xref: /redis-3.2.3/deps/lua/test/bisect.lua (revision 21d3294c)
1*21d3294cSantirez-- bisection method for solving non-linear equations
2*21d3294cSantirez
3*21d3294cSantirezdelta=1e-6	-- tolerance
4*21d3294cSantirez
5*21d3294cSantirezfunction bisect(f,a,b,fa,fb)
6*21d3294cSantirez local c=(a+b)/2
7*21d3294cSantirez io.write(n," c=",c," a=",a," b=",b,"\n")
8*21d3294cSantirez if c==a or c==b or math.abs(a-b)<delta then return c,b-a end
9*21d3294cSantirez n=n+1
10*21d3294cSantirez local fc=f(c)
11*21d3294cSantirez if fa*fc<0 then return bisect(f,a,c,fa,fc) else return bisect(f,c,b,fc,fb) end
12*21d3294cSantirezend
13*21d3294cSantirez
14*21d3294cSantirez-- find root of f in the inverval [a,b]. needs f(a)*f(b)<0
15*21d3294cSantirezfunction solve(f,a,b)
16*21d3294cSantirez n=0
17*21d3294cSantirez local z,e=bisect(f,a,b,f(a),f(b))
18*21d3294cSantirez io.write(string.format("after %d steps, root is %.17g with error %.1e, f=%.1e\n",n,z,e,f(z)))
19*21d3294cSantirezend
20*21d3294cSantirez
21*21d3294cSantirez-- our function
22*21d3294cSantirezfunction f(x)
23*21d3294cSantirez return x*x*x-x-1
24*21d3294cSantirezend
25*21d3294cSantirez
26*21d3294cSantirez-- find zero in [1,2]
27*21d3294cSantirezsolve(f,1,2)
28