1 /* 2 ** 2011 March 24 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Code for a demonstration virtual table that generates variations 14 ** on an input word at increasing edit distances from the original. 15 ** 16 ** A fuzzer virtual table is created like this: 17 ** 18 ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>); 19 ** 20 ** When it is created, the new fuzzer table must be supplied with the 21 ** name of a "fuzzer data table", which must reside in the same database 22 ** file as the new fuzzer table. The fuzzer data table contains the various 23 ** transformations and their costs that the fuzzer logic uses to generate 24 ** variations. 25 ** 26 ** The fuzzer data table must contain exactly four columns (more precisely, 27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records 28 ** that consist of four columns). It does not matter what the columns are 29 ** named. 30 ** 31 ** Each row in the fuzzer data table represents a single character 32 ** transformation. The left most column of the row (column 0) contains an 33 ** integer value - the identifier of the ruleset to which the transformation 34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the 35 ** row (column 0) contains the input character or characters. The third 36 ** column contains the output character or characters. And the fourth column 37 ** contains the integer cost of making the transformation. For example: 38 ** 39 ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); 40 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); 41 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); 42 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); 43 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); 44 ** 45 ** The first row inserted into the fuzzer data table by the SQL script 46 ** above indicates that the cost of inserting a letter 'a' is 100. (All 47 ** costs are integers. We recommend that costs be scaled so that the 48 ** average cost is around 100.) The second INSERT statement creates a rule 49 ** saying that the cost of deleting a single letter 'b' is 87. The third 50 ** and fourth INSERT statements mean that the cost of transforming a 51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the 52 ** cost of transforming "oe" back into "o" is 40. 53 ** 54 ** The contents of the fuzzer data table are loaded into main memory when 55 ** a fuzzer table is first created, and may be internally reloaded by the 56 ** system at any subsequent time. Therefore, the fuzzer data table should be 57 ** populated before the fuzzer table is created and not modified thereafter. 58 ** If you do need to modify the contents of the fuzzer data table, it is 59 ** recommended that the associated fuzzer table be dropped, the fuzzer data 60 ** table edited, and the fuzzer table recreated within a single transaction. 61 ** Alternatively, the fuzzer data table can be edited then the database 62 ** connection can be closed and reopened. 63 ** 64 ** Once it has been created, the fuzzer table can be queried as follows: 65 ** 66 ** SELECT word, distance FROM f 67 ** WHERE word MATCH 'abcdefg' 68 ** AND distance<200; 69 ** 70 ** This first query outputs the string "abcdefg" and all strings that 71 ** can be derived from that string by appling the specified transformations. 72 ** The strings are output together with their total transformation cost 73 ** (called "distance") and appear in order of increasing cost. No string 74 ** is output more than once. If there are multiple ways to transform the 75 ** target string into the output string then the lowest cost transform is 76 ** the one that is returned. In the example, the search is limited to 77 ** strings with a total distance of less than 200. 78 ** 79 ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or 80 ** UPDATE on a fuzzer table will throw an error. 81 ** 82 ** It is important to put some kind of a limit on the fuzzer output. This 83 ** can be either in the form of a LIMIT clause at the end of the query, 84 ** or better, a "distance<NNN" constraint where NNN is some number. The 85 ** running time and memory requirement is exponential in the value of NNN 86 ** so you want to make sure that NNN is not too big. A value of NNN that 87 ** is about twice the average transformation cost seems to give good results. 88 ** 89 ** The fuzzer table can be useful for tasks such as spelling correction. 90 ** Suppose there is a second table vocabulary(w) where the w column contains 91 ** all correctly spelled words. Let $word be a word you want to look up. 92 ** 93 ** SELECT vocabulary.w FROM f, vocabulary 94 ** WHERE f.word MATCH $word 95 ** AND f.distance<=200 96 ** AND f.word=vocabulary.w 97 ** LIMIT 20 98 ** 99 ** The query above gives the 20 closest words to the $word being tested. 100 ** (Note that for good performance, the vocubulary.w column should be 101 ** indexed.) 102 ** 103 ** A similar query can be used to find all words in the dictionary that 104 ** begin with some prefix $prefix: 105 ** 106 ** SELECT vocabulary.w FROM f, vocabulary 107 ** WHERE f.word MATCH $prefix 108 ** AND f.distance<=200 109 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') 110 ** LIMIT 50 111 ** 112 ** This last query will show up to 50 words out of the vocabulary that 113 ** match or nearly match the $prefix. 114 ** 115 ** MULTIPLE RULE SETS 116 ** 117 ** Normally, the "ruleset" value associated with all character transformations 118 ** in the fuzzer data table is zero. However, if required, the fuzzer table 119 ** allows multiple rulesets to be defined. Each query uses only a single 120 ** ruleset. This allows, for example, a single fuzzer table to support 121 ** multiple languages. 122 ** 123 ** By default, only the rules from ruleset 0 are used. To specify an 124 ** alternative ruleset, a "ruleset = ?" expression must be added to the 125 ** WHERE clause of a SELECT, where ? is the identifier of the desired 126 ** ruleset. For example: 127 ** 128 ** SELECT vocabulary.w FROM f, vocabulary 129 ** WHERE f.word MATCH $word 130 ** AND f.distance<=200 131 ** AND f.word=vocabulary.w 132 ** AND f.ruleset=1 -- Specify the ruleset to use here 133 ** LIMIT 20 134 ** 135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset 136 ** 0 is used. 137 ** 138 ** LIMITS 139 ** 140 ** The maximum ruleset number is 2147483647. The maximum length of either 141 ** of the strings in the second or third column of the fuzzer data table 142 ** is 50 bytes. The maximum cost on a rule is 1000. 143 */ 144 #include "sqlite3ext.h" 145 SQLITE_EXTENSION_INIT1 146 147 /* If SQLITE_DEBUG is not defined, disable assert statements. */ 148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 149 # define NDEBUG 150 #endif 151 152 #include <stdlib.h> 153 #include <string.h> 154 #include <assert.h> 155 #include <stdio.h> 156 157 #ifndef SQLITE_OMIT_VIRTUALTABLE 158 159 /* 160 ** Forward declaration of objects used by this implementation 161 */ 162 typedef struct fuzzer_vtab fuzzer_vtab; 163 typedef struct fuzzer_cursor fuzzer_cursor; 164 typedef struct fuzzer_rule fuzzer_rule; 165 typedef struct fuzzer_seen fuzzer_seen; 166 typedef struct fuzzer_stem fuzzer_stem; 167 168 /* 169 ** Various types. 170 ** 171 ** fuzzer_cost is the "cost" of an edit operation. 172 ** 173 ** fuzzer_len is the length of a matching string. 174 ** 175 ** fuzzer_ruleid is an ruleset identifier. 176 */ 177 typedef int fuzzer_cost; 178 typedef signed char fuzzer_len; 179 typedef int fuzzer_ruleid; 180 181 /* 182 ** Limits 183 */ 184 #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */ 185 #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ 186 #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ 187 #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */ 188 189 190 /* 191 ** Each transformation rule is stored as an instance of this object. 192 ** All rules are kept on a linked list sorted by rCost. 193 */ 194 struct fuzzer_rule { 195 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ 196 char *zFrom; /* Transform from */ 197 fuzzer_cost rCost; /* Cost of this transformation */ 198 fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ 199 fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ 200 char zTo[4]; /* Transform to (extra space appended) */ 201 }; 202 203 /* 204 ** A stem object is used to generate variants. It is also used to record 205 ** previously generated outputs. 206 ** 207 ** Every stem is added to a hash table as it is output. Generation of 208 ** duplicate stems is suppressed. 209 ** 210 ** Active stems (those that might generate new outputs) are kepts on a linked 211 ** list sorted by increasing cost. The cost is the sum of rBaseCost and 212 ** pRule->rCost. 213 */ 214 struct fuzzer_stem { 215 char *zBasis; /* Word being fuzzed */ 216 const fuzzer_rule *pRule; /* Current rule to apply */ 217 fuzzer_stem *pNext; /* Next stem in rCost order */ 218 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ 219 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ 220 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ 221 fuzzer_len nBasis; /* Length of the zBasis string */ 222 fuzzer_len n; /* Apply pRule at this character offset */ 223 }; 224 225 /* 226 ** A fuzzer virtual-table object 227 */ 228 struct fuzzer_vtab { 229 sqlite3_vtab base; /* Base class - must be first */ 230 char *zClassName; /* Name of this class. Default: "fuzzer" */ 231 fuzzer_rule *pRule; /* All active rules in this fuzzer */ 232 int nCursor; /* Number of active cursors */ 233 }; 234 235 #define FUZZER_HASH 4001 /* Hash table size */ 236 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ 237 238 /* A fuzzer cursor object */ 239 struct fuzzer_cursor { 240 sqlite3_vtab_cursor base; /* Base class - must be first */ 241 sqlite3_int64 iRowid; /* The rowid of the current word */ 242 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ 243 fuzzer_cost rLimit; /* Maximum cost of any term */ 244 fuzzer_stem *pStem; /* Stem with smallest rCostX */ 245 fuzzer_stem *pDone; /* Stems already processed to completion */ 246 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ 247 int mxQueue; /* Largest used index in aQueue[] */ 248 char *zBuf; /* Temporary use buffer */ 249 int nBuf; /* Bytes allocated for zBuf */ 250 int nStem; /* Number of stems allocated */ 251 int iRuleset; /* Only process rules from this ruleset */ 252 fuzzer_rule nullRule; /* Null rule used first */ 253 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ 254 }; 255 256 /* 257 ** The two input rule lists are both sorted in order of increasing 258 ** cost. Merge them together into a single list, sorted by cost, and 259 ** return a pointer to the head of that list. 260 */ 261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ 262 fuzzer_rule head; 263 fuzzer_rule *pTail; 264 265 pTail = &head; 266 while( pA && pB ){ 267 if( pA->rCost<=pB->rCost ){ 268 pTail->pNext = pA; 269 pTail = pA; 270 pA = pA->pNext; 271 }else{ 272 pTail->pNext = pB; 273 pTail = pB; 274 pB = pB->pNext; 275 } 276 } 277 if( pA==0 ){ 278 pTail->pNext = pB; 279 }else{ 280 pTail->pNext = pA; 281 } 282 return head.pNext; 283 } 284 285 /* 286 ** Statement pStmt currently points to a row in the fuzzer data table. This 287 ** function allocates and populates a fuzzer_rule structure according to 288 ** the content of the row. 289 ** 290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK 291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point 292 ** to an error message and an SQLite error code returned. 293 */ 294 static int fuzzerLoadOneRule( 295 fuzzer_vtab *p, /* Fuzzer virtual table handle */ 296 sqlite3_stmt *pStmt, /* Base rule on statements current row */ 297 fuzzer_rule **ppRule, /* OUT: New rule object */ 298 char **pzErr /* OUT: Error message */ 299 ){ 300 sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0); 301 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); 302 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); 303 int nCost = sqlite3_column_int(pStmt, 3); 304 305 int rc = SQLITE_OK; /* Return code */ 306 int nFrom; /* Size of string zFrom, in bytes */ 307 int nTo; /* Size of string zTo, in bytes */ 308 fuzzer_rule *pRule = 0; /* New rule object to return */ 309 310 if( zFrom==0 ) zFrom = ""; 311 if( zTo==0 ) zTo = ""; 312 nFrom = (int)strlen(zFrom); 313 nTo = (int)strlen(zTo); 314 315 /* Silently ignore null transformations */ 316 if( strcmp(zFrom, zTo)==0 ){ 317 *ppRule = 0; 318 return SQLITE_OK; 319 } 320 321 if( nCost<=0 || nCost>FUZZER_MX_COST ){ 322 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", 323 p->zClassName, FUZZER_MX_COST 324 ); 325 rc = SQLITE_ERROR; 326 }else 327 if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ 328 *pzErr = sqlite3_mprintf("%s: maximum string length is %d", 329 p->zClassName, FUZZER_MX_LENGTH 330 ); 331 rc = SQLITE_ERROR; 332 }else 333 if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ 334 *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", 335 p->zClassName, FUZZER_MX_RULEID 336 ); 337 rc = SQLITE_ERROR; 338 }else{ 339 340 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); 341 if( pRule==0 ){ 342 rc = SQLITE_NOMEM; 343 }else{ 344 memset(pRule, 0, sizeof(*pRule)); 345 pRule->zFrom = &pRule->zTo[nTo+1]; 346 pRule->nFrom = nFrom; 347 memcpy(pRule->zFrom, zFrom, nFrom+1); 348 memcpy(pRule->zTo, zTo, nTo+1); 349 pRule->nTo = nTo; 350 pRule->rCost = nCost; 351 pRule->iRuleset = (int)iRuleset; 352 } 353 } 354 355 *ppRule = pRule; 356 return rc; 357 } 358 359 /* 360 ** Load the content of the fuzzer data table into memory. 361 */ 362 static int fuzzerLoadRules( 363 sqlite3 *db, /* Database handle */ 364 fuzzer_vtab *p, /* Virtual fuzzer table to configure */ 365 const char *zDb, /* Database containing rules data */ 366 const char *zData, /* Table containing rules data */ 367 char **pzErr /* OUT: Error message */ 368 ){ 369 int rc = SQLITE_OK; /* Return code */ 370 char *zSql; /* SELECT used to read from rules table */ 371 fuzzer_rule *pHead = 0; 372 373 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); 374 if( zSql==0 ){ 375 rc = SQLITE_NOMEM; 376 }else{ 377 int rc2; /* finalize() return code */ 378 sqlite3_stmt *pStmt = 0; 379 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 380 if( rc!=SQLITE_OK ){ 381 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); 382 }else if( sqlite3_column_count(pStmt)!=4 ){ 383 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", 384 p->zClassName, zData, sqlite3_column_count(pStmt) 385 ); 386 rc = SQLITE_ERROR; 387 }else{ 388 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 389 fuzzer_rule *pRule = 0; 390 rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); 391 if( pRule ){ 392 pRule->pNext = pHead; 393 pHead = pRule; 394 } 395 } 396 } 397 rc2 = sqlite3_finalize(pStmt); 398 if( rc==SQLITE_OK ) rc = rc2; 399 } 400 sqlite3_free(zSql); 401 402 /* All rules are now in a singly linked list starting at pHead. This 403 ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to 404 ** point to the head of the sorted list. 405 */ 406 if( rc==SQLITE_OK ){ 407 unsigned int i; 408 fuzzer_rule *pX; 409 fuzzer_rule *a[15]; 410 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; 411 while( (pX = pHead)!=0 ){ 412 pHead = pX->pNext; 413 pX->pNext = 0; 414 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ 415 pX = fuzzerMergeRules(a[i], pX); 416 a[i] = 0; 417 } 418 a[i] = fuzzerMergeRules(a[i], pX); 419 } 420 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ 421 pX = fuzzerMergeRules(a[i], pX); 422 } 423 p->pRule = fuzzerMergeRules(p->pRule, pX); 424 }else{ 425 /* An error has occurred. Setting p->pRule to point to the head of the 426 ** allocated list ensures that the list will be cleaned up in this case. 427 */ 428 assert( p->pRule==0 ); 429 p->pRule = pHead; 430 } 431 432 return rc; 433 } 434 435 /* 436 ** This function converts an SQL quoted string into an unquoted string 437 ** and returns a pointer to a buffer allocated using sqlite3_malloc() 438 ** containing the result. The caller should eventually free this buffer 439 ** using sqlite3_free. 440 ** 441 ** Examples: 442 ** 443 ** "abc" becomes abc 444 ** 'xyz' becomes xyz 445 ** [pqr] becomes pqr 446 ** `mno` becomes mno 447 */ 448 static char *fuzzerDequote(const char *zIn){ 449 int nIn; /* Size of input string, in bytes */ 450 char *zOut; /* Output (dequoted) string */ 451 452 nIn = (int)strlen(zIn); 453 zOut = sqlite3_malloc(nIn+1); 454 if( zOut ){ 455 char q = zIn[0]; /* Quote character (if any ) */ 456 457 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){ 458 memcpy(zOut, zIn, nIn+1); 459 }else{ 460 int iOut = 0; /* Index of next byte to write to output */ 461 int iIn; /* Index of next byte to read from input */ 462 463 if( q=='[' ) q = ']'; 464 for(iIn=1; iIn<nIn; iIn++){ 465 if( zIn[iIn]==q ) iIn++; 466 zOut[iOut++] = zIn[iIn]; 467 } 468 } 469 assert( (int)strlen(zOut)<=nIn ); 470 } 471 return zOut; 472 } 473 474 /* 475 ** xDisconnect/xDestroy method for the fuzzer module. 476 */ 477 static int fuzzerDisconnect(sqlite3_vtab *pVtab){ 478 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; 479 assert( p->nCursor==0 ); 480 while( p->pRule ){ 481 fuzzer_rule *pRule = p->pRule; 482 p->pRule = pRule->pNext; 483 sqlite3_free(pRule); 484 } 485 sqlite3_free(p); 486 return SQLITE_OK; 487 } 488 489 /* 490 ** xConnect/xCreate method for the fuzzer module. Arguments are: 491 ** 492 ** argv[0] -> module name ("fuzzer") 493 ** argv[1] -> database name 494 ** argv[2] -> table name 495 ** argv[3] -> fuzzer rule table name 496 */ 497 static int fuzzerConnect( 498 sqlite3 *db, 499 void *pAux, 500 int argc, const char *const*argv, 501 sqlite3_vtab **ppVtab, 502 char **pzErr 503 ){ 504 int rc = SQLITE_OK; /* Return code */ 505 fuzzer_vtab *pNew = 0; /* New virtual table */ 506 const char *zModule = argv[0]; 507 const char *zDb = argv[1]; 508 509 if( argc!=4 ){ 510 *pzErr = sqlite3_mprintf( 511 "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule 512 ); 513 rc = SQLITE_ERROR; 514 }else{ 515 int nModule; /* Length of zModule, in bytes */ 516 517 nModule = (int)strlen(zModule); 518 pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1); 519 if( pNew==0 ){ 520 rc = SQLITE_NOMEM; 521 }else{ 522 char *zTab; /* Dequoted name of fuzzer data table */ 523 524 memset(pNew, 0, sizeof(*pNew)); 525 pNew->zClassName = (char*)&pNew[1]; 526 memcpy(pNew->zClassName, zModule, nModule+1); 527 528 zTab = fuzzerDequote(argv[3]); 529 if( zTab==0 ){ 530 rc = SQLITE_NOMEM; 531 }else{ 532 rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr); 533 sqlite3_free(zTab); 534 } 535 536 if( rc==SQLITE_OK ){ 537 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)"); 538 } 539 if( rc!=SQLITE_OK ){ 540 fuzzerDisconnect((sqlite3_vtab *)pNew); 541 pNew = 0; 542 } 543 } 544 } 545 546 *ppVtab = (sqlite3_vtab *)pNew; 547 return rc; 548 } 549 550 /* 551 ** Open a new fuzzer cursor. 552 */ 553 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 554 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; 555 fuzzer_cursor *pCur; 556 pCur = sqlite3_malloc( sizeof(*pCur) ); 557 if( pCur==0 ) return SQLITE_NOMEM; 558 memset(pCur, 0, sizeof(*pCur)); 559 pCur->pVtab = p; 560 *ppCursor = &pCur->base; 561 p->nCursor++; 562 return SQLITE_OK; 563 } 564 565 /* 566 ** Free all stems in a list. 567 */ 568 static void fuzzerClearStemList(fuzzer_stem *pStem){ 569 while( pStem ){ 570 fuzzer_stem *pNext = pStem->pNext; 571 sqlite3_free(pStem); 572 pStem = pNext; 573 } 574 } 575 576 /* 577 ** Free up all the memory allocated by a cursor. Set it rLimit to 0 578 ** to indicate that it is at EOF. 579 */ 580 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ 581 int i; 582 fuzzerClearStemList(pCur->pStem); 583 fuzzerClearStemList(pCur->pDone); 584 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); 585 pCur->rLimit = (fuzzer_cost)0; 586 if( clearHash && pCur->nStem ){ 587 pCur->mxQueue = 0; 588 pCur->pStem = 0; 589 pCur->pDone = 0; 590 memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); 591 memset(pCur->apHash, 0, sizeof(pCur->apHash)); 592 } 593 pCur->nStem = 0; 594 } 595 596 /* 597 ** Close a fuzzer cursor. 598 */ 599 static int fuzzerClose(sqlite3_vtab_cursor *cur){ 600 fuzzer_cursor *pCur = (fuzzer_cursor *)cur; 601 fuzzerClearCursor(pCur, 0); 602 sqlite3_free(pCur->zBuf); 603 pCur->pVtab->nCursor--; 604 sqlite3_free(pCur); 605 return SQLITE_OK; 606 } 607 608 /* 609 ** Compute the current output term for a fuzzer_stem. 610 */ 611 static int fuzzerRender( 612 fuzzer_stem *pStem, /* The stem to be rendered */ 613 char **pzBuf, /* Write results into this buffer. realloc if needed */ 614 int *pnBuf /* Size of the buffer */ 615 ){ 616 const fuzzer_rule *pRule = pStem->pRule; 617 int n; /* Size of output term without nul-term */ 618 char *z; /* Buffer to assemble output term in */ 619 620 n = pStem->nBasis + pRule->nTo - pRule->nFrom; 621 if( (*pnBuf)<n+1 ){ 622 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); 623 if( (*pzBuf)==0 ) return SQLITE_NOMEM; 624 (*pnBuf) = n+100; 625 } 626 n = pStem->n; 627 z = *pzBuf; 628 if( n<0 ){ 629 memcpy(z, pStem->zBasis, pStem->nBasis+1); 630 }else{ 631 memcpy(z, pStem->zBasis, n); 632 memcpy(&z[n], pRule->zTo, pRule->nTo); 633 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], 634 pStem->nBasis-n-pRule->nFrom+1); 635 } 636 637 assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 ); 638 return SQLITE_OK; 639 } 640 641 /* 642 ** Compute a hash on zBasis. 643 */ 644 static unsigned int fuzzerHash(const char *z){ 645 unsigned int h = 0; 646 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } 647 return h % FUZZER_HASH; 648 } 649 650 /* 651 ** Current cost of a stem 652 */ 653 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ 654 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; 655 } 656 657 #if 0 658 /* 659 ** Print a description of a fuzzer_stem on stderr. 660 */ 661 static void fuzzerStemPrint( 662 const char *zPrefix, 663 fuzzer_stem *pStem, 664 const char *zSuffix 665 ){ 666 if( pStem->n<0 ){ 667 fprintf(stderr, "%s[%s](%d)-->self%s", 668 zPrefix, 669 pStem->zBasis, pStem->rBaseCost, 670 zSuffix 671 ); 672 }else{ 673 char *zBuf = 0; 674 int nBuf = 0; 675 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; 676 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", 677 zPrefix, 678 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, 679 zSuffix 680 ); 681 sqlite3_free(zBuf); 682 } 683 } 684 #endif 685 686 /* 687 ** Return 1 if the string to which the cursor is point has already 688 ** been emitted. Return 0 if not. Return -1 on a memory allocation 689 ** failures. 690 */ 691 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ 692 unsigned int h; 693 fuzzer_stem *pLookup; 694 695 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ 696 return -1; 697 } 698 h = fuzzerHash(pCur->zBuf); 699 pLookup = pCur->apHash[h]; 700 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ 701 pLookup = pLookup->pHash; 702 } 703 return pLookup!=0; 704 } 705 706 /* 707 ** If argument pRule is NULL, this function returns false. 708 ** 709 ** Otherwise, it returns true if rule pRule should be skipped. A rule 710 ** should be skipped if it does not belong to rule-set iRuleset, or if 711 ** applying it to stem pStem would create a string longer than 712 ** FUZZER_MX_OUTPUT_LENGTH bytes. 713 */ 714 static int fuzzerSkipRule( 715 const fuzzer_rule *pRule, /* Determine whether or not to skip this */ 716 fuzzer_stem *pStem, /* Stem rule may be applied to */ 717 int iRuleset /* Rule-set used by the current query */ 718 ){ 719 return pRule && ( 720 (pRule->iRuleset!=iRuleset) 721 || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH 722 ); 723 } 724 725 /* 726 ** Advance a fuzzer_stem to its next value. Return 0 if there are 727 ** no more values that can be generated by this fuzzer_stem. Return 728 ** -1 on a memory allocation failure. 729 */ 730 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ 731 const fuzzer_rule *pRule; 732 while( (pRule = pStem->pRule)!=0 ){ 733 assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); 734 while( pStem->n < pStem->nBasis - pRule->nFrom ){ 735 pStem->n++; 736 if( pRule->nFrom==0 737 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 738 ){ 739 /* Found a rewrite case. Make sure it is not a duplicate */ 740 int rc = fuzzerSeen(pCur, pStem); 741 if( rc<0 ) return -1; 742 if( rc==0 ){ 743 fuzzerCost(pStem); 744 return 1; 745 } 746 } 747 } 748 pStem->n = -1; 749 do{ 750 pRule = pRule->pNext; 751 }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) ); 752 pStem->pRule = pRule; 753 if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; 754 } 755 return 0; 756 } 757 758 /* 759 ** The two input stem lists are both sorted in order of increasing 760 ** rCostX. Merge them together into a single list, sorted by rCostX, and 761 ** return a pointer to the head of that new list. 762 */ 763 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ 764 fuzzer_stem head; 765 fuzzer_stem *pTail; 766 767 pTail = &head; 768 while( pA && pB ){ 769 if( pA->rCostX<=pB->rCostX ){ 770 pTail->pNext = pA; 771 pTail = pA; 772 pA = pA->pNext; 773 }else{ 774 pTail->pNext = pB; 775 pTail = pB; 776 pB = pB->pNext; 777 } 778 } 779 if( pA==0 ){ 780 pTail->pNext = pB; 781 }else{ 782 pTail->pNext = pA; 783 } 784 return head.pNext; 785 } 786 787 /* 788 ** Load pCur->pStem with the lowest-cost stem. Return a pointer 789 ** to the lowest-cost stem. 790 */ 791 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ 792 fuzzer_stem *pBest, *pX; 793 int iBest; 794 int i; 795 796 if( pCur->pStem==0 ){ 797 iBest = -1; 798 pBest = 0; 799 for(i=0; i<=pCur->mxQueue; i++){ 800 pX = pCur->aQueue[i]; 801 if( pX==0 ) continue; 802 if( pBest==0 || pBest->rCostX>pX->rCostX ){ 803 pBest = pX; 804 iBest = i; 805 } 806 } 807 if( pBest ){ 808 pCur->aQueue[iBest] = pBest->pNext; 809 pBest->pNext = 0; 810 pCur->pStem = pBest; 811 } 812 } 813 return pCur->pStem; 814 } 815 816 /* 817 ** Insert pNew into queue of pending stems. Then find the stem 818 ** with the lowest rCostX and move it into pCur->pStem. 819 ** list. The insert is done such the pNew is in the correct order 820 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. 821 */ 822 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ 823 fuzzer_stem *pX; 824 int i; 825 826 /* If pCur->pStem exists and is greater than pNew, then make pNew 827 ** the new pCur->pStem and insert the old pCur->pStem instead. 828 */ 829 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ 830 pNew->pNext = 0; 831 pCur->pStem = pNew; 832 pNew = pX; 833 } 834 835 /* Insert the new value */ 836 pNew->pNext = 0; 837 pX = pNew; 838 for(i=0; i<=pCur->mxQueue; i++){ 839 if( pCur->aQueue[i] ){ 840 pX = fuzzerMergeStems(pX, pCur->aQueue[i]); 841 pCur->aQueue[i] = 0; 842 }else{ 843 pCur->aQueue[i] = pX; 844 break; 845 } 846 } 847 if( i>pCur->mxQueue ){ 848 if( i<FUZZER_NQUEUE ){ 849 pCur->mxQueue = i; 850 pCur->aQueue[i] = pX; 851 }else{ 852 assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); 853 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); 854 pCur->aQueue[FUZZER_NQUEUE-1] = pX; 855 } 856 } 857 858 return fuzzerLowestCostStem(pCur); 859 } 860 861 /* 862 ** Allocate a new fuzzer_stem. Add it to the hash table but do not 863 ** link it into either the pCur->pStem or pCur->pDone lists. 864 */ 865 static fuzzer_stem *fuzzerNewStem( 866 fuzzer_cursor *pCur, 867 const char *zWord, 868 fuzzer_cost rBaseCost 869 ){ 870 fuzzer_stem *pNew; 871 fuzzer_rule *pRule; 872 unsigned int h; 873 874 pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); 875 if( pNew==0 ) return 0; 876 memset(pNew, 0, sizeof(*pNew)); 877 pNew->zBasis = (char*)&pNew[1]; 878 pNew->nBasis = (int)strlen(zWord); 879 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); 880 pRule = pCur->pVtab->pRule; 881 while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ 882 pRule = pRule->pNext; 883 } 884 pNew->pRule = pRule; 885 pNew->n = -1; 886 pNew->rBaseCost = pNew->rCostX = rBaseCost; 887 h = fuzzerHash(pNew->zBasis); 888 pNew->pHash = pCur->apHash[h]; 889 pCur->apHash[h] = pNew; 890 pCur->nStem++; 891 return pNew; 892 } 893 894 895 /* 896 ** Advance a cursor to its next row of output 897 */ 898 static int fuzzerNext(sqlite3_vtab_cursor *cur){ 899 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 900 int rc; 901 fuzzer_stem *pStem, *pNew; 902 903 pCur->iRowid++; 904 905 /* Use the element the cursor is currently point to to create 906 ** a new stem and insert the new stem into the priority queue. 907 */ 908 pStem = pCur->pStem; 909 if( pStem->rCostX>0 ){ 910 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); 911 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; 912 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); 913 if( pNew ){ 914 if( fuzzerAdvance(pCur, pNew)==0 ){ 915 pNew->pNext = pCur->pDone; 916 pCur->pDone = pNew; 917 }else{ 918 if( fuzzerInsert(pCur, pNew)==pNew ){ 919 return SQLITE_OK; 920 } 921 } 922 }else{ 923 return SQLITE_NOMEM; 924 } 925 } 926 927 /* Adjust the priority queue so that the first element of the 928 ** stem list is the next lowest cost word. 929 */ 930 while( (pStem = pCur->pStem)!=0 ){ 931 int res = fuzzerAdvance(pCur, pStem); 932 if( res<0 ){ 933 return SQLITE_NOMEM; 934 }else if( res>0 ){ 935 pCur->pStem = 0; 936 pStem = fuzzerInsert(pCur, pStem); 937 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ 938 if( rc<0 ) return SQLITE_NOMEM; 939 continue; 940 } 941 return SQLITE_OK; /* New word found */ 942 } 943 pCur->pStem = 0; 944 pStem->pNext = pCur->pDone; 945 pCur->pDone = pStem; 946 if( fuzzerLowestCostStem(pCur) ){ 947 rc = fuzzerSeen(pCur, pCur->pStem); 948 if( rc<0 ) return SQLITE_NOMEM; 949 if( rc==0 ){ 950 return SQLITE_OK; 951 } 952 } 953 } 954 955 /* Reach this point only if queue has been exhausted and there is 956 ** nothing left to be output. */ 957 pCur->rLimit = (fuzzer_cost)0; 958 return SQLITE_OK; 959 } 960 961 /* 962 ** Called to "rewind" a cursor back to the beginning so that 963 ** it starts its output over again. Always called at least once 964 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. 965 */ 966 static int fuzzerFilter( 967 sqlite3_vtab_cursor *pVtabCursor, 968 int idxNum, const char *idxStr, 969 int argc, sqlite3_value **argv 970 ){ 971 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; 972 const char *zWord = ""; 973 fuzzer_stem *pStem; 974 int idx; 975 976 fuzzerClearCursor(pCur, 1); 977 pCur->rLimit = 2147483647; 978 idx = 0; 979 if( idxNum & 1 ){ 980 zWord = (const char*)sqlite3_value_text(argv[0]); 981 idx++; 982 } 983 if( idxNum & 2 ){ 984 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); 985 idx++; 986 } 987 if( idxNum & 4 ){ 988 pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); 989 idx++; 990 } 991 pCur->nullRule.pNext = pCur->pVtab->pRule; 992 pCur->nullRule.rCost = 0; 993 pCur->nullRule.nFrom = 0; 994 pCur->nullRule.nTo = 0; 995 pCur->nullRule.zFrom = ""; 996 pCur->iRowid = 1; 997 assert( pCur->pStem==0 ); 998 999 /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this 1000 ** query will return zero rows. */ 1001 if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){ 1002 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); 1003 if( pStem==0 ) return SQLITE_NOMEM; 1004 pStem->pRule = &pCur->nullRule; 1005 pStem->n = pStem->nBasis; 1006 }else{ 1007 pCur->rLimit = 0; 1008 } 1009 1010 return SQLITE_OK; 1011 } 1012 1013 /* 1014 ** Only the word and distance columns have values. All other columns 1015 ** return NULL 1016 */ 1017 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1018 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 1019 if( i==0 ){ 1020 /* the "word" column */ 1021 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ 1022 return SQLITE_NOMEM; 1023 } 1024 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); 1025 }else if( i==1 ){ 1026 /* the "distance" column */ 1027 sqlite3_result_int(ctx, pCur->pStem->rCostX); 1028 }else{ 1029 /* All other columns are NULL */ 1030 sqlite3_result_null(ctx); 1031 } 1032 return SQLITE_OK; 1033 } 1034 1035 /* 1036 ** The rowid. 1037 */ 1038 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ 1039 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 1040 *pRowid = pCur->iRowid; 1041 return SQLITE_OK; 1042 } 1043 1044 /* 1045 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal 1046 ** that the cursor has nothing more to output. 1047 */ 1048 static int fuzzerEof(sqlite3_vtab_cursor *cur){ 1049 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 1050 return pCur->rLimit<=(fuzzer_cost)0; 1051 } 1052 1053 /* 1054 ** Search for terms of these forms: 1055 ** 1056 ** (A) word MATCH $str 1057 ** (B1) distance < $value 1058 ** (B2) distance <= $value 1059 ** (C) ruleid == $ruleid 1060 ** 1061 ** The distance< and distance<= are both treated as distance<=. 1062 ** The query plan number is a bit vector: 1063 ** 1064 ** bit 1: Term of the form (A) found 1065 ** bit 2: Term like (B1) or (B2) found 1066 ** bit 3: Term like (C) found 1067 ** 1068 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set 1069 ** then $value is in filter.argv[0] if bit-1 is clear and is in 1070 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is 1071 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in 1072 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in 1073 ** filter.argv[2] if both bit-1 and bit-2 are set. 1074 */ 1075 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1076 int iPlan = 0; 1077 int iDistTerm = -1; 1078 int iRulesetTerm = -1; 1079 int i; 1080 int seenMatch = 0; 1081 const struct sqlite3_index_constraint *pConstraint; 1082 double rCost = 1e12; 1083 1084 pConstraint = pIdxInfo->aConstraint; 1085 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 1086 if( pConstraint->iColumn==0 1087 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 1088 seenMatch = 1; 1089 } 1090 if( pConstraint->usable==0 ) continue; 1091 if( (iPlan & 1)==0 1092 && pConstraint->iColumn==0 1093 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH 1094 ){ 1095 iPlan |= 1; 1096 pIdxInfo->aConstraintUsage[i].argvIndex = 1; 1097 pIdxInfo->aConstraintUsage[i].omit = 1; 1098 rCost /= 1e6; 1099 } 1100 if( (iPlan & 2)==0 1101 && pConstraint->iColumn==1 1102 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT 1103 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) 1104 ){ 1105 iPlan |= 2; 1106 iDistTerm = i; 1107 rCost /= 10.0; 1108 } 1109 if( (iPlan & 4)==0 1110 && pConstraint->iColumn==2 1111 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ 1112 ){ 1113 iPlan |= 4; 1114 pIdxInfo->aConstraintUsage[i].omit = 1; 1115 iRulesetTerm = i; 1116 rCost /= 10.0; 1117 } 1118 } 1119 if( iPlan & 2 ){ 1120 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); 1121 } 1122 if( iPlan & 4 ){ 1123 int idx = 1; 1124 if( iPlan & 1 ) idx++; 1125 if( iPlan & 2 ) idx++; 1126 pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; 1127 } 1128 pIdxInfo->idxNum = iPlan; 1129 if( pIdxInfo->nOrderBy==1 1130 && pIdxInfo->aOrderBy[0].iColumn==1 1131 && pIdxInfo->aOrderBy[0].desc==0 1132 ){ 1133 pIdxInfo->orderByConsumed = 1; 1134 } 1135 if( seenMatch && (iPlan&1)==0 ) rCost = 1e99; 1136 pIdxInfo->estimatedCost = rCost; 1137 1138 return SQLITE_OK; 1139 } 1140 1141 /* 1142 ** A virtual table module that implements the "fuzzer". 1143 */ 1144 static sqlite3_module fuzzerModule = { 1145 0, /* iVersion */ 1146 fuzzerConnect, 1147 fuzzerConnect, 1148 fuzzerBestIndex, 1149 fuzzerDisconnect, 1150 fuzzerDisconnect, 1151 fuzzerOpen, /* xOpen - open a cursor */ 1152 fuzzerClose, /* xClose - close a cursor */ 1153 fuzzerFilter, /* xFilter - configure scan constraints */ 1154 fuzzerNext, /* xNext - advance a cursor */ 1155 fuzzerEof, /* xEof - check for end of scan */ 1156 fuzzerColumn, /* xColumn - read data */ 1157 fuzzerRowid, /* xRowid - read data */ 1158 0, /* xUpdate */ 1159 0, /* xBegin */ 1160 0, /* xSync */ 1161 0, /* xCommit */ 1162 0, /* xRollback */ 1163 0, /* xFindMethod */ 1164 0, /* xRename */ 1165 }; 1166 1167 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1168 1169 1170 #ifdef _WIN32 1171 __declspec(dllexport) 1172 #endif 1173 int sqlite3_fuzzer_init( 1174 sqlite3 *db, 1175 char **pzErrMsg, 1176 const sqlite3_api_routines *pApi 1177 ){ 1178 int rc = SQLITE_OK; 1179 SQLITE_EXTENSION_INIT2(pApi); 1180 #ifndef SQLITE_OMIT_VIRTUALTABLE 1181 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); 1182 #endif 1183 return rc; 1184 } 1185