xref: /sqlite-3.40.0/ext/async/sqlite3async.c (revision 5d00d0a8)
1 /*
2 ** 2005 December 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $
14 **
15 ** This file contains the implementation of an asynchronous IO backend
16 ** for SQLite.
17 */
18 
19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO)
20 
21 #include "sqlite3async.h"
22 #include "sqlite3.h"
23 #include <stdarg.h>
24 #include <string.h>
25 #include <assert.h>
26 
27 /* Useful macros used in several places */
28 #define MIN(x,y) ((x)<(y)?(x):(y))
29 #define MAX(x,y) ((x)>(y)?(x):(y))
30 
31 #ifndef SQLITE_AMALGAMATION
32 /* Macro to mark parameters as unused and silence compiler warnings. */
33 #define UNUSED_PARAMETER(x) (void)(x)
34 #endif
35 
36 /* Forward references */
37 typedef struct AsyncWrite AsyncWrite;
38 typedef struct AsyncFile AsyncFile;
39 typedef struct AsyncFileData AsyncFileData;
40 typedef struct AsyncFileLock AsyncFileLock;
41 typedef struct AsyncLock AsyncLock;
42 
43 /* Enable for debugging */
44 #ifndef NDEBUG
45 #include <stdio.h>
46 static int sqlite3async_trace = 0;
47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
48 static void asyncTrace(const char *zFormat, ...){
49   char *z;
50   va_list ap;
51   va_start(ap, zFormat);
52   z = sqlite3_vmprintf(zFormat, ap);
53   va_end(ap);
54   fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z);
55   sqlite3_free(z);
56 }
57 #else
58 # define ASYNC_TRACE(X)
59 #endif
60 
61 /*
62 ** THREAD SAFETY NOTES
63 **
64 ** Basic rules:
65 **
66 **     * Both read and write access to the global write-op queue must be
67 **       protected by the async.queueMutex. As are the async.ioError and
68 **       async.nFile variables.
69 **
70 **     * The async.pLock list and all AsyncLock and AsyncFileLock
71 **       structures must be protected by the async.lockMutex mutex.
72 **
73 **     * The file handles from the underlying system are not assumed to
74 **       be thread safe.
75 **
76 **     * See the last two paragraphs under "The Writer Thread" for
77 **       an assumption to do with file-handle synchronization by the Os.
78 **
79 ** Deadlock prevention:
80 **
81 **     There are three mutex used by the system: the "writer" mutex,
82 **     the "queue" mutex and the "lock" mutex. Rules are:
83 **
84 **     * It is illegal to block on the writer mutex when any other mutex
85 **       are held, and
86 **
87 **     * It is illegal to block on the queue mutex when the lock mutex
88 **       is held.
89 **
90 **     i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
91 **
92 ** File system operations (invoked by SQLite thread):
93 **
94 **     xOpen
95 **     xDelete
96 **     xFileExists
97 **
98 ** File handle operations (invoked by SQLite thread):
99 **
100 **         asyncWrite, asyncClose, asyncTruncate, asyncSync
101 **
102 **     The operations above add an entry to the global write-op list. They
103 **     prepare the entry, acquire the async.queueMutex momentarily while
104 **     list pointers are  manipulated to insert the new entry, then release
105 **     the mutex and signal the writer thread to wake up in case it happens
106 **     to be asleep.
107 **
108 **
109 **         asyncRead, asyncFileSize.
110 **
111 **     Read operations. Both of these read from both the underlying file
112 **     first then adjust their result based on pending writes in the
113 **     write-op queue.   So async.queueMutex is held for the duration
114 **     of these operations to prevent other threads from changing the
115 **     queue in mid operation.
116 **
117 **
118 **         asyncLock, asyncUnlock, asyncCheckReservedLock
119 **
120 **     These primitives implement in-process locking using a hash table
121 **     on the file name.  Files are locked correctly for connections coming
122 **     from the same process.  But other processes cannot see these locks
123 **     and will therefore not honor them.
124 **
125 **
126 ** The writer thread:
127 **
128 **     The async.writerMutex is used to make sure only there is only
129 **     a single writer thread running at a time.
130 **
131 **     Inside the writer thread is a loop that works like this:
132 **
133 **         WHILE (write-op list is not empty)
134 **             Do IO operation at head of write-op list
135 **             Remove entry from head of write-op list
136 **         END WHILE
137 **
138 **     The async.queueMutex is always held during the <write-op list is
139 **     not empty> test, and when the entry is removed from the head
140 **     of the write-op list. Sometimes it is held for the interim
141 **     period (while the IO is performed), and sometimes it is
142 **     relinquished. It is relinquished if (a) the IO op is an
143 **     ASYNC_CLOSE or (b) when the file handle was opened, two of
144 **     the underlying systems handles were opened on the same
145 **     file-system entry.
146 **
147 **     If condition (b) above is true, then one file-handle
148 **     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
149 **     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
150 **     threads to perform write() operations. This means that read
151 **     operations are not blocked by asynchronous writes (although
152 **     asynchronous writes may still be blocked by reads).
153 **
154 **     This assumes that the OS keeps two handles open on the same file
155 **     properly in sync. That is, any read operation that starts after a
156 **     write operation on the same file system entry has completed returns
157 **     data consistent with the write. We also assume that if one thread
158 **     reads a file while another is writing it all bytes other than the
159 **     ones actually being written contain valid data.
160 **
161 **     If the above assumptions are not true, set the preprocessor symbol
162 **     SQLITE_ASYNC_TWO_FILEHANDLES to 0.
163 */
164 
165 
166 #ifndef NDEBUG
167 # define TESTONLY( X ) X
168 #else
169 # define TESTONLY( X )
170 #endif
171 
172 /*
173 ** PORTING FUNCTIONS
174 **
175 ** There are two definitions of the following functions. One for pthreads
176 ** compatible systems and one for Win32. These functions isolate the OS
177 ** specific code required by each platform.
178 **
179 ** The system uses three mutexes and a single condition variable. To
180 ** block on a mutex, async_mutex_enter() is called. The parameter passed
181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK,
182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three
183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is
184 ** called with a parameter identifying the mutex being unlocked. Mutexes
185 ** are not recursive - it is an error to call async_mutex_enter() to
186 ** lock a mutex that is already locked, or to call async_mutex_leave()
187 ** to unlock a mutex that is not currently locked.
188 **
189 ** The async_cond_wait() and async_cond_signal() functions are modelled
190 ** on the pthreads functions with similar names. The first parameter to
191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait()
192 ** is called the mutex identified by the second parameter must be held.
193 ** The mutex is unlocked, and the calling thread simultaneously begins
194 ** waiting for the condition variable to be signalled by another thread.
195 ** After another thread signals the condition variable, the calling
196 ** thread stops waiting, locks mutex eMutex and returns. The
197 ** async_cond_signal() function is used to signal the condition variable.
198 ** It is assumed that the mutex used by the thread calling async_cond_wait()
199 ** is held by the caller of async_cond_signal() (otherwise there would be
200 ** a race condition).
201 **
202 ** It is guaranteed that no other thread will call async_cond_wait() when
203 ** there is already a thread waiting on the condition variable.
204 **
205 ** The async_sched_yield() function is called to suggest to the operating
206 ** system that it would be a good time to shift the current thread off the
207 ** CPU. The system will still work if this function is not implemented
208 ** (it is not currently implemented for win32), but it might be marginally
209 ** more efficient if it is.
210 */
211 static void async_mutex_enter(int eMutex);
212 static void async_mutex_leave(int eMutex);
213 static void async_cond_wait(int eCond, int eMutex);
214 static void async_cond_signal(int eCond);
215 static void async_sched_yield(void);
216 
217 /*
218 ** There are also two definitions of the following. async_os_initialize()
219 ** is called when the asynchronous VFS is first installed, and os_shutdown()
220 ** is called when it is uninstalled (from within sqlite3async_shutdown()).
221 **
222 ** For pthreads builds, both of these functions are no-ops. For win32,
223 ** they provide an opportunity to initialize and finalize the required
224 ** mutex and condition variables.
225 **
226 ** If async_os_initialize() returns other than zero, then the initialization
227 ** fails and SQLITE_ERROR is returned to the user.
228 */
229 static int async_os_initialize(void);
230 static void async_os_shutdown(void);
231 
232 /* Values for use as the 'eMutex' argument of the above functions. The
233 ** integer values assigned to these constants are important for assert()
234 ** statements that verify that mutexes are locked in the correct order.
235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock
236 ** on mutex M if (M<=N).
237 */
238 #define ASYNC_MUTEX_LOCK    0
239 #define ASYNC_MUTEX_QUEUE   1
240 #define ASYNC_MUTEX_WRITER  2
241 
242 /* Values for use as the 'eCond' argument of the above functions. */
243 #define ASYNC_COND_QUEUE    0
244 
245 /*************************************************************************
246 ** Start of OS specific code.
247 */
248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
249 
250 #include <windows.h>
251 
252 /* The following block contains the win32 specific code. */
253 
254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X])
255 
256 static struct AsyncPrimitives {
257   int isInit;
258   DWORD aHolder[3];
259   CRITICAL_SECTION aMutex[3];
260   HANDLE aCond[1];
261 } primitives = { 0 };
262 
263 static int async_os_initialize(void){
264   if( !primitives.isInit ){
265     primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0);
266     if( primitives.aCond[0]==NULL ){
267       return 1;
268     }
269     InitializeCriticalSection(&primitives.aMutex[0]);
270     InitializeCriticalSection(&primitives.aMutex[1]);
271     InitializeCriticalSection(&primitives.aMutex[2]);
272     primitives.isInit = 1;
273   }
274   return 0;
275 }
276 static void async_os_shutdown(void){
277   if( primitives.isInit ){
278     DeleteCriticalSection(&primitives.aMutex[0]);
279     DeleteCriticalSection(&primitives.aMutex[1]);
280     DeleteCriticalSection(&primitives.aMutex[2]);
281     CloseHandle(primitives.aCond[0]);
282     primitives.isInit = 0;
283   }
284 }
285 
286 /* The following block contains the Win32 specific code. */
287 static void async_mutex_enter(int eMutex){
288   assert( eMutex==0 || eMutex==1 || eMutex==2 );
289   assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
290   assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
291   assert( eMutex!=0 || (!mutex_held(0)) );
292   EnterCriticalSection(&primitives.aMutex[eMutex]);
293   TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); )
294 }
295 static void async_mutex_leave(int eMutex){
296   assert( eMutex==0 || eMutex==1 || eMutex==2 );
297   assert( mutex_held(eMutex) );
298   TESTONLY( primitives.aHolder[eMutex] = 0; )
299   LeaveCriticalSection(&primitives.aMutex[eMutex]);
300 }
301 static void async_cond_wait(int eCond, int eMutex){
302   ResetEvent(primitives.aCond[eCond]);
303   async_mutex_leave(eMutex);
304   WaitForSingleObject(primitives.aCond[eCond], INFINITE);
305   async_mutex_enter(eMutex);
306 }
307 static void async_cond_signal(int eCond){
308   assert( mutex_held(ASYNC_MUTEX_QUEUE) );
309   SetEvent(primitives.aCond[eCond]);
310 }
311 static void async_sched_yield(void){
312   Sleep(0);
313 }
314 #else
315 
316 /* The following block contains the pthreads specific code. */
317 #include <pthread.h>
318 #include <sched.h>
319 
320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self())
321 
322 static int  async_os_initialize(void) {return 0;}
323 static void async_os_shutdown(void) {}
324 
325 static struct AsyncPrimitives {
326   pthread_mutex_t aMutex[3];
327   pthread_cond_t aCond[1];
328   pthread_t aHolder[3];
329 } primitives = {
330   { PTHREAD_MUTEX_INITIALIZER,
331     PTHREAD_MUTEX_INITIALIZER,
332     PTHREAD_MUTEX_INITIALIZER
333   } , {
334     PTHREAD_COND_INITIALIZER
335   } , { 0, 0, 0 }
336 };
337 
338 static void async_mutex_enter(int eMutex){
339   assert( eMutex==0 || eMutex==1 || eMutex==2 );
340   assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
341   assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
342   assert( eMutex!=0 || (!mutex_held(0)) );
343   pthread_mutex_lock(&primitives.aMutex[eMutex]);
344   TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
345 }
346 static void async_mutex_leave(int eMutex){
347   assert( eMutex==0 || eMutex==1 || eMutex==2 );
348   assert( mutex_held(eMutex) );
349   TESTONLY( primitives.aHolder[eMutex] = 0; )
350   pthread_mutex_unlock(&primitives.aMutex[eMutex]);
351 }
352 static void async_cond_wait(int eCond, int eMutex){
353   assert( eMutex==0 || eMutex==1 || eMutex==2 );
354   assert( mutex_held(eMutex) );
355   TESTONLY( primitives.aHolder[eMutex] = 0; )
356   pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]);
357   TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
358 }
359 static void async_cond_signal(int eCond){
360   assert( mutex_held(ASYNC_MUTEX_QUEUE) );
361   pthread_cond_signal(&primitives.aCond[eCond]);
362 }
363 static void async_sched_yield(void){
364   sched_yield();
365 }
366 #endif
367 /*
368 ** End of OS specific code.
369 *************************************************************************/
370 
371 #define assert_mutex_is_held(X) assert( mutex_held(X) )
372 
373 
374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
377 #endif
378 
379 /*
380 ** State information is held in the static variable "async" defined
381 ** as the following structure.
382 **
383 ** Both async.ioError and async.nFile are protected by async.queueMutex.
384 */
385 static struct TestAsyncStaticData {
386   AsyncWrite *pQueueFirst;     /* Next write operation to be processed */
387   AsyncWrite *pQueueLast;      /* Last write operation on the list */
388   AsyncLock *pLock;            /* Linked list of all AsyncLock structures */
389   volatile int ioDelay;        /* Extra delay between write operations */
390   volatile int eHalt;          /* One of the SQLITEASYNC_HALT_XXX values */
391   volatile int bLockFiles;     /* Current value of "lockfiles" parameter */
392   int ioError;                 /* True if an IO error has occurred */
393   int nFile;                   /* Number of open files (from sqlite pov) */
394 } async = { 0,0,0,0,0,1,0,0 };
395 
396 /* Possible values of AsyncWrite.op */
397 #define ASYNC_NOOP          0
398 #define ASYNC_WRITE         1
399 #define ASYNC_SYNC          2
400 #define ASYNC_TRUNCATE      3
401 #define ASYNC_CLOSE         4
402 #define ASYNC_DELETE        5
403 #define ASYNC_OPENEXCLUSIVE 6
404 #define ASYNC_UNLOCK        7
405 
406 /* Names of opcodes.  Used for debugging only.
407 ** Make sure these stay in sync with the macros above!
408 */
409 static const char *azOpcodeName[] = {
410   "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
411 };
412 
413 /*
414 ** Entries on the write-op queue are instances of the AsyncWrite
415 ** structure, defined here.
416 **
417 ** The interpretation of the iOffset and nByte variables varies depending
418 ** on the value of AsyncWrite.op:
419 **
420 ** ASYNC_NOOP:
421 **     No values used.
422 **
423 ** ASYNC_WRITE:
424 **     iOffset -> Offset in file to write to.
425 **     nByte   -> Number of bytes of data to write (pointed to by zBuf).
426 **
427 ** ASYNC_SYNC:
428 **     nByte   -> flags to pass to sqlite3OsSync().
429 **
430 ** ASYNC_TRUNCATE:
431 **     iOffset -> Size to truncate file to.
432 **     nByte   -> Unused.
433 **
434 ** ASYNC_CLOSE:
435 **     iOffset -> Unused.
436 **     nByte   -> Unused.
437 **
438 ** ASYNC_DELETE:
439 **     iOffset -> Contains the "syncDir" flag.
440 **     nByte   -> Number of bytes of zBuf points to (file name).
441 **
442 ** ASYNC_OPENEXCLUSIVE:
443 **     iOffset -> Value of "delflag".
444 **     nByte   -> Number of bytes of zBuf points to (file name).
445 **
446 ** ASYNC_UNLOCK:
447 **     nByte   -> Argument to sqlite3OsUnlock().
448 **
449 **
450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
452 ** single blob, so is deleted when sqlite3_free() is called on the parent
453 ** structure.
454 */
455 struct AsyncWrite {
456   AsyncFileData *pFileData;    /* File to write data to or sync */
457   int op;                      /* One of ASYNC_xxx etc. */
458   sqlite_int64 iOffset;        /* See above */
459   int nByte;          /* See above */
460   char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
461   AsyncWrite *pNext;  /* Next write operation (to any file) */
462 };
463 
464 /*
465 ** An instance of this structure is created for each distinct open file
466 ** (i.e. if two handles are opened on the one file, only one of these
467 ** structures is allocated) and stored in the async.aLock hash table. The
468 ** keys for async.aLock are the full pathnames of the opened files.
469 **
470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
471 ** structures, one for each handle currently open on the file.
472 **
473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is
475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used.
476 ** Otherwise, pFile is a file handle opened on the file in question and
477 ** used to obtain the file-system locks required by database connections
478 ** within this process.
479 **
480 ** See comments above the asyncLock() function for more details on
481 ** the implementation of database locking used by this backend.
482 */
483 struct AsyncLock {
484   char *zFile;
485   int nFile;
486   sqlite3_file *pFile;
487   int eLock;
488   AsyncFileLock *pList;
489   AsyncLock *pNext;           /* Next in linked list headed by async.pLock */
490 };
491 
492 /*
493 ** An instance of the following structure is allocated along with each
494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
495 ** file was opened with the SQLITE_OPEN_MAIN_DB.
496 */
497 struct AsyncFileLock {
498   int eLock;                /* Internally visible lock state (sqlite pov) */
499   int eAsyncLock;           /* Lock-state with write-queue unlock */
500   AsyncFileLock *pNext;
501 };
502 
503 /*
504 ** The AsyncFile structure is a subclass of sqlite3_file used for
505 ** asynchronous IO.
506 **
507 ** All of the actual data for the structure is stored in the structure
508 ** pointed to by AsyncFile.pData, which is allocated as part of the
509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
511 ** is called, but the data in AsyncFileData may be required by the
512 ** writer thread after that point.
513 */
514 struct AsyncFile {
515   sqlite3_io_methods *pMethod;
516   AsyncFileData *pData;
517 };
518 struct AsyncFileData {
519   char *zName;               /* Underlying OS filename - used for debugging */
520   int nName;                 /* Number of characters in zName */
521   sqlite3_file *pBaseRead;   /* Read handle to the underlying Os file */
522   sqlite3_file *pBaseWrite;  /* Write handle to the underlying Os file */
523   AsyncFileLock lock;        /* Lock state for this handle */
524   AsyncLock *pLock;          /* AsyncLock object for this file system entry */
525   AsyncWrite closeOp;        /* Preallocated close operation */
526 };
527 
528 /*
529 ** Add an entry to the end of the global write-op list. pWrite should point
530 ** to an AsyncWrite structure allocated using sqlite3_malloc().  The writer
531 ** thread will call sqlite3_free() to free the structure after the specified
532 ** operation has been completed.
533 **
534 ** Once an AsyncWrite structure has been added to the list, it becomes the
535 ** property of the writer thread and must not be read or modified by the
536 ** caller.
537 */
538 static void addAsyncWrite(AsyncWrite *pWrite){
539   /* We must hold the queue mutex in order to modify the queue pointers */
540   if( pWrite->op!=ASYNC_UNLOCK ){
541     async_mutex_enter(ASYNC_MUTEX_QUEUE);
542   }
543 
544   /* Add the record to the end of the write-op queue */
545   assert( !pWrite->pNext );
546   if( async.pQueueLast ){
547     assert( async.pQueueFirst );
548     async.pQueueLast->pNext = pWrite;
549   }else{
550     async.pQueueFirst = pWrite;
551   }
552   async.pQueueLast = pWrite;
553   ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
554          pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
555 
556   if( pWrite->op==ASYNC_CLOSE ){
557     async.nFile--;
558   }
559 
560   /* The writer thread might have been idle because there was nothing
561   ** on the write-op queue for it to do.  So wake it up. */
562   async_cond_signal(ASYNC_COND_QUEUE);
563 
564   /* Drop the queue mutex */
565   if( pWrite->op!=ASYNC_UNLOCK ){
566     async_mutex_leave(ASYNC_MUTEX_QUEUE);
567   }
568 }
569 
570 /*
571 ** Increment async.nFile in a thread-safe manner.
572 */
573 static void incrOpenFileCount(void){
574   /* We must hold the queue mutex in order to modify async.nFile */
575   async_mutex_enter(ASYNC_MUTEX_QUEUE);
576   if( async.nFile==0 ){
577     async.ioError = SQLITE_OK;
578   }
579   async.nFile++;
580   async_mutex_leave(ASYNC_MUTEX_QUEUE);
581 }
582 
583 /*
584 ** This is a utility function to allocate and populate a new AsyncWrite
585 ** structure and insert it (via addAsyncWrite() ) into the global list.
586 */
587 static int addNewAsyncWrite(
588   AsyncFileData *pFileData,
589   int op,
590   sqlite3_int64 iOffset,
591   int nByte,
592   const char *zByte
593 ){
594   AsyncWrite *p;
595   if( op!=ASYNC_CLOSE && async.ioError ){
596     return async.ioError;
597   }
598   p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
599   if( !p ){
600     /* The upper layer does not expect operations like OsWrite() to
601     ** return SQLITE_NOMEM. This is partly because under normal conditions
602     ** SQLite is required to do rollback without calling malloc(). So
603     ** if malloc() fails here, treat it as an I/O error. The above
604     ** layer knows how to handle that.
605     */
606     return SQLITE_IOERR;
607   }
608   p->op = op;
609   p->iOffset = iOffset;
610   p->nByte = nByte;
611   p->pFileData = pFileData;
612   p->pNext = 0;
613   if( zByte ){
614     p->zBuf = (char *)&p[1];
615     memcpy(p->zBuf, zByte, nByte);
616   }else{
617     p->zBuf = 0;
618   }
619   addAsyncWrite(p);
620   return SQLITE_OK;
621 }
622 
623 /*
624 ** Close the file. This just adds an entry to the write-op list, the file is
625 ** not actually closed.
626 */
627 static int asyncClose(sqlite3_file *pFile){
628   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
629 
630   /* Unlock the file, if it is locked */
631   async_mutex_enter(ASYNC_MUTEX_LOCK);
632   p->lock.eLock = 0;
633   async_mutex_leave(ASYNC_MUTEX_LOCK);
634 
635   addAsyncWrite(&p->closeOp);
636   return SQLITE_OK;
637 }
638 
639 /*
640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
641 ** writing to the underlying file, this function adds an entry to the end of
642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
643 ** returned.
644 */
645 static int asyncWrite(
646   sqlite3_file *pFile,
647   const void *pBuf,
648   int amt,
649   sqlite3_int64 iOff
650 ){
651   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
652   return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
653 }
654 
655 /*
656 ** Read data from the file. First we read from the filesystem, then adjust
657 ** the contents of the buffer based on ASYNC_WRITE operations in the
658 ** write-op queue.
659 **
660 ** This method holds the mutex from start to finish.
661 */
662 static int asyncRead(
663   sqlite3_file *pFile,
664   void *zOut,
665   int iAmt,
666   sqlite3_int64 iOffset
667 ){
668   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
669   int rc = SQLITE_OK;
670   sqlite3_int64 filesize;
671   int nRead;
672   sqlite3_file *pBase = p->pBaseRead;
673 
674   /* Grab the write queue mutex for the duration of the call */
675   async_mutex_enter(ASYNC_MUTEX_QUEUE);
676 
677   /* If an I/O error has previously occurred in this virtual file
678   ** system, then all subsequent operations fail.
679   */
680   if( async.ioError!=SQLITE_OK ){
681     rc = async.ioError;
682     goto asyncread_out;
683   }
684 
685   if( pBase->pMethods ){
686     rc = pBase->pMethods->xFileSize(pBase, &filesize);
687     if( rc!=SQLITE_OK ){
688       goto asyncread_out;
689     }
690     nRead = (int)MIN(filesize - iOffset, iAmt);
691     if( nRead>0 ){
692       rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
693       ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
694     }
695   }
696 
697   if( rc==SQLITE_OK ){
698     AsyncWrite *pWrite;
699     char *zName = p->zName;
700 
701     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
702       if( pWrite->op==ASYNC_WRITE && (
703         (pWrite->pFileData==p) ||
704         (zName && pWrite->pFileData->zName==zName)
705       )){
706         sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset);
707         sqlite3_int64 iBeginIn = -iBeginOut;
708         int nCopy;
709 
710         if( iBeginIn<0 ) iBeginIn = 0;
711         if( iBeginOut<0 ) iBeginOut = 0;
712         nCopy = (int)MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
713 
714         if( nCopy>0 ){
715           memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
716           ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
717         }
718       }
719     }
720   }
721 
722 asyncread_out:
723   async_mutex_leave(ASYNC_MUTEX_QUEUE);
724   return rc;
725 }
726 
727 /*
728 ** Truncate the file to nByte bytes in length. This just adds an entry to
729 ** the write-op list, no IO actually takes place.
730 */
731 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
732   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
733   return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
734 }
735 
736 /*
737 ** Sync the file. This just adds an entry to the write-op list, the
738 ** sync() is done later by sqlite3_async_flush().
739 */
740 static int asyncSync(sqlite3_file *pFile, int flags){
741   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
742   return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
743 }
744 
745 /*
746 ** Read the size of the file. First we read the size of the file system
747 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
748 ** currently in the write-op list.
749 **
750 ** This method holds the mutex from start to finish.
751 */
752 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
753   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
754   int rc = SQLITE_OK;
755   sqlite3_int64 s = 0;
756   sqlite3_file *pBase;
757 
758   async_mutex_enter(ASYNC_MUTEX_QUEUE);
759 
760   /* Read the filesystem size from the base file. If pMethods is NULL, this
761   ** means the file hasn't been opened yet. In this case all relevant data
762   ** must be in the write-op queue anyway, so we can omit reading from the
763   ** file-system.
764   */
765   pBase = p->pBaseRead;
766   if( pBase->pMethods ){
767     rc = pBase->pMethods->xFileSize(pBase, &s);
768   }
769 
770   if( rc==SQLITE_OK ){
771     AsyncWrite *pWrite;
772     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
773       if( pWrite->op==ASYNC_DELETE
774        && p->zName
775        && strcmp(p->zName, pWrite->zBuf)==0
776       ){
777         s = 0;
778       }else if( pWrite->pFileData && (
779           (pWrite->pFileData==p)
780        || (p->zName && pWrite->pFileData->zName==p->zName)
781       )){
782         switch( pWrite->op ){
783           case ASYNC_WRITE:
784             s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
785             break;
786           case ASYNC_TRUNCATE:
787             s = MIN(s, pWrite->iOffset);
788             break;
789         }
790       }
791     }
792     *piSize = s;
793   }
794   async_mutex_leave(ASYNC_MUTEX_QUEUE);
795   return rc;
796 }
797 
798 /*
799 ** Lock or unlock the actual file-system entry.
800 */
801 static int getFileLock(AsyncLock *pLock){
802   int rc = SQLITE_OK;
803   AsyncFileLock *pIter;
804   int eRequired = 0;
805 
806   if( pLock->pFile ){
807     for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
808       assert(pIter->eAsyncLock>=pIter->eLock);
809       if( pIter->eAsyncLock>eRequired ){
810         eRequired = pIter->eAsyncLock;
811         assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
812       }
813     }
814 
815     if( eRequired>pLock->eLock ){
816       rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
817       if( rc==SQLITE_OK ){
818         pLock->eLock = eRequired;
819       }
820     }
821     else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
822       rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
823       if( rc==SQLITE_OK ){
824         pLock->eLock = eRequired;
825       }
826     }
827   }
828 
829   return rc;
830 }
831 
832 /*
833 ** Return the AsyncLock structure from the global async.pLock list
834 ** associated with the file-system entry identified by path zName
835 ** (a string of nName bytes). If no such structure exists, return 0.
836 */
837 static AsyncLock *findLock(const char *zName, int nName){
838   AsyncLock *p = async.pLock;
839   while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
840     p = p->pNext;
841   }
842   return p;
843 }
844 
845 /*
846 ** The following two methods - asyncLock() and asyncUnlock() - are used
847 ** to obtain and release locks on database files opened with the
848 ** asynchronous backend.
849 */
850 static int asyncLock(sqlite3_file *pFile, int eLock){
851   int rc = SQLITE_OK;
852   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
853 
854   if( p->zName ){
855     async_mutex_enter(ASYNC_MUTEX_LOCK);
856     if( p->lock.eLock<eLock ){
857       AsyncLock *pLock = p->pLock;
858       AsyncFileLock *pIter;
859       assert(pLock && pLock->pList);
860       for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
861         if( pIter!=&p->lock && (
862           (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
863           (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
864           (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
865           (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
866         )){
867           rc = SQLITE_BUSY;
868         }
869       }
870       if( rc==SQLITE_OK ){
871         p->lock.eLock = eLock;
872         p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
873       }
874       assert(p->lock.eAsyncLock>=p->lock.eLock);
875       if( rc==SQLITE_OK ){
876         rc = getFileLock(pLock);
877       }
878     }
879     async_mutex_leave(ASYNC_MUTEX_LOCK);
880   }
881 
882   ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
883   return rc;
884 }
885 static int asyncUnlock(sqlite3_file *pFile, int eLock){
886   int rc = SQLITE_OK;
887   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
888   if( p->zName ){
889     AsyncFileLock *pLock = &p->lock;
890     async_mutex_enter(ASYNC_MUTEX_QUEUE);
891     async_mutex_enter(ASYNC_MUTEX_LOCK);
892     pLock->eLock = MIN(pLock->eLock, eLock);
893     rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
894     async_mutex_leave(ASYNC_MUTEX_LOCK);
895     async_mutex_leave(ASYNC_MUTEX_QUEUE);
896   }
897   return rc;
898 }
899 
900 /*
901 ** This function is called when the pager layer first opens a database file
902 ** and is checking for a hot-journal.
903 */
904 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
905   int ret = 0;
906   AsyncFileLock *pIter;
907   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
908 
909   async_mutex_enter(ASYNC_MUTEX_LOCK);
910   for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
911     if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
912       ret = 1;
913       break;
914     }
915   }
916   async_mutex_leave(ASYNC_MUTEX_LOCK);
917 
918   ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
919   *pResOut = ret;
920   return SQLITE_OK;
921 }
922 
923 /*
924 ** sqlite3_file_control() implementation.
925 */
926 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
927   switch( op ){
928     case SQLITE_FCNTL_LOCKSTATE: {
929       async_mutex_enter(ASYNC_MUTEX_LOCK);
930       *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
931       async_mutex_leave(ASYNC_MUTEX_LOCK);
932       return SQLITE_OK;
933     }
934   }
935   return SQLITE_ERROR;
936 }
937 
938 /*
939 ** Return the device characteristics and sector-size of the device. It
940 ** is tricky to implement these correctly, as this backend might
941 ** not have an open file handle at this point.
942 */
943 static int asyncSectorSize(sqlite3_file *pFile){
944   UNUSED_PARAMETER(pFile);
945   return 512;
946 }
947 static int asyncDeviceCharacteristics(sqlite3_file *pFile){
948   UNUSED_PARAMETER(pFile);
949   return 0;
950 }
951 
952 static int unlinkAsyncFile(AsyncFileData *pData){
953   AsyncFileLock **ppIter;
954   int rc = SQLITE_OK;
955 
956   if( pData->zName ){
957     AsyncLock *pLock = pData->pLock;
958     for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
959       if( (*ppIter)==&pData->lock ){
960         *ppIter = pData->lock.pNext;
961         break;
962       }
963     }
964     if( !pLock->pList ){
965       AsyncLock **pp;
966       if( pLock->pFile ){
967         pLock->pFile->pMethods->xClose(pLock->pFile);
968       }
969       for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
970       *pp = pLock->pNext;
971       sqlite3_free(pLock);
972     }else{
973       rc = getFileLock(pLock);
974     }
975   }
976 
977   return rc;
978 }
979 
980 /*
981 ** The parameter passed to this function is a copy of a 'flags' parameter
982 ** passed to this modules xOpen() method. This function returns true
983 ** if the file should be opened asynchronously, or false if it should
984 ** be opened immediately.
985 **
986 ** If the file is to be opened asynchronously, then asyncOpen() will add
987 ** an entry to the event queue and the file will not actually be opened
988 ** until the event is processed. Otherwise, the file is opened directly
989 ** by the caller.
990 */
991 static int doAsynchronousOpen(int flags){
992   return (flags&SQLITE_OPEN_CREATE) && (
993       (flags&SQLITE_OPEN_MAIN_JOURNAL) ||
994       (flags&SQLITE_OPEN_TEMP_JOURNAL) ||
995       (flags&SQLITE_OPEN_DELETEONCLOSE)
996   );
997 }
998 
999 /*
1000 ** Open a file.
1001 */
1002 static int asyncOpen(
1003   sqlite3_vfs *pAsyncVfs,
1004   const char *zName,
1005   sqlite3_file *pFile,
1006   int flags,
1007   int *pOutFlags
1008 ){
1009   static sqlite3_io_methods async_methods = {
1010     1,                               /* iVersion */
1011     asyncClose,                      /* xClose */
1012     asyncRead,                       /* xRead */
1013     asyncWrite,                      /* xWrite */
1014     asyncTruncate,                   /* xTruncate */
1015     asyncSync,                       /* xSync */
1016     asyncFileSize,                   /* xFileSize */
1017     asyncLock,                       /* xLock */
1018     asyncUnlock,                     /* xUnlock */
1019     asyncCheckReservedLock,          /* xCheckReservedLock */
1020     asyncFileControl,                /* xFileControl */
1021     asyncSectorSize,                 /* xSectorSize */
1022     asyncDeviceCharacteristics       /* xDeviceCharacteristics */
1023   };
1024 
1025   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1026   AsyncFile *p = (AsyncFile *)pFile;
1027   int nName = 0;
1028   int rc = SQLITE_OK;
1029   int nByte;
1030   AsyncFileData *pData;
1031   AsyncLock *pLock = 0;
1032   char *z;
1033   int isAsyncOpen = doAsynchronousOpen(flags);
1034 
1035   /* If zName is NULL, then the upper layer is requesting an anonymous file */
1036   if( zName ){
1037     nName = (int)strlen(zName)+1;
1038   }
1039 
1040   nByte = (
1041     sizeof(AsyncFileData) +        /* AsyncFileData structure */
1042     2 * pVfs->szOsFile +           /* AsyncFileData.pBaseRead and pBaseWrite */
1043     nName                          /* AsyncFileData.zName */
1044   );
1045   z = sqlite3_malloc(nByte);
1046   if( !z ){
1047     return SQLITE_NOMEM;
1048   }
1049   memset(z, 0, nByte);
1050   pData = (AsyncFileData*)z;
1051   z += sizeof(pData[0]);
1052   pData->pBaseRead = (sqlite3_file*)z;
1053   z += pVfs->szOsFile;
1054   pData->pBaseWrite = (sqlite3_file*)z;
1055   pData->closeOp.pFileData = pData;
1056   pData->closeOp.op = ASYNC_CLOSE;
1057 
1058   if( zName ){
1059     z += pVfs->szOsFile;
1060     pData->zName = z;
1061     pData->nName = nName;
1062     memcpy(pData->zName, zName, nName);
1063   }
1064 
1065   if( !isAsyncOpen ){
1066     int flagsout;
1067     rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout);
1068     if( rc==SQLITE_OK
1069      && (flagsout&SQLITE_OPEN_READWRITE)
1070      && (flags&SQLITE_OPEN_EXCLUSIVE)==0
1071     ){
1072       rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0);
1073     }
1074     if( pOutFlags ){
1075       *pOutFlags = flagsout;
1076     }
1077   }
1078 
1079   async_mutex_enter(ASYNC_MUTEX_LOCK);
1080 
1081   if( zName && rc==SQLITE_OK ){
1082     pLock = findLock(pData->zName, pData->nName);
1083     if( !pLock ){
1084       int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
1085       pLock = (AsyncLock *)sqlite3_malloc(nByte);
1086       if( pLock ){
1087         memset(pLock, 0, nByte);
1088         if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){
1089           pLock->pFile = (sqlite3_file *)&pLock[1];
1090           rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0);
1091           if( rc!=SQLITE_OK ){
1092             sqlite3_free(pLock);
1093             pLock = 0;
1094           }
1095         }
1096         if( pLock ){
1097           pLock->nFile = pData->nName;
1098           pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
1099           memcpy(pLock->zFile, pData->zName, pLock->nFile);
1100           pLock->pNext = async.pLock;
1101           async.pLock = pLock;
1102         }
1103       }else{
1104         rc = SQLITE_NOMEM;
1105       }
1106     }
1107   }
1108 
1109   if( rc==SQLITE_OK ){
1110     p->pMethod = &async_methods;
1111     p->pData = pData;
1112 
1113     /* Link AsyncFileData.lock into the linked list of
1114     ** AsyncFileLock structures for this file.
1115     */
1116     if( zName ){
1117       pData->lock.pNext = pLock->pList;
1118       pLock->pList = &pData->lock;
1119       pData->zName = pLock->zFile;
1120     }
1121   }else{
1122     if( pData->pBaseRead->pMethods ){
1123       pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1124     }
1125     if( pData->pBaseWrite->pMethods ){
1126       pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1127     }
1128     sqlite3_free(pData);
1129   }
1130 
1131   async_mutex_leave(ASYNC_MUTEX_LOCK);
1132 
1133   if( rc==SQLITE_OK ){
1134     incrOpenFileCount();
1135     pData->pLock = pLock;
1136   }
1137 
1138   if( rc==SQLITE_OK && isAsyncOpen ){
1139     rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
1140     if( rc==SQLITE_OK ){
1141       if( pOutFlags ) *pOutFlags = flags;
1142     }else{
1143       async_mutex_enter(ASYNC_MUTEX_LOCK);
1144       unlinkAsyncFile(pData);
1145       async_mutex_leave(ASYNC_MUTEX_LOCK);
1146       sqlite3_free(pData);
1147     }
1148   }
1149   if( rc!=SQLITE_OK ){
1150     p->pMethod = 0;
1151   }
1152   return rc;
1153 }
1154 
1155 /*
1156 ** Implementation of sqlite3OsDelete. Add an entry to the end of the
1157 ** write-op queue to perform the delete.
1158 */
1159 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
1160   UNUSED_PARAMETER(pAsyncVfs);
1161   return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z);
1162 }
1163 
1164 /*
1165 ** Implementation of sqlite3OsAccess. This method holds the mutex from
1166 ** start to finish.
1167 */
1168 static int asyncAccess(
1169   sqlite3_vfs *pAsyncVfs,
1170   const char *zName,
1171   int flags,
1172   int *pResOut
1173 ){
1174   int rc;
1175   int ret;
1176   AsyncWrite *p;
1177   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1178 
1179   assert(flags==SQLITE_ACCESS_READWRITE
1180       || flags==SQLITE_ACCESS_READ
1181       || flags==SQLITE_ACCESS_EXISTS
1182   );
1183 
1184   async_mutex_enter(ASYNC_MUTEX_QUEUE);
1185   rc = pVfs->xAccess(pVfs, zName, flags, &ret);
1186   if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
1187     for(p=async.pQueueFirst; p; p = p->pNext){
1188       if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
1189         ret = 0;
1190       }else if( p->op==ASYNC_OPENEXCLUSIVE
1191              && p->pFileData->zName
1192              && 0==strcmp(p->pFileData->zName, zName)
1193       ){
1194         ret = 1;
1195       }
1196     }
1197   }
1198   ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
1199     flags==SQLITE_ACCESS_READWRITE?"read-write":
1200     flags==SQLITE_ACCESS_READ?"read":"exists"
1201     , zName, ret)
1202   );
1203   async_mutex_leave(ASYNC_MUTEX_QUEUE);
1204   *pResOut = ret;
1205   return rc;
1206 }
1207 
1208 /*
1209 ** Fill in zPathOut with the full path to the file identified by zPath.
1210 */
1211 static int asyncFullPathname(
1212   sqlite3_vfs *pAsyncVfs,
1213   const char *zPath,
1214   int nPathOut,
1215   char *zPathOut
1216 ){
1217   int rc;
1218   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1219   rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
1220 
1221   /* Because of the way intra-process file locking works, this backend
1222   ** needs to return a canonical path. The following block assumes the
1223   ** file-system uses unix style paths.
1224   */
1225   if( rc==SQLITE_OK ){
1226     int i, j;
1227     int n = nPathOut;
1228     char *z = zPathOut;
1229     while( n>1 && z[n-1]=='/' ){ n--; }
1230     for(i=j=0; i<n; i++){
1231       if( z[i]=='/' ){
1232         if( z[i+1]=='/' ) continue;
1233         if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
1234           i += 1;
1235           continue;
1236         }
1237         if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
1238           while( j>0 && z[j-1]!='/' ){ j--; }
1239           if( j>0 ){ j--; }
1240           i += 2;
1241           continue;
1242         }
1243       }
1244       z[j++] = z[i];
1245     }
1246     z[j] = 0;
1247   }
1248 
1249   return rc;
1250 }
1251 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
1252   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1253   return pVfs->xDlOpen(pVfs, zPath);
1254 }
1255 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
1256   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1257   pVfs->xDlError(pVfs, nByte, zErrMsg);
1258 }
1259 static void (*asyncDlSym(
1260   sqlite3_vfs *pAsyncVfs,
1261   void *pHandle,
1262   const char *zSymbol
1263 ))(void){
1264   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1265   return pVfs->xDlSym(pVfs, pHandle, zSymbol);
1266 }
1267 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
1268   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1269   pVfs->xDlClose(pVfs, pHandle);
1270 }
1271 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
1272   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1273   return pVfs->xRandomness(pVfs, nByte, zBufOut);
1274 }
1275 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
1276   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1277   return pVfs->xSleep(pVfs, nMicro);
1278 }
1279 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
1280   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1281   return pVfs->xCurrentTime(pVfs, pTimeOut);
1282 }
1283 
1284 static sqlite3_vfs async_vfs = {
1285   1,                    /* iVersion */
1286   sizeof(AsyncFile),    /* szOsFile */
1287   0,                    /* mxPathname */
1288   0,                    /* pNext */
1289   SQLITEASYNC_VFSNAME,  /* zName */
1290   0,                    /* pAppData */
1291   asyncOpen,            /* xOpen */
1292   asyncDelete,          /* xDelete */
1293   asyncAccess,          /* xAccess */
1294   asyncFullPathname,    /* xFullPathname */
1295   asyncDlOpen,          /* xDlOpen */
1296   asyncDlError,         /* xDlError */
1297   asyncDlSym,           /* xDlSym */
1298   asyncDlClose,         /* xDlClose */
1299   asyncRandomness,      /* xDlError */
1300   asyncSleep,           /* xDlSym */
1301   asyncCurrentTime      /* xDlClose */
1302 };
1303 
1304 /*
1305 ** This procedure runs in a separate thread, reading messages off of the
1306 ** write queue and processing them one by one.
1307 **
1308 ** If async.writerHaltNow is true, then this procedure exits
1309 ** after processing a single message.
1310 **
1311 ** If async.writerHaltWhenIdle is true, then this procedure exits when
1312 ** the write queue is empty.
1313 **
1314 ** If both of the above variables are false, this procedure runs
1315 ** indefinately, waiting for operations to be added to the write queue
1316 ** and processing them in the order in which they arrive.
1317 **
1318 ** An artifical delay of async.ioDelay milliseconds is inserted before
1319 ** each write operation in order to simulate the effect of a slow disk.
1320 **
1321 ** Only one instance of this procedure may be running at a time.
1322 */
1323 static void asyncWriterThread(void){
1324   sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
1325   AsyncWrite *p = 0;
1326   int rc = SQLITE_OK;
1327   int holdingMutex = 0;
1328 
1329   async_mutex_enter(ASYNC_MUTEX_WRITER);
1330 
1331   while( async.eHalt!=SQLITEASYNC_HALT_NOW ){
1332     int doNotFree = 0;
1333     sqlite3_file *pBase = 0;
1334 
1335     if( !holdingMutex ){
1336       async_mutex_enter(ASYNC_MUTEX_QUEUE);
1337     }
1338     while( (p = async.pQueueFirst)==0 ){
1339       if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){
1340         async_mutex_leave(ASYNC_MUTEX_QUEUE);
1341         break;
1342       }else{
1343         ASYNC_TRACE(("IDLE\n"));
1344         async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE);
1345         ASYNC_TRACE(("WAKEUP\n"));
1346       }
1347     }
1348     if( p==0 ) break;
1349     holdingMutex = 1;
1350 
1351     /* Right now this thread is holding the mutex on the write-op queue.
1352     ** Variable 'p' points to the first entry in the write-op queue. In
1353     ** the general case, we hold on to the mutex for the entire body of
1354     ** the loop.
1355     **
1356     ** However in the cases enumerated below, we relinquish the mutex,
1357     ** perform the IO, and then re-request the mutex before removing 'p' from
1358     ** the head of the write-op queue. The idea is to increase concurrency with
1359     ** sqlite threads.
1360     **
1361     **     * An ASYNC_CLOSE operation.
1362     **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1363     **       the mutex, call the underlying xOpenExclusive() function, then
1364     **       re-aquire the mutex before seting the AsyncFile.pBaseRead
1365     **       variable.
1366     **     * ASYNC_SYNC and ASYNC_WRITE operations, if
1367     **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1368     **       file-handles are open for the particular file being "synced".
1369     */
1370     if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
1371       p->op = ASYNC_NOOP;
1372     }
1373     if( p->pFileData ){
1374       pBase = p->pFileData->pBaseWrite;
1375       if(
1376         p->op==ASYNC_CLOSE ||
1377         p->op==ASYNC_OPENEXCLUSIVE ||
1378         (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
1379       ){
1380         async_mutex_leave(ASYNC_MUTEX_QUEUE);
1381         holdingMutex = 0;
1382       }
1383       if( !pBase->pMethods ){
1384         pBase = p->pFileData->pBaseRead;
1385       }
1386     }
1387 
1388     switch( p->op ){
1389       case ASYNC_NOOP:
1390         break;
1391 
1392       case ASYNC_WRITE:
1393         assert( pBase );
1394         ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1395                 p->pFileData->zName, p->nByte, p->iOffset));
1396         rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
1397         break;
1398 
1399       case ASYNC_SYNC:
1400         assert( pBase );
1401         ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
1402         rc = pBase->pMethods->xSync(pBase, p->nByte);
1403         break;
1404 
1405       case ASYNC_TRUNCATE:
1406         assert( pBase );
1407         ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1408                 p->pFileData->zName, p->iOffset));
1409         rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
1410         break;
1411 
1412       case ASYNC_CLOSE: {
1413         AsyncFileData *pData = p->pFileData;
1414         ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
1415         if( pData->pBaseWrite->pMethods ){
1416           pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1417         }
1418         if( pData->pBaseRead->pMethods ){
1419           pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1420         }
1421 
1422         /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1423         ** structures for this file. Obtain the async.lockMutex mutex
1424         ** before doing so.
1425         */
1426         async_mutex_enter(ASYNC_MUTEX_LOCK);
1427         rc = unlinkAsyncFile(pData);
1428         async_mutex_leave(ASYNC_MUTEX_LOCK);
1429 
1430         if( !holdingMutex ){
1431           async_mutex_enter(ASYNC_MUTEX_QUEUE);
1432           holdingMutex = 1;
1433         }
1434         assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
1435         async.pQueueFirst = p->pNext;
1436         sqlite3_free(pData);
1437         doNotFree = 1;
1438         break;
1439       }
1440 
1441       case ASYNC_UNLOCK: {
1442         AsyncWrite *pIter;
1443         AsyncFileData *pData = p->pFileData;
1444         int eLock = p->nByte;
1445 
1446         /* When a file is locked by SQLite using the async backend, it is
1447         ** locked within the 'real' file-system synchronously. When it is
1448         ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
1449         ** unlock the file asynchronously. The design of the async backend
1450         ** requires that the 'real' file-system file be locked from the
1451         ** time that SQLite first locks it (and probably reads from it)
1452         ** until all asynchronous write events that were scheduled before
1453         ** SQLite unlocked the file have been processed.
1454         **
1455         ** This is more complex if SQLite locks and unlocks the file multiple
1456         ** times in quick succession. For example, if SQLite does:
1457         **
1458         **   lock, write, unlock, lock, write, unlock
1459         **
1460         ** Each "lock" operation locks the file immediately. Each "write"
1461         ** and "unlock" operation adds an event to the event queue. If the
1462         ** second "lock" operation is performed before the first "unlock"
1463         ** operation has been processed asynchronously, then the first
1464         ** "unlock" cannot be safely processed as is, since this would mean
1465         ** the file was unlocked when the second "write" operation is
1466         ** processed. To work around this, when processing an ASYNC_UNLOCK
1467         ** operation, SQLite:
1468         **
1469         **   1) Unlocks the file to the minimum of the argument passed to
1470         **      the xUnlock() call and the current lock from SQLite's point
1471         **      of view, and
1472         **
1473         **   2) Only unlocks the file at all if this event is the last
1474         **      ASYNC_UNLOCK event on this file in the write-queue.
1475         */
1476         assert( holdingMutex==1 );
1477         assert( async.pQueueFirst==p );
1478         for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){
1479           if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break;
1480         }
1481         if( !pIter ){
1482           async_mutex_enter(ASYNC_MUTEX_LOCK);
1483           pData->lock.eAsyncLock = MIN(
1484               pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
1485           );
1486           assert(pData->lock.eAsyncLock>=pData->lock.eLock);
1487           rc = getFileLock(pData->pLock);
1488           async_mutex_leave(ASYNC_MUTEX_LOCK);
1489         }
1490         break;
1491       }
1492 
1493       case ASYNC_DELETE:
1494         ASYNC_TRACE(("DELETE %s\n", p->zBuf));
1495         rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
1496         break;
1497 
1498       case ASYNC_OPENEXCLUSIVE: {
1499         int flags = (int)p->iOffset;
1500         AsyncFileData *pData = p->pFileData;
1501         ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
1502         assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
1503         rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
1504         assert( holdingMutex==0 );
1505         async_mutex_enter(ASYNC_MUTEX_QUEUE);
1506         holdingMutex = 1;
1507         break;
1508       }
1509 
1510       default: assert(!"Illegal value for AsyncWrite.op");
1511     }
1512 
1513     /* If we didn't hang on to the mutex during the IO op, obtain it now
1514     ** so that the AsyncWrite structure can be safely removed from the
1515     ** global write-op queue.
1516     */
1517     if( !holdingMutex ){
1518       async_mutex_enter(ASYNC_MUTEX_QUEUE);
1519       holdingMutex = 1;
1520     }
1521     /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1522     if( p==async.pQueueLast ){
1523       async.pQueueLast = 0;
1524     }
1525     if( !doNotFree ){
1526       assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
1527       async.pQueueFirst = p->pNext;
1528       sqlite3_free(p);
1529     }
1530     assert( holdingMutex );
1531 
1532     /* An IO error has occurred. We cannot report the error back to the
1533     ** connection that requested the I/O since the error happened
1534     ** asynchronously.  The connection has already moved on.  There
1535     ** really is nobody to report the error to.
1536     **
1537     ** The file for which the error occurred may have been a database or
1538     ** journal file. Regardless, none of the currently queued operations
1539     ** associated with the same database should now be performed. Nor should
1540     ** any subsequently requested IO on either a database or journal file
1541     ** handle for the same database be accepted until the main database
1542     ** file handle has been closed and reopened.
1543     **
1544     ** Furthermore, no further IO should be queued or performed on any file
1545     ** handle associated with a database that may have been part of a
1546     ** multi-file transaction that included the database associated with
1547     ** the IO error (i.e. a database ATTACHed to the same handle at some
1548     ** point in time).
1549     */
1550     if( rc!=SQLITE_OK ){
1551       async.ioError = rc;
1552     }
1553 
1554     if( async.ioError && !async.pQueueFirst ){
1555       async_mutex_enter(ASYNC_MUTEX_LOCK);
1556       if( 0==async.pLock ){
1557         async.ioError = SQLITE_OK;
1558       }
1559       async_mutex_leave(ASYNC_MUTEX_LOCK);
1560     }
1561 
1562     /* Drop the queue mutex before continuing to the next write operation
1563     ** in order to give other threads a chance to work with the write queue.
1564     */
1565     if( !async.pQueueFirst || !async.ioError ){
1566       async_mutex_leave(ASYNC_MUTEX_QUEUE);
1567       holdingMutex = 0;
1568       if( async.ioDelay>0 ){
1569         pVfs->xSleep(pVfs, async.ioDelay*1000);
1570       }else{
1571         async_sched_yield();
1572       }
1573     }
1574   }
1575 
1576   async_mutex_leave(ASYNC_MUTEX_WRITER);
1577   return;
1578 }
1579 
1580 /*
1581 ** Install the asynchronous VFS.
1582 */
1583 int sqlite3async_initialize(const char *zParent, int isDefault){
1584   int rc = SQLITE_OK;
1585   if( async_vfs.pAppData==0 ){
1586     sqlite3_vfs *pParent = sqlite3_vfs_find(zParent);
1587     if( !pParent || async_os_initialize() ){
1588       rc = SQLITE_ERROR;
1589     }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){
1590       async_os_shutdown();
1591     }else{
1592       async_vfs.pAppData = (void *)pParent;
1593       async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
1594     }
1595   }
1596   return rc;
1597 }
1598 
1599 /*
1600 ** Uninstall the asynchronous VFS.
1601 */
1602 void sqlite3async_shutdown(void){
1603   if( async_vfs.pAppData ){
1604     async_os_shutdown();
1605     sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs);
1606     async_vfs.pAppData = 0;
1607   }
1608 }
1609 
1610 /*
1611 ** Process events on the write-queue.
1612 */
1613 void sqlite3async_run(void){
1614   asyncWriterThread();
1615 }
1616 
1617 /*
1618 ** Control/configure the asynchronous IO system.
1619 */
1620 int sqlite3async_control(int op, ...){
1621   va_list ap;
1622   va_start(ap, op);
1623   switch( op ){
1624     case SQLITEASYNC_HALT: {
1625       int eWhen = va_arg(ap, int);
1626       if( eWhen!=SQLITEASYNC_HALT_NEVER
1627        && eWhen!=SQLITEASYNC_HALT_NOW
1628        && eWhen!=SQLITEASYNC_HALT_IDLE
1629       ){
1630         return SQLITE_MISUSE;
1631       }
1632       async.eHalt = eWhen;
1633       async_mutex_enter(ASYNC_MUTEX_QUEUE);
1634       async_cond_signal(ASYNC_COND_QUEUE);
1635       async_mutex_leave(ASYNC_MUTEX_QUEUE);
1636       break;
1637     }
1638 
1639     case SQLITEASYNC_DELAY: {
1640       int iDelay = va_arg(ap, int);
1641       if( iDelay<0 ){
1642         return SQLITE_MISUSE;
1643       }
1644       async.ioDelay = iDelay;
1645       break;
1646     }
1647 
1648     case SQLITEASYNC_LOCKFILES: {
1649       int bLock = va_arg(ap, int);
1650       async_mutex_enter(ASYNC_MUTEX_QUEUE);
1651       if( async.nFile || async.pQueueFirst ){
1652         async_mutex_leave(ASYNC_MUTEX_QUEUE);
1653         return SQLITE_MISUSE;
1654       }
1655       async.bLockFiles = bLock;
1656       async_mutex_leave(ASYNC_MUTEX_QUEUE);
1657       break;
1658     }
1659 
1660     case SQLITEASYNC_GET_HALT: {
1661       int *peWhen = va_arg(ap, int *);
1662       *peWhen = async.eHalt;
1663       break;
1664     }
1665     case SQLITEASYNC_GET_DELAY: {
1666       int *piDelay = va_arg(ap, int *);
1667       *piDelay = async.ioDelay;
1668       break;
1669     }
1670     case SQLITEASYNC_GET_LOCKFILES: {
1671       int *piDelay = va_arg(ap, int *);
1672       *piDelay = async.bLockFiles;
1673       break;
1674     }
1675 
1676     default:
1677       return SQLITE_ERROR;
1678   }
1679   return SQLITE_OK;
1680 }
1681 
1682 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */
1683 
1684