==SQLITE_OK ){ 4408 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); 4409 } 4410 if( rc==SQLITE_OK ){ 4411 rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0); 4412 } 4413 if( rc==SQLITE_OK ){ 4414 #ifdef SQLITE_RTREE_INT_ONLY 4415 void *c = (void *)RTREE_COORD_INT32; 4416 #else 4417 void *c = (void *)RTREE_COORD_REAL32; 4418 #endif 4419 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); 4420 } 4421 if( rc==SQLITE_OK ){ 4422 void *c = (void *)RTREE_COORD_INT32; 4423 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); 4424 } 4425 #ifdef SQLITE_ENABLE_GEOPOLY 4426 if( rc==SQLITE_OK ){ 4427 rc = sqlite3_geopoly_init(db); 4428 } 4429 #endif 4430 4431 return rc; 4432 } 4433 4434 /* 4435 ** This routine deletes the RtreeGeomCallback object that was attached 4436 ** one of the SQL functions create by sqlite3_rtree_geometry_callback() 4437 ** or sqlite3_rtree_query_callback(). In other words, this routine is the 4438 ** destructor for an RtreeGeomCallback objecct. This routine is called when 4439 ** the corresponding SQL function is deleted. 4440 */ 4441 static void rtreeFreeCallback(void *p){ 4442 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; 4443 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); 4444 sqlite3_free(p); 4445 } 4446 4447 /* 4448 ** This routine frees the BLOB that is returned by geomCallback(). 4449 */ 4450 static void rtreeMatchArgFree(void *pArg){ 4451 int i; 4452 RtreeMatchArg *p = (RtreeMatchArg*)pArg; 4453 for(i=0; i<p->nParam; i++){ 4454 sqlite3_value_free(p->apSqlParam[i]); 4455 } 4456 sqlite3_free(p); 4457 } 4458 4459 /* 4460 ** Each call to sqlite3_rtree_geometry_callback() or 4461 ** sqlite3_rtree_query_callback() creates an ordinary SQLite 4462 ** scalar function that is implemented by this routine. 4463 ** 4464 ** All this function does is construct an RtreeMatchArg object that 4465 ** contains the geometry-checking callback routines and a list of 4466 ** parameters to this function, then return that RtreeMatchArg object 4467 ** as a BLOB. 4468 ** 4469 ** The R-Tree MATCH operator will read the returned BLOB, deserialize 4470 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure 4471 ** out which elements of the R-Tree should be returned by the query. 4472 */ 4473 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ 4474 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); 4475 RtreeMatchArg *pBlob; 4476 sqlite3_int64 nBlob; 4477 int memErr = 0; 4478 4479 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) 4480 + nArg*sizeof(sqlite3_value*); 4481 pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob); 4482 if( !pBlob ){ 4483 sqlite3_result_error_nomem(ctx); 4484 }else{ 4485 int i; 4486 pBlob->iSize = nBlob; 4487 pBlob->cb = pGeomCtx[0]; 4488 pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; 4489 pBlob->nParam = nArg; 4490 for(i=0; i<nArg; i++){ 4491 pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]); 4492 if( pBlob->apSqlParam[i]==0 ) memErr = 1; 4493 #ifdef SQLITE_RTREE_INT_ONLY 4494 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); 4495 #else 4496 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); 4497 #endif 4498 } 4499 if( memErr ){ 4500 sqlite3_result_error_nomem(ctx); 4501 rtreeMatchArgFree(pBlob); 4502 }else{ 4503 sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); 4504 } 4505 } 4506 } 4507 4508 /* 4509 ** Register a new geometry function for use with the r-tree MATCH operator. 4510 */ 4511 int sqlite3_rtree_geometry_callback( 4512 sqlite3 *db, /* Register SQL function on this connection */ 4513 const char *zGeom, /* Name of the new SQL function */ 4514 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ 4515 void *pContext /* Extra data associated with the callback */ 4516 ){ 4517 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4518 4519 /* Allocate and populate the context object. */ 4520 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4521 if( !pGeomCtx ) return SQLITE_NOMEM; 4522 pGeomCtx->xGeom = xGeom; 4523 pGeomCtx->xQueryFunc = 0; 4524 pGeomCtx->xDestructor = 0; 4525 pGeomCtx->pContext = pContext; 4526 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 4527 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4528 ); 4529 } 4530 4531 /* 4532 ** Register a new 2nd-generation geometry function for use with the 4533 ** r-tree MATCH operator. 4534 */ 4535 int sqlite3_rtree_query_callback( 4536 sqlite3 *db, /* Register SQL function on this connection */ 4537 const char *zQueryFunc, /* Name of new SQL function */ 4538 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ 4539 void *pContext, /* Extra data passed into the callback */ 4540 void (*xDestructor)(void*) /* Destructor for the extra data */ 4541 ){ 4542 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4543 4544 /* Allocate and populate the context object. */ 4545 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4546 if( !pGeomCtx ){ 4547 if( xDestructor ) xDestructor(pContext); 4548 return SQLITE_NOMEM; 4549 } 4550 pGeomCtx->xGeom = 0; 4551 pGeomCtx->xQueryFunc = xQueryFunc; 4552 pGeomCtx->xDestructor = xDestructor; 4553 pGeomCtx->pContext = pContext; 4554 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, 4555 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4556 ); 4557 } 4558 4559 #if !SQLITE_CORE 4560 #ifdef _WIN32 4561 __declspec(dllexport) 4562 #endif 4563 int sqlite3_rtree_init( 4564 sqlite3 *db, 4565 char **pzErrMsg, 4566 const sqlite3_api_routines *pApi 4567 ){ 4568 SQLITE_EXTENSION_INIT2(pApi) 4569 return sqlite3RtreeInit(db); 4570 } 4571 #endif 4572 4573 #endif 4574