1 /* 2 ** 2005 December 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** $Id: sqlite3async.c,v 1.2 2009/04/24 09:27:16 danielk1977 Exp $ 14 ** 15 ** This file contains the implementation of an asynchronous IO backend 16 ** for SQLite. 17 */ 18 19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) 20 21 #include "sqlite3async.h" 22 23 #define ENABLE_FILE_LOCKING 24 25 /* Useful macros used in several places */ 26 #define MIN(x,y) ((x)<(y)?(x):(y)) 27 #define MAX(x,y) ((x)>(y)?(x):(y)) 28 29 /* Forward references */ 30 typedef struct AsyncWrite AsyncWrite; 31 typedef struct AsyncFile AsyncFile; 32 typedef struct AsyncFileData AsyncFileData; 33 typedef struct AsyncFileLock AsyncFileLock; 34 typedef struct AsyncLock AsyncLock; 35 36 /* Enable for debugging */ 37 static int sqlite3async_trace = 0; 38 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X 39 static void asyncTrace(const char *zFormat, ...){ 40 char *z; 41 va_list ap; 42 va_start(ap, zFormat); 43 z = sqlite3_vmprintf(zFormat, ap); 44 va_end(ap); 45 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); 46 sqlite3_free(z); 47 } 48 49 /* 50 ** THREAD SAFETY NOTES 51 ** 52 ** Basic rules: 53 ** 54 ** * Both read and write access to the global write-op queue must be 55 ** protected by the async.queueMutex. As are the async.ioError and 56 ** async.nFile variables. 57 ** 58 ** * The async.pLock list and all AsyncLock and AsyncFileLock 59 ** structures must be protected by the async.lockMutex mutex. 60 ** 61 ** * The file handles from the underlying system are not assumed to 62 ** be thread safe. 63 ** 64 ** * See the last two paragraphs under "The Writer Thread" for 65 ** an assumption to do with file-handle synchronization by the Os. 66 ** 67 ** Deadlock prevention: 68 ** 69 ** There are three mutex used by the system: the "writer" mutex, 70 ** the "queue" mutex and the "lock" mutex. Rules are: 71 ** 72 ** * It is illegal to block on the writer mutex when any other mutex 73 ** are held, and 74 ** 75 ** * It is illegal to block on the queue mutex when the lock mutex 76 ** is held. 77 ** 78 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". 79 ** 80 ** File system operations (invoked by SQLite thread): 81 ** 82 ** xOpen 83 ** xDelete 84 ** xFileExists 85 ** 86 ** File handle operations (invoked by SQLite thread): 87 ** 88 ** asyncWrite, asyncClose, asyncTruncate, asyncSync 89 ** 90 ** The operations above add an entry to the global write-op list. They 91 ** prepare the entry, acquire the async.queueMutex momentarily while 92 ** list pointers are manipulated to insert the new entry, then release 93 ** the mutex and signal the writer thread to wake up in case it happens 94 ** to be asleep. 95 ** 96 ** 97 ** asyncRead, asyncFileSize. 98 ** 99 ** Read operations. Both of these read from both the underlying file 100 ** first then adjust their result based on pending writes in the 101 ** write-op queue. So async.queueMutex is held for the duration 102 ** of these operations to prevent other threads from changing the 103 ** queue in mid operation. 104 ** 105 ** 106 ** asyncLock, asyncUnlock, asyncCheckReservedLock 107 ** 108 ** These primitives implement in-process locking using a hash table 109 ** on the file name. Files are locked correctly for connections coming 110 ** from the same process. But other processes cannot see these locks 111 ** and will therefore not honor them. 112 ** 113 ** 114 ** The writer thread: 115 ** 116 ** The async.writerMutex is used to make sure only there is only 117 ** a single writer thread running at a time. 118 ** 119 ** Inside the writer thread is a loop that works like this: 120 ** 121 ** WHILE (write-op list is not empty) 122 ** Do IO operation at head of write-op list 123 ** Remove entry from head of write-op list 124 ** END WHILE 125 ** 126 ** The async.queueMutex is always held during the <write-op list is 127 ** not empty> test, and when the entry is removed from the head 128 ** of the write-op list. Sometimes it is held for the interim 129 ** period (while the IO is performed), and sometimes it is 130 ** relinquished. It is relinquished if (a) the IO op is an 131 ** ASYNC_CLOSE or (b) when the file handle was opened, two of 132 ** the underlying systems handles were opened on the same 133 ** file-system entry. 134 ** 135 ** If condition (b) above is true, then one file-handle 136 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the 137 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 138 ** threads to perform write() operations. This means that read 139 ** operations are not blocked by asynchronous writes (although 140 ** asynchronous writes may still be blocked by reads). 141 ** 142 ** This assumes that the OS keeps two handles open on the same file 143 ** properly in sync. That is, any read operation that starts after a 144 ** write operation on the same file system entry has completed returns 145 ** data consistent with the write. We also assume that if one thread 146 ** reads a file while another is writing it all bytes other than the 147 ** ones actually being written contain valid data. 148 ** 149 ** If the above assumptions are not true, set the preprocessor symbol 150 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. 151 */ 152 153 154 #ifndef NDEBUG 155 # define TESTONLY( X ) X 156 #else 157 # define TESTONLY( X ) 158 #endif 159 160 /* 161 ** PORTING FUNCTIONS 162 ** 163 ** There are two definitions of the following functions. One for pthreads 164 ** compatible systems and one for Win32. These functions isolate the OS 165 ** specific code required by each platform. 166 ** 167 ** The system uses three mutexes and a single condition variable. To 168 ** block on a mutex, async_mutex_enter() is called. The parameter passed 169 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, 170 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three 171 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is 172 ** called with a parameter identifying the mutex being unlocked. Mutexes 173 ** are not recursive - it is an error to call async_mutex_enter() to 174 ** lock a mutex that is already locked, or to call async_mutex_leave() 175 ** to unlock a mutex that is not currently locked. 176 ** 177 ** The async_cond_wait() and async_cond_signal() functions are modelled 178 ** on the pthreads functions with similar names. The first parameter to 179 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() 180 ** is called the mutex identified by the second parameter must be held. 181 ** The mutex is unlocked, and the calling thread simultaneously begins 182 ** waiting for the condition variable to be signalled by another thread. 183 ** After another thread signals the condition variable, the calling 184 ** thread stops waiting, locks mutex eMutex and returns. The 185 ** async_cond_signal() function is used to signal the condition variable. 186 ** It is assumed that the mutex used by the thread calling async_cond_wait() 187 ** is held by the caller of async_cond_signal() (otherwise there would be 188 ** a race condition). 189 ** 190 ** It is guaranteed that no other thread will call async_cond_wait() when 191 ** there is already a thread waiting on the condition variable. 192 ** 193 ** The async_sched_yield() function is called to suggest to the operating 194 ** system that it would be a good time to shift the current thread off the 195 ** CPU. The system will still work if this function is not implemented 196 ** (it is not currently implemented for win32), but it might be marginally 197 ** more efficient if it is. 198 */ 199 static void async_mutex_enter(int eMutex); 200 static void async_mutex_leave(int eMutex); 201 static void async_cond_wait(int eCond, int eMutex); 202 static void async_cond_signal(int eCond); 203 static void async_sched_yield(void); 204 205 /* 206 ** There are also two definitions of the following. async_os_initialize() 207 ** is called when the asynchronous VFS is first installed, and os_shutdown() 208 ** is called when it is uninstalled (from within sqlite3async_shutdown()). 209 ** 210 ** For pthreads builds, both of these functions are no-ops. For win32, 211 ** they provide an opportunity to initialize and finalize the required 212 ** mutex and condition variables. 213 ** 214 ** If async_os_initialize() returns other than zero, then the initialization 215 ** fails and SQLITE_ERROR is returned to the user. 216 */ 217 static int async_os_initialize(void); 218 static void async_os_shutdown(void); 219 220 /* Values for use as the 'eMutex' argument of the above functions. The 221 ** integer values assigned to these constants are important for assert() 222 ** statements that verify that mutexes are locked in the correct order. 223 ** Specifically, it is unsafe to try to lock mutex N while holding a lock 224 ** on mutex M if (M<=N). 225 */ 226 #define ASYNC_MUTEX_LOCK 0 227 #define ASYNC_MUTEX_QUEUE 1 228 #define ASYNC_MUTEX_WRITER 2 229 230 /* Values for use as the 'eCond' argument of the above functions. */ 231 #define ASYNC_COND_QUEUE 0 232 233 /************************************************************************* 234 ** Start of OS specific code. 235 */ 236 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) 237 238 /* The following block contains the win32 specific code. */ 239 240 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) 241 242 static struct AsyncPrimitives { 243 int isInit; 244 DWORD aHolder[3]; 245 CRITICAL_SECTION aMutex[3]; 246 HANDLE aCond[1]; 247 } primitives = { 0 }; 248 249 static int async_os_initialize(void){ 250 if( !primitives.isInit ){ 251 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); 252 if( primitives.aCond[0]==NULL ){ 253 return 1; 254 } 255 InitializeCriticalSection(&primitives.aMutex[0]); 256 InitializeCriticalSection(&primitives.aMutex[1]); 257 InitializeCriticalSection(&primitives.aMutex[2]); 258 primitives.isInit = 1; 259 } 260 return 0; 261 } 262 static void async_os_shutdown(void){ 263 if( primitives.isInit ){ 264 DeleteCriticalSection(&primitives.aMutex[0]); 265 DeleteCriticalSection(&primitives.aMutex[1]); 266 DeleteCriticalSection(&primitives.aMutex[2]); 267 CloseHandle(primitives.aCond[0]); 268 primitives.isInit = 0; 269 } 270 } 271 272 /* The following block contains the Win32 specific code. */ 273 static void async_mutex_enter(int eMutex){ 274 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 275 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); 276 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); 277 assert( eMutex!=0 || (!mutex_held(0)) ); 278 EnterCriticalSection(&primitives.aMutex[eMutex]); 279 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) 280 } 281 static void async_mutex_leave(int eMutex){ 282 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 283 assert( mutex_held(eMutex) ); 284 TESTONLY( primitives.aHolder[eMutex] = 0; ) 285 LeaveCriticalSection(&primitives.aMutex[eMutex]); 286 } 287 static void async_cond_wait(int eCond, int eMutex){ 288 ResetEvent(primitives.aCond[eCond]); 289 async_mutex_leave(eMutex); 290 WaitForSingleObject(primitives.aCond[eCond], INFINITE); 291 async_mutex_enter(eMutex); 292 } 293 static void async_cond_signal(int eCond){ 294 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); 295 SetEvent(primitives.aCond[eCond]); 296 } 297 static void async_sched_yield(void){ 298 /* Todo: Find out if win32 offers anything like sched_yield() */ 299 } 300 #else 301 302 /* The following block contains the pthreads specific code. */ 303 #include <pthread.h> 304 #include <sched.h> 305 306 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) 307 308 static int async_os_initialize(void) {return 0;} 309 static void async_os_shutdown(void) {} 310 311 static struct AsyncPrimitives { 312 pthread_mutex_t aMutex[3]; 313 pthread_cond_t aCond[1]; 314 pthread_t aHolder[3]; 315 } primitives = { 316 { PTHREAD_MUTEX_INITIALIZER, 317 PTHREAD_MUTEX_INITIALIZER, 318 PTHREAD_MUTEX_INITIALIZER 319 } , { 320 PTHREAD_COND_INITIALIZER 321 } , { 0, 0, 0 } 322 }; 323 324 static void async_mutex_enter(int eMutex){ 325 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 326 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); 327 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); 328 assert( eMutex!=0 || (!mutex_held(0)) ); 329 pthread_mutex_lock(&primitives.aMutex[eMutex]); 330 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) 331 } 332 static void async_mutex_leave(int eMutex){ 333 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 334 assert( mutex_held(eMutex) ); 335 TESTONLY( primitives.aHolder[eMutex] = 0; ) 336 pthread_mutex_unlock(&primitives.aMutex[eMutex]); 337 } 338 static void async_cond_wait(int eCond, int eMutex){ 339 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 340 assert( mutex_held(eMutex) ); 341 TESTONLY( primitives.aHolder[eMutex] = 0; ) 342 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); 343 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) 344 } 345 static void async_cond_signal(int eCond){ 346 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); 347 pthread_cond_signal(&primitives.aCond[eCond]); 348 } 349 static void async_sched_yield(void){ 350 sched_yield(); 351 } 352 #endif 353 /* 354 ** End of OS specific code. 355 *************************************************************************/ 356 357 #define assert_mutex_is_held(X) assert( mutex_held(X) ) 358 359 360 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES 361 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ 362 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 363 #endif 364 365 /* 366 ** State information is held in the static variable "async" defined 367 ** as the following structure. 368 ** 369 ** Both async.ioError and async.nFile are protected by async.queueMutex. 370 */ 371 static struct TestAsyncStaticData { 372 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ 373 AsyncWrite *pQueueLast; /* Last write operation on the list */ 374 AsyncLock *pLock; /* Linked list of all AsyncLock structures */ 375 volatile int ioDelay; /* Extra delay between write operations */ 376 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ 377 int ioError; /* True if an IO error has occurred */ 378 int nFile; /* Number of open files (from sqlite pov) */ 379 } async = { 0,0,0,0,0,0,0 }; 380 381 /* Possible values of AsyncWrite.op */ 382 #define ASYNC_NOOP 0 383 #define ASYNC_WRITE 1 384 #define ASYNC_SYNC 2 385 #define ASYNC_TRUNCATE 3 386 #define ASYNC_CLOSE 4 387 #define ASYNC_DELETE 5 388 #define ASYNC_OPENEXCLUSIVE 6 389 #define ASYNC_UNLOCK 7 390 391 /* Names of opcodes. Used for debugging only. 392 ** Make sure these stay in sync with the macros above! 393 */ 394 static const char *azOpcodeName[] = { 395 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" 396 }; 397 398 /* 399 ** Entries on the write-op queue are instances of the AsyncWrite 400 ** structure, defined here. 401 ** 402 ** The interpretation of the iOffset and nByte variables varies depending 403 ** on the value of AsyncWrite.op: 404 ** 405 ** ASYNC_NOOP: 406 ** No values used. 407 ** 408 ** ASYNC_WRITE: 409 ** iOffset -> Offset in file to write to. 410 ** nByte -> Number of bytes of data to write (pointed to by zBuf). 411 ** 412 ** ASYNC_SYNC: 413 ** nByte -> flags to pass to sqlite3OsSync(). 414 ** 415 ** ASYNC_TRUNCATE: 416 ** iOffset -> Size to truncate file to. 417 ** nByte -> Unused. 418 ** 419 ** ASYNC_CLOSE: 420 ** iOffset -> Unused. 421 ** nByte -> Unused. 422 ** 423 ** ASYNC_DELETE: 424 ** iOffset -> Contains the "syncDir" flag. 425 ** nByte -> Number of bytes of zBuf points to (file name). 426 ** 427 ** ASYNC_OPENEXCLUSIVE: 428 ** iOffset -> Value of "delflag". 429 ** nByte -> Number of bytes of zBuf points to (file name). 430 ** 431 ** ASYNC_UNLOCK: 432 ** nByte -> Argument to sqlite3OsUnlock(). 433 ** 434 ** 435 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 436 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a 437 ** single blob, so is deleted when sqlite3_free() is called on the parent 438 ** structure. 439 */ 440 struct AsyncWrite { 441 AsyncFileData *pFileData; /* File to write data to or sync */ 442 int op; /* One of ASYNC_xxx etc. */ 443 sqlite_int64 iOffset; /* See above */ 444 int nByte; /* See above */ 445 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ 446 AsyncWrite *pNext; /* Next write operation (to any file) */ 447 }; 448 449 /* 450 ** An instance of this structure is created for each distinct open file 451 ** (i.e. if two handles are opened on the one file, only one of these 452 ** structures is allocated) and stored in the async.aLock hash table. The 453 ** keys for async.aLock are the full pathnames of the opened files. 454 ** 455 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock 456 ** structures, one for each handle currently open on the file. 457 ** 458 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is 459 ** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is 460 ** not defined at compile time, variables AsyncLock.pFile and 461 ** AsyncLock.eLock are never used. Otherwise, pFile is a file handle 462 ** opened on the file in question and used to obtain the file-system 463 ** locks required by database connections within this process. 464 ** 465 ** See comments above the asyncLock() function for more details on 466 ** the implementation of database locking used by this backend. 467 */ 468 struct AsyncLock { 469 char *zFile; 470 int nFile; 471 sqlite3_file *pFile; 472 int eLock; 473 AsyncFileLock *pList; 474 AsyncLock *pNext; /* Next in linked list headed by async.pLock */ 475 }; 476 477 /* 478 ** An instance of the following structure is allocated along with each 479 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the 480 ** file was opened with the SQLITE_OPEN_MAIN_DB. 481 */ 482 struct AsyncFileLock { 483 int eLock; /* Internally visible lock state (sqlite pov) */ 484 int eAsyncLock; /* Lock-state with write-queue unlock */ 485 AsyncFileLock *pNext; 486 }; 487 488 /* 489 ** The AsyncFile structure is a subclass of sqlite3_file used for 490 ** asynchronous IO. 491 ** 492 ** All of the actual data for the structure is stored in the structure 493 ** pointed to by AsyncFile.pData, which is allocated as part of the 494 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the 495 ** lifetime of the AsyncFile structure is ended by the caller after OsClose() 496 ** is called, but the data in AsyncFileData may be required by the 497 ** writer thread after that point. 498 */ 499 struct AsyncFile { 500 sqlite3_io_methods *pMethod; 501 AsyncFileData *pData; 502 }; 503 struct AsyncFileData { 504 char *zName; /* Underlying OS filename - used for debugging */ 505 int nName; /* Number of characters in zName */ 506 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ 507 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ 508 AsyncFileLock lock; /* Lock state for this handle */ 509 AsyncLock *pLock; /* AsyncLock object for this file system entry */ 510 AsyncWrite closeOp; /* Preallocated close operation */ 511 }; 512 513 /* 514 ** Add an entry to the end of the global write-op list. pWrite should point 515 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer 516 ** thread will call sqlite3_free() to free the structure after the specified 517 ** operation has been completed. 518 ** 519 ** Once an AsyncWrite structure has been added to the list, it becomes the 520 ** property of the writer thread and must not be read or modified by the 521 ** caller. 522 */ 523 static void addAsyncWrite(AsyncWrite *pWrite){ 524 /* We must hold the queue mutex in order to modify the queue pointers */ 525 if( pWrite->op!=ASYNC_UNLOCK ){ 526 async_mutex_enter(ASYNC_MUTEX_QUEUE); 527 } 528 529 /* Add the record to the end of the write-op queue */ 530 assert( !pWrite->pNext ); 531 if( async.pQueueLast ){ 532 assert( async.pQueueFirst ); 533 async.pQueueLast->pNext = pWrite; 534 }else{ 535 async.pQueueFirst = pWrite; 536 } 537 async.pQueueLast = pWrite; 538 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], 539 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); 540 541 if( pWrite->op==ASYNC_CLOSE ){ 542 async.nFile--; 543 } 544 545 /* The writer thread might have been idle because there was nothing 546 ** on the write-op queue for it to do. So wake it up. */ 547 async_cond_signal(ASYNC_COND_QUEUE); 548 549 /* Drop the queue mutex */ 550 if( pWrite->op!=ASYNC_UNLOCK ){ 551 async_mutex_leave(ASYNC_MUTEX_QUEUE); 552 } 553 } 554 555 /* 556 ** Increment async.nFile in a thread-safe manner. 557 */ 558 static void incrOpenFileCount(void){ 559 /* We must hold the queue mutex in order to modify async.nFile */ 560 async_mutex_enter(ASYNC_MUTEX_QUEUE); 561 if( async.nFile==0 ){ 562 async.ioError = SQLITE_OK; 563 } 564 async.nFile++; 565 async_mutex_leave(ASYNC_MUTEX_QUEUE); 566 } 567 568 /* 569 ** This is a utility function to allocate and populate a new AsyncWrite 570 ** structure and insert it (via addAsyncWrite() ) into the global list. 571 */ 572 static int addNewAsyncWrite( 573 AsyncFileData *pFileData, 574 int op, 575 sqlite3_int64 iOffset, 576 int nByte, 577 const char *zByte 578 ){ 579 AsyncWrite *p; 580 if( op!=ASYNC_CLOSE && async.ioError ){ 581 return async.ioError; 582 } 583 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); 584 if( !p ){ 585 /* The upper layer does not expect operations like OsWrite() to 586 ** return SQLITE_NOMEM. This is partly because under normal conditions 587 ** SQLite is required to do rollback without calling malloc(). So 588 ** if malloc() fails here, treat it as an I/O error. The above 589 ** layer knows how to handle that. 590 */ 591 return SQLITE_IOERR; 592 } 593 p->op = op; 594 p->iOffset = iOffset; 595 p->nByte = nByte; 596 p->pFileData = pFileData; 597 p->pNext = 0; 598 if( zByte ){ 599 p->zBuf = (char *)&p[1]; 600 memcpy(p->zBuf, zByte, nByte); 601 }else{ 602 p->zBuf = 0; 603 } 604 addAsyncWrite(p); 605 return SQLITE_OK; 606 } 607 608 /* 609 ** Close the file. This just adds an entry to the write-op list, the file is 610 ** not actually closed. 611 */ 612 static int asyncClose(sqlite3_file *pFile){ 613 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 614 615 /* Unlock the file, if it is locked */ 616 async_mutex_enter(ASYNC_MUTEX_LOCK); 617 p->lock.eLock = 0; 618 async_mutex_leave(ASYNC_MUTEX_LOCK); 619 620 addAsyncWrite(&p->closeOp); 621 return SQLITE_OK; 622 } 623 624 /* 625 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 626 ** writing to the underlying file, this function adds an entry to the end of 627 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be 628 ** returned. 629 */ 630 static int asyncWrite( 631 sqlite3_file *pFile, 632 const void *pBuf, 633 int amt, 634 sqlite3_int64 iOff 635 ){ 636 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 637 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); 638 } 639 640 /* 641 ** Read data from the file. First we read from the filesystem, then adjust 642 ** the contents of the buffer based on ASYNC_WRITE operations in the 643 ** write-op queue. 644 ** 645 ** This method holds the mutex from start to finish. 646 */ 647 static int asyncRead( 648 sqlite3_file *pFile, 649 void *zOut, 650 int iAmt, 651 sqlite3_int64 iOffset 652 ){ 653 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 654 int rc = SQLITE_OK; 655 sqlite3_int64 filesize; 656 int nRead; 657 sqlite3_file *pBase = p->pBaseRead; 658 659 /* Grab the write queue mutex for the duration of the call */ 660 async_mutex_enter(ASYNC_MUTEX_QUEUE); 661 662 /* If an I/O error has previously occurred in this virtual file 663 ** system, then all subsequent operations fail. 664 */ 665 if( async.ioError!=SQLITE_OK ){ 666 rc = async.ioError; 667 goto asyncread_out; 668 } 669 670 if( pBase->pMethods ){ 671 rc = pBase->pMethods->xFileSize(pBase, &filesize); 672 if( rc!=SQLITE_OK ){ 673 goto asyncread_out; 674 } 675 nRead = MIN(filesize - iOffset, iAmt); 676 if( nRead>0 ){ 677 rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset); 678 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); 679 } 680 } 681 682 if( rc==SQLITE_OK ){ 683 AsyncWrite *pWrite; 684 char *zName = p->zName; 685 686 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ 687 if( pWrite->op==ASYNC_WRITE && ( 688 (pWrite->pFileData==p) || 689 (zName && pWrite->pFileData->zName==zName) 690 )){ 691 int iBeginOut = (pWrite->iOffset-iOffset); 692 int iBeginIn = -iBeginOut; 693 int nCopy; 694 695 if( iBeginIn<0 ) iBeginIn = 0; 696 if( iBeginOut<0 ) iBeginOut = 0; 697 nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut); 698 699 if( nCopy>0 ){ 700 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy); 701 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); 702 } 703 } 704 } 705 } 706 707 asyncread_out: 708 async_mutex_leave(ASYNC_MUTEX_QUEUE); 709 return rc; 710 } 711 712 /* 713 ** Truncate the file to nByte bytes in length. This just adds an entry to 714 ** the write-op list, no IO actually takes place. 715 */ 716 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ 717 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 718 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); 719 } 720 721 /* 722 ** Sync the file. This just adds an entry to the write-op list, the 723 ** sync() is done later by sqlite3_async_flush(). 724 */ 725 static int asyncSync(sqlite3_file *pFile, int flags){ 726 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 727 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); 728 } 729 730 /* 731 ** Read the size of the file. First we read the size of the file system 732 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 733 ** currently in the write-op list. 734 ** 735 ** This method holds the mutex from start to finish. 736 */ 737 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ 738 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 739 int rc = SQLITE_OK; 740 sqlite3_int64 s = 0; 741 sqlite3_file *pBase; 742 743 async_mutex_enter(ASYNC_MUTEX_QUEUE); 744 745 /* Read the filesystem size from the base file. If pBaseRead is NULL, this 746 ** means the file hasn't been opened yet. In this case all relevant data 747 ** must be in the write-op queue anyway, so we can omit reading from the 748 ** file-system. 749 */ 750 pBase = p->pBaseRead; 751 if( pBase->pMethods ){ 752 rc = pBase->pMethods->xFileSize(pBase, &s); 753 } 754 755 if( rc==SQLITE_OK ){ 756 AsyncWrite *pWrite; 757 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ 758 if( pWrite->op==ASYNC_DELETE 759 && p->zName 760 && strcmp(p->zName, pWrite->zBuf)==0 761 ){ 762 s = 0; 763 }else if( pWrite->pFileData && ( 764 (pWrite->pFileData==p) 765 || (p->zName && pWrite->pFileData->zName==p->zName) 766 )){ 767 switch( pWrite->op ){ 768 case ASYNC_WRITE: 769 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); 770 break; 771 case ASYNC_TRUNCATE: 772 s = MIN(s, pWrite->iOffset); 773 break; 774 } 775 } 776 } 777 *piSize = s; 778 } 779 async_mutex_leave(ASYNC_MUTEX_QUEUE); 780 return rc; 781 } 782 783 /* 784 ** Lock or unlock the actual file-system entry. 785 */ 786 static int getFileLock(AsyncLock *pLock){ 787 int rc = SQLITE_OK; 788 AsyncFileLock *pIter; 789 int eRequired = 0; 790 791 if( pLock->pFile ){ 792 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ 793 assert(pIter->eAsyncLock>=pIter->eLock); 794 if( pIter->eAsyncLock>eRequired ){ 795 eRequired = pIter->eAsyncLock; 796 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); 797 } 798 } 799 800 if( eRequired>pLock->eLock ){ 801 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); 802 if( rc==SQLITE_OK ){ 803 pLock->eLock = eRequired; 804 } 805 } 806 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ 807 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); 808 if( rc==SQLITE_OK ){ 809 pLock->eLock = eRequired; 810 } 811 } 812 } 813 814 return rc; 815 } 816 817 /* 818 ** Return the AsyncLock structure from the global async.pLock list 819 ** associated with the file-system entry identified by path zName 820 ** (a string of nName bytes). If no such structure exists, return 0. 821 */ 822 static AsyncLock *findLock(const char *zName, int nName){ 823 AsyncLock *p = async.pLock; 824 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ 825 p = p->pNext; 826 } 827 return p; 828 } 829 830 /* 831 ** The following two methods - asyncLock() and asyncUnlock() - are used 832 ** to obtain and release locks on database files opened with the 833 ** asynchronous backend. 834 */ 835 static int asyncLock(sqlite3_file *pFile, int eLock){ 836 int rc = SQLITE_OK; 837 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 838 839 if( p->zName ){ 840 async_mutex_enter(ASYNC_MUTEX_LOCK); 841 if( p->lock.eLock<eLock ){ 842 AsyncLock *pLock = p->pLock; 843 AsyncFileLock *pIter; 844 assert(pLock && pLock->pList); 845 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ 846 if( pIter!=&p->lock && ( 847 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || 848 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || 849 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || 850 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) 851 )){ 852 rc = SQLITE_BUSY; 853 } 854 } 855 if( rc==SQLITE_OK ){ 856 p->lock.eLock = eLock; 857 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); 858 } 859 assert(p->lock.eAsyncLock>=p->lock.eLock); 860 if( rc==SQLITE_OK ){ 861 rc = getFileLock(pLock); 862 } 863 } 864 async_mutex_leave(ASYNC_MUTEX_LOCK); 865 } 866 867 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); 868 return rc; 869 } 870 static int asyncUnlock(sqlite3_file *pFile, int eLock){ 871 int rc = SQLITE_OK; 872 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 873 if( p->zName ){ 874 AsyncFileLock *pLock = &p->lock; 875 async_mutex_enter(ASYNC_MUTEX_QUEUE); 876 async_mutex_enter(ASYNC_MUTEX_LOCK); 877 pLock->eLock = MIN(pLock->eLock, eLock); 878 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); 879 async_mutex_leave(ASYNC_MUTEX_LOCK); 880 async_mutex_leave(ASYNC_MUTEX_QUEUE); 881 } 882 return rc; 883 } 884 885 /* 886 ** This function is called when the pager layer first opens a database file 887 ** and is checking for a hot-journal. 888 */ 889 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ 890 int ret = 0; 891 AsyncFileLock *pIter; 892 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 893 894 async_mutex_enter(ASYNC_MUTEX_LOCK); 895 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ 896 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ 897 ret = 1; 898 } 899 } 900 async_mutex_leave(ASYNC_MUTEX_LOCK); 901 902 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); 903 *pResOut = ret; 904 return SQLITE_OK; 905 } 906 907 /* 908 ** sqlite3_file_control() implementation. 909 */ 910 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ 911 switch( op ){ 912 case SQLITE_FCNTL_LOCKSTATE: { 913 async_mutex_enter(ASYNC_MUTEX_LOCK); 914 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; 915 async_mutex_leave(ASYNC_MUTEX_LOCK); 916 return SQLITE_OK; 917 } 918 } 919 return SQLITE_ERROR; 920 } 921 922 /* 923 ** Return the device characteristics and sector-size of the device. It 924 ** is not tricky to implement these correctly, as this backend might 925 ** not have an open file handle at this point. 926 */ 927 static int asyncSectorSize(sqlite3_file *pFile){ 928 return 512; 929 } 930 static int asyncDeviceCharacteristics(sqlite3_file *pFile){ 931 return 0; 932 } 933 934 static int unlinkAsyncFile(AsyncFileData *pData){ 935 AsyncFileLock **ppIter; 936 int rc = SQLITE_OK; 937 938 if( pData->zName ){ 939 AsyncLock *pLock = pData->pLock; 940 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ 941 if( (*ppIter)==&pData->lock ){ 942 *ppIter = pData->lock.pNext; 943 break; 944 } 945 } 946 if( !pLock->pList ){ 947 AsyncLock **pp; 948 if( pLock->pFile ){ 949 pLock->pFile->pMethods->xClose(pLock->pFile); 950 } 951 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); 952 *pp = pLock->pNext; 953 sqlite3_free(pLock); 954 }else{ 955 rc = getFileLock(pLock); 956 } 957 } 958 959 return rc; 960 } 961 962 /* 963 ** The parameter passed to this function is a copy of a 'flags' parameter 964 ** passed to this modules xOpen() method. This function returns true 965 ** if the file should be opened asynchronously, or false if it should 966 ** be opened immediately. 967 ** 968 ** If the file is to be opened asynchronously, then asyncOpen() will add 969 ** an entry to the event queue and the file will not actually be opened 970 ** until the event is processed. Otherwise, the file is opened directly 971 ** by the caller. 972 */ 973 static int doAsynchronousOpen(int flags){ 974 return (flags&SQLITE_OPEN_CREATE) && ( 975 (flags&SQLITE_OPEN_MAIN_JOURNAL) || 976 (flags&SQLITE_OPEN_TEMP_JOURNAL) || 977 (flags&SQLITE_OPEN_DELETEONCLOSE) 978 ); 979 } 980 981 /* 982 ** Open a file. 983 */ 984 static int asyncOpen( 985 sqlite3_vfs *pAsyncVfs, 986 const char *zName, 987 sqlite3_file *pFile, 988 int flags, 989 int *pOutFlags 990 ){ 991 static sqlite3_io_methods async_methods = { 992 1, /* iVersion */ 993 asyncClose, /* xClose */ 994 asyncRead, /* xRead */ 995 asyncWrite, /* xWrite */ 996 asyncTruncate, /* xTruncate */ 997 asyncSync, /* xSync */ 998 asyncFileSize, /* xFileSize */ 999 asyncLock, /* xLock */ 1000 asyncUnlock, /* xUnlock */ 1001 asyncCheckReservedLock, /* xCheckReservedLock */ 1002 asyncFileControl, /* xFileControl */ 1003 asyncSectorSize, /* xSectorSize */ 1004 asyncDeviceCharacteristics /* xDeviceCharacteristics */ 1005 }; 1006 1007 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1008 AsyncFile *p = (AsyncFile *)pFile; 1009 int nName = 0; 1010 int rc = SQLITE_OK; 1011 int nByte; 1012 AsyncFileData *pData; 1013 AsyncLock *pLock = 0; 1014 char *z; 1015 int isAsyncOpen = doAsynchronousOpen(flags); 1016 1017 /* If zName is NULL, then the upper layer is requesting an anonymous file */ 1018 if( zName ){ 1019 nName = strlen(zName)+1; 1020 } 1021 1022 nByte = ( 1023 sizeof(AsyncFileData) + /* AsyncFileData structure */ 1024 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ 1025 nName /* AsyncFileData.zName */ 1026 ); 1027 z = sqlite3_malloc(nByte); 1028 if( !z ){ 1029 return SQLITE_NOMEM; 1030 } 1031 memset(z, 0, nByte); 1032 pData = (AsyncFileData*)z; 1033 z += sizeof(pData[0]); 1034 pData->pBaseRead = (sqlite3_file*)z; 1035 z += pVfs->szOsFile; 1036 pData->pBaseWrite = (sqlite3_file*)z; 1037 pData->closeOp.pFileData = pData; 1038 pData->closeOp.op = ASYNC_CLOSE; 1039 1040 if( zName ){ 1041 z += pVfs->szOsFile; 1042 pData->zName = z; 1043 pData->nName = nName; 1044 memcpy(pData->zName, zName, nName); 1045 } 1046 1047 if( !isAsyncOpen ){ 1048 int flagsout; 1049 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); 1050 if( rc==SQLITE_OK && (flagsout&SQLITE_OPEN_READWRITE) ){ 1051 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); 1052 } 1053 if( pOutFlags ){ 1054 *pOutFlags = flagsout; 1055 } 1056 } 1057 1058 async_mutex_enter(ASYNC_MUTEX_LOCK); 1059 1060 if( zName && rc==SQLITE_OK ){ 1061 pLock = findLock(pData->zName, pData->nName); 1062 if( !pLock ){ 1063 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; 1064 pLock = (AsyncLock *)sqlite3_malloc(nByte); 1065 if( pLock ){ 1066 memset(pLock, 0, nByte); 1067 #ifdef ENABLE_FILE_LOCKING 1068 if( flags&SQLITE_OPEN_MAIN_DB ){ 1069 pLock->pFile = (sqlite3_file *)&pLock[1]; 1070 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); 1071 if( rc!=SQLITE_OK ){ 1072 sqlite3_free(pLock); 1073 pLock = 0; 1074 } 1075 } 1076 #endif 1077 if( pLock ){ 1078 pLock->nFile = pData->nName; 1079 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; 1080 memcpy(pLock->zFile, pData->zName, pLock->nFile); 1081 pLock->pNext = async.pLock; 1082 async.pLock = pLock; 1083 } 1084 }else{ 1085 rc = SQLITE_NOMEM; 1086 } 1087 } 1088 } 1089 1090 if( rc==SQLITE_OK ){ 1091 p->pMethod = &async_methods; 1092 p->pData = pData; 1093 1094 /* Link AsyncFileData.lock into the linked list of 1095 ** AsyncFileLock structures for this file. 1096 */ 1097 if( zName ){ 1098 pData->lock.pNext = pLock->pList; 1099 pLock->pList = &pData->lock; 1100 pData->zName = pLock->zFile; 1101 } 1102 }else{ 1103 if( pData->pBaseRead->pMethods ){ 1104 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); 1105 } 1106 if( pData->pBaseWrite->pMethods ){ 1107 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); 1108 } 1109 sqlite3_free(pData); 1110 } 1111 1112 async_mutex_leave(ASYNC_MUTEX_LOCK); 1113 1114 if( rc==SQLITE_OK ){ 1115 incrOpenFileCount(); 1116 pData->pLock = pLock; 1117 } 1118 1119 if( rc==SQLITE_OK && isAsyncOpen ){ 1120 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); 1121 if( rc==SQLITE_OK ){ 1122 if( pOutFlags ) *pOutFlags = flags; 1123 }else{ 1124 async_mutex_enter(ASYNC_MUTEX_LOCK); 1125 unlinkAsyncFile(pData); 1126 async_mutex_leave(ASYNC_MUTEX_LOCK); 1127 sqlite3_free(pData); 1128 } 1129 } 1130 if( rc!=SQLITE_OK ){ 1131 p->pMethod = 0; 1132 } 1133 return rc; 1134 } 1135 1136 /* 1137 ** Implementation of sqlite3OsDelete. Add an entry to the end of the 1138 ** write-op queue to perform the delete. 1139 */ 1140 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ 1141 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z); 1142 } 1143 1144 /* 1145 ** Implementation of sqlite3OsAccess. This method holds the mutex from 1146 ** start to finish. 1147 */ 1148 static int asyncAccess( 1149 sqlite3_vfs *pAsyncVfs, 1150 const char *zName, 1151 int flags, 1152 int *pResOut 1153 ){ 1154 int rc; 1155 int ret; 1156 AsyncWrite *p; 1157 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1158 1159 assert(flags==SQLITE_ACCESS_READWRITE 1160 || flags==SQLITE_ACCESS_READ 1161 || flags==SQLITE_ACCESS_EXISTS 1162 ); 1163 1164 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1165 rc = pVfs->xAccess(pVfs, zName, flags, &ret); 1166 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ 1167 for(p=async.pQueueFirst; p; p = p->pNext){ 1168 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ 1169 ret = 0; 1170 }else if( p->op==ASYNC_OPENEXCLUSIVE 1171 && p->pFileData->zName 1172 && 0==strcmp(p->pFileData->zName, zName) 1173 ){ 1174 ret = 1; 1175 } 1176 } 1177 } 1178 ASYNC_TRACE(("ACCESS(%s): %s = %d\n", 1179 flags==SQLITE_ACCESS_READWRITE?"read-write": 1180 flags==SQLITE_ACCESS_READ?"read":"exists" 1181 , zName, ret) 1182 ); 1183 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1184 *pResOut = ret; 1185 return rc; 1186 } 1187 1188 /* 1189 ** Fill in zPathOut with the full path to the file identified by zPath. 1190 */ 1191 static int asyncFullPathname( 1192 sqlite3_vfs *pAsyncVfs, 1193 const char *zPath, 1194 int nPathOut, 1195 char *zPathOut 1196 ){ 1197 int rc; 1198 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1199 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); 1200 1201 /* Because of the way intra-process file locking works, this backend 1202 ** needs to return a canonical path. The following block assumes the 1203 ** file-system uses unix style paths. 1204 */ 1205 if( rc==SQLITE_OK ){ 1206 int i, j; 1207 int n = nPathOut; 1208 char *z = zPathOut; 1209 while( n>1 && z[n-1]=='/' ){ n--; } 1210 for(i=j=0; i<n; i++){ 1211 if( z[i]=='/' ){ 1212 if( z[i+1]=='/' ) continue; 1213 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ 1214 i += 1; 1215 continue; 1216 } 1217 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ 1218 while( j>0 && z[j-1]!='/' ){ j--; } 1219 if( j>0 ){ j--; } 1220 i += 2; 1221 continue; 1222 } 1223 } 1224 z[j++] = z[i]; 1225 } 1226 z[j] = 0; 1227 } 1228 1229 return rc; 1230 } 1231 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ 1232 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1233 return pVfs->xDlOpen(pVfs, zPath); 1234 } 1235 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ 1236 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1237 pVfs->xDlError(pVfs, nByte, zErrMsg); 1238 } 1239 static void (*asyncDlSym( 1240 sqlite3_vfs *pAsyncVfs, 1241 void *pHandle, 1242 const char *zSymbol 1243 ))(void){ 1244 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1245 return pVfs->xDlSym(pVfs, pHandle, zSymbol); 1246 } 1247 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ 1248 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1249 pVfs->xDlClose(pVfs, pHandle); 1250 } 1251 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ 1252 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1253 return pVfs->xRandomness(pVfs, nByte, zBufOut); 1254 } 1255 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ 1256 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1257 return pVfs->xSleep(pVfs, nMicro); 1258 } 1259 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ 1260 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1261 return pVfs->xCurrentTime(pVfs, pTimeOut); 1262 } 1263 1264 static sqlite3_vfs async_vfs = { 1265 1, /* iVersion */ 1266 sizeof(AsyncFile), /* szOsFile */ 1267 0, /* mxPathname */ 1268 0, /* pNext */ 1269 SQLITEASYNC_VFSNAME, /* zName */ 1270 0, /* pAppData */ 1271 asyncOpen, /* xOpen */ 1272 asyncDelete, /* xDelete */ 1273 asyncAccess, /* xAccess */ 1274 asyncFullPathname, /* xFullPathname */ 1275 asyncDlOpen, /* xDlOpen */ 1276 asyncDlError, /* xDlError */ 1277 asyncDlSym, /* xDlSym */ 1278 asyncDlClose, /* xDlClose */ 1279 asyncRandomness, /* xDlError */ 1280 asyncSleep, /* xDlSym */ 1281 asyncCurrentTime /* xDlClose */ 1282 }; 1283 1284 /* 1285 ** This procedure runs in a separate thread, reading messages off of the 1286 ** write queue and processing them one by one. 1287 ** 1288 ** If async.writerHaltNow is true, then this procedure exits 1289 ** after processing a single message. 1290 ** 1291 ** If async.writerHaltWhenIdle is true, then this procedure exits when 1292 ** the write queue is empty. 1293 ** 1294 ** If both of the above variables are false, this procedure runs 1295 ** indefinately, waiting for operations to be added to the write queue 1296 ** and processing them in the order in which they arrive. 1297 ** 1298 ** An artifical delay of async.ioDelay milliseconds is inserted before 1299 ** each write operation in order to simulate the effect of a slow disk. 1300 ** 1301 ** Only one instance of this procedure may be running at a time. 1302 */ 1303 static void asyncWriterThread(void){ 1304 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); 1305 AsyncWrite *p = 0; 1306 int rc = SQLITE_OK; 1307 int holdingMutex = 0; 1308 1309 async_mutex_enter(ASYNC_MUTEX_WRITER); 1310 1311 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ 1312 int doNotFree = 0; 1313 sqlite3_file *pBase = 0; 1314 1315 if( !holdingMutex ){ 1316 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1317 } 1318 while( (p = async.pQueueFirst)==0 ){ 1319 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ 1320 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1321 break; 1322 }else{ 1323 ASYNC_TRACE(("IDLE\n")); 1324 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); 1325 ASYNC_TRACE(("WAKEUP\n")); 1326 } 1327 } 1328 if( p==0 ) break; 1329 holdingMutex = 1; 1330 1331 /* Right now this thread is holding the mutex on the write-op queue. 1332 ** Variable 'p' points to the first entry in the write-op queue. In 1333 ** the general case, we hold on to the mutex for the entire body of 1334 ** the loop. 1335 ** 1336 ** However in the cases enumerated below, we relinquish the mutex, 1337 ** perform the IO, and then re-request the mutex before removing 'p' from 1338 ** the head of the write-op queue. The idea is to increase concurrency with 1339 ** sqlite threads. 1340 ** 1341 ** * An ASYNC_CLOSE operation. 1342 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 1343 ** the mutex, call the underlying xOpenExclusive() function, then 1344 ** re-aquire the mutex before seting the AsyncFile.pBaseRead 1345 ** variable. 1346 ** * ASYNC_SYNC and ASYNC_WRITE operations, if 1347 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two 1348 ** file-handles are open for the particular file being "synced". 1349 */ 1350 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ 1351 p->op = ASYNC_NOOP; 1352 } 1353 if( p->pFileData ){ 1354 pBase = p->pFileData->pBaseWrite; 1355 if( 1356 p->op==ASYNC_CLOSE || 1357 p->op==ASYNC_OPENEXCLUSIVE || 1358 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 1359 ){ 1360 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1361 holdingMutex = 0; 1362 } 1363 if( !pBase->pMethods ){ 1364 pBase = p->pFileData->pBaseRead; 1365 } 1366 } 1367 1368 switch( p->op ){ 1369 case ASYNC_NOOP: 1370 break; 1371 1372 case ASYNC_WRITE: 1373 assert( pBase ); 1374 ASYNC_TRACE(("WRITE %s %d bytes at %d\n", 1375 p->pFileData->zName, p->nByte, p->iOffset)); 1376 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); 1377 break; 1378 1379 case ASYNC_SYNC: 1380 assert( pBase ); 1381 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); 1382 rc = pBase->pMethods->xSync(pBase, p->nByte); 1383 break; 1384 1385 case ASYNC_TRUNCATE: 1386 assert( pBase ); 1387 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", 1388 p->pFileData->zName, p->iOffset)); 1389 rc = pBase->pMethods->xTruncate(pBase, p->iOffset); 1390 break; 1391 1392 case ASYNC_CLOSE: { 1393 AsyncFileData *pData = p->pFileData; 1394 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); 1395 if( pData->pBaseWrite->pMethods ){ 1396 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); 1397 } 1398 if( pData->pBaseRead->pMethods ){ 1399 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); 1400 } 1401 1402 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock 1403 ** structures for this file. Obtain the async.lockMutex mutex 1404 ** before doing so. 1405 */ 1406 async_mutex_enter(ASYNC_MUTEX_LOCK); 1407 rc = unlinkAsyncFile(pData); 1408 async_mutex_leave(ASYNC_MUTEX_LOCK); 1409 1410 if( !holdingMutex ){ 1411 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1412 holdingMutex = 1; 1413 } 1414 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); 1415 async.pQueueFirst = p->pNext; 1416 sqlite3_free(pData); 1417 doNotFree = 1; 1418 break; 1419 } 1420 1421 case ASYNC_UNLOCK: { 1422 AsyncWrite *pIter; 1423 AsyncFileData *pData = p->pFileData; 1424 int eLock = p->nByte; 1425 1426 /* When a file is locked by SQLite using the async backend, it is 1427 ** locked within the 'real' file-system synchronously. When it is 1428 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to 1429 ** unlock the file asynchronously. The design of the async backend 1430 ** requires that the 'real' file-system file be locked from the 1431 ** time that SQLite first locks it (and probably reads from it) 1432 ** until all asynchronous write events that were scheduled before 1433 ** SQLite unlocked the file have been processed. 1434 ** 1435 ** This is more complex if SQLite locks and unlocks the file multiple 1436 ** times in quick succession. For example, if SQLite does: 1437 ** 1438 ** lock, write, unlock, lock, write, unlock 1439 ** 1440 ** Each "lock" operation locks the file immediately. Each "write" 1441 ** and "unlock" operation adds an event to the event queue. If the 1442 ** second "lock" operation is performed before the first "unlock" 1443 ** operation has been processed asynchronously, then the first 1444 ** "unlock" cannot be safely processed as is, since this would mean 1445 ** the file was unlocked when the second "write" operation is 1446 ** processed. To work around this, when processing an ASYNC_UNLOCK 1447 ** operation, SQLite: 1448 ** 1449 ** 1) Unlocks the file to the minimum of the argument passed to 1450 ** the xUnlock() call and the current lock from SQLite's point 1451 ** of view, and 1452 ** 1453 ** 2) Only unlocks the file at all if this event is the last 1454 ** ASYNC_UNLOCK event on this file in the write-queue. 1455 */ 1456 assert( holdingMutex==1 ); 1457 assert( async.pQueueFirst==p ); 1458 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ 1459 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; 1460 } 1461 if( !pIter ){ 1462 async_mutex_enter(ASYNC_MUTEX_LOCK); 1463 pData->lock.eAsyncLock = MIN( 1464 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) 1465 ); 1466 assert(pData->lock.eAsyncLock>=pData->lock.eLock); 1467 rc = getFileLock(pData->pLock); 1468 async_mutex_leave(ASYNC_MUTEX_LOCK); 1469 } 1470 break; 1471 } 1472 1473 case ASYNC_DELETE: 1474 ASYNC_TRACE(("DELETE %s\n", p->zBuf)); 1475 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); 1476 break; 1477 1478 case ASYNC_OPENEXCLUSIVE: { 1479 int flags = (int)p->iOffset; 1480 AsyncFileData *pData = p->pFileData; 1481 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); 1482 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); 1483 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); 1484 assert( holdingMutex==0 ); 1485 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1486 holdingMutex = 1; 1487 break; 1488 } 1489 1490 default: assert(!"Illegal value for AsyncWrite.op"); 1491 } 1492 1493 /* If we didn't hang on to the mutex during the IO op, obtain it now 1494 ** so that the AsyncWrite structure can be safely removed from the 1495 ** global write-op queue. 1496 */ 1497 if( !holdingMutex ){ 1498 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1499 holdingMutex = 1; 1500 } 1501 /* ASYNC_TRACE(("UNLINK %p\n", p)); */ 1502 if( p==async.pQueueLast ){ 1503 async.pQueueLast = 0; 1504 } 1505 if( !doNotFree ){ 1506 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); 1507 async.pQueueFirst = p->pNext; 1508 sqlite3_free(p); 1509 } 1510 assert( holdingMutex ); 1511 1512 /* An IO error has occurred. We cannot report the error back to the 1513 ** connection that requested the I/O since the error happened 1514 ** asynchronously. The connection has already moved on. There 1515 ** really is nobody to report the error to. 1516 ** 1517 ** The file for which the error occurred may have been a database or 1518 ** journal file. Regardless, none of the currently queued operations 1519 ** associated with the same database should now be performed. Nor should 1520 ** any subsequently requested IO on either a database or journal file 1521 ** handle for the same database be accepted until the main database 1522 ** file handle has been closed and reopened. 1523 ** 1524 ** Furthermore, no further IO should be queued or performed on any file 1525 ** handle associated with a database that may have been part of a 1526 ** multi-file transaction that included the database associated with 1527 ** the IO error (i.e. a database ATTACHed to the same handle at some 1528 ** point in time). 1529 */ 1530 if( rc!=SQLITE_OK ){ 1531 async.ioError = rc; 1532 } 1533 1534 if( async.ioError && !async.pQueueFirst ){ 1535 async_mutex_enter(ASYNC_MUTEX_LOCK); 1536 if( 0==async.pLock ){ 1537 async.ioError = SQLITE_OK; 1538 } 1539 async_mutex_leave(ASYNC_MUTEX_LOCK); 1540 } 1541 1542 /* Drop the queue mutex before continuing to the next write operation 1543 ** in order to give other threads a chance to work with the write queue. 1544 */ 1545 if( !async.pQueueFirst || !async.ioError ){ 1546 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1547 holdingMutex = 0; 1548 if( async.ioDelay>0 ){ 1549 pVfs->xSleep(pVfs, async.ioDelay); 1550 }else{ 1551 async_sched_yield(); 1552 } 1553 } 1554 } 1555 1556 async_mutex_leave(ASYNC_MUTEX_WRITER); 1557 return; 1558 } 1559 1560 /* 1561 ** Install the asynchronous VFS. 1562 */ 1563 int sqlite3async_initialize(const char *zParent, int isDefault){ 1564 int rc = SQLITE_OK; 1565 if( async_vfs.pAppData==0 ){ 1566 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); 1567 if( !pParent || async_os_initialize() ){ 1568 rc = SQLITE_ERROR; 1569 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ 1570 async_os_shutdown(); 1571 }else{ 1572 async_vfs.pAppData = (void *)pParent; 1573 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; 1574 } 1575 } 1576 return rc; 1577 } 1578 1579 /* 1580 ** Uninstall the asynchronous VFS. 1581 */ 1582 void sqlite3async_shutdown(void){ 1583 if( async_vfs.pAppData ){ 1584 async_os_shutdown(); 1585 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); 1586 async_vfs.pAppData = 0; 1587 } 1588 } 1589 1590 /* 1591 ** Process events on the write-queue. 1592 */ 1593 void sqlite3async_run(void){ 1594 asyncWriterThread(); 1595 } 1596 1597 /* 1598 ** Control/configure the asynchronous IO system. 1599 */ 1600 int sqlite3async_control(int op, ...){ 1601 va_list ap; 1602 va_start(ap, op); 1603 switch( op ){ 1604 case SQLITEASYNC_HALT: { 1605 int eWhen = va_arg(ap, int); 1606 if( eWhen!=SQLITEASYNC_HALT_NEVER 1607 && eWhen!=SQLITEASYNC_HALT_NOW 1608 && eWhen!=SQLITEASYNC_HALT_IDLE 1609 ){ 1610 return SQLITE_ERROR; 1611 } 1612 async.eHalt = eWhen; 1613 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1614 async_cond_signal(ASYNC_COND_QUEUE); 1615 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1616 break; 1617 } 1618 1619 case SQLITEASYNC_DELAY: { 1620 int iDelay = va_arg(ap, int); 1621 async.ioDelay = iDelay; 1622 break; 1623 } 1624 1625 case SQLITEASYNC_GET_HALT: { 1626 int *peWhen = va_arg(ap, int *); 1627 *peWhen = async.eHalt; 1628 break; 1629 } 1630 case SQLITEASYNC_GET_DELAY: { 1631 int *piDelay = va_arg(ap, int *); 1632 *piDelay = async.ioDelay; 1633 break; 1634 } 1635 1636 default: 1637 return SQLITE_ERROR; 1638 } 1639 return SQLITE_OK; 1640 } 1641 1642 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ 1643 1644