1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for implementations of the r-tree and r*-tree 13 ** algorithms packaged as an SQLite virtual table module. 14 */ 15 16 /* 17 ** Database Format of R-Tree Tables 18 ** -------------------------------- 19 ** 20 ** The data structure for a single virtual r-tree table is stored in three 21 ** native SQLite tables declared as follows. In each case, the '%' character 22 ** in the table name is replaced with the user-supplied name of the r-tree 23 ** table. 24 ** 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 28 ** 29 ** The data for each node of the r-tree structure is stored in the %_node 30 ** table. For each node that is not the root node of the r-tree, there is 31 ** an entry in the %_parent table associating the node with its parent. 32 ** And for each row of data in the table, there is an entry in the %_rowid 33 ** table that maps from the entries rowid to the id of the node that it 34 ** is stored on. If the r-tree contains auxiliary columns, those are stored 35 ** on the end of the %_rowid table. 36 ** 37 ** The root node of an r-tree always exists, even if the r-tree table is 38 ** empty. The nodeno of the root node is always 1. All other nodes in the 39 ** table must be the same size as the root node. The content of each node 40 ** is formatted as follows: 41 ** 42 ** 1. If the node is the root node (node 1), then the first 2 bytes 43 ** of the node contain the tree depth as a big-endian integer. 44 ** For non-root nodes, the first 2 bytes are left unused. 45 ** 46 ** 2. The next 2 bytes contain the number of entries currently 47 ** stored in the node. 48 ** 49 ** 3. The remainder of the node contains the node entries. Each entry 50 ** consists of a single 8-byte integer followed by an even number 51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid 52 ** of a record. For internal nodes it is the node number of a 53 ** child page. 54 */ 55 56 #if !defined(SQLITE_CORE) \ 57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE)) 58 59 #ifndef SQLITE_CORE 60 #include "sqlite3ext.h" 61 SQLITE_EXTENSION_INIT1 62 #else 63 #include "sqlite3.h" 64 #endif 65 66 #include <string.h> 67 #include <assert.h> 68 #include <stdio.h> 69 70 #ifndef SQLITE_AMALGAMATION 71 #include "sqlite3rtree.h" 72 typedef sqlite3_int64 i64; 73 typedef sqlite3_uint64 u64; 74 typedef unsigned char u8; 75 typedef unsigned short u16; 76 typedef unsigned int u32; 77 #endif 78 79 /* The following macro is used to suppress compiler warnings. 80 */ 81 #ifndef UNUSED_PARAMETER 82 # define UNUSED_PARAMETER(x) (void)(x) 83 #endif 84 85 typedef struct Rtree Rtree; 86 typedef struct RtreeCursor RtreeCursor; 87 typedef struct RtreeNode RtreeNode; 88 typedef struct RtreeCell RtreeCell; 89 typedef struct RtreeConstraint RtreeConstraint; 90 typedef struct RtreeMatchArg RtreeMatchArg; 91 typedef struct RtreeGeomCallback RtreeGeomCallback; 92 typedef union RtreeCoord RtreeCoord; 93 typedef struct RtreeSearchPoint RtreeSearchPoint; 94 95 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ 96 #define RTREE_MAX_DIMENSIONS 5 97 98 /* Maximum number of auxiliary columns */ 99 #define RTREE_MAX_AUX_COLUMN 100 100 101 /* Size of hash table Rtree.aHash. This hash table is not expected to 102 ** ever contain very many entries, so a fixed number of buckets is 103 ** used. 104 */ 105 #define HASHSIZE 97 106 107 /* The xBestIndex method of this virtual table requires an estimate of 108 ** the number of rows in the virtual table to calculate the costs of 109 ** various strategies. If possible, this estimate is loaded from the 110 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). 111 ** Otherwise, if no sqlite_stat1 entry is available, use 112 ** RTREE_DEFAULT_ROWEST. 113 */ 114 #define RTREE_DEFAULT_ROWEST 1048576 115 #define RTREE_MIN_ROWEST 100 116 117 /* 118 ** An rtree virtual-table object. 119 */ 120 struct Rtree { 121 sqlite3_vtab base; /* Base class. Must be first */ 122 sqlite3 *db; /* Host database connection */ 123 int iNodeSize; /* Size in bytes of each node in the node table */ 124 u8 nDim; /* Number of dimensions */ 125 u8 nDim2; /* Twice the number of dimensions */ 126 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ 127 u8 nBytesPerCell; /* Bytes consumed per cell */ 128 u8 inWrTrans; /* True if inside write transaction */ 129 u8 nAux; /* # of auxiliary columns in %_rowid */ 130 u8 nAuxNotNull; /* Number of initial not-null aux columns */ 131 #ifdef SQLITE_DEBUG 132 u8 bCorrupt; /* Shadow table corruption detected */ 133 #endif 134 int iDepth; /* Current depth of the r-tree structure */ 135 char *zDb; /* Name of database containing r-tree table */ 136 char *zName; /* Name of r-tree table */ 137 u32 nBusy; /* Current number of users of this structure */ 138 i64 nRowEst; /* Estimated number of rows in this table */ 139 u32 nCursor; /* Number of open cursors */ 140 u32 nNodeRef; /* Number RtreeNodes with positive nRef */ 141 char *zReadAuxSql; /* SQL for statement to read aux data */ 142 143 /* List of nodes removed during a CondenseTree operation. List is 144 ** linked together via the pointer normally used for hash chains - 145 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 146 ** headed by the node (leaf nodes have RtreeNode.iNode==0). 147 */ 148 RtreeNode *pDeleted; 149 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ 150 151 /* Blob I/O on xxx_node */ 152 sqlite3_blob *pNodeBlob; 153 154 /* Statements to read/write/delete a record from xxx_node */ 155 sqlite3_stmt *pWriteNode; 156 sqlite3_stmt *pDeleteNode; 157 158 /* Statements to read/write/delete a record from xxx_rowid */ 159 sqlite3_stmt *pReadRowid; 160 sqlite3_stmt *pWriteRowid; 161 sqlite3_stmt *pDeleteRowid; 162 163 /* Statements to read/write/delete a record from xxx_parent */ 164 sqlite3_stmt *pReadParent; 165 sqlite3_stmt *pWriteParent; 166 sqlite3_stmt *pDeleteParent; 167 168 /* Statement for writing to the "aux:" fields, if there are any */ 169 sqlite3_stmt *pWriteAux; 170 171 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 172 }; 173 174 /* Possible values for Rtree.eCoordType: */ 175 #define RTREE_COORD_REAL32 0 176 #define RTREE_COORD_INT32 1 177 178 /* 179 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will 180 ** only deal with integer coordinates. No floating point operations 181 ** will be done. 182 */ 183 #ifdef SQLITE_RTREE_INT_ONLY 184 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ 185 typedef int RtreeValue; /* Low accuracy coordinate */ 186 # define RTREE_ZERO 0 187 #else 188 typedef double RtreeDValue; /* High accuracy coordinate */ 189 typedef float RtreeValue; /* Low accuracy coordinate */ 190 # define RTREE_ZERO 0.0 191 #endif 192 193 /* 194 ** Set the Rtree.bCorrupt flag 195 */ 196 #ifdef SQLITE_DEBUG 197 # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) 198 #else 199 # define RTREE_IS_CORRUPT(X) 200 #endif 201 202 /* 203 ** When doing a search of an r-tree, instances of the following structure 204 ** record intermediate results from the tree walk. 205 ** 206 ** The id is always a node-id. For iLevel>=1 the id is the node-id of 207 ** the node that the RtreeSearchPoint represents. When iLevel==0, however, 208 ** the id is of the parent node and the cell that RtreeSearchPoint 209 ** represents is the iCell-th entry in the parent node. 210 */ 211 struct RtreeSearchPoint { 212 RtreeDValue rScore; /* The score for this node. Smallest goes first. */ 213 sqlite3_int64 id; /* Node ID */ 214 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ 215 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ 216 u8 iCell; /* Cell index within the node */ 217 }; 218 219 /* 220 ** The minimum number of cells allowed for a node is a third of the 221 ** maximum. In Gutman's notation: 222 ** 223 ** m = M/3 224 ** 225 ** If an R*-tree "Reinsert" operation is required, the same number of 226 ** cells are removed from the overfull node and reinserted into the tree. 227 */ 228 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) 229 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) 230 #define RTREE_MAXCELLS 51 231 232 /* 233 ** The smallest possible node-size is (512-64)==448 bytes. And the largest 234 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). 235 ** Therefore all non-root nodes must contain at least 3 entries. Since 236 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of 237 ** 40 or less. 238 */ 239 #define RTREE_MAX_DEPTH 40 240 241 242 /* 243 ** Number of entries in the cursor RtreeNode cache. The first entry is 244 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining 245 ** entries cache the RtreeNode for the first elements of the priority queue. 246 */ 247 #define RTREE_CACHE_SZ 5 248 249 /* 250 ** An rtree cursor object. 251 */ 252 struct RtreeCursor { 253 sqlite3_vtab_cursor base; /* Base class. Must be first */ 254 u8 atEOF; /* True if at end of search */ 255 u8 bPoint; /* True if sPoint is valid */ 256 u8 bAuxValid; /* True if pReadAux is valid */ 257 int iStrategy; /* Copy of idxNum search parameter */ 258 int nConstraint; /* Number of entries in aConstraint */ 259 RtreeConstraint *aConstraint; /* Search constraints. */ 260 int nPointAlloc; /* Number of slots allocated for aPoint[] */ 261 int nPoint; /* Number of slots used in aPoint[] */ 262 int mxLevel; /* iLevel value for root of the tree */ 263 RtreeSearchPoint *aPoint; /* Priority queue for search points */ 264 sqlite3_stmt *pReadAux; /* Statement to read aux-data */ 265 RtreeSearchPoint sPoint; /* Cached next search point */ 266 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ 267 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ 268 }; 269 270 /* Return the Rtree of a RtreeCursor */ 271 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) 272 273 /* 274 ** A coordinate can be either a floating point number or a integer. All 275 ** coordinates within a single R-Tree are always of the same time. 276 */ 277 union RtreeCoord { 278 RtreeValue f; /* Floating point value */ 279 int i; /* Integer value */ 280 u32 u; /* Unsigned for byte-order conversions */ 281 }; 282 283 /* 284 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord 285 ** formatted as a RtreeDValue (double or int64). This macro assumes that local 286 ** variable pRtree points to the Rtree structure associated with the 287 ** RtreeCoord. 288 */ 289 #ifdef SQLITE_RTREE_INT_ONLY 290 # define DCOORD(coord) ((RtreeDValue)coord.i) 291 #else 292 # define DCOORD(coord) ( \ 293 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ 294 ((double)coord.f) : \ 295 ((double)coord.i) \ 296 ) 297 #endif 298 299 /* 300 ** A search constraint. 301 */ 302 struct RtreeConstraint { 303 int iCoord; /* Index of constrained coordinate */ 304 int op; /* Constraining operation */ 305 union { 306 RtreeDValue rValue; /* Constraint value. */ 307 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); 308 int (*xQueryFunc)(sqlite3_rtree_query_info*); 309 } u; 310 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ 311 }; 312 313 /* Possible values for RtreeConstraint.op */ 314 #define RTREE_EQ 0x41 /* A */ 315 #define RTREE_LE 0x42 /* B */ 316 #define RTREE_LT 0x43 /* C */ 317 #define RTREE_GE 0x44 /* D */ 318 #define RTREE_GT 0x45 /* E */ 319 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ 320 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ 321 322 323 /* 324 ** An rtree structure node. 325 */ 326 struct RtreeNode { 327 RtreeNode *pParent; /* Parent node */ 328 i64 iNode; /* The node number */ 329 int nRef; /* Number of references to this node */ 330 int isDirty; /* True if the node needs to be written to disk */ 331 u8 *zData; /* Content of the node, as should be on disk */ 332 RtreeNode *pNext; /* Next node in this hash collision chain */ 333 }; 334 335 /* Return the number of cells in a node */ 336 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) 337 338 /* 339 ** A single cell from a node, deserialized 340 */ 341 struct RtreeCell { 342 i64 iRowid; /* Node or entry ID */ 343 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ 344 }; 345 346 347 /* 348 ** This object becomes the sqlite3_user_data() for the SQL functions 349 ** that are created by sqlite3_rtree_geometry_callback() and 350 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH 351 ** operators in order to constrain a search. 352 ** 353 ** xGeom and xQueryFunc are the callback functions. Exactly one of 354 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the 355 ** SQL function was created using sqlite3_rtree_geometry_callback() or 356 ** sqlite3_rtree_query_callback(). 357 ** 358 ** This object is deleted automatically by the destructor mechanism in 359 ** sqlite3_create_function_v2(). 360 */ 361 struct RtreeGeomCallback { 362 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); 363 int (*xQueryFunc)(sqlite3_rtree_query_info*); 364 void (*xDestructor)(void*); 365 void *pContext; 366 }; 367 368 /* 369 ** An instance of this structure (in the form of a BLOB) is returned by 370 ** the SQL functions that sqlite3_rtree_geometry_callback() and 371 ** sqlite3_rtree_query_callback() create, and is read as the right-hand 372 ** operand to the MATCH operator of an R-Tree. 373 */ 374 struct RtreeMatchArg { 375 u32 iSize; /* Size of this object */ 376 RtreeGeomCallback cb; /* Info about the callback functions */ 377 int nParam; /* Number of parameters to the SQL function */ 378 sqlite3_value **apSqlParam; /* Original SQL parameter values */ 379 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ 380 }; 381 382 #ifndef MAX 383 # define MAX(x,y) ((x) < (y) ? (y) : (x)) 384 #endif 385 #ifndef MIN 386 # define MIN(x,y) ((x) > (y) ? (y) : (x)) 387 #endif 388 389 /* What version of GCC is being used. 0 means GCC is not being used . 390 ** Note that the GCC_VERSION macro will also be set correctly when using 391 ** clang, since clang works hard to be gcc compatible. So the gcc 392 ** optimizations will also work when compiling with clang. 393 */ 394 #ifndef GCC_VERSION 395 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) 396 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 397 #else 398 # define GCC_VERSION 0 399 #endif 400 #endif 401 402 /* The testcase() macro should already be defined in the amalgamation. If 403 ** it is not, make it a no-op. 404 */ 405 #ifndef SQLITE_AMALGAMATION 406 # define testcase(X) 407 #endif 408 409 /* 410 ** Macros to determine whether the machine is big or little endian, 411 ** and whether or not that determination is run-time or compile-time. 412 ** 413 ** For best performance, an attempt is made to guess at the byte-order 414 ** using C-preprocessor macros. If that is unsuccessful, or if 415 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 416 ** at run-time. 417 */ 418 #ifndef SQLITE_BYTEORDER 419 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 420 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 421 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 422 defined(__arm__) 423 # define SQLITE_BYTEORDER 1234 424 #elif defined(sparc) || defined(__ppc__) 425 # define SQLITE_BYTEORDER 4321 426 #else 427 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 428 #endif 429 #endif 430 431 432 /* What version of MSVC is being used. 0 means MSVC is not being used */ 433 #ifndef MSVC_VERSION 434 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) 435 # define MSVC_VERSION _MSC_VER 436 #else 437 # define MSVC_VERSION 0 438 #endif 439 #endif 440 441 /* 442 ** Functions to deserialize a 16 bit integer, 32 bit real number and 443 ** 64 bit integer. The deserialized value is returned. 444 */ 445 static int readInt16(u8 *p){ 446 return (p[0]<<8) + p[1]; 447 } 448 static void readCoord(u8 *p, RtreeCoord *pCoord){ 449 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 450 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 451 pCoord->u = _byteswap_ulong(*(u32*)p); 452 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 453 pCoord->u = __builtin_bswap32(*(u32*)p); 454 #elif SQLITE_BYTEORDER==4321 455 pCoord->u = *(u32*)p; 456 #else 457 pCoord->u = ( 458 (((u32)p[0]) << 24) + 459 (((u32)p[1]) << 16) + 460 (((u32)p[2]) << 8) + 461 (((u32)p[3]) << 0) 462 ); 463 #endif 464 } 465 static i64 readInt64(u8 *p){ 466 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 467 u64 x; 468 memcpy(&x, p, 8); 469 return (i64)_byteswap_uint64(x); 470 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 471 u64 x; 472 memcpy(&x, p, 8); 473 return (i64)__builtin_bswap64(x); 474 #elif SQLITE_BYTEORDER==4321 475 i64 x; 476 memcpy(&x, p, 8); 477 return x; 478 #else 479 return (i64)( 480 (((u64)p[0]) << 56) + 481 (((u64)p[1]) << 48) + 482 (((u64)p[2]) << 40) + 483 (((u64)p[3]) << 32) + 484 (((u64)p[4]) << 24) + 485 (((u64)p[5]) << 16) + 486 (((u64)p[6]) << 8) + 487 (((u64)p[7]) << 0) 488 ); 489 #endif 490 } 491 492 /* 493 ** Functions to serialize a 16 bit integer, 32 bit real number and 494 ** 64 bit integer. The value returned is the number of bytes written 495 ** to the argument buffer (always 2, 4 and 8 respectively). 496 */ 497 static void writeInt16(u8 *p, int i){ 498 p[0] = (i>> 8)&0xFF; 499 p[1] = (i>> 0)&0xFF; 500 } 501 static int writeCoord(u8 *p, RtreeCoord *pCoord){ 502 u32 i; 503 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ 504 assert( sizeof(RtreeCoord)==4 ); 505 assert( sizeof(u32)==4 ); 506 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 507 i = __builtin_bswap32(pCoord->u); 508 memcpy(p, &i, 4); 509 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 510 i = _byteswap_ulong(pCoord->u); 511 memcpy(p, &i, 4); 512 #elif SQLITE_BYTEORDER==4321 513 i = pCoord->u; 514 memcpy(p, &i, 4); 515 #else 516 i = pCoord->u; 517 p[0] = (i>>24)&0xFF; 518 p[1] = (i>>16)&0xFF; 519 p[2] = (i>> 8)&0xFF; 520 p[3] = (i>> 0)&0xFF; 521 #endif 522 return 4; 523 } 524 static int writeInt64(u8 *p, i64 i){ 525 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 526 i = (i64)__builtin_bswap64((u64)i); 527 memcpy(p, &i, 8); 528 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 529 i = (i64)_byteswap_uint64((u64)i); 530 memcpy(p, &i, 8); 531 #elif SQLITE_BYTEORDER==4321 532 memcpy(p, &i, 8); 533 #else 534 p[0] = (i>>56)&0xFF; 535 p[1] = (i>>48)&0xFF; 536 p[2] = (i>>40)&0xFF; 537 p[3] = (i>>32)&0xFF; 538 p[4] = (i>>24)&0xFF; 539 p[5] = (i>>16)&0xFF; 540 p[6] = (i>> 8)&0xFF; 541 p[7] = (i>> 0)&0xFF; 542 #endif 543 return 8; 544 } 545 546 /* 547 ** Increment the reference count of node p. 548 */ 549 static void nodeReference(RtreeNode *p){ 550 if( p ){ 551 assert( p->nRef>0 ); 552 p->nRef++; 553 } 554 } 555 556 /* 557 ** Clear the content of node p (set all bytes to 0x00). 558 */ 559 static void nodeZero(Rtree *pRtree, RtreeNode *p){ 560 memset(&p->zData[2], 0, pRtree->iNodeSize-2); 561 p->isDirty = 1; 562 } 563 564 /* 565 ** Given a node number iNode, return the corresponding key to use 566 ** in the Rtree.aHash table. 567 */ 568 static unsigned int nodeHash(i64 iNode){ 569 return ((unsigned)iNode) % HASHSIZE; 570 } 571 572 /* 573 ** Search the node hash table for node iNode. If found, return a pointer 574 ** to it. Otherwise, return 0. 575 */ 576 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ 577 RtreeNode *p; 578 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); 579 return p; 580 } 581 582 /* 583 ** Add node pNode to the node hash table. 584 */ 585 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ 586 int iHash; 587 assert( pNode->pNext==0 ); 588 iHash = nodeHash(pNode->iNode); 589 pNode->pNext = pRtree->aHash[iHash]; 590 pRtree->aHash[iHash] = pNode; 591 } 592 593 /* 594 ** Remove node pNode from the node hash table. 595 */ 596 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ 597 RtreeNode **pp; 598 if( pNode->iNode!=0 ){ 599 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; 600 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } 601 *pp = pNode->pNext; 602 pNode->pNext = 0; 603 } 604 } 605 606 /* 607 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), 608 ** indicating that node has not yet been assigned a node number. It is 609 ** assigned a node number when nodeWrite() is called to write the 610 ** node contents out to the database. 611 */ 612 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ 613 RtreeNode *pNode; 614 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); 615 if( pNode ){ 616 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); 617 pNode->zData = (u8 *)&pNode[1]; 618 pNode->nRef = 1; 619 pRtree->nNodeRef++; 620 pNode->pParent = pParent; 621 pNode->isDirty = 1; 622 nodeReference(pParent); 623 } 624 return pNode; 625 } 626 627 /* 628 ** Clear the Rtree.pNodeBlob object 629 */ 630 static void nodeBlobReset(Rtree *pRtree){ 631 if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){ 632 sqlite3_blob *pBlob = pRtree->pNodeBlob; 633 pRtree->pNodeBlob = 0; 634 sqlite3_blob_close(pBlob); 635 } 636 } 637 638 /* 639 ** Check to see if pNode is the same as pParent or any of the parents 640 ** of pParent. 641 */ 642 static int nodeInParentChain(const RtreeNode *pNode, const RtreeNode *pParent){ 643 do{ 644 if( pNode==pParent ) return 1; 645 pParent = pParent->pParent; 646 }while( pParent ); 647 return 0; 648 } 649 650 /* 651 ** Obtain a reference to an r-tree node. 652 */ 653 static int nodeAcquire( 654 Rtree *pRtree, /* R-tree structure */ 655 i64 iNode, /* Node number to load */ 656 RtreeNode *pParent, /* Either the parent node or NULL */ 657 RtreeNode **ppNode /* OUT: Acquired node */ 658 ){ 659 int rc = SQLITE_OK; 660 RtreeNode *pNode = 0; 661 662 /* Check if the requested node is already in the hash table. If so, 663 ** increase its reference count and return it. 664 */ 665 if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ 666 assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); 667 if( pParent && !pNode->pParent ){ 668 if( nodeInParentChain(pNode, pParent) ){ 669 RTREE_IS_CORRUPT(pRtree); 670 return SQLITE_CORRUPT_VTAB; 671 } 672 pParent->nRef++; 673 pNode->pParent = pParent; 674 } 675 pNode->nRef++; 676 *ppNode = pNode; 677 return SQLITE_OK; 678 } 679 680 if( pRtree->pNodeBlob ){ 681 sqlite3_blob *pBlob = pRtree->pNodeBlob; 682 pRtree->pNodeBlob = 0; 683 rc = sqlite3_blob_reopen(pBlob, iNode); 684 pRtree->pNodeBlob = pBlob; 685 if( rc ){ 686 nodeBlobReset(pRtree); 687 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; 688 } 689 } 690 if( pRtree->pNodeBlob==0 ){ 691 char *zTab = sqlite3_mprintf("%s_node", pRtree->zName); 692 if( zTab==0 ) return SQLITE_NOMEM; 693 rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0, 694 &pRtree->pNodeBlob); 695 sqlite3_free(zTab); 696 } 697 if( rc ){ 698 nodeBlobReset(pRtree); 699 *ppNode = 0; 700 /* If unable to open an sqlite3_blob on the desired row, that can only 701 ** be because the shadow tables hold erroneous data. */ 702 if( rc==SQLITE_ERROR ){ 703 rc = SQLITE_CORRUPT_VTAB; 704 RTREE_IS_CORRUPT(pRtree); 705 } 706 }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ 707 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); 708 if( !pNode ){ 709 rc = SQLITE_NOMEM; 710 }else{ 711 pNode->pParent = pParent; 712 pNode->zData = (u8 *)&pNode[1]; 713 pNode->nRef = 1; 714 pRtree->nNodeRef++; 715 pNode->iNode = iNode; 716 pNode->isDirty = 0; 717 pNode->pNext = 0; 718 rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, 719 pRtree->iNodeSize, 0); 720 nodeReference(pParent); 721 } 722 } 723 724 /* If the root node was just loaded, set pRtree->iDepth to the height 725 ** of the r-tree structure. A height of zero means all data is stored on 726 ** the root node. A height of one means the children of the root node 727 ** are the leaves, and so on. If the depth as specified on the root node 728 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. 729 */ 730 if( pNode && iNode==1 ){ 731 pRtree->iDepth = readInt16(pNode->zData); 732 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ 733 rc = SQLITE_CORRUPT_VTAB; 734 RTREE_IS_CORRUPT(pRtree); 735 } 736 } 737 738 /* If no error has occurred so far, check if the "number of entries" 739 ** field on the node is too large. If so, set the return code to 740 ** SQLITE_CORRUPT_VTAB. 741 */ 742 if( pNode && rc==SQLITE_OK ){ 743 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ 744 rc = SQLITE_CORRUPT_VTAB; 745 RTREE_IS_CORRUPT(pRtree); 746 } 747 } 748 749 if( rc==SQLITE_OK ){ 750 if( pNode!=0 ){ 751 nodeHashInsert(pRtree, pNode); 752 }else{ 753 rc = SQLITE_CORRUPT_VTAB; 754 RTREE_IS_CORRUPT(pRtree); 755 } 756 *ppNode = pNode; 757 }else{ 758 if( pNode ){ 759 pRtree->nNodeRef--; 760 sqlite3_free(pNode); 761 } 762 *ppNode = 0; 763 } 764 765 return rc; 766 } 767 768 /* 769 ** Overwrite cell iCell of node pNode with the contents of pCell. 770 */ 771 static void nodeOverwriteCell( 772 Rtree *pRtree, /* The overall R-Tree */ 773 RtreeNode *pNode, /* The node into which the cell is to be written */ 774 RtreeCell *pCell, /* The cell to write */ 775 int iCell /* Index into pNode into which pCell is written */ 776 ){ 777 int ii; 778 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 779 p += writeInt64(p, pCell->iRowid); 780 for(ii=0; ii<pRtree->nDim2; ii++){ 781 p += writeCoord(p, &pCell->aCoord[ii]); 782 } 783 pNode->isDirty = 1; 784 } 785 786 /* 787 ** Remove the cell with index iCell from node pNode. 788 */ 789 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ 790 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 791 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; 792 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; 793 memmove(pDst, pSrc, nByte); 794 writeInt16(&pNode->zData[2], NCELL(pNode)-1); 795 pNode->isDirty = 1; 796 } 797 798 /* 799 ** Insert the contents of cell pCell into node pNode. If the insert 800 ** is successful, return SQLITE_OK. 801 ** 802 ** If there is not enough free space in pNode, return SQLITE_FULL. 803 */ 804 static int nodeInsertCell( 805 Rtree *pRtree, /* The overall R-Tree */ 806 RtreeNode *pNode, /* Write new cell into this node */ 807 RtreeCell *pCell /* The cell to be inserted */ 808 ){ 809 int nCell; /* Current number of cells in pNode */ 810 int nMaxCell; /* Maximum number of cells for pNode */ 811 812 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; 813 nCell = NCELL(pNode); 814 815 assert( nCell<=nMaxCell ); 816 if( nCell<nMaxCell ){ 817 nodeOverwriteCell(pRtree, pNode, pCell, nCell); 818 writeInt16(&pNode->zData[2], nCell+1); 819 pNode->isDirty = 1; 820 } 821 822 return (nCell==nMaxCell); 823 } 824 825 /* 826 ** If the node is dirty, write it out to the database. 827 */ 828 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ 829 int rc = SQLITE_OK; 830 if( pNode->isDirty ){ 831 sqlite3_stmt *p = pRtree->pWriteNode; 832 if( pNode->iNode ){ 833 sqlite3_bind_int64(p, 1, pNode->iNode); 834 }else{ 835 sqlite3_bind_null(p, 1); 836 } 837 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); 838 sqlite3_step(p); 839 pNode->isDirty = 0; 840 rc = sqlite3_reset(p); 841 sqlite3_bind_null(p, 2); 842 if( pNode->iNode==0 && rc==SQLITE_OK ){ 843 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); 844 nodeHashInsert(pRtree, pNode); 845 } 846 } 847 return rc; 848 } 849 850 /* 851 ** Release a reference to a node. If the node is dirty and the reference 852 ** count drops to zero, the node data is written to the database. 853 */ 854 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ 855 int rc = SQLITE_OK; 856 if( pNode ){ 857 assert( pNode->nRef>0 ); 858 assert( pRtree->nNodeRef>0 ); 859 pNode->nRef--; 860 if( pNode->nRef==0 ){ 861 pRtree->nNodeRef--; 862 if( pNode->iNode==1 ){ 863 pRtree->iDepth = -1; 864 } 865 if( pNode->pParent ){ 866 rc = nodeRelease(pRtree, pNode->pParent); 867 } 868 if( rc==SQLITE_OK ){ 869 rc = nodeWrite(pRtree, pNode); 870 } 871 nodeHashDelete(pRtree, pNode); 872 sqlite3_free(pNode); 873 } 874 } 875 return rc; 876 } 877 878 /* 879 ** Return the 64-bit integer value associated with cell iCell of 880 ** node pNode. If pNode is a leaf node, this is a rowid. If it is 881 ** an internal node, then the 64-bit integer is a child page number. 882 */ 883 static i64 nodeGetRowid( 884 Rtree *pRtree, /* The overall R-Tree */ 885 RtreeNode *pNode, /* The node from which to extract the ID */ 886 int iCell /* The cell index from which to extract the ID */ 887 ){ 888 assert( iCell<NCELL(pNode) ); 889 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); 890 } 891 892 /* 893 ** Return coordinate iCoord from cell iCell in node pNode. 894 */ 895 static void nodeGetCoord( 896 Rtree *pRtree, /* The overall R-Tree */ 897 RtreeNode *pNode, /* The node from which to extract a coordinate */ 898 int iCell, /* The index of the cell within the node */ 899 int iCoord, /* Which coordinate to extract */ 900 RtreeCoord *pCoord /* OUT: Space to write result to */ 901 ){ 902 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); 903 } 904 905 /* 906 ** Deserialize cell iCell of node pNode. Populate the structure pointed 907 ** to by pCell with the results. 908 */ 909 static void nodeGetCell( 910 Rtree *pRtree, /* The overall R-Tree */ 911 RtreeNode *pNode, /* The node containing the cell to be read */ 912 int iCell, /* Index of the cell within the node */ 913 RtreeCell *pCell /* OUT: Write the cell contents here */ 914 ){ 915 u8 *pData; 916 RtreeCoord *pCoord; 917 int ii = 0; 918 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); 919 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); 920 pCoord = pCell->aCoord; 921 do{ 922 readCoord(pData, &pCoord[ii]); 923 readCoord(pData+4, &pCoord[ii+1]); 924 pData += 8; 925 ii += 2; 926 }while( ii<pRtree->nDim2 ); 927 } 928 929 930 /* Forward declaration for the function that does the work of 931 ** the virtual table module xCreate() and xConnect() methods. 932 */ 933 static int rtreeInit( 934 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int 935 ); 936 937 /* 938 ** Rtree virtual table module xCreate method. 939 */ 940 static int rtreeCreate( 941 sqlite3 *db, 942 void *pAux, 943 int argc, const char *const*argv, 944 sqlite3_vtab **ppVtab, 945 char **pzErr 946 ){ 947 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); 948 } 949 950 /* 951 ** Rtree virtual table module xConnect method. 952 */ 953 static int rtreeConnect( 954 sqlite3 *db, 955 void *pAux, 956 int argc, const char *const*argv, 957 sqlite3_vtab **ppVtab, 958 char **pzErr 959 ){ 960 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); 961 } 962 963 /* 964 ** Increment the r-tree reference count. 965 */ 966 static void rtreeReference(Rtree *pRtree){ 967 pRtree->nBusy++; 968 } 969 970 /* 971 ** Decrement the r-tree reference count. When the reference count reaches 972 ** zero the structure is deleted. 973 */ 974 static void rtreeRelease(Rtree *pRtree){ 975 pRtree->nBusy--; 976 if( pRtree->nBusy==0 ){ 977 pRtree->inWrTrans = 0; 978 assert( pRtree->nCursor==0 ); 979 nodeBlobReset(pRtree); 980 assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); 981 sqlite3_finalize(pRtree->pWriteNode); 982 sqlite3_finalize(pRtree->pDeleteNode); 983 sqlite3_finalize(pRtree->pReadRowid); 984 sqlite3_finalize(pRtree->pWriteRowid); 985 sqlite3_finalize(pRtree->pDeleteRowid); 986 sqlite3_finalize(pRtree->pReadParent); 987 sqlite3_finalize(pRtree->pWriteParent); 988 sqlite3_finalize(pRtree->pDeleteParent); 989 sqlite3_finalize(pRtree->pWriteAux); 990 sqlite3_free(pRtree->zReadAuxSql); 991 sqlite3_free(pRtree); 992 } 993 } 994 995 /* 996 ** Rtree virtual table module xDisconnect method. 997 */ 998 static int rtreeDisconnect(sqlite3_vtab *pVtab){ 999 rtreeRelease((Rtree *)pVtab); 1000 return SQLITE_OK; 1001 } 1002 1003 /* 1004 ** Rtree virtual table module xDestroy method. 1005 */ 1006 static int rtreeDestroy(sqlite3_vtab *pVtab){ 1007 Rtree *pRtree = (Rtree *)pVtab; 1008 int rc; 1009 char *zCreate = sqlite3_mprintf( 1010 "DROP TABLE '%q'.'%q_node';" 1011 "DROP TABLE '%q'.'%q_rowid';" 1012 "DROP TABLE '%q'.'%q_parent';", 1013 pRtree->zDb, pRtree->zName, 1014 pRtree->zDb, pRtree->zName, 1015 pRtree->zDb, pRtree->zName 1016 ); 1017 if( !zCreate ){ 1018 rc = SQLITE_NOMEM; 1019 }else{ 1020 nodeBlobReset(pRtree); 1021 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); 1022 sqlite3_free(zCreate); 1023 } 1024 if( rc==SQLITE_OK ){ 1025 rtreeRelease(pRtree); 1026 } 1027 1028 return rc; 1029 } 1030 1031 /* 1032 ** Rtree virtual table module xOpen method. 1033 */ 1034 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 1035 int rc = SQLITE_NOMEM; 1036 Rtree *pRtree = (Rtree *)pVTab; 1037 RtreeCursor *pCsr; 1038 1039 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); 1040 if( pCsr ){ 1041 memset(pCsr, 0, sizeof(RtreeCursor)); 1042 pCsr->base.pVtab = pVTab; 1043 rc = SQLITE_OK; 1044 pRtree->nCursor++; 1045 } 1046 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 1047 1048 return rc; 1049 } 1050 1051 1052 /* 1053 ** Free the RtreeCursor.aConstraint[] array and its contents. 1054 */ 1055 static void freeCursorConstraints(RtreeCursor *pCsr){ 1056 if( pCsr->aConstraint ){ 1057 int i; /* Used to iterate through constraint array */ 1058 for(i=0; i<pCsr->nConstraint; i++){ 1059 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; 1060 if( pInfo ){ 1061 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); 1062 sqlite3_free(pInfo); 1063 } 1064 } 1065 sqlite3_free(pCsr->aConstraint); 1066 pCsr->aConstraint = 0; 1067 } 1068 } 1069 1070 /* 1071 ** Rtree virtual table module xClose method. 1072 */ 1073 static int rtreeClose(sqlite3_vtab_cursor *cur){ 1074 Rtree *pRtree = (Rtree *)(cur->pVtab); 1075 int ii; 1076 RtreeCursor *pCsr = (RtreeCursor *)cur; 1077 assert( pRtree->nCursor>0 ); 1078 freeCursorConstraints(pCsr); 1079 sqlite3_finalize(pCsr->pReadAux); 1080 sqlite3_free(pCsr->aPoint); 1081 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); 1082 sqlite3_free(pCsr); 1083 pRtree->nCursor--; 1084 nodeBlobReset(pRtree); 1085 return SQLITE_OK; 1086 } 1087 1088 /* 1089 ** Rtree virtual table module xEof method. 1090 ** 1091 ** Return non-zero if the cursor does not currently point to a valid 1092 ** record (i.e if the scan has finished), or zero otherwise. 1093 */ 1094 static int rtreeEof(sqlite3_vtab_cursor *cur){ 1095 RtreeCursor *pCsr = (RtreeCursor *)cur; 1096 return pCsr->atEOF; 1097 } 1098 1099 /* 1100 ** Convert raw bits from the on-disk RTree record into a coordinate value. 1101 ** The on-disk format is big-endian and needs to be converted for little- 1102 ** endian platforms. The on-disk record stores integer coordinates if 1103 ** eInt is true and it stores 32-bit floating point records if eInt is 1104 ** false. a[] is the four bytes of the on-disk record to be decoded. 1105 ** Store the results in "r". 1106 ** 1107 ** There are five versions of this macro. The last one is generic. The 1108 ** other four are various architectures-specific optimizations. 1109 */ 1110 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1111 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1112 RtreeCoord c; /* Coordinate decoded */ \ 1113 c.u = _byteswap_ulong(*(u32*)a); \ 1114 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1115 } 1116 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1117 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1118 RtreeCoord c; /* Coordinate decoded */ \ 1119 c.u = __builtin_bswap32(*(u32*)a); \ 1120 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1121 } 1122 #elif SQLITE_BYTEORDER==1234 1123 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1124 RtreeCoord c; /* Coordinate decoded */ \ 1125 memcpy(&c.u,a,4); \ 1126 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ 1127 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ 1128 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1129 } 1130 #elif SQLITE_BYTEORDER==4321 1131 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1132 RtreeCoord c; /* Coordinate decoded */ \ 1133 memcpy(&c.u,a,4); \ 1134 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1135 } 1136 #else 1137 #define RTREE_DECODE_COORD(eInt, a, r) { \ 1138 RtreeCoord c; /* Coordinate decoded */ \ 1139 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ 1140 +((u32)a[2]<<8) + a[3]; \ 1141 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ 1142 } 1143 #endif 1144 1145 /* 1146 ** Check the RTree node or entry given by pCellData and p against the MATCH 1147 ** constraint pConstraint. 1148 */ 1149 static int rtreeCallbackConstraint( 1150 RtreeConstraint *pConstraint, /* The constraint to test */ 1151 int eInt, /* True if RTree holding integer coordinates */ 1152 u8 *pCellData, /* Raw cell content */ 1153 RtreeSearchPoint *pSearch, /* Container of this cell */ 1154 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ 1155 int *peWithin /* OUT: visibility of the cell */ 1156 ){ 1157 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ 1158 int nCoord = pInfo->nCoord; /* No. of coordinates */ 1159 int rc; /* Callback return code */ 1160 RtreeCoord c; /* Translator union */ 1161 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ 1162 1163 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); 1164 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); 1165 1166 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ 1167 pInfo->iRowid = readInt64(pCellData); 1168 } 1169 pCellData += 8; 1170 #ifndef SQLITE_RTREE_INT_ONLY 1171 if( eInt==0 ){ 1172 switch( nCoord ){ 1173 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; 1174 readCoord(pCellData+32, &c); aCoord[8] = c.f; 1175 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; 1176 readCoord(pCellData+24, &c); aCoord[6] = c.f; 1177 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; 1178 readCoord(pCellData+16, &c); aCoord[4] = c.f; 1179 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; 1180 readCoord(pCellData+8, &c); aCoord[2] = c.f; 1181 default: readCoord(pCellData+4, &c); aCoord[1] = c.f; 1182 readCoord(pCellData, &c); aCoord[0] = c.f; 1183 } 1184 }else 1185 #endif 1186 { 1187 switch( nCoord ){ 1188 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; 1189 readCoord(pCellData+32, &c); aCoord[8] = c.i; 1190 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; 1191 readCoord(pCellData+24, &c); aCoord[6] = c.i; 1192 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; 1193 readCoord(pCellData+16, &c); aCoord[4] = c.i; 1194 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; 1195 readCoord(pCellData+8, &c); aCoord[2] = c.i; 1196 default: readCoord(pCellData+4, &c); aCoord[1] = c.i; 1197 readCoord(pCellData, &c); aCoord[0] = c.i; 1198 } 1199 } 1200 if( pConstraint->op==RTREE_MATCH ){ 1201 int eWithin = 0; 1202 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, 1203 nCoord, aCoord, &eWithin); 1204 if( eWithin==0 ) *peWithin = NOT_WITHIN; 1205 *prScore = RTREE_ZERO; 1206 }else{ 1207 pInfo->aCoord = aCoord; 1208 pInfo->iLevel = pSearch->iLevel - 1; 1209 pInfo->rScore = pInfo->rParentScore = pSearch->rScore; 1210 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; 1211 rc = pConstraint->u.xQueryFunc(pInfo); 1212 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; 1213 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ 1214 *prScore = pInfo->rScore; 1215 } 1216 } 1217 return rc; 1218 } 1219 1220 /* 1221 ** Check the internal RTree node given by pCellData against constraint p. 1222 ** If this constraint cannot be satisfied by any child within the node, 1223 ** set *peWithin to NOT_WITHIN. 1224 */ 1225 static void rtreeNonleafConstraint( 1226 RtreeConstraint *p, /* The constraint to test */ 1227 int eInt, /* True if RTree holds integer coordinates */ 1228 u8 *pCellData, /* Raw cell content as appears on disk */ 1229 int *peWithin /* Adjust downward, as appropriate */ 1230 ){ 1231 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ 1232 1233 /* p->iCoord might point to either a lower or upper bound coordinate 1234 ** in a coordinate pair. But make pCellData point to the lower bound. 1235 */ 1236 pCellData += 8 + 4*(p->iCoord&0xfe); 1237 1238 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1239 || p->op==RTREE_GT || p->op==RTREE_EQ ); 1240 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1241 switch( p->op ){ 1242 case RTREE_LE: 1243 case RTREE_LT: 1244 case RTREE_EQ: 1245 RTREE_DECODE_COORD(eInt, pCellData, val); 1246 /* val now holds the lower bound of the coordinate pair */ 1247 if( p->u.rValue>=val ) return; 1248 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ 1249 /* Fall through for the RTREE_EQ case */ 1250 1251 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ 1252 pCellData += 4; 1253 RTREE_DECODE_COORD(eInt, pCellData, val); 1254 /* val now holds the upper bound of the coordinate pair */ 1255 if( p->u.rValue<=val ) return; 1256 } 1257 *peWithin = NOT_WITHIN; 1258 } 1259 1260 /* 1261 ** Check the leaf RTree cell given by pCellData against constraint p. 1262 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. 1263 ** If the constraint is satisfied, leave *peWithin unchanged. 1264 ** 1265 ** The constraint is of the form: xN op $val 1266 ** 1267 ** The op is given by p->op. The xN is p->iCoord-th coordinate in 1268 ** pCellData. $val is given by p->u.rValue. 1269 */ 1270 static void rtreeLeafConstraint( 1271 RtreeConstraint *p, /* The constraint to test */ 1272 int eInt, /* True if RTree holds integer coordinates */ 1273 u8 *pCellData, /* Raw cell content as appears on disk */ 1274 int *peWithin /* Adjust downward, as appropriate */ 1275 ){ 1276 RtreeDValue xN; /* Coordinate value converted to a double */ 1277 1278 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 1279 || p->op==RTREE_GT || p->op==RTREE_EQ ); 1280 pCellData += 8 + p->iCoord*4; 1281 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ 1282 RTREE_DECODE_COORD(eInt, pCellData, xN); 1283 switch( p->op ){ 1284 case RTREE_LE: if( xN <= p->u.rValue ) return; break; 1285 case RTREE_LT: if( xN < p->u.rValue ) return; break; 1286 case RTREE_GE: if( xN >= p->u.rValue ) return; break; 1287 case RTREE_GT: if( xN > p->u.rValue ) return; break; 1288 default: if( xN == p->u.rValue ) return; break; 1289 } 1290 *peWithin = NOT_WITHIN; 1291 } 1292 1293 /* 1294 ** One of the cells in node pNode is guaranteed to have a 64-bit 1295 ** integer value equal to iRowid. Return the index of this cell. 1296 */ 1297 static int nodeRowidIndex( 1298 Rtree *pRtree, 1299 RtreeNode *pNode, 1300 i64 iRowid, 1301 int *piIndex 1302 ){ 1303 int ii; 1304 int nCell = NCELL(pNode); 1305 assert( nCell<200 ); 1306 for(ii=0; ii<nCell; ii++){ 1307 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ 1308 *piIndex = ii; 1309 return SQLITE_OK; 1310 } 1311 } 1312 RTREE_IS_CORRUPT(pRtree); 1313 return SQLITE_CORRUPT_VTAB; 1314 } 1315 1316 /* 1317 ** Return the index of the cell containing a pointer to node pNode 1318 ** in its parent. If pNode is the root node, return -1. 1319 */ 1320 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ 1321 RtreeNode *pParent = pNode->pParent; 1322 if( pParent ){ 1323 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); 1324 } 1325 *piIndex = -1; 1326 return SQLITE_OK; 1327 } 1328 1329 /* 1330 ** Compare two search points. Return negative, zero, or positive if the first 1331 ** is less than, equal to, or greater than the second. 1332 ** 1333 ** The rScore is the primary key. Smaller rScore values come first. 1334 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller 1335 ** iLevel values coming first. In this way, if rScore is the same for all 1336 ** SearchPoints, then iLevel becomes the deciding factor and the result 1337 ** is a depth-first search, which is the desired default behavior. 1338 */ 1339 static int rtreeSearchPointCompare( 1340 const RtreeSearchPoint *pA, 1341 const RtreeSearchPoint *pB 1342 ){ 1343 if( pA->rScore<pB->rScore ) return -1; 1344 if( pA->rScore>pB->rScore ) return +1; 1345 if( pA->iLevel<pB->iLevel ) return -1; 1346 if( pA->iLevel>pB->iLevel ) return +1; 1347 return 0; 1348 } 1349 1350 /* 1351 ** Interchange two search points in a cursor. 1352 */ 1353 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ 1354 RtreeSearchPoint t = p->aPoint[i]; 1355 assert( i<j ); 1356 p->aPoint[i] = p->aPoint[j]; 1357 p->aPoint[j] = t; 1358 i++; j++; 1359 if( i<RTREE_CACHE_SZ ){ 1360 if( j>=RTREE_CACHE_SZ ){ 1361 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1362 p->aNode[i] = 0; 1363 }else{ 1364 RtreeNode *pTemp = p->aNode[i]; 1365 p->aNode[i] = p->aNode[j]; 1366 p->aNode[j] = pTemp; 1367 } 1368 } 1369 } 1370 1371 /* 1372 ** Return the search point with the lowest current score. 1373 */ 1374 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ 1375 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; 1376 } 1377 1378 /* 1379 ** Get the RtreeNode for the search point with the lowest score. 1380 */ 1381 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ 1382 sqlite3_int64 id; 1383 int ii = 1 - pCur->bPoint; 1384 assert( ii==0 || ii==1 ); 1385 assert( pCur->bPoint || pCur->nPoint ); 1386 if( pCur->aNode[ii]==0 ){ 1387 assert( pRC!=0 ); 1388 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; 1389 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); 1390 } 1391 return pCur->aNode[ii]; 1392 } 1393 1394 /* 1395 ** Push a new element onto the priority queue 1396 */ 1397 static RtreeSearchPoint *rtreeEnqueue( 1398 RtreeCursor *pCur, /* The cursor */ 1399 RtreeDValue rScore, /* Score for the new search point */ 1400 u8 iLevel /* Level for the new search point */ 1401 ){ 1402 int i, j; 1403 RtreeSearchPoint *pNew; 1404 if( pCur->nPoint>=pCur->nPointAlloc ){ 1405 int nNew = pCur->nPointAlloc*2 + 8; 1406 pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); 1407 if( pNew==0 ) return 0; 1408 pCur->aPoint = pNew; 1409 pCur->nPointAlloc = nNew; 1410 } 1411 i = pCur->nPoint++; 1412 pNew = pCur->aPoint + i; 1413 pNew->rScore = rScore; 1414 pNew->iLevel = iLevel; 1415 assert( iLevel<=RTREE_MAX_DEPTH ); 1416 while( i>0 ){ 1417 RtreeSearchPoint *pParent; 1418 j = (i-1)/2; 1419 pParent = pCur->aPoint + j; 1420 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; 1421 rtreeSearchPointSwap(pCur, j, i); 1422 i = j; 1423 pNew = pParent; 1424 } 1425 return pNew; 1426 } 1427 1428 /* 1429 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return 1430 ** NULL if malloc fails. 1431 */ 1432 static RtreeSearchPoint *rtreeSearchPointNew( 1433 RtreeCursor *pCur, /* The cursor */ 1434 RtreeDValue rScore, /* Score for the new search point */ 1435 u8 iLevel /* Level for the new search point */ 1436 ){ 1437 RtreeSearchPoint *pNew, *pFirst; 1438 pFirst = rtreeSearchPointFirst(pCur); 1439 pCur->anQueue[iLevel]++; 1440 if( pFirst==0 1441 || pFirst->rScore>rScore 1442 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) 1443 ){ 1444 if( pCur->bPoint ){ 1445 int ii; 1446 pNew = rtreeEnqueue(pCur, rScore, iLevel); 1447 if( pNew==0 ) return 0; 1448 ii = (int)(pNew - pCur->aPoint) + 1; 1449 if( ii<RTREE_CACHE_SZ ){ 1450 assert( pCur->aNode[ii]==0 ); 1451 pCur->aNode[ii] = pCur->aNode[0]; 1452 }else{ 1453 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); 1454 } 1455 pCur->aNode[0] = 0; 1456 *pNew = pCur->sPoint; 1457 } 1458 pCur->sPoint.rScore = rScore; 1459 pCur->sPoint.iLevel = iLevel; 1460 pCur->bPoint = 1; 1461 return &pCur->sPoint; 1462 }else{ 1463 return rtreeEnqueue(pCur, rScore, iLevel); 1464 } 1465 } 1466 1467 #if 0 1468 /* Tracing routines for the RtreeSearchPoint queue */ 1469 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ 1470 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } 1471 printf(" %d.%05lld.%02d %g %d", 1472 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin 1473 ); 1474 idx++; 1475 if( idx<RTREE_CACHE_SZ ){ 1476 printf(" %p\n", pCur->aNode[idx]); 1477 }else{ 1478 printf("\n"); 1479 } 1480 } 1481 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ 1482 int ii; 1483 printf("=== %9s ", zPrefix); 1484 if( pCur->bPoint ){ 1485 tracePoint(&pCur->sPoint, -1, pCur); 1486 } 1487 for(ii=0; ii<pCur->nPoint; ii++){ 1488 if( ii>0 || pCur->bPoint ) printf(" "); 1489 tracePoint(&pCur->aPoint[ii], ii, pCur); 1490 } 1491 } 1492 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) 1493 #else 1494 # define RTREE_QUEUE_TRACE(A,B) /* no-op */ 1495 #endif 1496 1497 /* Remove the search point with the lowest current score. 1498 */ 1499 static void rtreeSearchPointPop(RtreeCursor *p){ 1500 int i, j, k, n; 1501 i = 1 - p->bPoint; 1502 assert( i==0 || i==1 ); 1503 if( p->aNode[i] ){ 1504 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); 1505 p->aNode[i] = 0; 1506 } 1507 if( p->bPoint ){ 1508 p->anQueue[p->sPoint.iLevel]--; 1509 p->bPoint = 0; 1510 }else if( p->nPoint ){ 1511 p->anQueue[p->aPoint[0].iLevel]--; 1512 n = --p->nPoint; 1513 p->aPoint[0] = p->aPoint[n]; 1514 if( n<RTREE_CACHE_SZ-1 ){ 1515 p->aNode[1] = p->aNode[n+1]; 1516 p->aNode[n+1] = 0; 1517 } 1518 i = 0; 1519 while( (j = i*2+1)<n ){ 1520 k = j+1; 1521 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ 1522 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ 1523 rtreeSearchPointSwap(p, i, k); 1524 i = k; 1525 }else{ 1526 break; 1527 } 1528 }else{ 1529 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ 1530 rtreeSearchPointSwap(p, i, j); 1531 i = j; 1532 }else{ 1533 break; 1534 } 1535 } 1536 } 1537 } 1538 } 1539 1540 1541 /* 1542 ** Continue the search on cursor pCur until the front of the queue 1543 ** contains an entry suitable for returning as a result-set row, 1544 ** or until the RtreeSearchPoint queue is empty, indicating that the 1545 ** query has completed. 1546 */ 1547 static int rtreeStepToLeaf(RtreeCursor *pCur){ 1548 RtreeSearchPoint *p; 1549 Rtree *pRtree = RTREE_OF_CURSOR(pCur); 1550 RtreeNode *pNode; 1551 int eWithin; 1552 int rc = SQLITE_OK; 1553 int nCell; 1554 int nConstraint = pCur->nConstraint; 1555 int ii; 1556 int eInt; 1557 RtreeSearchPoint x; 1558 1559 eInt = pRtree->eCoordType==RTREE_COORD_INT32; 1560 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ 1561 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); 1562 if( rc ) return rc; 1563 nCell = NCELL(pNode); 1564 assert( nCell<200 ); 1565 while( p->iCell<nCell ){ 1566 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; 1567 u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); 1568 eWithin = FULLY_WITHIN; 1569 for(ii=0; ii<nConstraint; ii++){ 1570 RtreeConstraint *pConstraint = pCur->aConstraint + ii; 1571 if( pConstraint->op>=RTREE_MATCH ){ 1572 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, 1573 &rScore, &eWithin); 1574 if( rc ) return rc; 1575 }else if( p->iLevel==1 ){ 1576 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); 1577 }else{ 1578 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); 1579 } 1580 if( eWithin==NOT_WITHIN ) break; 1581 } 1582 p->iCell++; 1583 if( eWithin==NOT_WITHIN ) continue; 1584 x.iLevel = p->iLevel - 1; 1585 if( x.iLevel ){ 1586 x.id = readInt64(pCellData); 1587 x.iCell = 0; 1588 }else{ 1589 x.id = p->id; 1590 x.iCell = p->iCell - 1; 1591 } 1592 if( p->iCell>=nCell ){ 1593 RTREE_QUEUE_TRACE(pCur, "POP-S:"); 1594 rtreeSearchPointPop(pCur); 1595 } 1596 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; 1597 p = rtreeSearchPointNew(pCur, rScore, x.iLevel); 1598 if( p==0 ) return SQLITE_NOMEM; 1599 p->eWithin = (u8)eWithin; 1600 p->id = x.id; 1601 p->iCell = x.iCell; 1602 RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); 1603 break; 1604 } 1605 if( p->iCell>=nCell ){ 1606 RTREE_QUEUE_TRACE(pCur, "POP-Se:"); 1607 rtreeSearchPointPop(pCur); 1608 } 1609 } 1610 pCur->atEOF = p==0; 1611 return SQLITE_OK; 1612 } 1613 1614 /* 1615 ** Rtree virtual table module xNext method. 1616 */ 1617 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ 1618 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1619 int rc = SQLITE_OK; 1620 1621 /* Move to the next entry that matches the configured constraints. */ 1622 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); 1623 if( pCsr->bAuxValid ){ 1624 pCsr->bAuxValid = 0; 1625 sqlite3_reset(pCsr->pReadAux); 1626 } 1627 rtreeSearchPointPop(pCsr); 1628 rc = rtreeStepToLeaf(pCsr); 1629 return rc; 1630 } 1631 1632 /* 1633 ** Rtree virtual table module xRowid method. 1634 */ 1635 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ 1636 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1637 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1638 int rc = SQLITE_OK; 1639 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1640 if( rc==SQLITE_OK && p ){ 1641 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); 1642 } 1643 return rc; 1644 } 1645 1646 /* 1647 ** Rtree virtual table module xColumn method. 1648 */ 1649 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1650 Rtree *pRtree = (Rtree *)cur->pVtab; 1651 RtreeCursor *pCsr = (RtreeCursor *)cur; 1652 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); 1653 RtreeCoord c; 1654 int rc = SQLITE_OK; 1655 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); 1656 1657 if( rc ) return rc; 1658 if( p==0 ) return SQLITE_OK; 1659 if( i==0 ){ 1660 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); 1661 }else if( i<=pRtree->nDim2 ){ 1662 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); 1663 #ifndef SQLITE_RTREE_INT_ONLY 1664 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1665 sqlite3_result_double(ctx, c.f); 1666 }else 1667 #endif 1668 { 1669 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); 1670 sqlite3_result_int(ctx, c.i); 1671 } 1672 }else{ 1673 if( !pCsr->bAuxValid ){ 1674 if( pCsr->pReadAux==0 ){ 1675 rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, 1676 &pCsr->pReadAux, 0); 1677 if( rc ) return rc; 1678 } 1679 sqlite3_bind_int64(pCsr->pReadAux, 1, 1680 nodeGetRowid(pRtree, pNode, p->iCell)); 1681 rc = sqlite3_step(pCsr->pReadAux); 1682 if( rc==SQLITE_ROW ){ 1683 pCsr->bAuxValid = 1; 1684 }else{ 1685 sqlite3_reset(pCsr->pReadAux); 1686 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 1687 return rc; 1688 } 1689 } 1690 sqlite3_result_value(ctx, 1691 sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); 1692 } 1693 return SQLITE_OK; 1694 } 1695 1696 /* 1697 ** Use nodeAcquire() to obtain the leaf node containing the record with 1698 ** rowid iRowid. If successful, set *ppLeaf to point to the node and 1699 ** return SQLITE_OK. If there is no such record in the table, set 1700 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf 1701 ** to zero and return an SQLite error code. 1702 */ 1703 static int findLeafNode( 1704 Rtree *pRtree, /* RTree to search */ 1705 i64 iRowid, /* The rowid searching for */ 1706 RtreeNode **ppLeaf, /* Write the node here */ 1707 sqlite3_int64 *piNode /* Write the node-id here */ 1708 ){ 1709 int rc; 1710 *ppLeaf = 0; 1711 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); 1712 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ 1713 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); 1714 if( piNode ) *piNode = iNode; 1715 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); 1716 sqlite3_reset(pRtree->pReadRowid); 1717 }else{ 1718 rc = sqlite3_reset(pRtree->pReadRowid); 1719 } 1720 return rc; 1721 } 1722 1723 /* 1724 ** This function is called to configure the RtreeConstraint object passed 1725 ** as the second argument for a MATCH constraint. The value passed as the 1726 ** first argument to this function is the right-hand operand to the MATCH 1727 ** operator. 1728 */ 1729 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ 1730 RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ 1731 sqlite3_rtree_query_info *pInfo; /* Callback information */ 1732 1733 pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); 1734 if( pSrc==0 ) return SQLITE_ERROR; 1735 pInfo = (sqlite3_rtree_query_info*) 1736 sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); 1737 if( !pInfo ) return SQLITE_NOMEM; 1738 memset(pInfo, 0, sizeof(*pInfo)); 1739 pBlob = (RtreeMatchArg*)&pInfo[1]; 1740 memcpy(pBlob, pSrc, pSrc->iSize); 1741 pInfo->pContext = pBlob->cb.pContext; 1742 pInfo->nParam = pBlob->nParam; 1743 pInfo->aParam = pBlob->aParam; 1744 pInfo->apSqlParam = pBlob->apSqlParam; 1745 1746 if( pBlob->cb.xGeom ){ 1747 pCons->u.xGeom = pBlob->cb.xGeom; 1748 }else{ 1749 pCons->op = RTREE_QUERY; 1750 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; 1751 } 1752 pCons->pInfo = pInfo; 1753 return SQLITE_OK; 1754 } 1755 1756 /* 1757 ** Rtree virtual table module xFilter method. 1758 */ 1759 static int rtreeFilter( 1760 sqlite3_vtab_cursor *pVtabCursor, 1761 int idxNum, const char *idxStr, 1762 int argc, sqlite3_value **argv 1763 ){ 1764 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; 1765 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1766 RtreeNode *pRoot = 0; 1767 int ii; 1768 int rc = SQLITE_OK; 1769 int iCell = 0; 1770 sqlite3_stmt *pStmt; 1771 1772 rtreeReference(pRtree); 1773 1774 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ 1775 freeCursorConstraints(pCsr); 1776 sqlite3_free(pCsr->aPoint); 1777 pStmt = pCsr->pReadAux; 1778 memset(pCsr, 0, sizeof(RtreeCursor)); 1779 pCsr->base.pVtab = (sqlite3_vtab*)pRtree; 1780 pCsr->pReadAux = pStmt; 1781 1782 pCsr->iStrategy = idxNum; 1783 if( idxNum==1 ){ 1784 /* Special case - lookup by rowid. */ 1785 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ 1786 RtreeSearchPoint *p; /* Search point for the leaf */ 1787 i64 iRowid = sqlite3_value_int64(argv[0]); 1788 i64 iNode = 0; 1789 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); 1790 if( rc==SQLITE_OK && pLeaf!=0 ){ 1791 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); 1792 assert( p!=0 ); /* Always returns pCsr->sPoint */ 1793 pCsr->aNode[0] = pLeaf; 1794 p->id = iNode; 1795 p->eWithin = PARTLY_WITHIN; 1796 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); 1797 p->iCell = (u8)iCell; 1798 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); 1799 }else{ 1800 pCsr->atEOF = 1; 1801 } 1802 }else{ 1803 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 1804 ** with the configured constraints. 1805 */ 1806 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 1807 if( rc==SQLITE_OK && argc>0 ){ 1808 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); 1809 pCsr->nConstraint = argc; 1810 if( !pCsr->aConstraint ){ 1811 rc = SQLITE_NOMEM; 1812 }else{ 1813 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); 1814 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); 1815 assert( (idxStr==0 && argc==0) 1816 || (idxStr && (int)strlen(idxStr)==argc*2) ); 1817 for(ii=0; ii<argc; ii++){ 1818 RtreeConstraint *p = &pCsr->aConstraint[ii]; 1819 p->op = idxStr[ii*2]; 1820 p->iCoord = idxStr[ii*2+1]-'0'; 1821 if( p->op>=RTREE_MATCH ){ 1822 /* A MATCH operator. The right-hand-side must be a blob that 1823 ** can be cast into an RtreeMatchArg object. One created using 1824 ** an sqlite3_rtree_geometry_callback() SQL user function. 1825 */ 1826 rc = deserializeGeometry(argv[ii], p); 1827 if( rc!=SQLITE_OK ){ 1828 break; 1829 } 1830 p->pInfo->nCoord = pRtree->nDim2; 1831 p->pInfo->anQueue = pCsr->anQueue; 1832 p->pInfo->mxLevel = pRtree->iDepth + 1; 1833 }else{ 1834 #ifdef SQLITE_RTREE_INT_ONLY 1835 p->u.rValue = sqlite3_value_int64(argv[ii]); 1836 #else 1837 p->u.rValue = sqlite3_value_double(argv[ii]); 1838 #endif 1839 } 1840 } 1841 } 1842 } 1843 if( rc==SQLITE_OK ){ 1844 RtreeSearchPoint *pNew; 1845 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); 1846 if( pNew==0 ) return SQLITE_NOMEM; 1847 pNew->id = 1; 1848 pNew->iCell = 0; 1849 pNew->eWithin = PARTLY_WITHIN; 1850 assert( pCsr->bPoint==1 ); 1851 pCsr->aNode[0] = pRoot; 1852 pRoot = 0; 1853 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); 1854 rc = rtreeStepToLeaf(pCsr); 1855 } 1856 } 1857 1858 nodeRelease(pRtree, pRoot); 1859 rtreeRelease(pRtree); 1860 return rc; 1861 } 1862 1863 /* 1864 ** Rtree virtual table module xBestIndex method. There are three 1865 ** table scan strategies to choose from (in order from most to 1866 ** least desirable): 1867 ** 1868 ** idxNum idxStr Strategy 1869 ** ------------------------------------------------ 1870 ** 1 Unused Direct lookup by rowid. 1871 ** 2 See below R-tree query or full-table scan. 1872 ** ------------------------------------------------ 1873 ** 1874 ** If strategy 1 is used, then idxStr is not meaningful. If strategy 1875 ** 2 is used, idxStr is formatted to contain 2 bytes for each 1876 ** constraint used. The first two bytes of idxStr correspond to 1877 ** the constraint in sqlite3_index_info.aConstraintUsage[] with 1878 ** (argvIndex==1) etc. 1879 ** 1880 ** The first of each pair of bytes in idxStr identifies the constraint 1881 ** operator as follows: 1882 ** 1883 ** Operator Byte Value 1884 ** ---------------------- 1885 ** = 0x41 ('A') 1886 ** <= 0x42 ('B') 1887 ** < 0x43 ('C') 1888 ** >= 0x44 ('D') 1889 ** > 0x45 ('E') 1890 ** MATCH 0x46 ('F') 1891 ** ---------------------- 1892 ** 1893 ** The second of each pair of bytes identifies the coordinate column 1894 ** to which the constraint applies. The leftmost coordinate column 1895 ** is 'a', the second from the left 'b' etc. 1896 */ 1897 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1898 Rtree *pRtree = (Rtree*)tab; 1899 int rc = SQLITE_OK; 1900 int ii; 1901 int bMatch = 0; /* True if there exists a MATCH constraint */ 1902 i64 nRow; /* Estimated rows returned by this scan */ 1903 1904 int iIdx = 0; 1905 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; 1906 memset(zIdxStr, 0, sizeof(zIdxStr)); 1907 1908 /* Check if there exists a MATCH constraint - even an unusable one. If there 1909 ** is, do not consider the lookup-by-rowid plan as using such a plan would 1910 ** require the VDBE to evaluate the MATCH constraint, which is not currently 1911 ** possible. */ 1912 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 1913 if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 1914 bMatch = 1; 1915 } 1916 } 1917 1918 assert( pIdxInfo->idxStr==0 ); 1919 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ 1920 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; 1921 1922 if( bMatch==0 && p->usable 1923 && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 1924 ){ 1925 /* We have an equality constraint on the rowid. Use strategy 1. */ 1926 int jj; 1927 for(jj=0; jj<ii; jj++){ 1928 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; 1929 pIdxInfo->aConstraintUsage[jj].omit = 0; 1930 } 1931 pIdxInfo->idxNum = 1; 1932 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; 1933 pIdxInfo->aConstraintUsage[jj].omit = 1; 1934 1935 /* This strategy involves a two rowid lookups on an B-Tree structures 1936 ** and then a linear search of an R-Tree node. This should be 1937 ** considered almost as quick as a direct rowid lookup (for which 1938 ** sqlite uses an internal cost of 0.0). It is expected to return 1939 ** a single row. 1940 */ 1941 pIdxInfo->estimatedCost = 30.0; 1942 pIdxInfo->estimatedRows = 1; 1943 pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; 1944 return SQLITE_OK; 1945 } 1946 1947 if( p->usable 1948 && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) 1949 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) 1950 ){ 1951 u8 op; 1952 switch( p->op ){ 1953 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; 1954 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; 1955 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; 1956 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; 1957 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; 1958 case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; 1959 default: op = 0; break; 1960 } 1961 if( op ){ 1962 zIdxStr[iIdx++] = op; 1963 zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); 1964 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); 1965 pIdxInfo->aConstraintUsage[ii].omit = 1; 1966 } 1967 } 1968 } 1969 1970 pIdxInfo->idxNum = 2; 1971 pIdxInfo->needToFreeIdxStr = 1; 1972 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ 1973 return SQLITE_NOMEM; 1974 } 1975 1976 nRow = pRtree->nRowEst >> (iIdx/2); 1977 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; 1978 pIdxInfo->estimatedRows = nRow; 1979 1980 return rc; 1981 } 1982 1983 /* 1984 ** Return the N-dimensional volumn of the cell stored in *p. 1985 */ 1986 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ 1987 RtreeDValue area = (RtreeDValue)1; 1988 assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); 1989 #ifndef SQLITE_RTREE_INT_ONLY 1990 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1991 switch( pRtree->nDim ){ 1992 case 5: area = p->aCoord[9].f - p->aCoord[8].f; 1993 case 4: area *= p->aCoord[7].f - p->aCoord[6].f; 1994 case 3: area *= p->aCoord[5].f - p->aCoord[4].f; 1995 case 2: area *= p->aCoord[3].f - p->aCoord[2].f; 1996 default: area *= p->aCoord[1].f - p->aCoord[0].f; 1997 } 1998 }else 1999 #endif 2000 { 2001 switch( pRtree->nDim ){ 2002 case 5: area = p->aCoord[9].i - p->aCoord[8].i; 2003 case 4: area *= p->aCoord[7].i - p->aCoord[6].i; 2004 case 3: area *= p->aCoord[5].i - p->aCoord[4].i; 2005 case 2: area *= p->aCoord[3].i - p->aCoord[2].i; 2006 default: area *= p->aCoord[1].i - p->aCoord[0].i; 2007 } 2008 } 2009 return area; 2010 } 2011 2012 /* 2013 ** Return the margin length of cell p. The margin length is the sum 2014 ** of the objects size in each dimension. 2015 */ 2016 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ 2017 RtreeDValue margin = 0; 2018 int ii = pRtree->nDim2 - 2; 2019 do{ 2020 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); 2021 ii -= 2; 2022 }while( ii>=0 ); 2023 return margin; 2024 } 2025 2026 /* 2027 ** Store the union of cells p1 and p2 in p1. 2028 */ 2029 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2030 int ii = 0; 2031 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2032 do{ 2033 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); 2034 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); 2035 ii += 2; 2036 }while( ii<pRtree->nDim2 ); 2037 }else{ 2038 do{ 2039 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); 2040 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); 2041 ii += 2; 2042 }while( ii<pRtree->nDim2 ); 2043 } 2044 } 2045 2046 /* 2047 ** Return true if the area covered by p2 is a subset of the area covered 2048 ** by p1. False otherwise. 2049 */ 2050 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 2051 int ii; 2052 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); 2053 for(ii=0; ii<pRtree->nDim2; ii+=2){ 2054 RtreeCoord *a1 = &p1->aCoord[ii]; 2055 RtreeCoord *a2 = &p2->aCoord[ii]; 2056 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 2057 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 2058 ){ 2059 return 0; 2060 } 2061 } 2062 return 1; 2063 } 2064 2065 /* 2066 ** Return the amount cell p would grow by if it were unioned with pCell. 2067 */ 2068 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ 2069 RtreeDValue area; 2070 RtreeCell cell; 2071 memcpy(&cell, p, sizeof(RtreeCell)); 2072 area = cellArea(pRtree, &cell); 2073 cellUnion(pRtree, &cell, pCell); 2074 return (cellArea(pRtree, &cell)-area); 2075 } 2076 2077 static RtreeDValue cellOverlap( 2078 Rtree *pRtree, 2079 RtreeCell *p, 2080 RtreeCell *aCell, 2081 int nCell 2082 ){ 2083 int ii; 2084 RtreeDValue overlap = RTREE_ZERO; 2085 for(ii=0; ii<nCell; ii++){ 2086 int jj; 2087 RtreeDValue o = (RtreeDValue)1; 2088 for(jj=0; jj<pRtree->nDim2; jj+=2){ 2089 RtreeDValue x1, x2; 2090 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); 2091 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); 2092 if( x2<x1 ){ 2093 o = (RtreeDValue)0; 2094 break; 2095 }else{ 2096 o = o * (x2-x1); 2097 } 2098 } 2099 overlap += o; 2100 } 2101 return overlap; 2102 } 2103 2104 2105 /* 2106 ** This function implements the ChooseLeaf algorithm from Gutman[84]. 2107 ** ChooseSubTree in r*tree terminology. 2108 */ 2109 static int ChooseLeaf( 2110 Rtree *pRtree, /* Rtree table */ 2111 RtreeCell *pCell, /* Cell to insert into rtree */ 2112 int iHeight, /* Height of sub-tree rooted at pCell */ 2113 RtreeNode **ppLeaf /* OUT: Selected leaf page */ 2114 ){ 2115 int rc; 2116 int ii; 2117 RtreeNode *pNode = 0; 2118 rc = nodeAcquire(pRtree, 1, 0, &pNode); 2119 2120 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ 2121 int iCell; 2122 sqlite3_int64 iBest = 0; 2123 2124 RtreeDValue fMinGrowth = RTREE_ZERO; 2125 RtreeDValue fMinArea = RTREE_ZERO; 2126 2127 int nCell = NCELL(pNode); 2128 RtreeCell cell; 2129 RtreeNode *pChild; 2130 2131 RtreeCell *aCell = 0; 2132 2133 /* Select the child node which will be enlarged the least if pCell 2134 ** is inserted into it. Resolve ties by choosing the entry with 2135 ** the smallest area. 2136 */ 2137 for(iCell=0; iCell<nCell; iCell++){ 2138 int bBest = 0; 2139 RtreeDValue growth; 2140 RtreeDValue area; 2141 nodeGetCell(pRtree, pNode, iCell, &cell); 2142 growth = cellGrowth(pRtree, &cell, pCell); 2143 area = cellArea(pRtree, &cell); 2144 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ 2145 bBest = 1; 2146 } 2147 if( bBest ){ 2148 fMinGrowth = growth; 2149 fMinArea = area; 2150 iBest = cell.iRowid; 2151 } 2152 } 2153 2154 sqlite3_free(aCell); 2155 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); 2156 nodeRelease(pRtree, pNode); 2157 pNode = pChild; 2158 } 2159 2160 *ppLeaf = pNode; 2161 return rc; 2162 } 2163 2164 /* 2165 ** A cell with the same content as pCell has just been inserted into 2166 ** the node pNode. This function updates the bounding box cells in 2167 ** all ancestor elements. 2168 */ 2169 static int AdjustTree( 2170 Rtree *pRtree, /* Rtree table */ 2171 RtreeNode *pNode, /* Adjust ancestry of this node. */ 2172 RtreeCell *pCell /* This cell was just inserted */ 2173 ){ 2174 RtreeNode *p = pNode; 2175 int cnt = 0; 2176 while( p->pParent ){ 2177 RtreeNode *pParent = p->pParent; 2178 RtreeCell cell; 2179 int iCell; 2180 2181 if( (++cnt)>1000 || nodeParentIndex(pRtree, p, &iCell) ){ 2182 RTREE_IS_CORRUPT(pRtree); 2183 return SQLITE_CORRUPT_VTAB; 2184 } 2185 2186 nodeGetCell(pRtree, pParent, iCell, &cell); 2187 if( !cellContains(pRtree, &cell, pCell) ){ 2188 cellUnion(pRtree, &cell, pCell); 2189 nodeOverwriteCell(pRtree, pParent, &cell, iCell); 2190 } 2191 2192 p = pParent; 2193 } 2194 return SQLITE_OK; 2195 } 2196 2197 /* 2198 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. 2199 */ 2200 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ 2201 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); 2202 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); 2203 sqlite3_step(pRtree->pWriteRowid); 2204 return sqlite3_reset(pRtree->pWriteRowid); 2205 } 2206 2207 /* 2208 ** Write mapping (iNode->iPar) to the <rtree>_parent table. 2209 */ 2210 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ 2211 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); 2212 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); 2213 sqlite3_step(pRtree->pWriteParent); 2214 return sqlite3_reset(pRtree->pWriteParent); 2215 } 2216 2217 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); 2218 2219 2220 /* 2221 ** Arguments aIdx, aDistance and aSpare all point to arrays of size 2222 ** nIdx. The aIdx array contains the set of integers from 0 to 2223 ** (nIdx-1) in no particular order. This function sorts the values 2224 ** in aIdx according to the indexed values in aDistance. For 2225 ** example, assuming the inputs: 2226 ** 2227 ** aIdx = { 0, 1, 2, 3 } 2228 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } 2229 ** 2230 ** this function sets the aIdx array to contain: 2231 ** 2232 ** aIdx = { 0, 1, 2, 3 } 2233 ** 2234 ** The aSpare array is used as temporary working space by the 2235 ** sorting algorithm. 2236 */ 2237 static void SortByDistance( 2238 int *aIdx, 2239 int nIdx, 2240 RtreeDValue *aDistance, 2241 int *aSpare 2242 ){ 2243 if( nIdx>1 ){ 2244 int iLeft = 0; 2245 int iRight = 0; 2246 2247 int nLeft = nIdx/2; 2248 int nRight = nIdx-nLeft; 2249 int *aLeft = aIdx; 2250 int *aRight = &aIdx[nLeft]; 2251 2252 SortByDistance(aLeft, nLeft, aDistance, aSpare); 2253 SortByDistance(aRight, nRight, aDistance, aSpare); 2254 2255 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2256 aLeft = aSpare; 2257 2258 while( iLeft<nLeft || iRight<nRight ){ 2259 if( iLeft==nLeft ){ 2260 aIdx[iLeft+iRight] = aRight[iRight]; 2261 iRight++; 2262 }else if( iRight==nRight ){ 2263 aIdx[iLeft+iRight] = aLeft[iLeft]; 2264 iLeft++; 2265 }else{ 2266 RtreeDValue fLeft = aDistance[aLeft[iLeft]]; 2267 RtreeDValue fRight = aDistance[aRight[iRight]]; 2268 if( fLeft<fRight ){ 2269 aIdx[iLeft+iRight] = aLeft[iLeft]; 2270 iLeft++; 2271 }else{ 2272 aIdx[iLeft+iRight] = aRight[iRight]; 2273 iRight++; 2274 } 2275 } 2276 } 2277 2278 #if 0 2279 /* Check that the sort worked */ 2280 { 2281 int jj; 2282 for(jj=1; jj<nIdx; jj++){ 2283 RtreeDValue left = aDistance[aIdx[jj-1]]; 2284 RtreeDValue right = aDistance[aIdx[jj]]; 2285 assert( left<=right ); 2286 } 2287 } 2288 #endif 2289 } 2290 } 2291 2292 /* 2293 ** Arguments aIdx, aCell and aSpare all point to arrays of size 2294 ** nIdx. The aIdx array contains the set of integers from 0 to 2295 ** (nIdx-1) in no particular order. This function sorts the values 2296 ** in aIdx according to dimension iDim of the cells in aCell. The 2297 ** minimum value of dimension iDim is considered first, the 2298 ** maximum used to break ties. 2299 ** 2300 ** The aSpare array is used as temporary working space by the 2301 ** sorting algorithm. 2302 */ 2303 static void SortByDimension( 2304 Rtree *pRtree, 2305 int *aIdx, 2306 int nIdx, 2307 int iDim, 2308 RtreeCell *aCell, 2309 int *aSpare 2310 ){ 2311 if( nIdx>1 ){ 2312 2313 int iLeft = 0; 2314 int iRight = 0; 2315 2316 int nLeft = nIdx/2; 2317 int nRight = nIdx-nLeft; 2318 int *aLeft = aIdx; 2319 int *aRight = &aIdx[nLeft]; 2320 2321 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); 2322 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); 2323 2324 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 2325 aLeft = aSpare; 2326 while( iLeft<nLeft || iRight<nRight ){ 2327 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); 2328 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); 2329 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); 2330 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); 2331 if( (iLeft!=nLeft) && ((iRight==nRight) 2332 || (xleft1<xright1) 2333 || (xleft1==xright1 && xleft2<xright2) 2334 )){ 2335 aIdx[iLeft+iRight] = aLeft[iLeft]; 2336 iLeft++; 2337 }else{ 2338 aIdx[iLeft+iRight] = aRight[iRight]; 2339 iRight++; 2340 } 2341 } 2342 2343 #if 0 2344 /* Check that the sort worked */ 2345 { 2346 int jj; 2347 for(jj=1; jj<nIdx; jj++){ 2348 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; 2349 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; 2350 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; 2351 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; 2352 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); 2353 } 2354 } 2355 #endif 2356 } 2357 } 2358 2359 /* 2360 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. 2361 */ 2362 static int splitNodeStartree( 2363 Rtree *pRtree, 2364 RtreeCell *aCell, 2365 int nCell, 2366 RtreeNode *pLeft, 2367 RtreeNode *pRight, 2368 RtreeCell *pBboxLeft, 2369 RtreeCell *pBboxRight 2370 ){ 2371 int **aaSorted; 2372 int *aSpare; 2373 int ii; 2374 2375 int iBestDim = 0; 2376 int iBestSplit = 0; 2377 RtreeDValue fBestMargin = RTREE_ZERO; 2378 2379 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); 2380 2381 aaSorted = (int **)sqlite3_malloc(nByte); 2382 if( !aaSorted ){ 2383 return SQLITE_NOMEM; 2384 } 2385 2386 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; 2387 memset(aaSorted, 0, nByte); 2388 for(ii=0; ii<pRtree->nDim; ii++){ 2389 int jj; 2390 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; 2391 for(jj=0; jj<nCell; jj++){ 2392 aaSorted[ii][jj] = jj; 2393 } 2394 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); 2395 } 2396 2397 for(ii=0; ii<pRtree->nDim; ii++){ 2398 RtreeDValue margin = RTREE_ZERO; 2399 RtreeDValue fBestOverlap = RTREE_ZERO; 2400 RtreeDValue fBestArea = RTREE_ZERO; 2401 int iBestLeft = 0; 2402 int nLeft; 2403 2404 for( 2405 nLeft=RTREE_MINCELLS(pRtree); 2406 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 2407 nLeft++ 2408 ){ 2409 RtreeCell left; 2410 RtreeCell right; 2411 int kk; 2412 RtreeDValue overlap; 2413 RtreeDValue area; 2414 2415 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); 2416 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); 2417 for(kk=1; kk<(nCell-1); kk++){ 2418 if( kk<nLeft ){ 2419 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); 2420 }else{ 2421 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); 2422 } 2423 } 2424 margin += cellMargin(pRtree, &left); 2425 margin += cellMargin(pRtree, &right); 2426 overlap = cellOverlap(pRtree, &left, &right, 1); 2427 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); 2428 if( (nLeft==RTREE_MINCELLS(pRtree)) 2429 || (overlap<fBestOverlap) 2430 || (overlap==fBestOverlap && area<fBestArea) 2431 ){ 2432 iBestLeft = nLeft; 2433 fBestOverlap = overlap; 2434 fBestArea = area; 2435 } 2436 } 2437 2438 if( ii==0 || margin<fBestMargin ){ 2439 iBestDim = ii; 2440 fBestMargin = margin; 2441 iBestSplit = iBestLeft; 2442 } 2443 } 2444 2445 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); 2446 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); 2447 for(ii=0; ii<nCell; ii++){ 2448 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; 2449 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; 2450 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; 2451 nodeInsertCell(pRtree, pTarget, pCell); 2452 cellUnion(pRtree, pBbox, pCell); 2453 } 2454 2455 sqlite3_free(aaSorted); 2456 return SQLITE_OK; 2457 } 2458 2459 2460 static int updateMapping( 2461 Rtree *pRtree, 2462 i64 iRowid, 2463 RtreeNode *pNode, 2464 int iHeight 2465 ){ 2466 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); 2467 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); 2468 if( iHeight>0 ){ 2469 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); 2470 if( pChild ){ 2471 nodeRelease(pRtree, pChild->pParent); 2472 nodeReference(pNode); 2473 pChild->pParent = pNode; 2474 } 2475 } 2476 return xSetMapping(pRtree, iRowid, pNode->iNode); 2477 } 2478 2479 static int SplitNode( 2480 Rtree *pRtree, 2481 RtreeNode *pNode, 2482 RtreeCell *pCell, 2483 int iHeight 2484 ){ 2485 int i; 2486 int newCellIsRight = 0; 2487 2488 int rc = SQLITE_OK; 2489 int nCell = NCELL(pNode); 2490 RtreeCell *aCell; 2491 int *aiUsed; 2492 2493 RtreeNode *pLeft = 0; 2494 RtreeNode *pRight = 0; 2495 2496 RtreeCell leftbbox; 2497 RtreeCell rightbbox; 2498 2499 /* Allocate an array and populate it with a copy of pCell and 2500 ** all cells from node pLeft. Then zero the original node. 2501 */ 2502 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); 2503 if( !aCell ){ 2504 rc = SQLITE_NOMEM; 2505 goto splitnode_out; 2506 } 2507 aiUsed = (int *)&aCell[nCell+1]; 2508 memset(aiUsed, 0, sizeof(int)*(nCell+1)); 2509 for(i=0; i<nCell; i++){ 2510 nodeGetCell(pRtree, pNode, i, &aCell[i]); 2511 } 2512 nodeZero(pRtree, pNode); 2513 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); 2514 nCell++; 2515 2516 if( pNode->iNode==1 ){ 2517 pRight = nodeNew(pRtree, pNode); 2518 pLeft = nodeNew(pRtree, pNode); 2519 pRtree->iDepth++; 2520 pNode->isDirty = 1; 2521 writeInt16(pNode->zData, pRtree->iDepth); 2522 }else{ 2523 pLeft = pNode; 2524 pRight = nodeNew(pRtree, pLeft->pParent); 2525 pLeft->nRef++; 2526 } 2527 2528 if( !pLeft || !pRight ){ 2529 rc = SQLITE_NOMEM; 2530 goto splitnode_out; 2531 } 2532 2533 memset(pLeft->zData, 0, pRtree->iNodeSize); 2534 memset(pRight->zData, 0, pRtree->iNodeSize); 2535 2536 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, 2537 &leftbbox, &rightbbox); 2538 if( rc!=SQLITE_OK ){ 2539 goto splitnode_out; 2540 } 2541 2542 /* Ensure both child nodes have node numbers assigned to them by calling 2543 ** nodeWrite(). Node pRight always needs a node number, as it was created 2544 ** by nodeNew() above. But node pLeft sometimes already has a node number. 2545 ** In this case avoid the all to nodeWrite(). 2546 */ 2547 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) 2548 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) 2549 ){ 2550 goto splitnode_out; 2551 } 2552 2553 rightbbox.iRowid = pRight->iNode; 2554 leftbbox.iRowid = pLeft->iNode; 2555 2556 if( pNode->iNode==1 ){ 2557 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); 2558 if( rc!=SQLITE_OK ){ 2559 goto splitnode_out; 2560 } 2561 }else{ 2562 RtreeNode *pParent = pLeft->pParent; 2563 int iCell; 2564 rc = nodeParentIndex(pRtree, pLeft, &iCell); 2565 if( rc==SQLITE_OK ){ 2566 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); 2567 rc = AdjustTree(pRtree, pParent, &leftbbox); 2568 } 2569 if( rc!=SQLITE_OK ){ 2570 goto splitnode_out; 2571 } 2572 } 2573 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ 2574 goto splitnode_out; 2575 } 2576 2577 for(i=0; i<NCELL(pRight); i++){ 2578 i64 iRowid = nodeGetRowid(pRtree, pRight, i); 2579 rc = updateMapping(pRtree, iRowid, pRight, iHeight); 2580 if( iRowid==pCell->iRowid ){ 2581 newCellIsRight = 1; 2582 } 2583 if( rc!=SQLITE_OK ){ 2584 goto splitnode_out; 2585 } 2586 } 2587 if( pNode->iNode==1 ){ 2588 for(i=0; i<NCELL(pLeft); i++){ 2589 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); 2590 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); 2591 if( rc!=SQLITE_OK ){ 2592 goto splitnode_out; 2593 } 2594 } 2595 }else if( newCellIsRight==0 ){ 2596 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); 2597 } 2598 2599 if( rc==SQLITE_OK ){ 2600 rc = nodeRelease(pRtree, pRight); 2601 pRight = 0; 2602 } 2603 if( rc==SQLITE_OK ){ 2604 rc = nodeRelease(pRtree, pLeft); 2605 pLeft = 0; 2606 } 2607 2608 splitnode_out: 2609 nodeRelease(pRtree, pRight); 2610 nodeRelease(pRtree, pLeft); 2611 sqlite3_free(aCell); 2612 return rc; 2613 } 2614 2615 /* 2616 ** If node pLeaf is not the root of the r-tree and its pParent pointer is 2617 ** still NULL, load all ancestor nodes of pLeaf into memory and populate 2618 ** the pLeaf->pParent chain all the way up to the root node. 2619 ** 2620 ** This operation is required when a row is deleted (or updated - an update 2621 ** is implemented as a delete followed by an insert). SQLite provides the 2622 ** rowid of the row to delete, which can be used to find the leaf on which 2623 ** the entry resides (argument pLeaf). Once the leaf is located, this 2624 ** function is called to determine its ancestry. 2625 */ 2626 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ 2627 int rc = SQLITE_OK; 2628 RtreeNode *pChild = pLeaf; 2629 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ 2630 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ 2631 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); 2632 rc = sqlite3_step(pRtree->pReadParent); 2633 if( rc==SQLITE_ROW ){ 2634 RtreeNode *pTest; /* Used to test for reference loops */ 2635 i64 iNode; /* Node number of parent node */ 2636 2637 /* Before setting pChild->pParent, test that we are not creating a 2638 ** loop of references (as we would if, say, pChild==pParent). We don't 2639 ** want to do this as it leads to a memory leak when trying to delete 2640 ** the referenced counted node structures. 2641 */ 2642 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); 2643 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); 2644 if( !pTest ){ 2645 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); 2646 } 2647 } 2648 rc = sqlite3_reset(pRtree->pReadParent); 2649 if( rc==SQLITE_OK ) rc = rc2; 2650 if( rc==SQLITE_OK && !pChild->pParent ){ 2651 RTREE_IS_CORRUPT(pRtree); 2652 rc = SQLITE_CORRUPT_VTAB; 2653 } 2654 pChild = pChild->pParent; 2655 } 2656 return rc; 2657 } 2658 2659 static int deleteCell(Rtree *, RtreeNode *, int, int); 2660 2661 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ 2662 int rc; 2663 int rc2; 2664 RtreeNode *pParent = 0; 2665 int iCell; 2666 2667 assert( pNode->nRef==1 ); 2668 2669 /* Remove the entry in the parent cell. */ 2670 rc = nodeParentIndex(pRtree, pNode, &iCell); 2671 if( rc==SQLITE_OK ){ 2672 pParent = pNode->pParent; 2673 pNode->pParent = 0; 2674 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); 2675 } 2676 rc2 = nodeRelease(pRtree, pParent); 2677 if( rc==SQLITE_OK ){ 2678 rc = rc2; 2679 } 2680 if( rc!=SQLITE_OK ){ 2681 return rc; 2682 } 2683 2684 /* Remove the xxx_node entry. */ 2685 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); 2686 sqlite3_step(pRtree->pDeleteNode); 2687 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ 2688 return rc; 2689 } 2690 2691 /* Remove the xxx_parent entry. */ 2692 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); 2693 sqlite3_step(pRtree->pDeleteParent); 2694 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ 2695 return rc; 2696 } 2697 2698 /* Remove the node from the in-memory hash table and link it into 2699 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. 2700 */ 2701 nodeHashDelete(pRtree, pNode); 2702 pNode->iNode = iHeight; 2703 pNode->pNext = pRtree->pDeleted; 2704 pNode->nRef++; 2705 pRtree->pDeleted = pNode; 2706 2707 return SQLITE_OK; 2708 } 2709 2710 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ 2711 RtreeNode *pParent = pNode->pParent; 2712 int rc = SQLITE_OK; 2713 if( pParent ){ 2714 int ii; 2715 int nCell = NCELL(pNode); 2716 RtreeCell box; /* Bounding box for pNode */ 2717 nodeGetCell(pRtree, pNode, 0, &box); 2718 for(ii=1; ii<nCell; ii++){ 2719 RtreeCell cell; 2720 nodeGetCell(pRtree, pNode, ii, &cell); 2721 cellUnion(pRtree, &box, &cell); 2722 } 2723 box.iRowid = pNode->iNode; 2724 rc = nodeParentIndex(pRtree, pNode, &ii); 2725 if( rc==SQLITE_OK ){ 2726 nodeOverwriteCell(pRtree, pParent, &box, ii); 2727 rc = fixBoundingBox(pRtree, pParent); 2728 } 2729 } 2730 return rc; 2731 } 2732 2733 /* 2734 ** Delete the cell at index iCell of node pNode. After removing the 2735 ** cell, adjust the r-tree data structure if required. 2736 */ 2737 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ 2738 RtreeNode *pParent; 2739 int rc; 2740 2741 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ 2742 return rc; 2743 } 2744 2745 /* Remove the cell from the node. This call just moves bytes around 2746 ** the in-memory node image, so it cannot fail. 2747 */ 2748 nodeDeleteCell(pRtree, pNode, iCell); 2749 2750 /* If the node is not the tree root and now has less than the minimum 2751 ** number of cells, remove it from the tree. Otherwise, update the 2752 ** cell in the parent node so that it tightly contains the updated 2753 ** node. 2754 */ 2755 pParent = pNode->pParent; 2756 assert( pParent || pNode->iNode==1 ); 2757 if( pParent ){ 2758 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ 2759 rc = removeNode(pRtree, pNode, iHeight); 2760 }else{ 2761 rc = fixBoundingBox(pRtree, pNode); 2762 } 2763 } 2764 2765 return rc; 2766 } 2767 2768 static int Reinsert( 2769 Rtree *pRtree, 2770 RtreeNode *pNode, 2771 RtreeCell *pCell, 2772 int iHeight 2773 ){ 2774 int *aOrder; 2775 int *aSpare; 2776 RtreeCell *aCell; 2777 RtreeDValue *aDistance; 2778 int nCell; 2779 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; 2780 int iDim; 2781 int ii; 2782 int rc = SQLITE_OK; 2783 int n; 2784 2785 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); 2786 2787 nCell = NCELL(pNode)+1; 2788 n = (nCell+1)&(~1); 2789 2790 /* Allocate the buffers used by this operation. The allocation is 2791 ** relinquished before this function returns. 2792 */ 2793 aCell = (RtreeCell *)sqlite3_malloc(n * ( 2794 sizeof(RtreeCell) + /* aCell array */ 2795 sizeof(int) + /* aOrder array */ 2796 sizeof(int) + /* aSpare array */ 2797 sizeof(RtreeDValue) /* aDistance array */ 2798 )); 2799 if( !aCell ){ 2800 return SQLITE_NOMEM; 2801 } 2802 aOrder = (int *)&aCell[n]; 2803 aSpare = (int *)&aOrder[n]; 2804 aDistance = (RtreeDValue *)&aSpare[n]; 2805 2806 for(ii=0; ii<nCell; ii++){ 2807 if( ii==(nCell-1) ){ 2808 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); 2809 }else{ 2810 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); 2811 } 2812 aOrder[ii] = ii; 2813 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2814 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); 2815 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); 2816 } 2817 } 2818 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2819 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); 2820 } 2821 2822 for(ii=0; ii<nCell; ii++){ 2823 aDistance[ii] = RTREE_ZERO; 2824 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2825 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 2826 DCOORD(aCell[ii].aCoord[iDim*2])); 2827 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); 2828 } 2829 } 2830 2831 SortByDistance(aOrder, nCell, aDistance, aSpare); 2832 nodeZero(pRtree, pNode); 2833 2834 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ 2835 RtreeCell *p = &aCell[aOrder[ii]]; 2836 nodeInsertCell(pRtree, pNode, p); 2837 if( p->iRowid==pCell->iRowid ){ 2838 if( iHeight==0 ){ 2839 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); 2840 }else{ 2841 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); 2842 } 2843 } 2844 } 2845 if( rc==SQLITE_OK ){ 2846 rc = fixBoundingBox(pRtree, pNode); 2847 } 2848 for(; rc==SQLITE_OK && ii<nCell; ii++){ 2849 /* Find a node to store this cell in. pNode->iNode currently contains 2850 ** the height of the sub-tree headed by the cell. 2851 */ 2852 RtreeNode *pInsert; 2853 RtreeCell *p = &aCell[aOrder[ii]]; 2854 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); 2855 if( rc==SQLITE_OK ){ 2856 int rc2; 2857 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); 2858 rc2 = nodeRelease(pRtree, pInsert); 2859 if( rc==SQLITE_OK ){ 2860 rc = rc2; 2861 } 2862 } 2863 } 2864 2865 sqlite3_free(aCell); 2866 return rc; 2867 } 2868 2869 /* 2870 ** Insert cell pCell into node pNode. Node pNode is the head of a 2871 ** subtree iHeight high (leaf nodes have iHeight==0). 2872 */ 2873 static int rtreeInsertCell( 2874 Rtree *pRtree, 2875 RtreeNode *pNode, 2876 RtreeCell *pCell, 2877 int iHeight 2878 ){ 2879 int rc = SQLITE_OK; 2880 if( iHeight>0 ){ 2881 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); 2882 if( pChild ){ 2883 nodeRelease(pRtree, pChild->pParent); 2884 nodeReference(pNode); 2885 pChild->pParent = pNode; 2886 } 2887 } 2888 if( nodeInsertCell(pRtree, pNode, pCell) ){ 2889 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ 2890 rc = SplitNode(pRtree, pNode, pCell, iHeight); 2891 }else{ 2892 pRtree->iReinsertHeight = iHeight; 2893 rc = Reinsert(pRtree, pNode, pCell, iHeight); 2894 } 2895 }else{ 2896 rc = AdjustTree(pRtree, pNode, pCell); 2897 if( rc==SQLITE_OK ){ 2898 if( iHeight==0 ){ 2899 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); 2900 }else{ 2901 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); 2902 } 2903 } 2904 } 2905 return rc; 2906 } 2907 2908 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ 2909 int ii; 2910 int rc = SQLITE_OK; 2911 int nCell = NCELL(pNode); 2912 2913 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ 2914 RtreeNode *pInsert; 2915 RtreeCell cell; 2916 nodeGetCell(pRtree, pNode, ii, &cell); 2917 2918 /* Find a node to store this cell in. pNode->iNode currently contains 2919 ** the height of the sub-tree headed by the cell. 2920 */ 2921 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); 2922 if( rc==SQLITE_OK ){ 2923 int rc2; 2924 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); 2925 rc2 = nodeRelease(pRtree, pInsert); 2926 if( rc==SQLITE_OK ){ 2927 rc = rc2; 2928 } 2929 } 2930 } 2931 return rc; 2932 } 2933 2934 /* 2935 ** Select a currently unused rowid for a new r-tree record. 2936 */ 2937 static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ 2938 int rc; 2939 sqlite3_bind_null(pRtree->pWriteRowid, 1); 2940 sqlite3_bind_null(pRtree->pWriteRowid, 2); 2941 sqlite3_step(pRtree->pWriteRowid); 2942 rc = sqlite3_reset(pRtree->pWriteRowid); 2943 *piRowid = sqlite3_last_insert_rowid(pRtree->db); 2944 return rc; 2945 } 2946 2947 /* 2948 ** Remove the entry with rowid=iDelete from the r-tree structure. 2949 */ 2950 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ 2951 int rc; /* Return code */ 2952 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ 2953 int iCell; /* Index of iDelete cell in pLeaf */ 2954 RtreeNode *pRoot = 0; /* Root node of rtree structure */ 2955 2956 2957 /* Obtain a reference to the root node to initialize Rtree.iDepth */ 2958 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 2959 2960 /* Obtain a reference to the leaf node that contains the entry 2961 ** about to be deleted. 2962 */ 2963 if( rc==SQLITE_OK ){ 2964 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); 2965 } 2966 2967 #ifdef CORRUPT_DB 2968 assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); 2969 #endif 2970 2971 /* Delete the cell in question from the leaf node. */ 2972 if( rc==SQLITE_OK && pLeaf ){ 2973 int rc2; 2974 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); 2975 if( rc==SQLITE_OK ){ 2976 rc = deleteCell(pRtree, pLeaf, iCell, 0); 2977 } 2978 rc2 = nodeRelease(pRtree, pLeaf); 2979 if( rc==SQLITE_OK ){ 2980 rc = rc2; 2981 } 2982 } 2983 2984 /* Delete the corresponding entry in the <rtree>_rowid table. */ 2985 if( rc==SQLITE_OK ){ 2986 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); 2987 sqlite3_step(pRtree->pDeleteRowid); 2988 rc = sqlite3_reset(pRtree->pDeleteRowid); 2989 } 2990 2991 /* Check if the root node now has exactly one child. If so, remove 2992 ** it, schedule the contents of the child for reinsertion and 2993 ** reduce the tree height by one. 2994 ** 2995 ** This is equivalent to copying the contents of the child into 2996 ** the root node (the operation that Gutman's paper says to perform 2997 ** in this scenario). 2998 */ 2999 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ 3000 int rc2; 3001 RtreeNode *pChild = 0; 3002 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); 3003 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); 3004 if( rc==SQLITE_OK ){ 3005 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); 3006 } 3007 rc2 = nodeRelease(pRtree, pChild); 3008 if( rc==SQLITE_OK ) rc = rc2; 3009 if( rc==SQLITE_OK ){ 3010 pRtree->iDepth--; 3011 writeInt16(pRoot->zData, pRtree->iDepth); 3012 pRoot->isDirty = 1; 3013 } 3014 } 3015 3016 /* Re-insert the contents of any underfull nodes removed from the tree. */ 3017 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ 3018 if( rc==SQLITE_OK ){ 3019 rc = reinsertNodeContent(pRtree, pLeaf); 3020 } 3021 pRtree->pDeleted = pLeaf->pNext; 3022 pRtree->nNodeRef--; 3023 sqlite3_free(pLeaf); 3024 } 3025 3026 /* Release the reference to the root node. */ 3027 if( rc==SQLITE_OK ){ 3028 rc = nodeRelease(pRtree, pRoot); 3029 }else{ 3030 nodeRelease(pRtree, pRoot); 3031 } 3032 3033 return rc; 3034 } 3035 3036 /* 3037 ** Rounding constants for float->double conversion. 3038 */ 3039 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ 3040 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ 3041 3042 #if !defined(SQLITE_RTREE_INT_ONLY) 3043 /* 3044 ** Convert an sqlite3_value into an RtreeValue (presumably a float) 3045 ** while taking care to round toward negative or positive, respectively. 3046 */ 3047 static RtreeValue rtreeValueDown(sqlite3_value *v){ 3048 double d = sqlite3_value_double(v); 3049 float f = (float)d; 3050 if( f>d ){ 3051 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); 3052 } 3053 return f; 3054 } 3055 static RtreeValue rtreeValueUp(sqlite3_value *v){ 3056 double d = sqlite3_value_double(v); 3057 float f = (float)d; 3058 if( f<d ){ 3059 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); 3060 } 3061 return f; 3062 } 3063 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */ 3064 3065 /* 3066 ** A constraint has failed while inserting a row into an rtree table. 3067 ** Assuming no OOM error occurs, this function sets the error message 3068 ** (at pRtree->base.zErrMsg) to an appropriate value and returns 3069 ** SQLITE_CONSTRAINT. 3070 ** 3071 ** Parameter iCol is the index of the leftmost column involved in the 3072 ** constraint failure. If it is 0, then the constraint that failed is 3073 ** the unique constraint on the id column. Otherwise, it is the rtree 3074 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. 3075 ** 3076 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. 3077 */ 3078 static int rtreeConstraintError(Rtree *pRtree, int iCol){ 3079 sqlite3_stmt *pStmt = 0; 3080 char *zSql; 3081 int rc; 3082 3083 assert( iCol==0 || iCol%2 ); 3084 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); 3085 if( zSql ){ 3086 rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); 3087 }else{ 3088 rc = SQLITE_NOMEM; 3089 } 3090 sqlite3_free(zSql); 3091 3092 if( rc==SQLITE_OK ){ 3093 if( iCol==0 ){ 3094 const char *zCol = sqlite3_column_name(pStmt, 0); 3095 pRtree->base.zErrMsg = sqlite3_mprintf( 3096 "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol 3097 ); 3098 }else{ 3099 const char *zCol1 = sqlite3_column_name(pStmt, iCol); 3100 const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); 3101 pRtree->base.zErrMsg = sqlite3_mprintf( 3102 "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 3103 ); 3104 } 3105 } 3106 3107 sqlite3_finalize(pStmt); 3108 return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); 3109 } 3110 3111 3112 3113 /* 3114 ** The xUpdate method for rtree module virtual tables. 3115 */ 3116 static int rtreeUpdate( 3117 sqlite3_vtab *pVtab, 3118 int nData, 3119 sqlite3_value **aData, 3120 sqlite_int64 *pRowid 3121 ){ 3122 Rtree *pRtree = (Rtree *)pVtab; 3123 int rc = SQLITE_OK; 3124 RtreeCell cell; /* New cell to insert if nData>1 */ 3125 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ 3126 3127 if( pRtree->nNodeRef ){ 3128 /* Unable to write to the btree while another cursor is reading from it, 3129 ** since the write might do a rebalance which would disrupt the read 3130 ** cursor. */ 3131 return SQLITE_LOCKED_VTAB; 3132 } 3133 rtreeReference(pRtree); 3134 assert(nData>=1); 3135 3136 cell.iRowid = 0; /* Used only to suppress a compiler warning */ 3137 3138 /* Constraint handling. A write operation on an r-tree table may return 3139 ** SQLITE_CONSTRAINT for two reasons: 3140 ** 3141 ** 1. A duplicate rowid value, or 3142 ** 2. The supplied data violates the "x2>=x1" constraint. 3143 ** 3144 ** In the first case, if the conflict-handling mode is REPLACE, then 3145 ** the conflicting row can be removed before proceeding. In the second 3146 ** case, SQLITE_CONSTRAINT must be returned regardless of the 3147 ** conflict-handling mode specified by the user. 3148 */ 3149 if( nData>1 ){ 3150 int ii; 3151 int nn = nData - 4; 3152 3153 if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; 3154 /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. 3155 ** 3156 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared 3157 ** with "column" that are interpreted as table constraints. 3158 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); 3159 ** This problem was discovered after years of use, so we silently ignore 3160 ** these kinds of misdeclared tables to avoid breaking any legacy. 3161 */ 3162 3163 #ifndef SQLITE_RTREE_INT_ONLY 3164 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 3165 for(ii=0; ii<nn; ii+=2){ 3166 cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]); 3167 cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]); 3168 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ 3169 rc = rtreeConstraintError(pRtree, ii+1); 3170 goto constraint; 3171 } 3172 } 3173 }else 3174 #endif 3175 { 3176 for(ii=0; ii<nn; ii+=2){ 3177 cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]); 3178 cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]); 3179 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ 3180 rc = rtreeConstraintError(pRtree, ii+1); 3181 goto constraint; 3182 } 3183 } 3184 } 3185 3186 /* If a rowid value was supplied, check if it is already present in 3187 ** the table. If so, the constraint has failed. */ 3188 if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ 3189 cell.iRowid = sqlite3_value_int64(aData[2]); 3190 if( sqlite3_value_type(aData[0])==SQLITE_NULL 3191 || sqlite3_value_int64(aData[0])!=cell.iRowid 3192 ){ 3193 int steprc; 3194 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); 3195 steprc = sqlite3_step(pRtree->pReadRowid); 3196 rc = sqlite3_reset(pRtree->pReadRowid); 3197 if( SQLITE_ROW==steprc ){ 3198 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ 3199 rc = rtreeDeleteRowid(pRtree, cell.iRowid); 3200 }else{ 3201 rc = rtreeConstraintError(pRtree, 0); 3202 goto constraint; 3203 } 3204 } 3205 } 3206 bHaveRowid = 1; 3207 } 3208 } 3209 3210 /* If aData[0] is not an SQL NULL value, it is the rowid of a 3211 ** record to delete from the r-tree table. The following block does 3212 ** just that. 3213 */ 3214 if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ 3215 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); 3216 } 3217 3218 /* If the aData[] array contains more than one element, elements 3219 ** (aData[2]..aData[argc-1]) contain a new record to insert into 3220 ** the r-tree structure. 3221 */ 3222 if( rc==SQLITE_OK && nData>1 ){ 3223 /* Insert the new record into the r-tree */ 3224 RtreeNode *pLeaf = 0; 3225 3226 /* Figure out the rowid of the new row. */ 3227 if( bHaveRowid==0 ){ 3228 rc = rtreeNewRowid(pRtree, &cell.iRowid); 3229 } 3230 *pRowid = cell.iRowid; 3231 3232 if( rc==SQLITE_OK ){ 3233 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); 3234 } 3235 if( rc==SQLITE_OK ){ 3236 int rc2; 3237 pRtree->iReinsertHeight = -1; 3238 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); 3239 rc2 = nodeRelease(pRtree, pLeaf); 3240 if( rc==SQLITE_OK ){ 3241 rc = rc2; 3242 } 3243 } 3244 if( rc==SQLITE_OK && pRtree->nAux ){ 3245 sqlite3_stmt *pUp = pRtree->pWriteAux; 3246 int jj; 3247 sqlite3_bind_int64(pUp, 1, *pRowid); 3248 for(jj=0; jj<pRtree->nAux; jj++){ 3249 sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); 3250 } 3251 sqlite3_step(pUp); 3252 rc = sqlite3_reset(pUp); 3253 } 3254 } 3255 3256 constraint: 3257 rtreeRelease(pRtree); 3258 return rc; 3259 } 3260 3261 /* 3262 ** Called when a transaction starts. 3263 */ 3264 static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ 3265 Rtree *pRtree = (Rtree *)pVtab; 3266 assert( pRtree->inWrTrans==0 ); 3267 pRtree->inWrTrans++; 3268 return SQLITE_OK; 3269 } 3270 3271 /* 3272 ** Called when a transaction completes (either by COMMIT or ROLLBACK). 3273 ** The sqlite3_blob object should be released at this point. 3274 */ 3275 static int rtreeEndTransaction(sqlite3_vtab *pVtab){ 3276 Rtree *pRtree = (Rtree *)pVtab; 3277 pRtree->inWrTrans = 0; 3278 nodeBlobReset(pRtree); 3279 return SQLITE_OK; 3280 } 3281 3282 /* 3283 ** The xRename method for rtree module virtual tables. 3284 */ 3285 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ 3286 Rtree *pRtree = (Rtree *)pVtab; 3287 int rc = SQLITE_NOMEM; 3288 char *zSql = sqlite3_mprintf( 3289 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" 3290 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" 3291 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" 3292 , pRtree->zDb, pRtree->zName, zNewName 3293 , pRtree->zDb, pRtree->zName, zNewName 3294 , pRtree->zDb, pRtree->zName, zNewName 3295 ); 3296 if( zSql ){ 3297 nodeBlobReset(pRtree); 3298 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); 3299 sqlite3_free(zSql); 3300 } 3301 return rc; 3302 } 3303 3304 /* 3305 ** The xSavepoint method. 3306 ** 3307 ** This module does not need to do anything to support savepoints. However, 3308 ** it uses this hook to close any open blob handle. This is done because a 3309 ** DROP TABLE command - which fortunately always opens a savepoint - cannot 3310 ** succeed if there are any open blob handles. i.e. if the blob handle were 3311 ** not closed here, the following would fail: 3312 ** 3313 ** BEGIN; 3314 ** INSERT INTO rtree... 3315 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED 3316 ** COMMIT; 3317 */ 3318 static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ 3319 Rtree *pRtree = (Rtree *)pVtab; 3320 u8 iwt = pRtree->inWrTrans; 3321 UNUSED_PARAMETER(iSavepoint); 3322 pRtree->inWrTrans = 0; 3323 nodeBlobReset(pRtree); 3324 pRtree->inWrTrans = iwt; 3325 return SQLITE_OK; 3326 } 3327 3328 /* 3329 ** This function populates the pRtree->nRowEst variable with an estimate 3330 ** of the number of rows in the virtual table. If possible, this is based 3331 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. 3332 */ 3333 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ 3334 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; 3335 char *zSql; 3336 sqlite3_stmt *p; 3337 int rc; 3338 i64 nRow = 0; 3339 3340 rc = sqlite3_table_column_metadata( 3341 db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 3342 ); 3343 if( rc!=SQLITE_OK ){ 3344 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; 3345 return rc==SQLITE_ERROR ? SQLITE_OK : rc; 3346 } 3347 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); 3348 if( zSql==0 ){ 3349 rc = SQLITE_NOMEM; 3350 }else{ 3351 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); 3352 if( rc==SQLITE_OK ){ 3353 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); 3354 rc = sqlite3_finalize(p); 3355 }else if( rc!=SQLITE_NOMEM ){ 3356 rc = SQLITE_OK; 3357 } 3358 3359 if( rc==SQLITE_OK ){ 3360 if( nRow==0 ){ 3361 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; 3362 }else{ 3363 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); 3364 } 3365 } 3366 sqlite3_free(zSql); 3367 } 3368 3369 return rc; 3370 } 3371 3372 3373 /* 3374 ** Return true if zName is the extension on one of the shadow tables used 3375 ** by this module. 3376 */ 3377 static int rtreeShadowName(const char *zName){ 3378 static const char *azName[] = { 3379 "node", "parent", "rowid" 3380 }; 3381 unsigned int i; 3382 for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ 3383 if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; 3384 } 3385 return 0; 3386 } 3387 3388 static sqlite3_module rtreeModule = { 3389 3, /* iVersion */ 3390 rtreeCreate, /* xCreate - create a table */ 3391 rtreeConnect, /* xConnect - connect to an existing table */ 3392 rtreeBestIndex, /* xBestIndex - Determine search strategy */ 3393 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ 3394 rtreeDestroy, /* xDestroy - Drop a table */ 3395 rtreeOpen, /* xOpen - open a cursor */ 3396 rtreeClose, /* xClose - close a cursor */ 3397 rtreeFilter, /* xFilter - configure scan constraints */ 3398 rtreeNext, /* xNext - advance a cursor */ 3399 rtreeEof, /* xEof */ 3400 rtreeColumn, /* xColumn - read data */ 3401 rtreeRowid, /* xRowid - read data */ 3402 rtreeUpdate, /* xUpdate - write data */ 3403 rtreeBeginTransaction, /* xBegin - begin transaction */ 3404 rtreeEndTransaction, /* xSync - sync transaction */ 3405 rtreeEndTransaction, /* xCommit - commit transaction */ 3406 rtreeEndTransaction, /* xRollback - rollback transaction */ 3407 0, /* xFindFunction - function overloading */ 3408 rtreeRename, /* xRename - rename the table */ 3409 rtreeSavepoint, /* xSavepoint */ 3410 0, /* xRelease */ 3411 0, /* xRollbackTo */ 3412 rtreeShadowName /* xShadowName */ 3413 }; 3414 3415 static int rtreeSqlInit( 3416 Rtree *pRtree, 3417 sqlite3 *db, 3418 const char *zDb, 3419 const char *zPrefix, 3420 int isCreate 3421 ){ 3422 int rc = SQLITE_OK; 3423 3424 #define N_STATEMENT 8 3425 static const char *azSql[N_STATEMENT] = { 3426 /* Write the xxx_node table */ 3427 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)", 3428 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1", 3429 3430 /* Read and write the xxx_rowid table */ 3431 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3432 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)", 3433 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1", 3434 3435 /* Read and write the xxx_parent table */ 3436 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1", 3437 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)", 3438 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1" 3439 }; 3440 sqlite3_stmt **appStmt[N_STATEMENT]; 3441 int i; 3442 const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; 3443 3444 pRtree->db = db; 3445 3446 if( isCreate ){ 3447 char *zCreate; 3448 sqlite3_str *p = sqlite3_str_new(db); 3449 int ii; 3450 sqlite3_str_appendf(p, 3451 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", 3452 zDb, zPrefix); 3453 for(ii=0; ii<pRtree->nAux; ii++){ 3454 sqlite3_str_appendf(p,",a%d",ii); 3455 } 3456 sqlite3_str_appendf(p, 3457 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", 3458 zDb, zPrefix); 3459 sqlite3_str_appendf(p, 3460 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", 3461 zDb, zPrefix); 3462 sqlite3_str_appendf(p, 3463 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", 3464 zDb, zPrefix, pRtree->iNodeSize); 3465 zCreate = sqlite3_str_finish(p); 3466 if( !zCreate ){ 3467 return SQLITE_NOMEM; 3468 } 3469 rc = sqlite3_exec(db, zCreate, 0, 0, 0); 3470 sqlite3_free(zCreate); 3471 if( rc!=SQLITE_OK ){ 3472 return rc; 3473 } 3474 } 3475 3476 appStmt[0] = &pRtree->pWriteNode; 3477 appStmt[1] = &pRtree->pDeleteNode; 3478 appStmt[2] = &pRtree->pReadRowid; 3479 appStmt[3] = &pRtree->pWriteRowid; 3480 appStmt[4] = &pRtree->pDeleteRowid; 3481 appStmt[5] = &pRtree->pReadParent; 3482 appStmt[6] = &pRtree->pWriteParent; 3483 appStmt[7] = &pRtree->pDeleteParent; 3484 3485 rc = rtreeQueryStat1(db, pRtree); 3486 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ 3487 char *zSql; 3488 const char *zFormat; 3489 if( i!=3 || pRtree->nAux==0 ){ 3490 zFormat = azSql[i]; 3491 }else { 3492 /* An UPSERT is very slightly slower than REPLACE, but it is needed 3493 ** if there are auxiliary columns */ 3494 zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" 3495 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; 3496 } 3497 zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); 3498 if( zSql ){ 3499 rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); 3500 }else{ 3501 rc = SQLITE_NOMEM; 3502 } 3503 sqlite3_free(zSql); 3504 } 3505 if( pRtree->nAux ){ 3506 pRtree->zReadAuxSql = sqlite3_mprintf( 3507 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", 3508 zDb, zPrefix); 3509 if( pRtree->zReadAuxSql==0 ){ 3510 rc = SQLITE_NOMEM; 3511 }else{ 3512 sqlite3_str *p = sqlite3_str_new(db); 3513 int ii; 3514 char *zSql; 3515 sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); 3516 for(ii=0; ii<pRtree->nAux; ii++){ 3517 if( ii ) sqlite3_str_append(p, ",", 1); 3518 if( ii<pRtree->nAuxNotNull ){ 3519 sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); 3520 }else{ 3521 sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); 3522 } 3523 } 3524 sqlite3_str_appendf(p, " WHERE rowid=?1"); 3525 zSql = sqlite3_str_finish(p); 3526 if( zSql==0 ){ 3527 rc = SQLITE_NOMEM; 3528 }else{ 3529 rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); 3530 sqlite3_free(zSql); 3531 } 3532 } 3533 } 3534 3535 return rc; 3536 } 3537 3538 /* 3539 ** The second argument to this function contains the text of an SQL statement 3540 ** that returns a single integer value. The statement is compiled and executed 3541 ** using database connection db. If successful, the integer value returned 3542 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error 3543 ** code is returned and the value of *piVal after returning is not defined. 3544 */ 3545 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ 3546 int rc = SQLITE_NOMEM; 3547 if( zSql ){ 3548 sqlite3_stmt *pStmt = 0; 3549 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 3550 if( rc==SQLITE_OK ){ 3551 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3552 *piVal = sqlite3_column_int(pStmt, 0); 3553 } 3554 rc = sqlite3_finalize(pStmt); 3555 } 3556 } 3557 return rc; 3558 } 3559 3560 /* 3561 ** This function is called from within the xConnect() or xCreate() method to 3562 ** determine the node-size used by the rtree table being created or connected 3563 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. 3564 ** Otherwise, an SQLite error code is returned. 3565 ** 3566 ** If this function is being called as part of an xConnect(), then the rtree 3567 ** table already exists. In this case the node-size is determined by inspecting 3568 ** the root node of the tree. 3569 ** 3570 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 3571 ** This ensures that each node is stored on a single database page. If the 3572 ** database page-size is so large that more than RTREE_MAXCELLS entries 3573 ** would fit in a single node, use a smaller node-size. 3574 */ 3575 static int getNodeSize( 3576 sqlite3 *db, /* Database handle */ 3577 Rtree *pRtree, /* Rtree handle */ 3578 int isCreate, /* True for xCreate, false for xConnect */ 3579 char **pzErr /* OUT: Error message, if any */ 3580 ){ 3581 int rc; 3582 char *zSql; 3583 if( isCreate ){ 3584 int iPageSize = 0; 3585 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); 3586 rc = getIntFromStmt(db, zSql, &iPageSize); 3587 if( rc==SQLITE_OK ){ 3588 pRtree->iNodeSize = iPageSize-64; 3589 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ 3590 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; 3591 } 3592 }else{ 3593 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3594 } 3595 }else{ 3596 zSql = sqlite3_mprintf( 3597 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", 3598 pRtree->zDb, pRtree->zName 3599 ); 3600 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); 3601 if( rc!=SQLITE_OK ){ 3602 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3603 }else if( pRtree->iNodeSize<(512-64) ){ 3604 rc = SQLITE_CORRUPT_VTAB; 3605 RTREE_IS_CORRUPT(pRtree); 3606 *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", 3607 pRtree->zName); 3608 } 3609 } 3610 3611 sqlite3_free(zSql); 3612 return rc; 3613 } 3614 3615 /* 3616 ** This function is the implementation of both the xConnect and xCreate 3617 ** methods of the r-tree virtual table. 3618 ** 3619 ** argv[0] -> module name 3620 ** argv[1] -> database name 3621 ** argv[2] -> table name 3622 ** argv[...] -> column names... 3623 */ 3624 static int rtreeInit( 3625 sqlite3 *db, /* Database connection */ 3626 void *pAux, /* One of the RTREE_COORD_* constants */ 3627 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ 3628 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ 3629 char **pzErr, /* OUT: Error message, if any */ 3630 int isCreate /* True for xCreate, false for xConnect */ 3631 ){ 3632 int rc = SQLITE_OK; 3633 Rtree *pRtree; 3634 int nDb; /* Length of string argv[1] */ 3635 int nName; /* Length of string argv[2] */ 3636 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); 3637 sqlite3_str *pSql; 3638 char *zSql; 3639 int ii = 4; 3640 int iErr; 3641 3642 const char *aErrMsg[] = { 3643 0, /* 0 */ 3644 "Wrong number of columns for an rtree table", /* 1 */ 3645 "Too few columns for an rtree table", /* 2 */ 3646 "Too many columns for an rtree table", /* 3 */ 3647 "Auxiliary rtree columns must be last" /* 4 */ 3648 }; 3649 3650 assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ 3651 if( argc>RTREE_MAX_AUX_COLUMN+3 ){ 3652 *pzErr = sqlite3_mprintf("%s", aErrMsg[3]); 3653 return SQLITE_ERROR; 3654 } 3655 3656 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); 3657 3658 /* Allocate the sqlite3_vtab structure */ 3659 nDb = (int)strlen(argv[1]); 3660 nName = (int)strlen(argv[2]); 3661 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); 3662 if( !pRtree ){ 3663 return SQLITE_NOMEM; 3664 } 3665 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); 3666 pRtree->nBusy = 1; 3667 pRtree->base.pModule = &rtreeModule; 3668 pRtree->zDb = (char *)&pRtree[1]; 3669 pRtree->zName = &pRtree->zDb[nDb+1]; 3670 pRtree->eCoordType = (u8)eCoordType; 3671 memcpy(pRtree->zDb, argv[1], nDb); 3672 memcpy(pRtree->zName, argv[2], nName); 3673 3674 3675 /* Create/Connect to the underlying relational database schema. If 3676 ** that is successful, call sqlite3_declare_vtab() to configure 3677 ** the r-tree table schema. 3678 */ 3679 pSql = sqlite3_str_new(db); 3680 sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]); 3681 for(ii=4; ii<argc; ii++){ 3682 if( argv[ii][0]=='+' ){ 3683 pRtree->nAux++; 3684 sqlite3_str_appendf(pSql, ",%s", argv[ii]+1); 3685 }else if( pRtree->nAux>0 ){ 3686 break; 3687 }else{ 3688 pRtree->nDim2++; 3689 sqlite3_str_appendf(pSql, ",%s", argv[ii]); 3690 } 3691 } 3692 sqlite3_str_appendf(pSql, ");"); 3693 zSql = sqlite3_str_finish(pSql); 3694 if( !zSql ){ 3695 rc = SQLITE_NOMEM; 3696 }else if( ii<argc ){ 3697 *pzErr = sqlite3_mprintf("%s", aErrMsg[4]); 3698 rc = SQLITE_ERROR; 3699 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ 3700 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3701 } 3702 sqlite3_free(zSql); 3703 if( rc ) goto rtreeInit_fail; 3704 pRtree->nDim = pRtree->nDim2/2; 3705 if( pRtree->nDim<1 ){ 3706 iErr = 2; 3707 }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ 3708 iErr = 3; 3709 }else if( pRtree->nDim2 % 2 ){ 3710 iErr = 1; 3711 }else{ 3712 iErr = 0; 3713 } 3714 if( iErr ){ 3715 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); 3716 goto rtreeInit_fail; 3717 } 3718 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; 3719 3720 /* Figure out the node size to use. */ 3721 rc = getNodeSize(db, pRtree, isCreate, pzErr); 3722 if( rc ) goto rtreeInit_fail; 3723 rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); 3724 if( rc ){ 3725 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3726 goto rtreeInit_fail; 3727 } 3728 3729 *ppVtab = (sqlite3_vtab *)pRtree; 3730 return SQLITE_OK; 3731 3732 rtreeInit_fail: 3733 if( rc==SQLITE_OK ) rc = SQLITE_ERROR; 3734 assert( *ppVtab==0 ); 3735 assert( pRtree->nBusy==1 ); 3736 rtreeRelease(pRtree); 3737 return rc; 3738 } 3739 3740 3741 /* 3742 ** Implementation of a scalar function that decodes r-tree nodes to 3743 ** human readable strings. This can be used for debugging and analysis. 3744 ** 3745 ** The scalar function takes two arguments: (1) the number of dimensions 3746 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing 3747 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to 3748 ** deserialize all nodes, a statement like: 3749 ** 3750 ** SELECT rtreenode(2, data) FROM rt_node; 3751 ** 3752 ** The human readable string takes the form of a Tcl list with one 3753 ** entry for each cell in the r-tree node. Each entry is itself a 3754 ** list, containing the 8-byte rowid/pageno followed by the 3755 ** <num-dimension>*2 coordinates. 3756 */ 3757 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3758 char *zText = 0; 3759 RtreeNode node; 3760 Rtree tree; 3761 int ii; 3762 3763 UNUSED_PARAMETER(nArg); 3764 memset(&node, 0, sizeof(RtreeNode)); 3765 memset(&tree, 0, sizeof(Rtree)); 3766 tree.nDim = (u8)sqlite3_value_int(apArg[0]); 3767 tree.nDim2 = tree.nDim*2; 3768 tree.nBytesPerCell = 8 + 8 * tree.nDim; 3769 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); 3770 3771 for(ii=0; ii<NCELL(&node); ii++){ 3772 char zCell[512]; 3773 int nCell = 0; 3774 RtreeCell cell; 3775 int jj; 3776 3777 nodeGetCell(&tree, &node, ii, &cell); 3778 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); 3779 nCell = (int)strlen(zCell); 3780 for(jj=0; jj<tree.nDim2; jj++){ 3781 #ifndef SQLITE_RTREE_INT_ONLY 3782 sqlite3_snprintf(512-nCell,&zCell[nCell], " %g", 3783 (double)cell.aCoord[jj].f); 3784 #else 3785 sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", 3786 cell.aCoord[jj].i); 3787 #endif 3788 nCell = (int)strlen(zCell); 3789 } 3790 3791 if( zText ){ 3792 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); 3793 sqlite3_free(zText); 3794 zText = zTextNew; 3795 }else{ 3796 zText = sqlite3_mprintf("{%s}", zCell); 3797 } 3798 } 3799 3800 sqlite3_result_text(ctx, zText, -1, sqlite3_free); 3801 } 3802 3803 /* This routine implements an SQL function that returns the "depth" parameter 3804 ** from the front of a blob that is an r-tree node. For example: 3805 ** 3806 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; 3807 ** 3808 ** The depth value is 0 for all nodes other than the root node, and the root 3809 ** node always has nodeno=1, so the example above is the primary use for this 3810 ** routine. This routine is intended for testing and analysis only. 3811 */ 3812 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3813 UNUSED_PARAMETER(nArg); 3814 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 3815 || sqlite3_value_bytes(apArg[0])<2 3816 ){ 3817 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 3818 }else{ 3819 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); 3820 sqlite3_result_int(ctx, readInt16(zBlob)); 3821 } 3822 } 3823 3824 /* 3825 ** Context object passed between the various routines that make up the 3826 ** implementation of integrity-check function rtreecheck(). 3827 */ 3828 typedef struct RtreeCheck RtreeCheck; 3829 struct RtreeCheck { 3830 sqlite3 *db; /* Database handle */ 3831 const char *zDb; /* Database containing rtree table */ 3832 const char *zTab; /* Name of rtree table */ 3833 int bInt; /* True for rtree_i32 table */ 3834 int nDim; /* Number of dimensions for this rtree tbl */ 3835 sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */ 3836 sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */ 3837 int nLeaf; /* Number of leaf cells in table */ 3838 int nNonLeaf; /* Number of non-leaf cells in table */ 3839 int rc; /* Return code */ 3840 char *zReport; /* Message to report */ 3841 int nErr; /* Number of lines in zReport */ 3842 }; 3843 3844 #define RTREE_CHECK_MAX_ERROR 100 3845 3846 /* 3847 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error, 3848 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code. 3849 */ 3850 static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){ 3851 int rc = sqlite3_reset(pStmt); 3852 if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc; 3853 } 3854 3855 /* 3856 ** The second and subsequent arguments to this function are a format string 3857 ** and printf style arguments. This function formats the string and attempts 3858 ** to compile it as an SQL statement. 3859 ** 3860 ** If successful, a pointer to the new SQL statement is returned. Otherwise, 3861 ** NULL is returned and an error code left in RtreeCheck.rc. 3862 */ 3863 static sqlite3_stmt *rtreeCheckPrepare( 3864 RtreeCheck *pCheck, /* RtreeCheck object */ 3865 const char *zFmt, ... /* Format string and trailing args */ 3866 ){ 3867 va_list ap; 3868 char *z; 3869 sqlite3_stmt *pRet = 0; 3870 3871 va_start(ap, zFmt); 3872 z = sqlite3_vmprintf(zFmt, ap); 3873 3874 if( pCheck->rc==SQLITE_OK ){ 3875 if( z==0 ){ 3876 pCheck->rc = SQLITE_NOMEM; 3877 }else{ 3878 pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); 3879 } 3880 } 3881 3882 sqlite3_free(z); 3883 va_end(ap); 3884 return pRet; 3885 } 3886 3887 /* 3888 ** The second and subsequent arguments to this function are a printf() 3889 ** style format string and arguments. This function formats the string and 3890 ** appends it to the report being accumuated in pCheck. 3891 */ 3892 static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ 3893 va_list ap; 3894 va_start(ap, zFmt); 3895 if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){ 3896 char *z = sqlite3_vmprintf(zFmt, ap); 3897 if( z==0 ){ 3898 pCheck->rc = SQLITE_NOMEM; 3899 }else{ 3900 pCheck->zReport = sqlite3_mprintf("%z%s%z", 3901 pCheck->zReport, (pCheck->zReport ? "\n" : ""), z 3902 ); 3903 if( pCheck->zReport==0 ){ 3904 pCheck->rc = SQLITE_NOMEM; 3905 } 3906 } 3907 pCheck->nErr++; 3908 } 3909 va_end(ap); 3910 } 3911 3912 /* 3913 ** This function is a no-op if there is already an error code stored 3914 ** in the RtreeCheck object indicated by the first argument. NULL is 3915 ** returned in this case. 3916 ** 3917 ** Otherwise, the contents of rtree table node iNode are loaded from 3918 ** the database and copied into a buffer obtained from sqlite3_malloc(). 3919 ** If no error occurs, a pointer to the buffer is returned and (*pnNode) 3920 ** is set to the size of the buffer in bytes. 3921 ** 3922 ** Or, if an error does occur, NULL is returned and an error code left 3923 ** in the RtreeCheck object. The final value of *pnNode is undefined in 3924 ** this case. 3925 */ 3926 static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ 3927 u8 *pRet = 0; /* Return value */ 3928 3929 if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ 3930 pCheck->pGetNode = rtreeCheckPrepare(pCheck, 3931 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", 3932 pCheck->zDb, pCheck->zTab 3933 ); 3934 } 3935 3936 if( pCheck->rc==SQLITE_OK ){ 3937 sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); 3938 if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ 3939 int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); 3940 const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); 3941 pRet = sqlite3_malloc(nNode); 3942 if( pRet==0 ){ 3943 pCheck->rc = SQLITE_NOMEM; 3944 }else{ 3945 memcpy(pRet, pNode, nNode); 3946 *pnNode = nNode; 3947 } 3948 } 3949 rtreeCheckReset(pCheck, pCheck->pGetNode); 3950 if( pCheck->rc==SQLITE_OK && pRet==0 ){ 3951 rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); 3952 } 3953 } 3954 3955 return pRet; 3956 } 3957 3958 /* 3959 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid 3960 ** (if bLeaf==1) table contains a specified entry. The schemas of the 3961 ** two tables are: 3962 ** 3963 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 3964 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) 3965 ** 3966 ** In both cases, this function checks that there exists an entry with 3967 ** IPK value iKey and the second column set to iVal. 3968 ** 3969 */ 3970 static void rtreeCheckMapping( 3971 RtreeCheck *pCheck, /* RtreeCheck object */ 3972 int bLeaf, /* True for a leaf cell, false for interior */ 3973 i64 iKey, /* Key for mapping */ 3974 i64 iVal /* Expected value for mapping */ 3975 ){ 3976 int rc; 3977 sqlite3_stmt *pStmt; 3978 const char *azSql[2] = { 3979 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", 3980 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" 3981 }; 3982 3983 assert( bLeaf==0 || bLeaf==1 ); 3984 if( pCheck->aCheckMapping[bLeaf]==0 ){ 3985 pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, 3986 azSql[bLeaf], pCheck->zDb, pCheck->zTab 3987 ); 3988 } 3989 if( pCheck->rc!=SQLITE_OK ) return; 3990 3991 pStmt = pCheck->aCheckMapping[bLeaf]; 3992 sqlite3_bind_int64(pStmt, 1, iKey); 3993 rc = sqlite3_step(pStmt); 3994 if( rc==SQLITE_DONE ){ 3995 rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", 3996 iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") 3997 ); 3998 }else if( rc==SQLITE_ROW ){ 3999 i64 ii = sqlite3_column_int64(pStmt, 0); 4000 if( ii!=iVal ){ 4001 rtreeCheckAppendMsg(pCheck, 4002 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", 4003 iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal 4004 ); 4005 } 4006 } 4007 rtreeCheckReset(pCheck, pStmt); 4008 } 4009 4010 /* 4011 ** Argument pCell points to an array of coordinates stored on an rtree page. 4012 ** This function checks that the coordinates are internally consistent (no 4013 ** x1>x2 conditions) and adds an error message to the RtreeCheck object 4014 ** if they are not. 4015 ** 4016 ** Additionally, if pParent is not NULL, then it is assumed to point to 4017 ** the array of coordinates on the parent page that bound the page 4018 ** containing pCell. In this case it is also verified that the two 4019 ** sets of coordinates are mutually consistent and an error message added 4020 ** to the RtreeCheck object if they are not. 4021 */ 4022 static void rtreeCheckCellCoord( 4023 RtreeCheck *pCheck, 4024 i64 iNode, /* Node id to use in error messages */ 4025 int iCell, /* Cell number to use in error messages */ 4026 u8 *pCell, /* Pointer to cell coordinates */ 4027 u8 *pParent /* Pointer to parent coordinates */ 4028 ){ 4029 RtreeCoord c1, c2; 4030 RtreeCoord p1, p2; 4031 int i; 4032 4033 for(i=0; i<pCheck->nDim; i++){ 4034 readCoord(&pCell[4*2*i], &c1); 4035 readCoord(&pCell[4*(2*i + 1)], &c2); 4036 4037 /* printf("%e, %e\n", c1.u.f, c2.u.f); */ 4038 if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ 4039 rtreeCheckAppendMsg(pCheck, 4040 "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode 4041 ); 4042 } 4043 4044 if( pParent ){ 4045 readCoord(&pParent[4*2*i], &p1); 4046 readCoord(&pParent[4*(2*i + 1)], &p2); 4047 4048 if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f) 4049 || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f) 4050 ){ 4051 rtreeCheckAppendMsg(pCheck, 4052 "Dimension %d of cell %d on node %lld is corrupt relative to parent" 4053 , i, iCell, iNode 4054 ); 4055 } 4056 } 4057 } 4058 } 4059 4060 /* 4061 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within 4062 ** the r-tree structure. Argument aParent points to the array of coordinates 4063 ** that bound node iNode on the parent node. 4064 ** 4065 ** If any problems are discovered, an error message is appended to the 4066 ** report accumulated in the RtreeCheck object. 4067 */ 4068 static void rtreeCheckNode( 4069 RtreeCheck *pCheck, 4070 int iDepth, /* Depth of iNode (0==leaf) */ 4071 u8 *aParent, /* Buffer containing parent coords */ 4072 i64 iNode /* Node to check */ 4073 ){ 4074 u8 *aNode = 0; 4075 int nNode = 0; 4076 4077 assert( iNode==1 || aParent!=0 ); 4078 assert( pCheck->nDim>0 ); 4079 4080 aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); 4081 if( aNode ){ 4082 if( nNode<4 ){ 4083 rtreeCheckAppendMsg(pCheck, 4084 "Node %lld is too small (%d bytes)", iNode, nNode 4085 ); 4086 }else{ 4087 int nCell; /* Number of cells on page */ 4088 int i; /* Used to iterate through cells */ 4089 if( aParent==0 ){ 4090 iDepth = readInt16(aNode); 4091 if( iDepth>RTREE_MAX_DEPTH ){ 4092 rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); 4093 sqlite3_free(aNode); 4094 return; 4095 } 4096 } 4097 nCell = readInt16(&aNode[2]); 4098 if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ 4099 rtreeCheckAppendMsg(pCheck, 4100 "Node %lld is too small for cell count of %d (%d bytes)", 4101 iNode, nCell, nNode 4102 ); 4103 }else{ 4104 for(i=0; i<nCell; i++){ 4105 u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)]; 4106 i64 iVal = readInt64(pCell); 4107 rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); 4108 4109 if( iDepth>0 ){ 4110 rtreeCheckMapping(pCheck, 0, iVal, iNode); 4111 rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); 4112 pCheck->nNonLeaf++; 4113 }else{ 4114 rtreeCheckMapping(pCheck, 1, iVal, iNode); 4115 pCheck->nLeaf++; 4116 } 4117 } 4118 } 4119 } 4120 sqlite3_free(aNode); 4121 } 4122 } 4123 4124 /* 4125 ** The second argument to this function must be either "_rowid" or 4126 ** "_parent". This function checks that the number of entries in the 4127 ** %_rowid or %_parent table is exactly nExpect. If not, it adds 4128 ** an error message to the report in the RtreeCheck object indicated 4129 ** by the first argument. 4130 */ 4131 static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ 4132 if( pCheck->rc==SQLITE_OK ){ 4133 sqlite3_stmt *pCount; 4134 pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", 4135 pCheck->zDb, pCheck->zTab, zTbl 4136 ); 4137 if( pCount ){ 4138 if( sqlite3_step(pCount)==SQLITE_ROW ){ 4139 i64 nActual = sqlite3_column_int64(pCount, 0); 4140 if( nActual!=nExpect ){ 4141 rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" 4142 " - expected %lld, actual %lld" , zTbl, nExpect, nActual 4143 ); 4144 } 4145 } 4146 pCheck->rc = sqlite3_finalize(pCount); 4147 } 4148 } 4149 } 4150 4151 /* 4152 ** This function does the bulk of the work for the rtree integrity-check. 4153 ** It is called by rtreecheck(), which is the SQL function implementation. 4154 */ 4155 static int rtreeCheckTable( 4156 sqlite3 *db, /* Database handle to access db through */ 4157 const char *zDb, /* Name of db ("main", "temp" etc.) */ 4158 const char *zTab, /* Name of rtree table to check */ 4159 char **pzReport /* OUT: sqlite3_malloc'd report text */ 4160 ){ 4161 RtreeCheck check; /* Common context for various routines */ 4162 sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ 4163 int bEnd = 0; /* True if transaction should be closed */ 4164 int nAux = 0; /* Number of extra columns. */ 4165 4166 /* Initialize the context object */ 4167 memset(&check, 0, sizeof(check)); 4168 check.db = db; 4169 check.zDb = zDb; 4170 check.zTab = zTab; 4171 4172 /* If there is not already an open transaction, open one now. This is 4173 ** to ensure that the queries run as part of this integrity-check operate 4174 ** on a consistent snapshot. */ 4175 if( sqlite3_get_autocommit(db) ){ 4176 check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); 4177 bEnd = 1; 4178 } 4179 4180 /* Find the number of auxiliary columns */ 4181 if( check.rc==SQLITE_OK ){ 4182 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); 4183 if( pStmt ){ 4184 nAux = sqlite3_column_count(pStmt) - 2; 4185 sqlite3_finalize(pStmt); 4186 } 4187 check.rc = SQLITE_OK; 4188 } 4189 4190 /* Find number of dimensions in the rtree table. */ 4191 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); 4192 if( pStmt ){ 4193 int rc; 4194 check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; 4195 if( check.nDim<1 ){ 4196 rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); 4197 }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ 4198 check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); 4199 } 4200 rc = sqlite3_finalize(pStmt); 4201 if( rc!=SQLITE_CORRUPT ) check.rc = rc; 4202 } 4203 4204 /* Do the actual integrity-check */ 4205 if( check.nDim>=1 ){ 4206 if( check.rc==SQLITE_OK ){ 4207 rtreeCheckNode(&check, 0, 0, 1); 4208 } 4209 rtreeCheckCount(&check, "_rowid", check.nLeaf); 4210 rtreeCheckCount(&check, "_parent", check.nNonLeaf); 4211 } 4212 4213 /* Finalize SQL statements used by the integrity-check */ 4214 sqlite3_finalize(check.pGetNode); 4215 sqlite3_finalize(check.aCheckMapping[0]); 4216 sqlite3_finalize(check.aCheckMapping[1]); 4217 4218 /* If one was opened, close the transaction */ 4219 if( bEnd ){ 4220 int rc = sqlite3_exec(db, "END", 0, 0, 0); 4221 if( check.rc==SQLITE_OK ) check.rc = rc; 4222 } 4223 *pzReport = check.zReport; 4224 return check.rc; 4225 } 4226 4227 /* 4228 ** Usage: 4229 ** 4230 ** rtreecheck(<rtree-table>); 4231 ** rtreecheck(<database>, <rtree-table>); 4232 ** 4233 ** Invoking this SQL function runs an integrity-check on the named rtree 4234 ** table. The integrity-check verifies the following: 4235 ** 4236 ** 1. For each cell in the r-tree structure (%_node table), that: 4237 ** 4238 ** a) for each dimension, (coord1 <= coord2). 4239 ** 4240 ** b) unless the cell is on the root node, that the cell is bounded 4241 ** by the parent cell on the parent node. 4242 ** 4243 ** c) for leaf nodes, that there is an entry in the %_rowid 4244 ** table corresponding to the cell's rowid value that 4245 ** points to the correct node. 4246 ** 4247 ** d) for cells on non-leaf nodes, that there is an entry in the 4248 ** %_parent table mapping from the cell's child node to the 4249 ** node that it resides on. 4250 ** 4251 ** 2. That there are the same number of entries in the %_rowid table 4252 ** as there are leaf cells in the r-tree structure, and that there 4253 ** is a leaf cell that corresponds to each entry in the %_rowid table. 4254 ** 4255 ** 3. That there are the same number of entries in the %_parent table 4256 ** as there are non-leaf cells in the r-tree structure, and that 4257 ** there is a non-leaf cell that corresponds to each entry in the 4258 ** %_parent table. 4259 */ 4260 static void rtreecheck( 4261 sqlite3_context *ctx, 4262 int nArg, 4263 sqlite3_value **apArg 4264 ){ 4265 if( nArg!=1 && nArg!=2 ){ 4266 sqlite3_result_error(ctx, 4267 "wrong number of arguments to function rtreecheck()", -1 4268 ); 4269 }else{ 4270 int rc; 4271 char *zReport = 0; 4272 const char *zDb = (const char*)sqlite3_value_text(apArg[0]); 4273 const char *zTab; 4274 if( nArg==1 ){ 4275 zTab = zDb; 4276 zDb = "main"; 4277 }else{ 4278 zTab = (const char*)sqlite3_value_text(apArg[1]); 4279 } 4280 rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); 4281 if( rc==SQLITE_OK ){ 4282 sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); 4283 }else{ 4284 sqlite3_result_error_code(ctx, rc); 4285 } 4286 sqlite3_free(zReport); 4287 } 4288 } 4289 4290 /* Conditionally include the geopoly code */ 4291 #ifdef SQLITE_ENABLE_GEOPOLY 4292 # include "geopoly.c" 4293 #endif 4294 4295 /* 4296 ** Register the r-tree module with database handle db. This creates the 4297 ** virtual table module "rtree" and the debugging/analysis scalar 4298 ** function "rtreenode". 4299 */ 4300 int sqlite3RtreeInit(sqlite3 *db){ 4301 const int utf8 = SQLITE_UTF8; 4302 int rc; 4303 4304 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); 4305 if( rc==SQLITE_OK ){ 4306 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); 4307 } 4308 if( rc==SQLITE_OK ){ 4309 rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0); 4310 } 4311 if( rc==SQLITE_OK ){ 4312 #ifdef SQLITE_RTREE_INT_ONLY 4313 void *c = (void *)RTREE_COORD_INT32; 4314 #else 4315 void *c = (void *)RTREE_COORD_REAL32; 4316 #endif 4317 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); 4318 } 4319 if( rc==SQLITE_OK ){ 4320 void *c = (void *)RTREE_COORD_INT32; 4321 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); 4322 } 4323 #ifdef SQLITE_ENABLE_GEOPOLY 4324 if( rc==SQLITE_OK ){ 4325 rc = sqlite3_geopoly_init(db); 4326 } 4327 #endif 4328 4329 return rc; 4330 } 4331 4332 /* 4333 ** This routine deletes the RtreeGeomCallback object that was attached 4334 ** one of the SQL functions create by sqlite3_rtree_geometry_callback() 4335 ** or sqlite3_rtree_query_callback(). In other words, this routine is the 4336 ** destructor for an RtreeGeomCallback objecct. This routine is called when 4337 ** the corresponding SQL function is deleted. 4338 */ 4339 static void rtreeFreeCallback(void *p){ 4340 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; 4341 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); 4342 sqlite3_free(p); 4343 } 4344 4345 /* 4346 ** This routine frees the BLOB that is returned by geomCallback(). 4347 */ 4348 static void rtreeMatchArgFree(void *pArg){ 4349 int i; 4350 RtreeMatchArg *p = (RtreeMatchArg*)pArg; 4351 for(i=0; i<p->nParam; i++){ 4352 sqlite3_value_free(p->apSqlParam[i]); 4353 } 4354 sqlite3_free(p); 4355 } 4356 4357 /* 4358 ** Each call to sqlite3_rtree_geometry_callback() or 4359 ** sqlite3_rtree_query_callback() creates an ordinary SQLite 4360 ** scalar function that is implemented by this routine. 4361 ** 4362 ** All this function does is construct an RtreeMatchArg object that 4363 ** contains the geometry-checking callback routines and a list of 4364 ** parameters to this function, then return that RtreeMatchArg object 4365 ** as a BLOB. 4366 ** 4367 ** The R-Tree MATCH operator will read the returned BLOB, deserialize 4368 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure 4369 ** out which elements of the R-Tree should be returned by the query. 4370 */ 4371 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ 4372 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); 4373 RtreeMatchArg *pBlob; 4374 int nBlob; 4375 int memErr = 0; 4376 4377 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) 4378 + nArg*sizeof(sqlite3_value*); 4379 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); 4380 if( !pBlob ){ 4381 sqlite3_result_error_nomem(ctx); 4382 }else{ 4383 int i; 4384 pBlob->iSize = nBlob; 4385 pBlob->cb = pGeomCtx[0]; 4386 pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; 4387 pBlob->nParam = nArg; 4388 for(i=0; i<nArg; i++){ 4389 pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]); 4390 if( pBlob->apSqlParam[i]==0 ) memErr = 1; 4391 #ifdef SQLITE_RTREE_INT_ONLY 4392 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); 4393 #else 4394 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); 4395 #endif 4396 } 4397 if( memErr ){ 4398 sqlite3_result_error_nomem(ctx); 4399 rtreeMatchArgFree(pBlob); 4400 }else{ 4401 sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); 4402 } 4403 } 4404 } 4405 4406 /* 4407 ** Register a new geometry function for use with the r-tree MATCH operator. 4408 */ 4409 int sqlite3_rtree_geometry_callback( 4410 sqlite3 *db, /* Register SQL function on this connection */ 4411 const char *zGeom, /* Name of the new SQL function */ 4412 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ 4413 void *pContext /* Extra data associated with the callback */ 4414 ){ 4415 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4416 4417 /* Allocate and populate the context object. */ 4418 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4419 if( !pGeomCtx ) return SQLITE_NOMEM; 4420 pGeomCtx->xGeom = xGeom; 4421 pGeomCtx->xQueryFunc = 0; 4422 pGeomCtx->xDestructor = 0; 4423 pGeomCtx->pContext = pContext; 4424 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 4425 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4426 ); 4427 } 4428 4429 /* 4430 ** Register a new 2nd-generation geometry function for use with the 4431 ** r-tree MATCH operator. 4432 */ 4433 int sqlite3_rtree_query_callback( 4434 sqlite3 *db, /* Register SQL function on this connection */ 4435 const char *zQueryFunc, /* Name of new SQL function */ 4436 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ 4437 void *pContext, /* Extra data passed into the callback */ 4438 void (*xDestructor)(void*) /* Destructor for the extra data */ 4439 ){ 4440 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 4441 4442 /* Allocate and populate the context object. */ 4443 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 4444 if( !pGeomCtx ) return SQLITE_NOMEM; 4445 pGeomCtx->xGeom = 0; 4446 pGeomCtx->xQueryFunc = xQueryFunc; 4447 pGeomCtx->xDestructor = xDestructor; 4448 pGeomCtx->pContext = pContext; 4449 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, 4450 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback 4451 ); 4452 } 4453 4454 #if !SQLITE_CORE 4455 #ifdef _WIN32 4456 __declspec(dllexport) 4457 #endif 4458 int sqlite3_rtree_init( 4459 sqlite3 *db, 4460 char **pzErrMsg, 4461 const sqlite3_api_routines *pApi 4462 ){ 4463 SQLITE_EXTENSION_INIT2(pApi) 4464 return sqlite3RtreeInit(db); 4465 } 4466 #endif 4467 4468 #endif 4469