xref: /oneTBB/src/tbbmalloc/frontend.cpp (revision 4a23d002)
1 /*
2     Copyright (c) 2005-2021 Intel Corporation
3 
4     Licensed under the Apache License, Version 2.0 (the "License");
5     you may not use this file except in compliance with the License.
6     You may obtain a copy of the License at
7 
8         http://www.apache.org/licenses/LICENSE-2.0
9 
10     Unless required by applicable law or agreed to in writing, software
11     distributed under the License is distributed on an "AS IS" BASIS,
12     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13     See the License for the specific language governing permissions and
14     limitations under the License.
15 */
16 
17 #include "tbbmalloc_internal.h"
18 #include <errno.h>
19 #include <new>        /* for placement new */
20 #include <string.h>   /* for memset */
21 
22 #include "oneapi/tbb/version.h"
23 #include "../tbb/environment.h"
24 #include "../tbb/itt_notify.h" // for __TBB_load_ittnotify()
25 
26 #if USE_PTHREAD
27     #define TlsSetValue_func pthread_setspecific
28     #define TlsGetValue_func pthread_getspecific
29     #define GetMyTID() pthread_self()
30     #include <sched.h>
31     inline void do_yield() {sched_yield();}
32     extern "C" { static void mallocThreadShutdownNotification(void*); }
33     #if __sun || __SUNPRO_CC
34     #define __asm__ asm
35     #endif
36     #include <unistd.h> // sysconf(_SC_PAGESIZE)
37 #elif USE_WINTHREAD
38     #define GetMyTID() GetCurrentThreadId()
39 #if __TBB_WIN8UI_SUPPORT
40     #include<thread>
41     #define TlsSetValue_func FlsSetValue
42     #define TlsGetValue_func FlsGetValue
43     #define TlsAlloc() FlsAlloc(NULL)
44     #define TLS_ALLOC_FAILURE FLS_OUT_OF_INDEXES
45     #define TlsFree FlsFree
46     inline void do_yield() {std::this_thread::yield();}
47 #else
48     #define TlsSetValue_func TlsSetValue
49     #define TlsGetValue_func TlsGetValue
50     #define TLS_ALLOC_FAILURE TLS_OUT_OF_INDEXES
51     inline void do_yield() {SwitchToThread();}
52 #endif
53 #else
54     #error Must define USE_PTHREAD or USE_WINTHREAD
55 #endif
56 
57 #define FREELIST_NONBLOCKING 1
58 
59 namespace rml {
60 class MemoryPool;
61 namespace internal {
62 
63 class Block;
64 class MemoryPool;
65 
66 #if MALLOC_CHECK_RECURSION
67 
68 inline bool isMallocInitialized();
69 
70 #endif // MALLOC_CHECK_RECURSION
71 
72 /** Support for handling the special UNUSABLE pointer state **/
73 const intptr_t UNUSABLE = 0x1;
74 inline bool isSolidPtr( void* ptr ) {
75     return (UNUSABLE|(intptr_t)ptr)!=UNUSABLE;
76 }
77 inline bool isNotForUse( void* ptr ) {
78     return (intptr_t)ptr==UNUSABLE;
79 }
80 
81 /*
82  * Block::objectSize value used to mark blocks allocated by startupAlloc
83  */
84 const uint16_t startupAllocObjSizeMark = ~(uint16_t)0;
85 
86 /*
87  * The following constant is used to define the size of struct Block, the block header.
88  * The intent is to have the size of a Block multiple of the cache line size, this allows us to
89  * get good alignment at the cost of some overhead equal to the amount of padding included in the Block.
90  */
91 const int blockHeaderAlignment = estimatedCacheLineSize;
92 
93 /********* The data structures and global objects        **************/
94 
95 /*
96  * The malloc routines themselves need to be able to occasionally malloc some space,
97  * in order to set up the structures used by the thread local structures. This
98  * routine performs that functions.
99  */
100 class BootStrapBlocks {
101     MallocMutex bootStrapLock;
102     Block      *bootStrapBlock;
103     Block      *bootStrapBlockUsed;
104     FreeObject *bootStrapObjectList;
105 public:
106     void *allocate(MemoryPool *memPool, size_t size);
107     void free(void* ptr);
108     void reset();
109 };
110 
111 #if USE_INTERNAL_TID
112 class ThreadId {
113     static tls_key_t Tid_key;
114     std::atomic<intptr_t> ThreadCount;
115 
116     unsigned int id;
117 
118     static unsigned int tlsNumber() {
119         unsigned int result = reinterpret_cast<intptr_t>(TlsGetValue_func(Tid_key));
120         if( !result ) {
121             RecursiveMallocCallProtector scoped;
122             // Thread-local value is zero -> first call from this thread,
123             // need to initialize with next ID value (IDs start from 1)
124             result = ++ThreadCount; // returned new value!
125             TlsSetValue_func( Tid_key, reinterpret_cast<void*>(result) );
126         }
127         return result;
128     }
129 public:
130     static bool init() {
131 #if USE_WINTHREAD
132         Tid_key = TlsAlloc();
133         if (Tid_key == TLS_ALLOC_FAILURE)
134             return false;
135 #else
136         int status = pthread_key_create( &Tid_key, NULL );
137         if ( status ) {
138             fprintf (stderr, "The memory manager cannot create tls key during initialization\n");
139             return false;
140         }
141 #endif /* USE_WINTHREAD */
142         return true;
143     }
144 #if __TBB_SOURCE_DIRECTLY_INCLUDED
145     static void destroy() {
146         if( Tid_key ) {
147 #if USE_WINTHREAD
148             BOOL status = !(TlsFree( Tid_key ));  // fail is zero
149 #else
150             int status = pthread_key_delete( Tid_key );
151 #endif /* USE_WINTHREAD */
152             if ( status )
153                 fprintf (stderr, "The memory manager cannot delete tls key\n");
154             Tid_key = 0;
155         }
156     }
157 #endif
158 
159     ThreadId() : id(ThreadId::tlsNumber()) {}
160     bool isCurrentThreadId() const { return id == ThreadId::tlsNumber(); }
161 
162 #if COLLECT_STATISTICS || MALLOC_TRACE
163     friend unsigned int getThreadId() { return ThreadId::tlsNumber(); }
164 #endif
165 #if COLLECT_STATISTICS
166     static unsigned getMaxThreadId() { return ThreadCount.load(std::memory_order_relaxed); }
167 
168     friend int STAT_increment(ThreadId tid, int bin, int ctr);
169 #endif
170 };
171 
172 tls_key_t ThreadId::Tid_key;
173 intptr_t ThreadId::ThreadCount;
174 
175 #if COLLECT_STATISTICS
176 int STAT_increment(ThreadId tid, int bin, int ctr)
177 {
178     return ::STAT_increment(tid.id, bin, ctr);
179 }
180 #endif
181 
182 #else // USE_INTERNAL_TID
183 
184 class ThreadId {
185 #if USE_PTHREAD
186     std::atomic<pthread_t> tid;
187 #else
188     std::atomic<DWORD>     tid;
189 #endif
190 public:
191     ThreadId() : tid(GetMyTID()) {}
192 #if USE_PTHREAD
193     bool isCurrentThreadId() const { return pthread_equal(pthread_self(), tid.load(std::memory_order_relaxed)); }
194 #else
195     bool isCurrentThreadId() const { return GetCurrentThreadId() == tid.load(std::memory_order_relaxed); }
196 #endif
197     ThreadId& operator=(const ThreadId& other) {
198         tid.store(other.tid.load(std::memory_order_relaxed), std::memory_order_relaxed);
199         return *this;
200     }
201     static bool init() { return true; }
202 #if __TBB_SOURCE_DIRECTLY_INCLUDED
203     static void destroy() {}
204 #endif
205 };
206 
207 #endif // USE_INTERNAL_TID
208 
209 /*********** Code to provide thread ID and a thread-local void pointer **********/
210 
211 bool TLSKey::init()
212 {
213 #if USE_WINTHREAD
214     TLS_pointer_key = TlsAlloc();
215     if (TLS_pointer_key == TLS_ALLOC_FAILURE)
216         return false;
217 #else
218     int status = pthread_key_create( &TLS_pointer_key, mallocThreadShutdownNotification );
219     if ( status )
220         return false;
221 #endif /* USE_WINTHREAD */
222     return true;
223 }
224 
225 bool TLSKey::destroy()
226 {
227 #if USE_WINTHREAD
228     BOOL status1 = !(TlsFree(TLS_pointer_key)); // fail is zero
229 #else
230     int status1 = pthread_key_delete(TLS_pointer_key);
231 #endif /* USE_WINTHREAD */
232     MALLOC_ASSERT(!status1, "The memory manager cannot delete tls key.");
233     return status1==0;
234 }
235 
236 inline TLSData* TLSKey::getThreadMallocTLS() const
237 {
238     return (TLSData *)TlsGetValue_func( TLS_pointer_key );
239 }
240 
241 inline void TLSKey::setThreadMallocTLS( TLSData * newvalue ) {
242     RecursiveMallocCallProtector scoped;
243     TlsSetValue_func( TLS_pointer_key, newvalue );
244 }
245 
246 /* The 'next' field in the block header has to maintain some invariants:
247  *   it needs to be on a 16K boundary and the first field in the block.
248  *   Any value stored there needs to have the lower 14 bits set to 0
249  *   so that various assert work. This means that if you want to smash this memory
250  *   for debugging purposes you will need to obey this invariant.
251  * The total size of the header needs to be a power of 2 to simplify
252  * the alignment requirements. For now it is a 128 byte structure.
253  * To avoid false sharing, the fields changed only locally are separated
254  * from the fields changed by foreign threads.
255  * Changing the size of the block header would require to change
256  * some bin allocation sizes, in particular "fitting" sizes (see above).
257  */
258 class Bin;
259 class StartupBlock;
260 
261 class MemoryPool {
262     // if no explicit grainsize, expect to see malloc in user's pAlloc
263     // and set reasonable low granularity
264     static const size_t defaultGranularity = estimatedCacheLineSize;
265 
266     MemoryPool();                  // deny
267 public:
268     static MallocMutex  memPoolListLock;
269 
270     // list of all active pools is used to release
271     // all TLS data on thread termination or library unload
272     MemoryPool    *next,
273                   *prev;
274     ExtMemoryPool  extMemPool;
275     BootStrapBlocks bootStrapBlocks;
276 
277     static void initDefaultPool();
278 
279     bool init(intptr_t poolId, const MemPoolPolicy* memPoolPolicy);
280     bool reset();
281     bool destroy();
282     void onThreadShutdown(TLSData *tlsData);
283 
284     inline TLSData *getTLS(bool create);
285     void clearTLS() { extMemPool.tlsPointerKey.setThreadMallocTLS(NULL); }
286 
287     Block *getEmptyBlock(size_t size);
288     void returnEmptyBlock(Block *block, bool poolTheBlock);
289 
290     // get/put large object to/from local large object cache
291     void *getFromLLOCache(TLSData *tls, size_t size, size_t alignment);
292     void putToLLOCache(TLSData *tls, void *object);
293 };
294 
295 static intptr_t defaultMemPool_space[sizeof(MemoryPool)/sizeof(intptr_t) +
296                                      (sizeof(MemoryPool)%sizeof(intptr_t)? 1 : 0)];
297 static MemoryPool *defaultMemPool = (MemoryPool*)defaultMemPool_space;
298 const size_t MemoryPool::defaultGranularity;
299 // zero-initialized
300 MallocMutex  MemoryPool::memPoolListLock;
301 // TODO: move huge page status to default pool, because that's its states
302 HugePagesStatus hugePages;
303 static bool usedBySrcIncluded = false;
304 
305 // Padding helpers
306 template<size_t padd>
307 struct PaddingImpl {
308     size_t       __padding[padd];
309 };
310 
311 template<>
312 struct PaddingImpl<0> {};
313 
314 template<int N>
315 struct Padding : PaddingImpl<N/sizeof(size_t)> {};
316 
317 // Slab block is 16KB-aligned. To prevent false sharing, separate locally-accessed
318 // fields and fields commonly accessed by not owner threads.
319 class GlobalBlockFields : public BlockI {
320 protected:
321     std::atomic<FreeObject*> publicFreeList;
322     std::atomic<Block*> nextPrivatizable;
323     MemoryPool  *poolPtr;
324 };
325 
326 class LocalBlockFields : public GlobalBlockFields, Padding<blockHeaderAlignment - sizeof(GlobalBlockFields)>  {
327 protected:
328     Block       *next;
329     Block       *previous;        /* Use double linked list to speed up removal */
330     FreeObject  *bumpPtr;         /* Bump pointer moves from the end to the beginning of a block */
331     FreeObject  *freeList;
332     /* Pointer to local data for the owner thread. Used for fast finding tls
333        when releasing object from a block that current thread owned.
334        NULL for orphaned blocks. */
335     std::atomic<TLSData*> tlsPtr;
336     ThreadId     ownerTid;        /* the ID of the thread that owns or last owned the block */
337     BackRefIdx   backRefIdx;
338     uint16_t     allocatedCount;  /* Number of objects allocated (obviously by the owning thread) */
339     uint16_t     objectSize;
340     bool         isFull;
341 
342     friend class FreeBlockPool;
343     friend class StartupBlock;
344     friend class LifoList;
345     friend void *BootStrapBlocks::allocate(MemoryPool *, size_t);
346     friend bool OrphanedBlocks::cleanup(Backend*);
347     friend Block *MemoryPool::getEmptyBlock(size_t);
348 };
349 
350 // Use inheritance to guarantee that a user data start on next cache line.
351 // Can't use member for it, because when LocalBlockFields already on cache line,
352 // we must have no additional memory consumption for all compilers.
353 class Block : public LocalBlockFields,
354               Padding<2*blockHeaderAlignment - sizeof(LocalBlockFields)> {
355 public:
356     bool empty() const {
357         if (allocatedCount > 0) return false;
358         MALLOC_ASSERT(!isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT);
359         return true;
360     }
361     inline FreeObject* allocate();
362     inline FreeObject *allocateFromFreeList();
363 
364     inline bool adjustFullness();
365     void adjustPositionInBin(Bin* bin = NULL);
366 #if MALLOC_DEBUG
367     bool freeListNonNull() { return freeList; }
368 #endif
369     void freePublicObject(FreeObject *objectToFree);
370     inline void freeOwnObject(void *object);
371     void reset();
372     void privatizePublicFreeList( bool reset = true );
373     void restoreBumpPtr();
374     void privatizeOrphaned(TLSData *tls, unsigned index);
375     bool readyToShare();
376     void shareOrphaned(intptr_t binTag, unsigned index);
377     unsigned int getSize() const {
378         MALLOC_ASSERT(isStartupAllocObject() || objectSize<minLargeObjectSize,
379                       "Invalid object size");
380         return isStartupAllocObject()? 0 : objectSize;
381     }
382     const BackRefIdx *getBackRefIdx() const { return &backRefIdx; }
383     inline bool isOwnedByCurrentThread() const;
384     bool isStartupAllocObject() const { return objectSize == startupAllocObjSizeMark; }
385     inline FreeObject *findObjectToFree(const void *object) const;
386     void checkFreePrecond(const void *object) const {
387 #if MALLOC_DEBUG
388         const char *msg = "Possible double free or heap corruption.";
389         // small objects are always at least sizeof(size_t) Byte aligned,
390         // try to check this before this dereference as for invalid objects
391         // this may be unreadable
392         MALLOC_ASSERT(isAligned(object, sizeof(size_t)), "Try to free invalid small object");
393 #if !__TBB_USE_THREAD_SANITIZER
394         // releasing to free slab
395         MALLOC_ASSERT(allocatedCount>0, msg);
396 #endif
397         // must not point to slab's header
398         MALLOC_ASSERT((uintptr_t)object - (uintptr_t)this >= sizeof(Block), msg);
399         if (startupAllocObjSizeMark == objectSize) // startup block
400             MALLOC_ASSERT(object<=bumpPtr, msg);
401         else {
402             // non-startup objects are 8 Byte aligned
403             MALLOC_ASSERT(isAligned(object, 8), "Try to free invalid small object");
404             FreeObject *toFree = findObjectToFree(object);
405 #if !__TBB_USE_THREAD_SANITIZER
406             MALLOC_ASSERT(allocatedCount <= (slabSize-sizeof(Block))/objectSize
407                           && (!bumpPtr || object>bumpPtr), msg);
408             // check against head of freeList, as this is mostly
409             // expected after double free
410             MALLOC_ASSERT(toFree != freeList, msg);
411 #endif
412             // check against head of publicFreeList, to detect double free
413             // involving foreign thread
414             MALLOC_ASSERT(toFree != publicFreeList.load(std::memory_order_relaxed), msg);
415         }
416 #else
417         suppress_unused_warning(object);
418 #endif
419     }
420     void initEmptyBlock(TLSData *tls, size_t size);
421     size_t findObjectSize(void *object) const;
422     MemoryPool *getMemPool() const { return poolPtr; } // do not use on the hot path!
423 
424 protected:
425     void cleanBlockHeader();
426 
427 private:
428     static const float emptyEnoughRatio; /* Threshold on free space needed to "reactivate" a block */
429 
430     inline FreeObject *allocateFromBumpPtr();
431     inline FreeObject *findAllocatedObject(const void *address) const;
432 #if MALLOC_DEBUG
433     inline bool isProperlyPlaced(const void *object) const;
434 #endif
435     inline void markOwned(TLSData *tls) {
436         MALLOC_ASSERT(!tlsPtr.load(std::memory_order_relaxed), ASSERT_TEXT);
437         ownerTid = ThreadId(); /* save the ID of the current thread */
438         tlsPtr.store(tls, std::memory_order_relaxed);
439     }
440     inline void markOrphaned() {
441         MALLOC_ASSERT(tlsPtr.load(std::memory_order_relaxed), ASSERT_TEXT);
442         tlsPtr.store(nullptr, std::memory_order_relaxed);
443     }
444 
445     friend class Bin;
446     friend class TLSData;
447     friend bool MemoryPool::destroy();
448 };
449 
450 const float Block::emptyEnoughRatio = 1.0 / 4.0;
451 
452 static_assert(sizeof(Block) <= 2*estimatedCacheLineSize,
453     "The class Block does not fit into 2 cache lines on this platform. "
454     "Defining USE_INTERNAL_TID may help to fix it.");
455 
456 class Bin {
457 private:
458 public:
459     Block *activeBlk;
460     std::atomic<Block*> mailbox;
461     MallocMutex mailLock;
462 
463 public:
464     inline Block* getActiveBlock() const { return activeBlk; }
465     void resetActiveBlock() { activeBlk = NULL; }
466     inline void setActiveBlock(Block *block);
467     inline Block* setPreviousBlockActive();
468     Block* getPrivatizedFreeListBlock();
469     void moveBlockToFront(Block *block);
470     bool cleanPublicFreeLists();
471     void processEmptyBlock(Block *block, bool poolTheBlock);
472     void addPublicFreeListBlock(Block* block);
473 
474     void outofTLSBin(Block* block);
475     void verifyTLSBin(size_t size) const;
476     void pushTLSBin(Block* block);
477 
478 #if MALLOC_DEBUG
479     void verifyInitState() const {
480         MALLOC_ASSERT( !activeBlk, ASSERT_TEXT );
481         MALLOC_ASSERT( !mailbox.load(std::memory_order_relaxed), ASSERT_TEXT );
482     }
483 #endif
484 
485     friend void Block::freePublicObject (FreeObject *objectToFree);
486 };
487 
488 /********* End of the data structures                    **************/
489 
490 /*
491  * There are bins for all 8 byte aligned objects less than this segregated size; 8 bins in total
492  */
493 const uint32_t minSmallObjectIndex = 0;
494 const uint32_t numSmallObjectBins = 8;
495 const uint32_t maxSmallObjectSize = 64;
496 
497 /*
498  * There are 4 bins between each couple of powers of 2 [64-128-256-...]
499  * from maxSmallObjectSize till this size; 16 bins in total
500  */
501 const uint32_t minSegregatedObjectIndex = minSmallObjectIndex+numSmallObjectBins;
502 const uint32_t numSegregatedObjectBins = 16;
503 const uint32_t maxSegregatedObjectSize = 1024;
504 
505 /*
506  * And there are 5 bins with allocation sizes that are multiples of estimatedCacheLineSize
507  * and selected to fit 9, 6, 4, 3, and 2 allocations in a block.
508  */
509 const uint32_t minFittingIndex = minSegregatedObjectIndex+numSegregatedObjectBins;
510 const uint32_t numFittingBins = 5;
511 
512 const uint32_t fittingAlignment = estimatedCacheLineSize;
513 
514 #define SET_FITTING_SIZE(N) ( (slabSize-sizeof(Block))/N ) & ~(fittingAlignment-1)
515 // For blockSize=16*1024, sizeof(Block)=2*estimatedCacheLineSize and fittingAlignment=estimatedCacheLineSize,
516 // the comments show the fitting sizes and the amounts left unused for estimatedCacheLineSize=64/128:
517 const uint32_t fittingSize1 = SET_FITTING_SIZE(9); // 1792/1792 128/000
518 const uint32_t fittingSize2 = SET_FITTING_SIZE(6); // 2688/2688 128/000
519 const uint32_t fittingSize3 = SET_FITTING_SIZE(4); // 4032/3968 128/256
520 const uint32_t fittingSize4 = SET_FITTING_SIZE(3); // 5376/5376 128/000
521 const uint32_t fittingSize5 = SET_FITTING_SIZE(2); // 8128/8064 000/000
522 #undef SET_FITTING_SIZE
523 
524 /*
525  * The total number of thread-specific Block-based bins
526  */
527 const uint32_t numBlockBins = minFittingIndex+numFittingBins;
528 
529 /*
530  * Objects of this size and larger are considered large objects.
531  */
532 const uint32_t minLargeObjectSize = fittingSize5 + 1;
533 
534 /*
535  * Per-thread pool of slab blocks. Idea behind it is to not share with other
536  * threads memory that are likely in local cache(s) of our CPU.
537  */
538 class FreeBlockPool {
539 private:
540     std::atomic<Block*> head;
541     int         size;
542     Backend    *backend;
543     bool        lastAccessMiss;
544 public:
545     static const int POOL_HIGH_MARK = 32;
546     static const int POOL_LOW_MARK  = 8;
547 
548     class ResOfGet {
549         ResOfGet();
550     public:
551         Block* block;
552         bool   lastAccMiss;
553         ResOfGet(Block *b, bool lastMiss) : block(b), lastAccMiss(lastMiss) {}
554     };
555 
556     // allocated in zero-initialized memory
557     FreeBlockPool(Backend *bknd) : backend(bknd) {}
558     ResOfGet getBlock();
559     void returnBlock(Block *block);
560     bool externalCleanup(); // can be called by another thread
561 };
562 
563 template<int LOW_MARK, int HIGH_MARK>
564 class LocalLOCImpl {
565 private:
566     static const size_t MAX_TOTAL_SIZE = 4*1024*1024;
567     // TODO: can single-linked list be faster here?
568     LargeMemoryBlock *tail; // need it when do releasing on overflow
569     std::atomic<LargeMemoryBlock*> head;
570     size_t            totalSize;
571     int               numOfBlocks;
572 public:
573     bool put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool);
574     LargeMemoryBlock *get(size_t size);
575     bool externalCleanup(ExtMemoryPool *extMemPool);
576 #if __TBB_MALLOC_WHITEBOX_TEST
577     LocalLOCImpl() : head(NULL), tail(NULL), totalSize(0), numOfBlocks(0) {}
578     static size_t getMaxSize() { return MAX_TOTAL_SIZE; }
579     static const int LOC_HIGH_MARK = HIGH_MARK;
580 #else
581     // no ctor, object must be created in zero-initialized memory
582 #endif
583 };
584 
585 typedef LocalLOCImpl<8,32> LocalLOC; // set production code parameters
586 
587 class TLSData : public TLSRemote {
588     MemoryPool   *memPool;
589 public:
590     Bin           bin[numBlockBinLimit];
591     FreeBlockPool freeSlabBlocks;
592     LocalLOC      lloc;
593     unsigned      currCacheIdx;
594 private:
595     std::atomic<bool> unused;
596 public:
597     TLSData(MemoryPool *mPool, Backend *bknd) : memPool(mPool), freeSlabBlocks(bknd) {}
598     MemoryPool *getMemPool() const { return memPool; }
599     Bin* getAllocationBin(size_t size);
600     void release();
601     bool externalCleanup(bool cleanOnlyUnused, bool cleanBins) {
602         if (!unused.load(std::memory_order_relaxed) && cleanOnlyUnused) return false;
603         // Heavy operation in terms of synchronization complexity,
604         // should be called only for the current thread
605         bool released = cleanBins ? cleanupBlockBins() : false;
606         // both cleanups to be called, and the order is not important
607         return released | lloc.externalCleanup(&memPool->extMemPool) | freeSlabBlocks.externalCleanup();
608     }
609     bool cleanupBlockBins();
610     void markUsed() { unused.store(false, std::memory_order_relaxed); } // called by owner when TLS touched
611     void markUnused() { unused.store(true, std::memory_order_relaxed); } // can be called by not owner thread
612 };
613 
614 TLSData *TLSKey::createTLS(MemoryPool *memPool, Backend *backend)
615 {
616     MALLOC_ASSERT( sizeof(TLSData) >= sizeof(Bin) * numBlockBins + sizeof(FreeBlockPool), ASSERT_TEXT );
617     TLSData* tls = (TLSData*) memPool->bootStrapBlocks.allocate(memPool, sizeof(TLSData));
618     if ( !tls )
619         return NULL;
620     new(tls) TLSData(memPool, backend);
621     /* the block contains zeroes after bootStrapMalloc, so bins are initialized */
622 #if MALLOC_DEBUG
623     for (uint32_t i = 0; i < numBlockBinLimit; i++)
624         tls->bin[i].verifyInitState();
625 #endif
626     setThreadMallocTLS(tls);
627     memPool->extMemPool.allLocalCaches.registerThread(tls);
628     return tls;
629 }
630 
631 bool TLSData::cleanupBlockBins()
632 {
633     bool released = false;
634     for (uint32_t i = 0; i < numBlockBinLimit; i++) {
635         released |= bin[i].cleanPublicFreeLists();
636         // After cleaning public free lists, only the active block might be empty.
637         // Do not use processEmptyBlock because it will just restore bumpPtr.
638         Block *block = bin[i].getActiveBlock();
639         if (block && block->empty()) {
640             bin[i].outofTLSBin(block);
641             memPool->returnEmptyBlock(block, /*poolTheBlock=*/false);
642             released = true;
643         }
644     }
645     return released;
646 }
647 
648 bool ExtMemoryPool::releaseAllLocalCaches()
649 {
650     // Iterate all registered TLS data and clean LLOC and Slab pools
651     bool released = allLocalCaches.cleanup(/*cleanOnlyUnused=*/false);
652 
653     // Bins privatization is done only for the current thread
654     if (TLSData *tlsData = tlsPointerKey.getThreadMallocTLS())
655         released |= tlsData->cleanupBlockBins();
656 
657     return released;
658 }
659 
660 void AllLocalCaches::registerThread(TLSRemote *tls)
661 {
662     tls->prev = NULL;
663     MallocMutex::scoped_lock lock(listLock);
664     MALLOC_ASSERT(head!=tls, ASSERT_TEXT);
665     tls->next = head;
666     if (head)
667         head->prev = tls;
668     head = tls;
669     MALLOC_ASSERT(head->next!=head, ASSERT_TEXT);
670 }
671 
672 void AllLocalCaches::unregisterThread(TLSRemote *tls)
673 {
674     MallocMutex::scoped_lock lock(listLock);
675     MALLOC_ASSERT(head, "Can't unregister thread: no threads are registered.");
676     if (head == tls)
677         head = tls->next;
678     if (tls->next)
679         tls->next->prev = tls->prev;
680     if (tls->prev)
681         tls->prev->next = tls->next;
682     MALLOC_ASSERT(!tls->next || tls->next->next!=tls->next, ASSERT_TEXT);
683 }
684 
685 bool AllLocalCaches::cleanup(bool cleanOnlyUnused)
686 {
687     bool released = false;
688     {
689         MallocMutex::scoped_lock lock(listLock);
690         for (TLSRemote *curr=head; curr; curr=curr->next)
691             released |= static_cast<TLSData*>(curr)->externalCleanup(cleanOnlyUnused, /*cleanBins=*/false);
692     }
693     return released;
694 }
695 
696 void AllLocalCaches::markUnused()
697 {
698     bool locked;
699     MallocMutex::scoped_lock lock(listLock, /*block=*/false, &locked);
700     if (!locked) // not wait for marking if someone doing something with it
701         return;
702 
703     for (TLSRemote *curr=head; curr; curr=curr->next)
704         static_cast<TLSData*>(curr)->markUnused();
705 }
706 
707 #if MALLOC_CHECK_RECURSION
708 MallocMutex RecursiveMallocCallProtector::rmc_mutex;
709 std::atomic<pthread_t> RecursiveMallocCallProtector::owner_thread;
710 std::atomic<void*> RecursiveMallocCallProtector::autoObjPtr;
711 bool        RecursiveMallocCallProtector::mallocRecursionDetected;
712 #if __FreeBSD__
713 bool        RecursiveMallocCallProtector::canUsePthread;
714 #endif
715 
716 #endif
717 
718 /*********** End code to provide thread ID and a TLS pointer **********/
719 
720 // Parameter for isLargeObject, keeps our expectations on memory origin.
721 // Assertions must use unknownMem to reliably report object invalidity.
722 enum MemoryOrigin {
723     ourMem,    // allocated by TBB allocator
724     unknownMem // can be allocated by system allocator or TBB allocator
725 };
726 
727 template<MemoryOrigin>
728 #if __TBB_USE_THREAD_SANITIZER
729 // We have a real race when accessing the large object header for
730 // non large objects (e.g. small or foreign objects).
731 // Therefore, we need to hide this access from the thread sanitizer
732 __attribute__((no_sanitize("thread")))
733 #endif
734 bool isLargeObject(void *object);
735 static void *internalMalloc(size_t size);
736 static void internalFree(void *object);
737 static void *internalPoolMalloc(MemoryPool* mPool, size_t size);
738 static bool internalPoolFree(MemoryPool *mPool, void *object, size_t size);
739 
740 #if !MALLOC_DEBUG
741 #if __INTEL_COMPILER || _MSC_VER
742 #define NOINLINE(decl) __declspec(noinline) decl
743 #define ALWAYSINLINE(decl) __forceinline decl
744 #elif __GNUC__
745 #define NOINLINE(decl) decl __attribute__ ((noinline))
746 #define ALWAYSINLINE(decl) decl __attribute__ ((always_inline))
747 #else
748 #define NOINLINE(decl) decl
749 #define ALWAYSINLINE(decl) decl
750 #endif
751 
752 static NOINLINE( bool doInitialization() );
753 ALWAYSINLINE( bool isMallocInitialized() );
754 
755 #undef ALWAYSINLINE
756 #undef NOINLINE
757 #endif /* !MALLOC_DEBUG */
758 
759 
760 /********* Now some rough utility code to deal with indexing the size bins. **************/
761 
762 /*
763  * Given a number return the highest non-zero bit in it. It is intended to work with 32-bit values only.
764  * Moreover, on some platforms, for sake of simplicity and performance, it is narrowed to only serve for 64 to 1023.
765  * This is enough for current algorithm of distribution of sizes among bins.
766  * __TBB_Log2 is not used here to minimize dependencies on TBB specific sources.
767  */
768 #if _WIN64 && _MSC_VER>=1400 && !__INTEL_COMPILER
769 extern "C" unsigned char _BitScanReverse( unsigned long* i, unsigned long w );
770 #pragma intrinsic(_BitScanReverse)
771 #endif
772 static inline unsigned int highestBitPos(unsigned int n)
773 {
774     MALLOC_ASSERT( n>=64 && n<1024, ASSERT_TEXT ); // only needed for bsr array lookup, but always true
775     unsigned int pos;
776 #if __ARCH_x86_32||__ARCH_x86_64
777 
778 # if __linux__||__APPLE__||__FreeBSD__||__NetBSD__||__OpenBSD__||__sun||__MINGW32__
779     __asm__ ("bsr %1,%0" : "=r"(pos) : "r"(n));
780 # elif (_WIN32 && (!_WIN64 || __INTEL_COMPILER))
781     __asm
782     {
783         bsr eax, n
784         mov pos, eax
785     }
786 # elif _WIN64 && _MSC_VER>=1400
787     _BitScanReverse((unsigned long*)&pos, (unsigned long)n);
788 # else
789 #   error highestBitPos() not implemented for this platform
790 # endif
791 #elif __arm__
792     __asm__ __volatile__
793     (
794        "clz %0, %1\n"
795        "rsb %0, %0, %2\n"
796        :"=r" (pos) :"r" (n), "I" (31)
797     );
798 #else
799     static unsigned int bsr[16] = {0/*N/A*/,6,7,7,8,8,8,8,9,9,9,9,9,9,9,9};
800     pos = bsr[ n>>6 ];
801 #endif /* __ARCH_* */
802     return pos;
803 }
804 
805 unsigned int getSmallObjectIndex(unsigned int size)
806 {
807     unsigned int result = (size-1)>>3;
808     if (sizeof(void*)==8) {
809         // For 64-bit malloc, 16 byte alignment is needed except for bin 0.
810         if (result) result |= 1; // 0,1,3,5,7; bins 2,4,6 are not aligned to 16 bytes
811     }
812     return result;
813 }
814 
815 /*
816  * Depending on indexRequest, for a given size return either the index into the bin
817  * for objects of this size, or the actual size of objects in this bin.
818  */
819 template<bool indexRequest>
820 static unsigned int getIndexOrObjectSize (unsigned int size)
821 {
822     if (size <= maxSmallObjectSize) { // selection from 8/16/24/32/40/48/56/64
823         unsigned int index = getSmallObjectIndex( size );
824          /* Bin 0 is for 8 bytes, bin 1 is for 16, and so forth */
825         return indexRequest ? index : (index+1)<<3;
826     }
827     else if (size <= maxSegregatedObjectSize ) { // 80/96/112/128 / 160/192/224/256 / 320/384/448/512 / 640/768/896/1024
828         unsigned int order = highestBitPos(size-1); // which group of bin sizes?
829         MALLOC_ASSERT( 6<=order && order<=9, ASSERT_TEXT );
830         if (indexRequest)
831             return minSegregatedObjectIndex - (4*6) - 4 + (4*order) + ((size-1)>>(order-2));
832         else {
833             unsigned int alignment = 128 >> (9-order); // alignment in the group
834             MALLOC_ASSERT( alignment==16 || alignment==32 || alignment==64 || alignment==128, ASSERT_TEXT );
835             return alignUp(size,alignment);
836         }
837     }
838     else {
839         if( size <= fittingSize3 ) {
840             if( size <= fittingSize2 ) {
841                 if( size <= fittingSize1 )
842                     return indexRequest ? minFittingIndex : fittingSize1;
843                 else
844                     return indexRequest ? minFittingIndex+1 : fittingSize2;
845             } else
846                 return indexRequest ? minFittingIndex+2 : fittingSize3;
847         } else {
848             if( size <= fittingSize5 ) {
849                 if( size <= fittingSize4 )
850                     return indexRequest ? minFittingIndex+3 : fittingSize4;
851                 else
852                     return indexRequest ? minFittingIndex+4 : fittingSize5;
853             } else {
854                 MALLOC_ASSERT( 0,ASSERT_TEXT ); // this should not happen
855                 return ~0U;
856             }
857         }
858     }
859 }
860 
861 static unsigned int getIndex (unsigned int size)
862 {
863     return getIndexOrObjectSize</*indexRequest=*/true>(size);
864 }
865 
866 static unsigned int getObjectSize (unsigned int size)
867 {
868     return getIndexOrObjectSize</*indexRequest=*/false>(size);
869 }
870 
871 
872 void *BootStrapBlocks::allocate(MemoryPool *memPool, size_t size)
873 {
874     FreeObject *result;
875 
876     MALLOC_ASSERT( size == sizeof(TLSData), ASSERT_TEXT );
877 
878     { // Lock with acquire
879         MallocMutex::scoped_lock scoped_cs(bootStrapLock);
880 
881         if( bootStrapObjectList) {
882             result = bootStrapObjectList;
883             bootStrapObjectList = bootStrapObjectList->next;
884         } else {
885             if (!bootStrapBlock) {
886                 bootStrapBlock = memPool->getEmptyBlock(size);
887                 if (!bootStrapBlock) return NULL;
888             }
889             result = bootStrapBlock->bumpPtr;
890             bootStrapBlock->bumpPtr = (FreeObject *)((uintptr_t)bootStrapBlock->bumpPtr - bootStrapBlock->objectSize);
891             if ((uintptr_t)bootStrapBlock->bumpPtr < (uintptr_t)bootStrapBlock+sizeof(Block)) {
892                 bootStrapBlock->bumpPtr = NULL;
893                 bootStrapBlock->next = bootStrapBlockUsed;
894                 bootStrapBlockUsed = bootStrapBlock;
895                 bootStrapBlock = NULL;
896             }
897         }
898     } // Unlock with release
899     memset (result, 0, size);
900     return (void*)result;
901 }
902 
903 void BootStrapBlocks::free(void* ptr)
904 {
905     MALLOC_ASSERT( ptr, ASSERT_TEXT );
906     { // Lock with acquire
907         MallocMutex::scoped_lock scoped_cs(bootStrapLock);
908         ((FreeObject*)ptr)->next = bootStrapObjectList;
909         bootStrapObjectList = (FreeObject*)ptr;
910     } // Unlock with release
911 }
912 
913 void BootStrapBlocks::reset()
914 {
915     bootStrapBlock = bootStrapBlockUsed = NULL;
916     bootStrapObjectList = NULL;
917 }
918 
919 #if !(FREELIST_NONBLOCKING)
920 static MallocMutex publicFreeListLock; // lock for changes of publicFreeList
921 #endif
922 
923 /********* End rough utility code  **************/
924 
925 /* LifoList assumes zero initialization so a vector of it can be created
926  * by just allocating some space with no call to constructor.
927  * On Linux, it seems to be necessary to avoid linking with C++ libraries.
928  *
929  * By usage convention there is no race on the initialization. */
930 LifoList::LifoList( ) : top(nullptr)
931 {
932     // MallocMutex assumes zero initialization
933     memset(&lock, 0, sizeof(MallocMutex));
934 }
935 
936 void LifoList::push(Block *block)
937 {
938     MallocMutex::scoped_lock scoped_cs(lock);
939     block->next = top.load(std::memory_order_relaxed);
940     top.store(block, std::memory_order_relaxed);
941 }
942 
943 Block *LifoList::pop()
944 {
945     Block* block = nullptr;
946     if (top.load(std::memory_order_relaxed)) {
947         MallocMutex::scoped_lock scoped_cs(lock);
948         block = top.load(std::memory_order_relaxed);
949         if (block) {
950             top.store(block->next, std::memory_order_relaxed);
951         }
952     }
953     return block;
954 }
955 
956 Block *LifoList::grab()
957 {
958     Block *block = nullptr;
959     if (top.load(std::memory_order_relaxed)) {
960         MallocMutex::scoped_lock scoped_cs(lock);
961         block = top.load(std::memory_order_relaxed);
962         top.store(nullptr, std::memory_order_relaxed);
963     }
964     return block;
965 }
966 
967 /********* Thread and block related code      *************/
968 
969 template<bool poolDestroy> void AllLargeBlocksList::releaseAll(Backend *backend) {
970      LargeMemoryBlock *next, *lmb = loHead;
971      loHead = NULL;
972 
973      for (; lmb; lmb = next) {
974          next = lmb->gNext;
975          if (poolDestroy) {
976              // as it's pool destruction, no need to return object to backend,
977              // only remove backrefs, as they are global
978              removeBackRef(lmb->backRefIdx);
979          } else {
980              // clean g(Next|Prev) to prevent removing lmb
981              // from AllLargeBlocksList inside returnLargeObject
982              lmb->gNext = lmb->gPrev = NULL;
983              backend->returnLargeObject(lmb);
984          }
985      }
986 }
987 
988 TLSData* MemoryPool::getTLS(bool create)
989 {
990     TLSData* tls = extMemPool.tlsPointerKey.getThreadMallocTLS();
991     if (create && !tls)
992         tls = extMemPool.tlsPointerKey.createTLS(this, &extMemPool.backend);
993     return tls;
994 }
995 
996 /*
997  * Return the bin for the given size.
998  */
999 inline Bin* TLSData::getAllocationBin(size_t size)
1000 {
1001     return bin + getIndex(size);
1002 }
1003 
1004 /* Return an empty uninitialized block in a non-blocking fashion. */
1005 Block *MemoryPool::getEmptyBlock(size_t size)
1006 {
1007     TLSData* tls = getTLS(/*create=*/false);
1008     // try to use per-thread cache, if TLS available
1009     FreeBlockPool::ResOfGet resOfGet = tls?
1010         tls->freeSlabBlocks.getBlock() : FreeBlockPool::ResOfGet(NULL, false);
1011     Block *result = resOfGet.block;
1012 
1013     if (!result) { // not found in local cache, asks backend for slabs
1014         int num = resOfGet.lastAccMiss? Backend::numOfSlabAllocOnMiss : 1;
1015         BackRefIdx backRefIdx[Backend::numOfSlabAllocOnMiss];
1016 
1017         result = static_cast<Block*>(extMemPool.backend.getSlabBlock(num));
1018         if (!result) return NULL;
1019 
1020         if (!extMemPool.userPool())
1021             for (int i=0; i<num; i++) {
1022                 backRefIdx[i] = BackRefIdx::newBackRef(/*largeObj=*/false);
1023                 if (backRefIdx[i].isInvalid()) {
1024                     // roll back resource allocation
1025                     for (int j=0; j<i; j++)
1026                         removeBackRef(backRefIdx[j]);
1027                     Block *b = result;
1028                     for (int j=0; j<num; b=(Block*)((uintptr_t)b+slabSize), j++)
1029                         extMemPool.backend.putSlabBlock(b);
1030                     return NULL;
1031                 }
1032             }
1033         // resources were allocated, register blocks
1034         Block *b = result;
1035         for (int i=0; i<num; b=(Block*)((uintptr_t)b+slabSize), i++) {
1036             // slab block in user's pool must have invalid backRefIdx
1037             if (extMemPool.userPool()) {
1038                 new (&b->backRefIdx) BackRefIdx();
1039             } else {
1040                 setBackRef(backRefIdx[i], b);
1041                 b->backRefIdx = backRefIdx[i];
1042             }
1043             b->tlsPtr.store(tls, std::memory_order_relaxed);
1044             b->poolPtr = this;
1045             // all but first one go to per-thread pool
1046             if (i > 0) {
1047                 MALLOC_ASSERT(tls, ASSERT_TEXT);
1048                 tls->freeSlabBlocks.returnBlock(b);
1049             }
1050         }
1051     }
1052     MALLOC_ASSERT(result, ASSERT_TEXT);
1053     result->initEmptyBlock(tls, size);
1054     STAT_increment(getThreadId(), getIndex(result->objectSize), allocBlockNew);
1055     return result;
1056 }
1057 
1058 void MemoryPool::returnEmptyBlock(Block *block, bool poolTheBlock)
1059 {
1060     block->reset();
1061     if (poolTheBlock) {
1062         getTLS(/*create=*/false)->freeSlabBlocks.returnBlock(block);
1063     } else {
1064         // slab blocks in user's pools do not have valid backRefIdx
1065         if (!extMemPool.userPool())
1066             removeBackRef(*(block->getBackRefIdx()));
1067         extMemPool.backend.putSlabBlock(block);
1068     }
1069 }
1070 
1071 bool ExtMemoryPool::init(intptr_t poolId, rawAllocType rawAlloc,
1072                          rawFreeType rawFree, size_t granularity,
1073                          bool keepAllMemory, bool fixedPool)
1074 {
1075     this->poolId = poolId;
1076     this->rawAlloc = rawAlloc;
1077     this->rawFree = rawFree;
1078     this->granularity = granularity;
1079     this->keepAllMemory = keepAllMemory;
1080     this->fixedPool = fixedPool;
1081     this->delayRegsReleasing = false;
1082     if (!initTLS())
1083         return false;
1084     loc.init(this);
1085     backend.init(this);
1086     MALLOC_ASSERT(isPoolValid(), NULL);
1087     return true;
1088 }
1089 
1090 bool ExtMemoryPool::initTLS() { return tlsPointerKey.init(); }
1091 
1092 bool MemoryPool::init(intptr_t poolId, const MemPoolPolicy *policy)
1093 {
1094     if (!extMemPool.init(poolId, policy->pAlloc, policy->pFree,
1095                policy->granularity? policy->granularity : defaultGranularity,
1096                policy->keepAllMemory, policy->fixedPool))
1097         return false;
1098     {
1099         MallocMutex::scoped_lock lock(memPoolListLock);
1100         next = defaultMemPool->next;
1101         defaultMemPool->next = this;
1102         prev = defaultMemPool;
1103         if (next)
1104             next->prev = this;
1105     }
1106     return true;
1107 }
1108 
1109 bool MemoryPool::reset()
1110 {
1111     MALLOC_ASSERT(extMemPool.userPool(), "No reset for the system pool.");
1112     // memory is not releasing during pool reset
1113     // TODO: mark regions to release unused on next reset()
1114     extMemPool.delayRegionsReleasing(true);
1115 
1116     bootStrapBlocks.reset();
1117     extMemPool.lmbList.releaseAll</*poolDestroy=*/false>(&extMemPool.backend);
1118     if (!extMemPool.reset())
1119         return false;
1120 
1121     if (!extMemPool.initTLS())
1122         return false;
1123     extMemPool.delayRegionsReleasing(false);
1124     return true;
1125 }
1126 
1127 bool MemoryPool::destroy()
1128 {
1129 #if __TBB_MALLOC_LOCACHE_STAT
1130     extMemPool.loc.reportStat(stdout);
1131 #endif
1132 #if __TBB_MALLOC_BACKEND_STAT
1133     extMemPool.backend.reportStat(stdout);
1134 #endif
1135     {
1136         MallocMutex::scoped_lock lock(memPoolListLock);
1137         // remove itself from global pool list
1138         if (prev)
1139             prev->next = next;
1140         if (next)
1141             next->prev = prev;
1142     }
1143     // slab blocks in non-default pool do not have backreferences,
1144     // only large objects do
1145     if (extMemPool.userPool())
1146         extMemPool.lmbList.releaseAll</*poolDestroy=*/true>(&extMemPool.backend);
1147     else {
1148         // only one non-userPool() is supported now
1149         MALLOC_ASSERT(this==defaultMemPool, NULL);
1150         // There and below in extMemPool.destroy(), do not restore initial state
1151         // for user pool, because it's just about to be released. But for system
1152         // pool restoring, we do not want to do zeroing of it on subsequent reload.
1153         bootStrapBlocks.reset();
1154         extMemPool.orphanedBlocks.reset();
1155     }
1156     return extMemPool.destroy();
1157 }
1158 
1159 void MemoryPool::onThreadShutdown(TLSData *tlsData)
1160 {
1161     if (tlsData) { // might be called for "empty" TLS
1162         tlsData->release();
1163         bootStrapBlocks.free(tlsData);
1164         clearTLS();
1165     }
1166 }
1167 
1168 #if MALLOC_DEBUG
1169 void Bin::verifyTLSBin (size_t size) const
1170 {
1171 /* The debug version verifies the TLSBin as needed */
1172     uint32_t objSize = getObjectSize(size);
1173 
1174     if (activeBlk) {
1175         MALLOC_ASSERT( activeBlk->isOwnedByCurrentThread(), ASSERT_TEXT );
1176         MALLOC_ASSERT( activeBlk->objectSize == objSize, ASSERT_TEXT );
1177 #if MALLOC_DEBUG>1
1178         for (Block* temp = activeBlk->next; temp; temp=temp->next) {
1179             MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT );
1180             MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT );
1181             MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT );
1182             MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT );
1183             if (temp->next) {
1184                 MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT );
1185             }
1186         }
1187         for (Block* temp = activeBlk->previous; temp; temp=temp->previous) {
1188             MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT );
1189             MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT );
1190             MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT );
1191             MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT );
1192             if (temp->previous) {
1193                 MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT );
1194             }
1195         }
1196 #endif /* MALLOC_DEBUG>1 */
1197     }
1198 }
1199 #else /* MALLOC_DEBUG */
1200 inline void Bin::verifyTLSBin (size_t) const { }
1201 #endif /* MALLOC_DEBUG */
1202 
1203 /*
1204  * Add a block to the start of this tls bin list.
1205  */
1206 void Bin::pushTLSBin(Block* block)
1207 {
1208     /* The objectSize should be defined and not a parameter
1209        because the function is applied to partially filled blocks as well */
1210     unsigned int size = block->objectSize;
1211 
1212     MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT );
1213     MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT );
1214     MALLOC_ASSERT( block->next == NULL, ASSERT_TEXT );
1215     MALLOC_ASSERT( block->previous == NULL, ASSERT_TEXT );
1216 
1217     MALLOC_ASSERT( this, ASSERT_TEXT );
1218     verifyTLSBin(size);
1219 
1220     block->next = activeBlk;
1221     if( activeBlk ) {
1222         block->previous = activeBlk->previous;
1223         activeBlk->previous = block;
1224         if( block->previous )
1225             block->previous->next = block;
1226     } else {
1227         activeBlk = block;
1228     }
1229 
1230     verifyTLSBin(size);
1231 }
1232 
1233 /*
1234  * Take a block out of its tls bin (e.g. before removal).
1235  */
1236 void Bin::outofTLSBin(Block* block)
1237 {
1238     unsigned int size = block->objectSize;
1239 
1240     MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT );
1241     MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT );
1242 
1243     MALLOC_ASSERT( this, ASSERT_TEXT );
1244     verifyTLSBin(size);
1245 
1246     if (block == activeBlk) {
1247         activeBlk = block->previous? block->previous : block->next;
1248     }
1249     /* Unlink the block */
1250     if (block->previous) {
1251         MALLOC_ASSERT( block->previous->next == block, ASSERT_TEXT );
1252         block->previous->next = block->next;
1253     }
1254     if (block->next) {
1255         MALLOC_ASSERT( block->next->previous == block, ASSERT_TEXT );
1256         block->next->previous = block->previous;
1257     }
1258     block->next = NULL;
1259     block->previous = NULL;
1260 
1261     verifyTLSBin(size);
1262 }
1263 
1264 Block* Bin::getPrivatizedFreeListBlock()
1265 {
1266     Block* block;
1267     MALLOC_ASSERT( this, ASSERT_TEXT );
1268     // if this method is called, active block usage must be unsuccessful
1269     MALLOC_ASSERT( !activeBlk && !mailbox.load(std::memory_order_relaxed) || activeBlk && activeBlk->isFull, ASSERT_TEXT );
1270 
1271 // the counter should be changed    STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList);
1272     if (!mailbox.load(std::memory_order_acquire)) // hotpath is empty mailbox
1273         return NULL;
1274     else { // mailbox is not empty, take lock and inspect it
1275         MallocMutex::scoped_lock scoped_cs(mailLock);
1276         block = mailbox.load(std::memory_order_relaxed);
1277         if( block ) {
1278             MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT );
1279             MALLOC_ASSERT( !isNotForUse(block->nextPrivatizable.load(std::memory_order_relaxed)), ASSERT_TEXT );
1280             mailbox.store(block->nextPrivatizable.load(std::memory_order_relaxed), std::memory_order_relaxed);
1281             block->nextPrivatizable.store((Block*)this, std::memory_order_relaxed);
1282         }
1283     }
1284     if( block ) {
1285         MALLOC_ASSERT( isSolidPtr(block->publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT );
1286         block->privatizePublicFreeList();
1287         block->adjustPositionInBin(this);
1288     }
1289     return block;
1290 }
1291 
1292 void Bin::addPublicFreeListBlock(Block* block)
1293 {
1294     MallocMutex::scoped_lock scoped_cs(mailLock);
1295     block->nextPrivatizable.store(mailbox.load(std::memory_order_relaxed), std::memory_order_relaxed);
1296     mailbox.store(block, std::memory_order_relaxed);
1297 }
1298 
1299 // Process publicly freed objects in all blocks and return empty blocks
1300 // to the backend in order to reduce overall footprint.
1301 bool Bin::cleanPublicFreeLists()
1302 {
1303     Block* block;
1304     if (!mailbox.load(std::memory_order_acquire))
1305         return false;
1306     else {
1307         // Grab all the blocks in the mailbox
1308         MallocMutex::scoped_lock scoped_cs(mailLock);
1309         block = mailbox.load(std::memory_order_relaxed);
1310         mailbox.store(NULL, std::memory_order_relaxed);
1311     }
1312     bool released = false;
1313     while (block) {
1314         MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT );
1315         Block* tmp = block->nextPrivatizable.load(std::memory_order_relaxed);
1316         block->nextPrivatizable.store((Block*)this, std::memory_order_relaxed);
1317         block->privatizePublicFreeList();
1318         if (block->empty()) {
1319             processEmptyBlock(block, /*poolTheBlock=*/false);
1320             released = true;
1321         } else
1322             block->adjustPositionInBin(this);
1323         block = tmp;
1324     }
1325     return released;
1326 }
1327 
1328 bool Block::adjustFullness()
1329 {
1330     if (bumpPtr) {
1331         /* If we are still using a bump ptr for this block it is empty enough to use. */
1332         STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough);
1333         isFull = false;
1334     } else {
1335         const float threshold = (slabSize - sizeof(Block)) * (1 - emptyEnoughRatio);
1336         /* allocatedCount shows how many objects in the block are in use; however it still counts
1337          * blocks freed by other threads; so prior call to privatizePublicFreeList() is recommended */
1338         isFull = (allocatedCount*objectSize > threshold) ? true : false;
1339 #if COLLECT_STATISTICS
1340         if (isFull)
1341             STAT_increment(getThreadId(), getIndex(objectSize), examineNotEmpty);
1342         else
1343             STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough);
1344 #endif
1345     }
1346     return isFull;
1347 }
1348 
1349 // This method resides in class Block, and not in class Bin, in order to avoid
1350 // calling getAllocationBin on a reasonably hot path in Block::freeOwnObject
1351 void Block::adjustPositionInBin(Bin* bin/*=NULL*/)
1352 {
1353     // If the block were full, but became empty enough to use,
1354     // move it to the front of the list
1355     if (isFull && !adjustFullness()) {
1356         if (!bin)
1357             bin = tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize);
1358         bin->moveBlockToFront(this);
1359     }
1360 }
1361 
1362 /* Restore the bump pointer for an empty block that is planned to use */
1363 void Block::restoreBumpPtr()
1364 {
1365     MALLOC_ASSERT( allocatedCount == 0, ASSERT_TEXT );
1366     MALLOC_ASSERT( !isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT );
1367     STAT_increment(getThreadId(), getIndex(objectSize), freeRestoreBumpPtr);
1368     bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize);
1369     freeList = NULL;
1370     isFull = false;
1371 }
1372 
1373 void Block::freeOwnObject(void *object)
1374 {
1375     tlsPtr.load(std::memory_order_relaxed)->markUsed();
1376     allocatedCount--;
1377     MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT );
1378 #if COLLECT_STATISTICS
1379     // Note that getAllocationBin is not called on the hottest path with statistics off.
1380     if (tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize)->getActiveBlock() != this)
1381         STAT_increment(getThreadId(), getIndex(objectSize), freeToInactiveBlock);
1382     else
1383         STAT_increment(getThreadId(), getIndex(objectSize), freeToActiveBlock);
1384 #endif
1385     if (empty()) {
1386         // If the last object of a slab is freed, the slab cannot be marked full
1387         MALLOC_ASSERT(!isFull, ASSERT_TEXT);
1388         tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize)->processEmptyBlock(this, /*poolTheBlock=*/true);
1389     } else { // hot path
1390         FreeObject *objectToFree = findObjectToFree(object);
1391         objectToFree->next = freeList;
1392         freeList = objectToFree;
1393         adjustPositionInBin();
1394     }
1395 }
1396 
1397 void Block::freePublicObject (FreeObject *objectToFree)
1398 {
1399     FreeObject* localPublicFreeList{};
1400 
1401     MALLOC_ITT_SYNC_RELEASING(&publicFreeList);
1402 #if FREELIST_NONBLOCKING
1403     // TBB_REVAMP_TODO: make it non atomic in non-blocking scenario
1404     localPublicFreeList = publicFreeList.load(std::memory_order_relaxed);
1405     do {
1406         objectToFree->next = localPublicFreeList;
1407         // no backoff necessary because trying to make change, not waiting for a change
1408     } while( !publicFreeList.compare_exchange_strong(localPublicFreeList, objectToFree) );
1409 #else
1410     STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList);
1411     {
1412         MallocMutex::scoped_lock scoped_cs(publicFreeListLock);
1413         localPublicFreeList = objectToFree->next = publicFreeList;
1414         publicFreeList = objectToFree;
1415     }
1416 #endif
1417 
1418     if( localPublicFreeList==NULL ) {
1419         // if the block is abandoned, its nextPrivatizable pointer should be UNUSABLE
1420         // otherwise, it should point to the bin the block belongs to.
1421         // reading nextPrivatizable is thread-safe below, because:
1422         // 1) the executing thread atomically got publicFreeList==NULL and changed it to non-NULL;
1423         // 2) only owning thread can change it back to NULL,
1424         // 3) but it can not be done until the block is put to the mailbox
1425         // So the executing thread is now the only one that can change nextPrivatizable
1426         Block* next = nextPrivatizable.load(std::memory_order_acquire);
1427         if( !isNotForUse(next) ) {
1428             MALLOC_ASSERT( next!=nullptr, ASSERT_TEXT );
1429             Bin* theBin = (Bin*) next;
1430 #if MALLOC_DEBUG && TBB_REVAMP_TODO
1431             // FIXME: The thread that returns the block is not the block's owner.
1432             // The below assertion compares 'theBin' against the caller's local bin, thus, it always fails.
1433             // Need to find a way to get the correct remote bin for comparison.
1434             { // check that nextPrivatizable points to the bin the block belongs to
1435                 uint32_t index = getIndex( objectSize );
1436                 TLSData* tls = getThreadMallocTLS();
1437                 MALLOC_ASSERT( theBin==tls->bin+index, ASSERT_TEXT );
1438             }
1439 #endif // MALLOC_DEBUG
1440             theBin->addPublicFreeListBlock(this);
1441         }
1442     }
1443     STAT_increment(getThreadId(), ThreadCommonCounters, freeToOtherThread);
1444     STAT_increment(ownerTid.load(std::memory_order_relaxed), getIndex(objectSize), freeByOtherThread);
1445 }
1446 
1447 // Make objects freed by other threads available for use again
1448 void Block::privatizePublicFreeList( bool reset )
1449 {
1450     FreeObject *localPublicFreeList;
1451     // If reset is false, publicFreeList should not be zeroed but set to UNUSABLE
1452     // to properly synchronize with other threads freeing objects to this slab.
1453     const intptr_t endMarker = reset ? 0 : UNUSABLE;
1454 
1455     // Only the owner thread may reset the pointer to NULL
1456     MALLOC_ASSERT( isOwnedByCurrentThread() || !reset, ASSERT_TEXT );
1457 #if FREELIST_NONBLOCKING
1458     localPublicFreeList = publicFreeList.exchange((FreeObject*)endMarker);
1459 #else
1460     STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList);
1461     {
1462         MallocMutex::scoped_lock scoped_cs(publicFreeListLock);
1463         localPublicFreeList = publicFreeList;
1464         publicFreeList = endMarker;
1465     }
1466 #endif
1467     MALLOC_ITT_SYNC_ACQUIRED(&publicFreeList);
1468     MALLOC_ASSERT( !(reset && isNotForUse(publicFreeList)), ASSERT_TEXT );
1469 
1470     // publicFreeList must have been UNUSABLE or valid, but not NULL
1471     MALLOC_ASSERT( localPublicFreeList!=NULL, ASSERT_TEXT );
1472     if( isSolidPtr(localPublicFreeList) ) {
1473         MALLOC_ASSERT( allocatedCount <= (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT );
1474         /* other threads did not change the counter freeing our blocks */
1475         allocatedCount--;
1476         FreeObject *temp = localPublicFreeList;
1477         while( isSolidPtr(temp->next) ){ // the list will end with either NULL or UNUSABLE
1478             temp = temp->next;
1479             allocatedCount--;
1480             MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT );
1481         }
1482         /* merge with local freeList */
1483         temp->next = freeList;
1484         freeList = localPublicFreeList;
1485         STAT_increment(getThreadId(), getIndex(objectSize), allocPrivatized);
1486     }
1487 }
1488 
1489 void Block::privatizeOrphaned(TLSData *tls, unsigned index)
1490 {
1491     Bin* bin = tls->bin + index;
1492     STAT_increment(getThreadId(), index, allocBlockPublic);
1493     next = NULL;
1494     previous = NULL;
1495     MALLOC_ASSERT( publicFreeList.load(std::memory_order_relaxed) != NULL, ASSERT_TEXT );
1496     /* There is not a race here since no other thread owns this block */
1497     markOwned(tls);
1498     // It is safe to change nextPrivatizable, as publicFreeList is not null
1499     MALLOC_ASSERT( isNotForUse(nextPrivatizable.load(std::memory_order_relaxed)), ASSERT_TEXT );
1500     nextPrivatizable.store((Block*)bin, std::memory_order_relaxed);
1501     // the next call is required to change publicFreeList to 0
1502     privatizePublicFreeList();
1503     if( empty() ) {
1504         restoreBumpPtr();
1505     } else {
1506         adjustFullness(); // check the block fullness and set isFull
1507     }
1508     MALLOC_ASSERT( !isNotForUse(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT );
1509 }
1510 
1511 
1512 bool Block::readyToShare()
1513 {
1514     FreeObject* oldVal = NULL;
1515 #if FREELIST_NONBLOCKING
1516     publicFreeList.compare_exchange_strong(oldVal, (FreeObject*)UNUSABLE);
1517 #else
1518     STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList);
1519     {
1520         MallocMutex::scoped_lock scoped_cs(publicFreeListLock);
1521         if ( (oldVal=publicFreeList)==NULL )
1522             (intptr_t&)(publicFreeList) = UNUSABLE;
1523     }
1524 #endif
1525     return oldVal==NULL;
1526 }
1527 
1528 void Block::shareOrphaned(intptr_t binTag, unsigned index)
1529 {
1530     MALLOC_ASSERT( binTag, ASSERT_TEXT );
1531     // unreferenced formal parameter warning
1532     tbb::detail::suppress_unused_warning(index);
1533     STAT_increment(getThreadId(), index, freeBlockPublic);
1534     markOrphaned();
1535     bool syncOnMailbox = false;
1536     if ((intptr_t)nextPrivatizable.load(std::memory_order_relaxed) == binTag) {
1537         // First check passed: the block is not in mailbox yet.
1538         // Need to set publicFreeList to non-zero, so other threads
1539         // will not change nextPrivatizable and it can be zeroed.
1540         if ( !readyToShare() ) {
1541             // another thread freed an object; we need to wait until it finishes.
1542             // There is no need for exponential backoff, as the wait here is not for a lock;
1543             // but need to yield, so the thread we wait has a chance to run.
1544             // TODO: add a pause to also be friendly to hyperthreads
1545             int count = 256;
1546             while ((intptr_t)nextPrivatizable.load(std::memory_order_relaxed) == binTag) {
1547                 if (--count==0) {
1548                     do_yield();
1549                     count = 256;
1550                 }
1551             }
1552         }
1553     }
1554     MALLOC_ASSERT( publicFreeList.load(std::memory_order_relaxed) !=NULL, ASSERT_TEXT );
1555     // now it is safe to change our data
1556     previous = NULL;
1557     // it is caller responsibility to ensure that the list of blocks
1558     // formed by nextPrivatizable pointers is kept consistent if required.
1559     // if only called from thread shutdown code, it does not matter.
1560     nextPrivatizable.store((Block*)UNUSABLE, std::memory_order_relaxed);
1561 }
1562 
1563 void Block::cleanBlockHeader()
1564 {
1565     next = nullptr;
1566     previous = nullptr;
1567     freeList = nullptr;
1568     allocatedCount = 0;
1569     isFull = false;
1570     tlsPtr.store(nullptr, std::memory_order_relaxed);
1571 
1572     publicFreeList.store(nullptr, std::memory_order_relaxed);
1573 }
1574 
1575 void Block::initEmptyBlock(TLSData *tls, size_t size)
1576 {
1577     // Having getIndex and getObjectSize called next to each other
1578     // allows better compiler optimization as they basically share the code.
1579     unsigned int index = getIndex(size);
1580     unsigned int objSz = getObjectSize(size);
1581 
1582     cleanBlockHeader();
1583     objectSize = objSz;
1584     markOwned(tls);
1585     // bump pointer should be prepared for first allocation - thus mode it down to objectSize
1586     bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize);
1587 
1588     // each block should have the address where the head of the list of "privatizable" blocks is kept
1589     // the only exception is a block for boot strap which is initialized when TLS is yet NULL
1590     nextPrivatizable.store( tls? (Block*)(tls->bin + index) : nullptr, std::memory_order_relaxed);
1591     TRACEF(( "[ScalableMalloc trace] Empty block %p is initialized, owner is %ld, objectSize is %d, bumpPtr is %p\n",
1592              this, tlsPtr.load(std::memory_order_relaxed) ? getThreadId() : -1, objectSize, bumpPtr ));
1593 }
1594 
1595 Block *OrphanedBlocks::get(TLSData *tls, unsigned int size)
1596 {
1597     // TODO: try to use index from getAllocationBin
1598     unsigned int index = getIndex(size);
1599     Block *block = bins[index].pop();
1600     if (block) {
1601         MALLOC_ITT_SYNC_ACQUIRED(bins+index);
1602         block->privatizeOrphaned(tls, index);
1603     }
1604     return block;
1605 }
1606 
1607 void OrphanedBlocks::put(intptr_t binTag, Block *block)
1608 {
1609     unsigned int index = getIndex(block->getSize());
1610     block->shareOrphaned(binTag, index);
1611     MALLOC_ITT_SYNC_RELEASING(bins+index);
1612     bins[index].push(block);
1613 }
1614 
1615 void OrphanedBlocks::reset()
1616 {
1617     for (uint32_t i=0; i<numBlockBinLimit; i++)
1618         new (bins+i) LifoList();
1619 }
1620 
1621 bool OrphanedBlocks::cleanup(Backend* backend)
1622 {
1623     bool released = false;
1624     for (uint32_t i=0; i<numBlockBinLimit; i++) {
1625         Block* block = bins[i].grab();
1626         MALLOC_ITT_SYNC_ACQUIRED(bins+i);
1627         while (block) {
1628             Block* next = block->next;
1629             block->privatizePublicFreeList( /*reset=*/false ); // do not set publicFreeList to NULL
1630             if (block->empty()) {
1631                 block->reset();
1632                 // slab blocks in user's pools do not have valid backRefIdx
1633                 if (!backend->inUserPool())
1634                     removeBackRef(*(block->getBackRefIdx()));
1635                 backend->putSlabBlock(block);
1636                 released = true;
1637             } else {
1638                 MALLOC_ITT_SYNC_RELEASING(bins+i);
1639                 bins[i].push(block);
1640             }
1641             block = next;
1642         }
1643     }
1644     return released;
1645 }
1646 
1647 FreeBlockPool::ResOfGet FreeBlockPool::getBlock()
1648 {
1649     Block *b = head.exchange(NULL);
1650 
1651     if (b) {
1652         size--;
1653         Block *newHead = b->next;
1654         lastAccessMiss = false;
1655         head.store(newHead, std::memory_order_release);
1656     } else {
1657         lastAccessMiss = true;
1658     }
1659     return ResOfGet(b, lastAccessMiss);
1660 }
1661 
1662 void FreeBlockPool::returnBlock(Block *block)
1663 {
1664     MALLOC_ASSERT( size <= POOL_HIGH_MARK, ASSERT_TEXT );
1665     Block *localHead = head.exchange(NULL);
1666 
1667     if (!localHead) {
1668         size = 0; // head was stolen by externalClean, correct size accordingly
1669     } else if (size == POOL_HIGH_MARK) {
1670         // release cold blocks and add hot one,
1671         // so keep POOL_LOW_MARK-1 blocks and add new block to head
1672         Block *headToFree = localHead, *helper;
1673         for (int i=0; i<POOL_LOW_MARK-2; i++)
1674             headToFree = headToFree->next;
1675         Block *last = headToFree;
1676         headToFree = headToFree->next;
1677         last->next = NULL;
1678         size = POOL_LOW_MARK-1;
1679         for (Block *currBl = headToFree; currBl; currBl = helper) {
1680             helper = currBl->next;
1681             // slab blocks in user's pools do not have valid backRefIdx
1682             if (!backend->inUserPool())
1683                 removeBackRef(currBl->backRefIdx);
1684             backend->putSlabBlock(currBl);
1685         }
1686     }
1687     size++;
1688     block->next = localHead;
1689     head.store(block, std::memory_order_release);
1690 }
1691 
1692 bool FreeBlockPool::externalCleanup()
1693 {
1694     Block *helper;
1695     bool released = false;
1696 
1697     for (Block *currBl=head.exchange(NULL); currBl; currBl=helper) {
1698         helper = currBl->next;
1699         // slab blocks in user's pools do not have valid backRefIdx
1700         if (!backend->inUserPool())
1701             removeBackRef(currBl->backRefIdx);
1702         backend->putSlabBlock(currBl);
1703         released = true;
1704     }
1705     return released;
1706 }
1707 
1708 /* Prepare the block for returning to FreeBlockPool */
1709 void Block::reset()
1710 {
1711     // it is caller's responsibility to ensure no data is lost before calling this
1712     MALLOC_ASSERT( allocatedCount==0, ASSERT_TEXT );
1713     MALLOC_ASSERT( !isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT );
1714     if (!isStartupAllocObject())
1715         STAT_increment(getThreadId(), getIndex(objectSize), freeBlockBack);
1716 
1717     cleanBlockHeader();
1718 
1719     nextPrivatizable.store(nullptr, std::memory_order_relaxed);
1720 
1721     objectSize = 0;
1722     // for an empty block, bump pointer should point right after the end of the block
1723     bumpPtr = (FreeObject *)((uintptr_t)this + slabSize);
1724 }
1725 
1726 inline void Bin::setActiveBlock (Block *block)
1727 {
1728 //    MALLOC_ASSERT( bin, ASSERT_TEXT );
1729     MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT );
1730     // it is the caller responsibility to keep bin consistence (i.e. ensure this block is in the bin list)
1731     activeBlk = block;
1732 }
1733 
1734 inline Block* Bin::setPreviousBlockActive()
1735 {
1736     MALLOC_ASSERT( activeBlk, ASSERT_TEXT );
1737     Block* temp = activeBlk->previous;
1738     if( temp ) {
1739         MALLOC_ASSERT( !(temp->isFull), ASSERT_TEXT );
1740         activeBlk = temp;
1741     }
1742     return temp;
1743 }
1744 
1745 inline bool Block::isOwnedByCurrentThread() const {
1746     return tlsPtr.load(std::memory_order_relaxed) && ownerTid.isCurrentThreadId();
1747 }
1748 
1749 FreeObject *Block::findObjectToFree(const void *object) const
1750 {
1751     FreeObject *objectToFree;
1752     // Due to aligned allocations, a pointer passed to scalable_free
1753     // might differ from the address of internally allocated object.
1754     // Small objects however should always be fine.
1755     if (objectSize <= maxSegregatedObjectSize)
1756         objectToFree = (FreeObject*)object;
1757     // "Fitting size" allocations are suspicious if aligned higher than naturally
1758     else {
1759         if ( ! isAligned(object,2*fittingAlignment) )
1760             // TODO: the above check is questionable - it gives false negatives in ~50% cases,
1761             //       so might even be slower in average than unconditional use of findAllocatedObject.
1762             // here it should be a "real" object
1763             objectToFree = (FreeObject*)object;
1764         else
1765             // here object can be an aligned address, so applying additional checks
1766             objectToFree = findAllocatedObject(object);
1767         MALLOC_ASSERT( isAligned(objectToFree,fittingAlignment), ASSERT_TEXT );
1768     }
1769     MALLOC_ASSERT( isProperlyPlaced(objectToFree), ASSERT_TEXT );
1770 
1771     return objectToFree;
1772 }
1773 
1774 void TLSData::release()
1775 {
1776     memPool->extMemPool.allLocalCaches.unregisterThread(this);
1777     externalCleanup(/*cleanOnlyUnused=*/false, /*cleanBins=*/false);
1778 
1779     for (unsigned index = 0; index < numBlockBins; index++) {
1780         Block *activeBlk = bin[index].getActiveBlock();
1781         if (!activeBlk)
1782             continue;
1783         Block *threadlessBlock = activeBlk->previous;
1784         bool syncOnMailbox = false;
1785         while (threadlessBlock) {
1786             Block *threadBlock = threadlessBlock->previous;
1787             if (threadlessBlock->empty()) {
1788                 /* we destroy the thread, so not use its block pool */
1789                 memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false);
1790             } else {
1791                 memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock);
1792                 syncOnMailbox = true;
1793             }
1794             threadlessBlock = threadBlock;
1795         }
1796         threadlessBlock = activeBlk;
1797         while (threadlessBlock) {
1798             Block *threadBlock = threadlessBlock->next;
1799             if (threadlessBlock->empty()) {
1800                 /* we destroy the thread, so not use its block pool */
1801                 memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false);
1802             } else {
1803                 memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock);
1804                 syncOnMailbox = true;
1805             }
1806             threadlessBlock = threadBlock;
1807         }
1808         bin[index].resetActiveBlock();
1809 
1810         if (syncOnMailbox) {
1811             // Although, we synchronized on nextPrivatizable inside a block, we still need to
1812             // synchronize on the bin lifetime because the thread releasing an object into the public
1813             // free list is touching the bin (mailbox and mailLock)
1814             MallocMutex::scoped_lock scoped_cs(bin[index].mailLock);
1815         }
1816     }
1817 }
1818 
1819 
1820 #if MALLOC_CHECK_RECURSION
1821 // TODO: Use dedicated heap for this
1822 
1823 /*
1824  * It's a special kind of allocation that can be used when malloc is
1825  * not available (either during startup or when malloc was already called and
1826  * we are, say, inside pthread_setspecific's call).
1827  * Block can contain objects of different sizes,
1828  * allocations are performed by moving bump pointer and increasing of object counter,
1829  * releasing is done via counter of objects allocated in the block
1830  * or moving bump pointer if releasing object is on a bound.
1831  * TODO: make bump pointer to grow to the same backward direction as all the others.
1832  */
1833 
1834 class StartupBlock : public Block {
1835     size_t availableSize() const {
1836         return slabSize - ((uintptr_t)bumpPtr - (uintptr_t)this);
1837     }
1838     static StartupBlock *getBlock();
1839 public:
1840     static FreeObject *allocate(size_t size);
1841     static size_t msize(void *ptr) { return *((size_t*)ptr - 1); }
1842     void free(void *ptr);
1843 };
1844 
1845 static MallocMutex startupMallocLock;
1846 static StartupBlock *firstStartupBlock;
1847 
1848 StartupBlock *StartupBlock::getBlock()
1849 {
1850     BackRefIdx backRefIdx = BackRefIdx::newBackRef(/*largeObj=*/false);
1851     if (backRefIdx.isInvalid()) return NULL;
1852 
1853     StartupBlock *block = static_cast<StartupBlock*>(
1854         defaultMemPool->extMemPool.backend.getSlabBlock(1));
1855     if (!block) return NULL;
1856 
1857     block->cleanBlockHeader();
1858     setBackRef(backRefIdx, block);
1859     block->backRefIdx = backRefIdx;
1860     // use startupAllocObjSizeMark to mark objects from startup block marker
1861     block->objectSize = startupAllocObjSizeMark;
1862     block->bumpPtr = (FreeObject *)((uintptr_t)block + sizeof(StartupBlock));
1863     return block;
1864 }
1865 
1866 FreeObject *StartupBlock::allocate(size_t size)
1867 {
1868     FreeObject *result;
1869     StartupBlock *newBlock = NULL;
1870     bool newBlockUnused = false;
1871 
1872     /* Objects must be aligned on their natural bounds,
1873        and objects bigger than word on word's bound. */
1874     size = alignUp(size, sizeof(size_t));
1875     // We need size of an object to implement msize.
1876     size_t reqSize = size + sizeof(size_t);
1877     {
1878         MallocMutex::scoped_lock scoped_cs(startupMallocLock);
1879         // Re-check whether we need a new block (conditions might have changed)
1880         if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) {
1881             if (!newBlock) {
1882                 newBlock = StartupBlock::getBlock();
1883                 if (!newBlock) return NULL;
1884             }
1885             newBlock->next = (Block*)firstStartupBlock;
1886             if (firstStartupBlock)
1887                 firstStartupBlock->previous = (Block*)newBlock;
1888             firstStartupBlock = newBlock;
1889         }
1890         result = firstStartupBlock->bumpPtr;
1891         firstStartupBlock->allocatedCount++;
1892         firstStartupBlock->bumpPtr =
1893             (FreeObject *)((uintptr_t)firstStartupBlock->bumpPtr + reqSize);
1894     }
1895 
1896     // keep object size at the negative offset
1897     *((size_t*)result) = size;
1898     return (FreeObject*)((size_t*)result+1);
1899 }
1900 
1901 void StartupBlock::free(void *ptr)
1902 {
1903     Block* blockToRelease = NULL;
1904     {
1905         MallocMutex::scoped_lock scoped_cs(startupMallocLock);
1906 
1907         MALLOC_ASSERT(firstStartupBlock, ASSERT_TEXT);
1908         MALLOC_ASSERT(startupAllocObjSizeMark==objectSize
1909                       && allocatedCount>0, ASSERT_TEXT);
1910         MALLOC_ASSERT((uintptr_t)ptr>=(uintptr_t)this+sizeof(StartupBlock)
1911                       && (uintptr_t)ptr+StartupBlock::msize(ptr)<=(uintptr_t)this+slabSize,
1912                       ASSERT_TEXT);
1913         if (0 == --allocatedCount) {
1914             if (this == firstStartupBlock)
1915                 firstStartupBlock = (StartupBlock*)firstStartupBlock->next;
1916             if (previous)
1917                 previous->next = next;
1918             if (next)
1919                 next->previous = previous;
1920             blockToRelease = this;
1921         } else if ((uintptr_t)ptr + StartupBlock::msize(ptr) == (uintptr_t)bumpPtr) {
1922             // last object in the block released
1923             FreeObject *newBump = (FreeObject*)((size_t*)ptr - 1);
1924             MALLOC_ASSERT((uintptr_t)newBump>(uintptr_t)this+sizeof(StartupBlock),
1925                           ASSERT_TEXT);
1926             bumpPtr = newBump;
1927         }
1928     }
1929     if (blockToRelease) {
1930         blockToRelease->previous = blockToRelease->next = NULL;
1931         defaultMemPool->returnEmptyBlock(blockToRelease, /*poolTheBlock=*/false);
1932     }
1933 }
1934 
1935 #endif /* MALLOC_CHECK_RECURSION */
1936 
1937 /********* End thread related code  *************/
1938 
1939 /********* Library initialization *************/
1940 
1941 //! Value indicating the state of initialization.
1942 /* 0 = initialization not started.
1943  * 1 = initialization started but not finished.
1944  * 2 = initialization finished.
1945  * In theory, we only need values 0 and 2. But value 1 is nonetheless
1946  * useful for detecting errors in the double-check pattern.
1947  */
1948 static std::atomic<intptr_t> mallocInitialized{0};   // implicitly initialized to 0
1949 static MallocMutex initMutex;
1950 
1951 /** The leading "\0" is here so that applying "strings" to the binary
1952     delivers a clean result. */
1953 static char VersionString[] = "\0" TBBMALLOC_VERSION_STRINGS;
1954 
1955 #if USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND)
1956 
1957 /* Decrease race interval between dynamic library unloading and pthread key
1958    destructor. Protect only Pthreads with supported unloading. */
1959 class ShutdownSync {
1960 /* flag is the number of threads in pthread key dtor body
1961    (i.e., between threadDtorStart() and threadDtorDone())
1962    or the signal to skip dtor, if flag < 0 */
1963     std::atomic<intptr_t> flag;
1964     static const intptr_t skipDtor = INTPTR_MIN/2;
1965 public:
1966     void init() { flag.store(0, std::memory_order_release); }
1967 /* Suppose that 2*abs(skipDtor) or more threads never call threadDtorStart()
1968    simultaneously, so flag never becomes negative because of that. */
1969     bool threadDtorStart() {
1970         if (flag.load(std::memory_order_acquire) < 0)
1971             return false;
1972         if (++flag <= 0) { // note that new value returned
1973             flag.fetch_sub(1); // flag is spoiled by us, restore it
1974             return false;
1975         }
1976         return true;
1977     }
1978     void threadDtorDone() {
1979         flag.fetch_sub(1);
1980     }
1981     void processExit() {
1982         if (flag.fetch_add(skipDtor) != 0) {
1983             SpinWaitUntilEq(flag, skipDtor);
1984         }
1985     }
1986 };
1987 
1988 #else
1989 
1990 class ShutdownSync {
1991 public:
1992     void init() { }
1993     bool threadDtorStart() { return true; }
1994     void threadDtorDone() { }
1995     void processExit() { }
1996 };
1997 
1998 #endif // USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND)
1999 
2000 static ShutdownSync shutdownSync;
2001 
2002 inline bool isMallocInitialized() {
2003     // Load must have acquire fence; otherwise thread taking "initialized" path
2004     // might perform textually later loads *before* mallocInitialized becomes 2.
2005     return 2 == mallocInitialized.load(std::memory_order_acquire);
2006 }
2007 
2008 /* Caller is responsible for ensuring this routine is called exactly once. */
2009 extern "C" void MallocInitializeITT() {
2010 #if __TBB_USE_ITT_NOTIFY
2011     if (!usedBySrcIncluded)
2012         tbb::detail::r1::__TBB_load_ittnotify();
2013 #endif
2014 }
2015 
2016 void MemoryPool::initDefaultPool() {
2017     hugePages.init();
2018 }
2019 
2020 /*
2021  * Allocator initialization routine;
2022  * it is called lazily on the very first scalable_malloc call.
2023  */
2024 static bool initMemoryManager()
2025 {
2026     TRACEF(( "[ScalableMalloc trace] sizeof(Block) is %d (expected 128); sizeof(uintptr_t) is %d\n",
2027              sizeof(Block), sizeof(uintptr_t) ));
2028     MALLOC_ASSERT( 2*blockHeaderAlignment == sizeof(Block), ASSERT_TEXT );
2029     MALLOC_ASSERT( sizeof(FreeObject) == sizeof(void*), ASSERT_TEXT );
2030     MALLOC_ASSERT( isAligned(defaultMemPool, sizeof(intptr_t)),
2031                    "Memory pool must be void*-aligned for atomic to work over aligned arguments.");
2032 
2033 #if USE_WINTHREAD
2034     const size_t granularity = 64*1024; // granulatity of VirtualAlloc
2035 #else
2036     // POSIX.1-2001-compliant way to get page size
2037     const size_t granularity = sysconf(_SC_PAGESIZE);
2038 #endif
2039     if (!defaultMemPool) {
2040         // Do not rely on static constructors and do the assignment in case
2041         // of library static section not initialized at this call yet.
2042         defaultMemPool = (MemoryPool*)defaultMemPool_space;
2043     }
2044     bool initOk = defaultMemPool->
2045         extMemPool.init(0, NULL, NULL, granularity,
2046                         /*keepAllMemory=*/false, /*fixedPool=*/false);
2047 // TODO: extMemPool.init() to not allocate memory
2048     if (!initOk || !initBackRefMaster(&defaultMemPool->extMemPool.backend) || !ThreadId::init())
2049         return false;
2050     MemoryPool::initDefaultPool();
2051     // init() is required iff initMemoryManager() is called
2052     // after mallocProcessShutdownNotification()
2053     shutdownSync.init();
2054 #if COLLECT_STATISTICS
2055     initStatisticsCollection();
2056 #endif
2057     return true;
2058 }
2059 
2060 static bool GetBoolEnvironmentVariable(const char* name) {
2061     return tbb::detail::r1::GetBoolEnvironmentVariable(name);
2062 }
2063 
2064 //! Ensures that initMemoryManager() is called once and only once.
2065 /** Does not return until initMemoryManager() has been completed by a thread.
2066     There is no need to call this routine if mallocInitialized==2 . */
2067 static bool doInitialization()
2068 {
2069     MallocMutex::scoped_lock lock( initMutex );
2070     if (mallocInitialized.load(std::memory_order_relaxed)!=2) {
2071         MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==0, ASSERT_TEXT );
2072         mallocInitialized.store(1, std::memory_order_relaxed);
2073         RecursiveMallocCallProtector scoped;
2074         if (!initMemoryManager()) {
2075             mallocInitialized.store(0, std::memory_order_relaxed); // restore and out
2076             return false;
2077         }
2078 #ifdef  MALLOC_EXTRA_INITIALIZATION
2079         MALLOC_EXTRA_INITIALIZATION;
2080 #endif
2081 #if MALLOC_CHECK_RECURSION
2082         RecursiveMallocCallProtector::detectNaiveOverload();
2083 #endif
2084         MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==1, ASSERT_TEXT );
2085         // Store must have release fence, otherwise mallocInitialized==2
2086         // might become remotely visible before side effects of
2087         // initMemoryManager() become remotely visible.
2088         mallocInitialized.store(2, std::memory_order_release);
2089         if( GetBoolEnvironmentVariable("TBB_VERSION") ) {
2090             fputs(VersionString+1,stderr);
2091             hugePages.printStatus();
2092         }
2093     }
2094     /* It can't be 0 or I would have initialized it */
2095     MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==2, ASSERT_TEXT );
2096     return true;
2097 }
2098 
2099 /********* End library initialization *************/
2100 
2101 /********* The malloc show begins     *************/
2102 
2103 
2104 FreeObject *Block::allocateFromFreeList()
2105 {
2106     FreeObject *result;
2107 
2108     if (!freeList) return NULL;
2109 
2110     result = freeList;
2111     MALLOC_ASSERT( result, ASSERT_TEXT );
2112 
2113     freeList = result->next;
2114     MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT );
2115     allocatedCount++;
2116     STAT_increment(getThreadId(), getIndex(objectSize), allocFreeListUsed);
2117 
2118     return result;
2119 }
2120 
2121 FreeObject *Block::allocateFromBumpPtr()
2122 {
2123     FreeObject *result = bumpPtr;
2124     if (result) {
2125         bumpPtr = (FreeObject *) ((uintptr_t) bumpPtr - objectSize);
2126         if ( (uintptr_t)bumpPtr < (uintptr_t)this+sizeof(Block) ) {
2127             bumpPtr = NULL;
2128         }
2129         MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT );
2130         allocatedCount++;
2131         STAT_increment(getThreadId(), getIndex(objectSize), allocBumpPtrUsed);
2132     }
2133     return result;
2134 }
2135 
2136 inline FreeObject* Block::allocate()
2137 {
2138     MALLOC_ASSERT( isOwnedByCurrentThread(), ASSERT_TEXT );
2139 
2140     /* for better cache locality, first looking in the free list. */
2141     if ( FreeObject *result = allocateFromFreeList() ) {
2142         return result;
2143     }
2144     MALLOC_ASSERT( !freeList, ASSERT_TEXT );
2145 
2146     /* if free list is empty, try thread local bump pointer allocation. */
2147     if ( FreeObject *result = allocateFromBumpPtr() ) {
2148         return result;
2149     }
2150     MALLOC_ASSERT( !bumpPtr, ASSERT_TEXT );
2151 
2152     /* the block is considered full. */
2153     isFull = true;
2154     return NULL;
2155 }
2156 
2157 size_t Block::findObjectSize(void *object) const
2158 {
2159     size_t blSize = getSize();
2160 #if MALLOC_CHECK_RECURSION
2161     // Currently, there is no aligned allocations from startup blocks,
2162     // so we can return just StartupBlock::msize().
2163     // TODO: This must be extended if we add aligned allocation from startup blocks.
2164     if (!blSize)
2165         return StartupBlock::msize(object);
2166 #endif
2167     // object can be aligned, so real size can be less than block's
2168     size_t size =
2169         blSize - ((uintptr_t)object - (uintptr_t)findObjectToFree(object));
2170     MALLOC_ASSERT(size>0 && size<minLargeObjectSize, ASSERT_TEXT);
2171     return size;
2172 }
2173 
2174 void Bin::moveBlockToFront(Block *block)
2175 {
2176     /* move the block to the front of the bin */
2177     if (block == activeBlk) return;
2178     outofTLSBin(block);
2179     pushTLSBin(block);
2180 }
2181 
2182 void Bin::processEmptyBlock(Block *block, bool poolTheBlock)
2183 {
2184     if (block != activeBlk) {
2185         /* We are not using this block; return it to the pool */
2186         outofTLSBin(block);
2187         block->getMemPool()->returnEmptyBlock(block, poolTheBlock);
2188     } else {
2189         /* all objects are free - let's restore the bump pointer */
2190         block->restoreBumpPtr();
2191     }
2192 }
2193 
2194 template<int LOW_MARK, int HIGH_MARK>
2195 bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool)
2196 {
2197     const size_t size = object->unalignedSize;
2198     // not spoil cache with too large object, that can cause its total cleanup
2199     if (size > MAX_TOTAL_SIZE)
2200         return false;
2201     LargeMemoryBlock *localHead = head.exchange(NULL);
2202 
2203     object->prev = NULL;
2204     object->next = localHead;
2205     if (localHead)
2206         localHead->prev = object;
2207     else {
2208         // those might not be cleaned during local cache stealing, correct them
2209         totalSize = 0;
2210         numOfBlocks = 0;
2211         tail = object;
2212     }
2213     localHead = object;
2214     totalSize += size;
2215     numOfBlocks++;
2216     // must meet both size and number of cached objects constrains
2217     if (totalSize > MAX_TOTAL_SIZE || numOfBlocks >= HIGH_MARK) {
2218         // scanning from tail until meet conditions
2219         while (totalSize > MAX_TOTAL_SIZE || numOfBlocks > LOW_MARK) {
2220             totalSize -= tail->unalignedSize;
2221             numOfBlocks--;
2222             tail = tail->prev;
2223         }
2224         LargeMemoryBlock *headToRelease = tail->next;
2225         tail->next = NULL;
2226 
2227         extMemPool->freeLargeObjectList(headToRelease);
2228     }
2229 
2230     head.store(localHead, std::memory_order_release);
2231     return true;
2232 }
2233 
2234 template<int LOW_MARK, int HIGH_MARK>
2235 LargeMemoryBlock *LocalLOCImpl<LOW_MARK, HIGH_MARK>::get(size_t size)
2236 {
2237     LargeMemoryBlock *localHead, *res = NULL;
2238 
2239     if (size > MAX_TOTAL_SIZE)
2240         return NULL;
2241 
2242     // TBB_REVAMP_TODO: review this line
2243     if (!head.load(std::memory_order_acquire) || (localHead = head.exchange(NULL)) == NULL) {
2244         // do not restore totalSize, numOfBlocks and tail at this point,
2245         // as they are used only in put(), where they must be restored
2246         return NULL;
2247     }
2248 
2249     for (LargeMemoryBlock *curr = localHead; curr; curr=curr->next) {
2250         if (curr->unalignedSize == size) {
2251             res = curr;
2252             if (curr->next)
2253                 curr->next->prev = curr->prev;
2254             else
2255                 tail = curr->prev;
2256             if (curr != localHead)
2257                 curr->prev->next = curr->next;
2258             else
2259                 localHead = curr->next;
2260             totalSize -= size;
2261             numOfBlocks--;
2262             break;
2263         }
2264     }
2265 
2266     head.store(localHead, std::memory_order_release);
2267     return res;
2268 }
2269 
2270 template<int LOW_MARK, int HIGH_MARK>
2271 bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::externalCleanup(ExtMemoryPool *extMemPool)
2272 {
2273     if (LargeMemoryBlock *localHead = head.exchange(NULL)) {
2274         extMemPool->freeLargeObjectList(localHead);
2275         return true;
2276     }
2277     return false;
2278 }
2279 
2280 void *MemoryPool::getFromLLOCache(TLSData* tls, size_t size, size_t alignment)
2281 {
2282     LargeMemoryBlock *lmb = NULL;
2283 
2284     size_t headersSize = sizeof(LargeMemoryBlock)+sizeof(LargeObjectHdr);
2285     size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+alignment);
2286     if (allocationSize < size) // allocationSize is wrapped around after alignToBin
2287         return NULL;
2288     MALLOC_ASSERT(allocationSize >= alignment, "Overflow must be checked before.");
2289 
2290     if (tls) {
2291         tls->markUsed();
2292         lmb = tls->lloc.get(allocationSize);
2293     }
2294     if (!lmb)
2295         lmb = extMemPool.mallocLargeObject(this, allocationSize);
2296 
2297     if (lmb) {
2298         // doing shuffle we suppose that alignment offset guarantees
2299         // that different cache lines are in use
2300         MALLOC_ASSERT(alignment >= estimatedCacheLineSize, ASSERT_TEXT);
2301 
2302         void *alignedArea = (void*)alignUp((uintptr_t)lmb+headersSize, alignment);
2303         uintptr_t alignedRight =
2304             alignDown((uintptr_t)lmb+lmb->unalignedSize - size, alignment);
2305         // Has some room to shuffle object between cache lines?
2306         // Note that alignedRight and alignedArea are aligned at alignment.
2307         unsigned ptrDelta = alignedRight - (uintptr_t)alignedArea;
2308         if (ptrDelta && tls) { // !tls is cold path
2309             // for the hot path of alignment==estimatedCacheLineSize,
2310             // allow compilers to use shift for division
2311             // (since estimatedCacheLineSize is a power-of-2 constant)
2312             unsigned numOfPossibleOffsets = alignment == estimatedCacheLineSize?
2313                   ptrDelta / estimatedCacheLineSize :
2314                   ptrDelta / alignment;
2315             unsigned myCacheIdx = ++tls->currCacheIdx;
2316             unsigned offset = myCacheIdx % numOfPossibleOffsets;
2317 
2318             // Move object to a cache line with an offset that is different from
2319             // previous allocation. This supposedly allows us to use cache
2320             // associativity more efficiently.
2321             alignedArea = (void*)((uintptr_t)alignedArea + offset*alignment);
2322         }
2323         MALLOC_ASSERT((uintptr_t)lmb+lmb->unalignedSize >=
2324                       (uintptr_t)alignedArea+size, "Object doesn't fit the block.");
2325         LargeObjectHdr *header = (LargeObjectHdr*)alignedArea-1;
2326         header->memoryBlock = lmb;
2327         header->backRefIdx = lmb->backRefIdx;
2328         setBackRef(header->backRefIdx, header);
2329 
2330         lmb->objectSize = size;
2331 
2332         MALLOC_ASSERT( isLargeObject<unknownMem>(alignedArea), ASSERT_TEXT );
2333         MALLOC_ASSERT( isAligned(alignedArea, alignment), ASSERT_TEXT );
2334 
2335         return alignedArea;
2336     }
2337     return NULL;
2338 }
2339 
2340 void MemoryPool::putToLLOCache(TLSData *tls, void *object)
2341 {
2342     LargeObjectHdr *header = (LargeObjectHdr*)object - 1;
2343     // overwrite backRefIdx to simplify double free detection
2344     header->backRefIdx = BackRefIdx();
2345 
2346     if (tls) {
2347         tls->markUsed();
2348         if (tls->lloc.put(header->memoryBlock, &extMemPool))
2349             return;
2350     }
2351     extMemPool.freeLargeObject(header->memoryBlock);
2352 }
2353 
2354 /*
2355  * All aligned allocations fall into one of the following categories:
2356  *  1. if both request size and alignment are <= maxSegregatedObjectSize,
2357  *       we just align the size up, and request this amount, because for every size
2358  *       aligned to some power of 2, the allocated object is at least that aligned.
2359  * 2. for size<minLargeObjectSize, check if already guaranteed fittingAlignment is enough.
2360  * 3. if size+alignment<minLargeObjectSize, we take an object of fittingSizeN and align
2361  *       its address up; given such pointer, scalable_free could find the real object.
2362  *       Wrapping of size+alignment is impossible because maximal allowed
2363  *       alignment plus minLargeObjectSize can't lead to wrapping.
2364  * 4. otherwise, aligned large object is allocated.
2365  */
2366 static void *allocateAligned(MemoryPool *memPool, size_t size, size_t alignment)
2367 {
2368     MALLOC_ASSERT( isPowerOfTwo(alignment), ASSERT_TEXT );
2369 
2370     if (!isMallocInitialized())
2371         if (!doInitialization())
2372             return NULL;
2373 
2374     void *result;
2375     if (size<=maxSegregatedObjectSize && alignment<=maxSegregatedObjectSize)
2376         result = internalPoolMalloc(memPool, alignUp(size? size: sizeof(size_t), alignment));
2377     else if (size<minLargeObjectSize) {
2378         if (alignment<=fittingAlignment)
2379             result = internalPoolMalloc(memPool, size);
2380         else if (size+alignment < minLargeObjectSize) {
2381             void *unaligned = internalPoolMalloc(memPool, size+alignment);
2382             if (!unaligned) return NULL;
2383             result = alignUp(unaligned, alignment);
2384         } else
2385             goto LargeObjAlloc;
2386     } else {
2387     LargeObjAlloc:
2388         TLSData *tls = memPool->getTLS(/*create=*/true);
2389         // take into account only alignment that are higher then natural
2390         result =
2391             memPool->getFromLLOCache(tls, size, largeObjectAlignment>alignment?
2392                                                largeObjectAlignment: alignment);
2393     }
2394 
2395     MALLOC_ASSERT( isAligned(result, alignment), ASSERT_TEXT );
2396     return result;
2397 }
2398 
2399 static void *reallocAligned(MemoryPool *memPool, void *ptr,
2400                             size_t newSize, size_t alignment = 0)
2401 {
2402     void *result;
2403     size_t copySize;
2404 
2405     if (isLargeObject<ourMem>(ptr)) {
2406         LargeMemoryBlock* lmb = ((LargeObjectHdr *)ptr - 1)->memoryBlock;
2407         copySize = lmb->unalignedSize-((uintptr_t)ptr-(uintptr_t)lmb);
2408 
2409         // Apply different strategies if size decreases
2410         if (newSize <= copySize && (0 == alignment || isAligned(ptr, alignment))) {
2411 
2412             // For huge objects (that do not fit in backend cache), keep the same space unless
2413             // the new size is at least twice smaller
2414             bool isMemoryBlockHuge = copySize > memPool->extMemPool.backend.getMaxBinnedSize();
2415             size_t threshold = isMemoryBlockHuge ? copySize / 2 : 0;
2416             if (newSize > threshold) {
2417                 lmb->objectSize = newSize;
2418                 return ptr;
2419             }
2420             // TODO: For large objects suitable for the backend cache,
2421             // split out the excessive part and put it to the backend.
2422         }
2423         // Reallocate for real
2424         copySize = lmb->objectSize;
2425 #if BACKEND_HAS_MREMAP
2426         if (void *r = memPool->extMemPool.remap(ptr, copySize, newSize,
2427                           alignment < largeObjectAlignment ? largeObjectAlignment : alignment))
2428             return r;
2429 #endif
2430         result = alignment ? allocateAligned(memPool, newSize, alignment) :
2431             internalPoolMalloc(memPool, newSize);
2432 
2433     } else {
2434         Block* block = (Block *)alignDown(ptr, slabSize);
2435         copySize = block->findObjectSize(ptr);
2436 
2437         // TODO: Move object to another bin if size decreases and the current bin is "empty enough".
2438         // Currently, in case of size decreasing, old pointer is returned
2439         if (newSize <= copySize && (0==alignment || isAligned(ptr, alignment))) {
2440             return ptr;
2441         } else {
2442             result = alignment ? allocateAligned(memPool, newSize, alignment) :
2443                 internalPoolMalloc(memPool, newSize);
2444         }
2445     }
2446     if (result) {
2447         memcpy(result, ptr, copySize < newSize ? copySize : newSize);
2448         internalPoolFree(memPool, ptr, 0);
2449     }
2450     return result;
2451 }
2452 
2453 #if MALLOC_DEBUG
2454 /* A predicate checks if an object is properly placed inside its block */
2455 inline bool Block::isProperlyPlaced(const void *object) const
2456 {
2457     return 0 == ((uintptr_t)this + slabSize - (uintptr_t)object) % objectSize;
2458 }
2459 #endif
2460 
2461 /* Finds the real object inside the block */
2462 FreeObject *Block::findAllocatedObject(const void *address) const
2463 {
2464     // calculate offset from the end of the block space
2465     uint16_t offset = (uintptr_t)this + slabSize - (uintptr_t)address;
2466     MALLOC_ASSERT( offset<=slabSize-sizeof(Block), ASSERT_TEXT );
2467     // find offset difference from a multiple of allocation size
2468     offset %= objectSize;
2469     // and move the address down to where the real object starts.
2470     return (FreeObject*)((uintptr_t)address - (offset? objectSize-offset: 0));
2471 }
2472 
2473 /*
2474  * Bad dereference caused by a foreign pointer is possible only here, not earlier in call chain.
2475  * Separate function isolates SEH code, as it has bad influence on compiler optimization.
2476  */
2477 static inline BackRefIdx safer_dereference (const BackRefIdx *ptr)
2478 {
2479     BackRefIdx id;
2480 #if _MSC_VER
2481     __try {
2482 #endif
2483         id = dereference(ptr);
2484 #if _MSC_VER
2485     } __except( GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION?
2486                 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH ) {
2487         id = BackRefIdx();
2488     }
2489 #endif
2490     return id;
2491 }
2492 
2493 template<MemoryOrigin memOrigin>
2494 bool isLargeObject(void *object)
2495 {
2496     if (!isAligned(object, largeObjectAlignment))
2497         return false;
2498     LargeObjectHdr *header = (LargeObjectHdr*)object - 1;
2499     BackRefIdx idx = (memOrigin == unknownMem) ?
2500         safer_dereference(&header->backRefIdx) : dereference(&header->backRefIdx);
2501 
2502     return idx.isLargeObject()
2503         // in valid LargeObjectHdr memoryBlock is not NULL
2504         && header->memoryBlock
2505         // in valid LargeObjectHdr memoryBlock points somewhere before header
2506         // TODO: more strict check
2507         && (uintptr_t)header->memoryBlock < (uintptr_t)header
2508         && getBackRef(idx) == header;
2509 }
2510 
2511 static inline bool isSmallObject (void *ptr)
2512 {
2513     Block* expectedBlock = (Block*)alignDown(ptr, slabSize);
2514     const BackRefIdx* idx = expectedBlock->getBackRefIdx();
2515 
2516     bool isSmall = expectedBlock == getBackRef(safer_dereference(idx));
2517     if (isSmall)
2518         expectedBlock->checkFreePrecond(ptr);
2519     return isSmall;
2520 }
2521 
2522 /**** Check if an object was allocated by scalable_malloc ****/
2523 static inline bool isRecognized (void* ptr)
2524 {
2525     return defaultMemPool->extMemPool.backend.ptrCanBeValid(ptr) &&
2526         (isLargeObject<unknownMem>(ptr) || isSmallObject(ptr));
2527 }
2528 
2529 static inline void freeSmallObject(void *object)
2530 {
2531     /* mask low bits to get the block */
2532     Block *block = (Block *)alignDown(object, slabSize);
2533     block->checkFreePrecond(object);
2534 
2535 #if MALLOC_CHECK_RECURSION
2536     if (block->isStartupAllocObject()) {
2537         ((StartupBlock *)block)->free(object);
2538         return;
2539     }
2540 #endif
2541     if (block->isOwnedByCurrentThread()) {
2542         block->freeOwnObject(object);
2543     } else { /* Slower path to add to the shared list, the allocatedCount is updated by the owner thread in malloc. */
2544         FreeObject *objectToFree = block->findObjectToFree(object);
2545         block->freePublicObject(objectToFree);
2546     }
2547 }
2548 
2549 static void *internalPoolMalloc(MemoryPool* memPool, size_t size)
2550 {
2551     Bin* bin;
2552     Block * mallocBlock;
2553 
2554     if (!memPool) return NULL;
2555 
2556     if (!size) size = sizeof(size_t);
2557 
2558     TLSData *tls = memPool->getTLS(/*create=*/true);
2559 
2560     /* Allocate a large object */
2561     if (size >= minLargeObjectSize)
2562         return memPool->getFromLLOCache(tls, size, largeObjectAlignment);
2563 
2564     if (!tls) return NULL;
2565 
2566     tls->markUsed();
2567     /*
2568      * Get an element in thread-local array corresponding to the given size;
2569      * It keeps ptr to the active block for allocations of this size
2570      */
2571     bin = tls->getAllocationBin(size);
2572     if ( !bin ) return NULL;
2573 
2574     /* Get a block to try to allocate in. */
2575     for( mallocBlock = bin->getActiveBlock(); mallocBlock;
2576          mallocBlock = bin->setPreviousBlockActive() ) // the previous block should be empty enough
2577     {
2578         if( FreeObject *result = mallocBlock->allocate() )
2579             return result;
2580     }
2581 
2582     /*
2583      * else privatize publicly freed objects in some block and allocate from it
2584      */
2585     mallocBlock = bin->getPrivatizedFreeListBlock();
2586     if (mallocBlock) {
2587         MALLOC_ASSERT( mallocBlock->freeListNonNull(), ASSERT_TEXT );
2588         if ( FreeObject *result = mallocBlock->allocateFromFreeList() )
2589             return result;
2590         /* Else something strange happened, need to retry from the beginning; */
2591         TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in public free list; reentering.\n" ));
2592         return internalPoolMalloc(memPool, size);
2593     }
2594 
2595     /*
2596      * no suitable own blocks, try to get a partial block that some other thread has discarded.
2597      */
2598     mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size);
2599     while (mallocBlock) {
2600         bin->pushTLSBin(mallocBlock);
2601         bin->setActiveBlock(mallocBlock); // TODO: move under the below condition?
2602         if( FreeObject *result = mallocBlock->allocate() )
2603             return result;
2604         mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size);
2605     }
2606 
2607     /*
2608      * else try to get a new empty block
2609      */
2610     mallocBlock = memPool->getEmptyBlock(size);
2611     if (mallocBlock) {
2612         bin->pushTLSBin(mallocBlock);
2613         bin->setActiveBlock(mallocBlock);
2614         if( FreeObject *result = mallocBlock->allocate() )
2615             return result;
2616         /* Else something strange happened, need to retry from the beginning; */
2617         TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in empty block; reentering.\n" ));
2618         return internalPoolMalloc(memPool, size);
2619     }
2620     /*
2621      * else nothing works so return NULL
2622      */
2623     TRACEF(( "[ScalableMalloc trace] No memory found, returning NULL.\n" ));
2624     return NULL;
2625 }
2626 
2627 // When size==0 (i.e. unknown), detect here whether the object is large.
2628 // For size is known and < minLargeObjectSize, we still need to check
2629 // if the actual object is large, because large objects might be used
2630 // for aligned small allocations.
2631 static bool internalPoolFree(MemoryPool *memPool, void *object, size_t size)
2632 {
2633     if (!memPool || !object) return false;
2634 
2635     // The library is initialized at allocation call, so releasing while
2636     // not initialized means foreign object is releasing.
2637     MALLOC_ASSERT(isMallocInitialized(), ASSERT_TEXT);
2638     MALLOC_ASSERT(memPool->extMemPool.userPool() || isRecognized(object),
2639                   "Invalid pointer during object releasing is detected.");
2640 
2641     if (size >= minLargeObjectSize || isLargeObject<ourMem>(object))
2642         memPool->putToLLOCache(memPool->getTLS(/*create=*/false), object);
2643     else
2644         freeSmallObject(object);
2645     return true;
2646 }
2647 
2648 static void *internalMalloc(size_t size)
2649 {
2650     if (!size) size = sizeof(size_t);
2651 
2652 #if MALLOC_CHECK_RECURSION
2653     if (RecursiveMallocCallProtector::sameThreadActive())
2654         return size<minLargeObjectSize? StartupBlock::allocate(size) :
2655             // nested allocation, so skip tls
2656             (FreeObject*)defaultMemPool->getFromLLOCache(NULL, size, slabSize);
2657 #endif
2658 
2659     if (!isMallocInitialized())
2660         if (!doInitialization())
2661             return NULL;
2662     return internalPoolMalloc(defaultMemPool, size);
2663 }
2664 
2665 static void internalFree(void *object)
2666 {
2667     internalPoolFree(defaultMemPool, object, 0);
2668 }
2669 
2670 static size_t internalMsize(void* ptr)
2671 {
2672     MALLOC_ASSERT(ptr, "Invalid pointer passed to internalMsize");
2673     if (isLargeObject<ourMem>(ptr)) {
2674         // TODO: return the maximum memory size, that can be written to this object
2675         LargeMemoryBlock* lmb = ((LargeObjectHdr*)ptr - 1)->memoryBlock;
2676         return lmb->objectSize;
2677     } else {
2678         Block *block = (Block*)alignDown(ptr, slabSize);
2679         return block->findObjectSize(ptr);
2680     }
2681 }
2682 
2683 } // namespace internal
2684 
2685 using namespace rml::internal;
2686 
2687 // legacy entry point saved for compatibility with binaries complied
2688 // with pre-6003 versions of TBB
2689 rml::MemoryPool *pool_create(intptr_t pool_id, const MemPoolPolicy *policy)
2690 {
2691     rml::MemoryPool *pool;
2692     MemPoolPolicy pol(policy->pAlloc, policy->pFree, policy->granularity);
2693 
2694     pool_create_v1(pool_id, &pol, &pool);
2695     return pool;
2696 }
2697 
2698 rml::MemPoolError pool_create_v1(intptr_t pool_id, const MemPoolPolicy *policy,
2699                                  rml::MemoryPool **pool)
2700 {
2701     if ( !policy->pAlloc || policy->version<MemPoolPolicy::TBBMALLOC_POOL_VERSION
2702          // empty pFree allowed only for fixed pools
2703          || !(policy->fixedPool || policy->pFree)) {
2704         *pool = NULL;
2705         return INVALID_POLICY;
2706     }
2707     if ( policy->version>MemPoolPolicy::TBBMALLOC_POOL_VERSION // future versions are not supported
2708          // new flags can be added in place of reserved, but default
2709          // behaviour must be supported by this version
2710          || policy->reserved ) {
2711         *pool = NULL;
2712         return UNSUPPORTED_POLICY;
2713     }
2714     if (!isMallocInitialized())
2715         if (!doInitialization()) {
2716             *pool = NULL;
2717             return NO_MEMORY;
2718         }
2719     rml::internal::MemoryPool *memPool =
2720         (rml::internal::MemoryPool*)internalMalloc((sizeof(rml::internal::MemoryPool)));
2721     if (!memPool) {
2722         *pool = NULL;
2723         return NO_MEMORY;
2724     }
2725     memset(memPool, 0, sizeof(rml::internal::MemoryPool));
2726     if (!memPool->init(pool_id, policy)) {
2727         internalFree(memPool);
2728         *pool = NULL;
2729         return NO_MEMORY;
2730     }
2731 
2732     *pool = (rml::MemoryPool*)memPool;
2733     return POOL_OK;
2734 }
2735 
2736 bool pool_destroy(rml::MemoryPool* memPool)
2737 {
2738     if (!memPool) return false;
2739     bool ret = ((rml::internal::MemoryPool*)memPool)->destroy();
2740     internalFree(memPool);
2741 
2742     return ret;
2743 }
2744 
2745 bool pool_reset(rml::MemoryPool* memPool)
2746 {
2747     if (!memPool) return false;
2748 
2749     return ((rml::internal::MemoryPool*)memPool)->reset();
2750 }
2751 
2752 void *pool_malloc(rml::MemoryPool* mPool, size_t size)
2753 {
2754     return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size);
2755 }
2756 
2757 void *pool_realloc(rml::MemoryPool* mPool, void *object, size_t size)
2758 {
2759     if (!object)
2760         return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size);
2761     if (!size) {
2762         internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0);
2763         return NULL;
2764     }
2765     return reallocAligned((rml::internal::MemoryPool*)mPool, object, size, 0);
2766 }
2767 
2768 void *pool_aligned_malloc(rml::MemoryPool* mPool, size_t size, size_t alignment)
2769 {
2770     if (!isPowerOfTwo(alignment) || 0==size)
2771         return NULL;
2772 
2773     return allocateAligned((rml::internal::MemoryPool*)mPool, size, alignment);
2774 }
2775 
2776 void *pool_aligned_realloc(rml::MemoryPool* memPool, void *ptr, size_t size, size_t alignment)
2777 {
2778     if (!isPowerOfTwo(alignment))
2779         return NULL;
2780     rml::internal::MemoryPool *mPool = (rml::internal::MemoryPool*)memPool;
2781     void *tmp;
2782 
2783     if (!ptr)
2784         tmp = allocateAligned(mPool, size, alignment);
2785     else if (!size) {
2786         internalPoolFree(mPool, ptr, 0);
2787         return NULL;
2788     } else
2789         tmp = reallocAligned(mPool, ptr, size, alignment);
2790 
2791     return tmp;
2792 }
2793 
2794 bool pool_free(rml::MemoryPool *mPool, void *object)
2795 {
2796     return internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0);
2797 }
2798 
2799 rml::MemoryPool *pool_identify(void *object)
2800 {
2801     rml::internal::MemoryPool *pool;
2802     if (isLargeObject<ourMem>(object)) {
2803         LargeObjectHdr *header = (LargeObjectHdr*)object - 1;
2804         pool = header->memoryBlock->pool;
2805     } else {
2806         Block *block = (Block*)alignDown(object, slabSize);
2807         pool = block->getMemPool();
2808     }
2809     // do not return defaultMemPool, as it can't be used in pool_free() etc
2810     __TBB_ASSERT_RELEASE(pool!=defaultMemPool,
2811         "rml::pool_identify() can't be used for scalable_malloc() etc results.");
2812     return (rml::MemoryPool*)pool;
2813 }
2814 
2815 size_t pool_msize(rml::MemoryPool *mPool, void* object)
2816 {
2817     if (object) {
2818         // No assert for object recognition, cause objects allocated from non-default
2819         // memory pool do not participate in range checking and do not have valid backreferences for
2820         // small objects. Instead, check that an object belong to the certain memory pool.
2821         MALLOC_ASSERT_EX(mPool == pool_identify(object), "Object does not belong to the specified pool");
2822         return internalMsize(object);
2823     }
2824     errno = EINVAL;
2825     // Unlike _msize, return 0 in case of parameter error.
2826     // Returning size_t(-1) looks more like the way to troubles.
2827     return 0;
2828 }
2829 
2830 } // namespace rml
2831 
2832 using namespace rml::internal;
2833 
2834 #if MALLOC_TRACE
2835 static unsigned int threadGoingDownCount = 0;
2836 #endif
2837 
2838 /*
2839  * When a thread is shutting down this routine should be called to remove all the thread ids
2840  * from the malloc blocks and replace them with a NULL thread id.
2841  *
2842  * For pthreads, the function is set as a callback in pthread_key_create for TLS bin.
2843  * It will be automatically called at thread exit with the key value as the argument,
2844  * unless that value is NULL.
2845  * For Windows, it is called from DllMain( DLL_THREAD_DETACH ).
2846  *
2847  * However neither of the above is called for the main process thread, so the routine
2848  * also needs to be called during the process shutdown.
2849  *
2850 */
2851 // TODO: Consider making this function part of class MemoryPool.
2852 void doThreadShutdownNotification(TLSData* tls, bool main_thread)
2853 {
2854     TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return start %d\n",
2855              getThreadId(),  threadGoingDownCount++ ));
2856 
2857 #if USE_PTHREAD
2858     if (tls) {
2859         if (!shutdownSync.threadDtorStart()) return;
2860         tls->getMemPool()->onThreadShutdown(tls);
2861         shutdownSync.threadDtorDone();
2862     } else
2863 #endif
2864     {
2865         suppress_unused_warning(tls); // not used on Windows
2866         // The default pool is safe to use at this point:
2867         //   on Linux, only the main thread can go here before destroying defaultMemPool;
2868         //   on Windows, shutdown is synchronized via loader lock and isMallocInitialized().
2869         // See also __TBB_mallocProcessShutdownNotification()
2870         defaultMemPool->onThreadShutdown(defaultMemPool->getTLS(/*create=*/false));
2871         // Take lock to walk through other pools; but waiting might be dangerous at this point
2872         // (e.g. on Windows the main thread might deadlock)
2873         bool locked;
2874         MallocMutex::scoped_lock lock(MemoryPool::memPoolListLock, /*wait=*/!main_thread, &locked);
2875         if (locked) { // the list is safe to process
2876             for (MemoryPool *memPool = defaultMemPool->next; memPool; memPool = memPool->next)
2877                 memPool->onThreadShutdown(memPool->getTLS(/*create=*/false));
2878         }
2879     }
2880 
2881     TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return end\n", getThreadId() ));
2882 }
2883 
2884 #if USE_PTHREAD
2885 void mallocThreadShutdownNotification(void* arg)
2886 {
2887     // The routine is called for each pool (as TLS dtor) on each thread, except for the main thread
2888     if (!isMallocInitialized()) return;
2889     doThreadShutdownNotification((TLSData*)arg, false);
2890 }
2891 #else
2892 extern "C" void __TBB_mallocThreadShutdownNotification()
2893 {
2894     // The routine is called once per thread on Windows
2895     if (!isMallocInitialized()) return;
2896     doThreadShutdownNotification(NULL, false);
2897 }
2898 #endif
2899 
2900 extern "C" void __TBB_mallocProcessShutdownNotification(bool windows_process_dying)
2901 {
2902     if (!isMallocInitialized()) return;
2903 
2904     // Don't clean allocator internals if the entire process is exiting
2905     if (!windows_process_dying) {
2906         doThreadShutdownNotification(NULL, /*main_thread=*/true);
2907     }
2908 #if  __TBB_MALLOC_LOCACHE_STAT
2909     printf("cache hit ratio %f, size hit %f\n",
2910            1.*cacheHits/mallocCalls, 1.*memHitKB/memAllocKB);
2911     defaultMemPool->extMemPool.loc.reportStat(stdout);
2912 #endif
2913 
2914     shutdownSync.processExit();
2915 #if __TBB_SOURCE_DIRECTLY_INCLUDED
2916 /* Pthread keys must be deleted as soon as possible to not call key dtor
2917    on thread termination when then the tbbmalloc code can be already unloaded.
2918 */
2919     defaultMemPool->destroy();
2920     destroyBackRefMaster(&defaultMemPool->extMemPool.backend);
2921     ThreadId::destroy();      // Delete key for thread id
2922     hugePages.reset();
2923     // new total malloc initialization is possible after this point
2924     mallocInitialized.store(0, std::memory_order_release);
2925 #elif __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND
2926 /* In most cases we prevent unloading tbbmalloc, and don't clean up memory
2927    on process shutdown. When impossible to prevent, library unload results
2928    in shutdown notification, and it makes sense to release unused memory
2929    at that point (we can't release all memory because it's possible that
2930    it will be accessed after this point).
2931    TODO: better support systems where we can't prevent unloading by removing
2932    pthread destructors and releasing caches.
2933  */
2934     defaultMemPool->extMemPool.hardCachesCleanup();
2935 #endif // __TBB_SOURCE_DIRECTLY_INCLUDED
2936 
2937 #if COLLECT_STATISTICS
2938     unsigned nThreads = ThreadId::getMaxThreadId();
2939     for( int i=1; i<=nThreads && i<MAX_THREADS; ++i )
2940         STAT_print(i);
2941 #endif
2942     if (!usedBySrcIncluded)
2943         MALLOC_ITT_FINI_ITTLIB();
2944 }
2945 
2946 extern "C" void * scalable_malloc(size_t size)
2947 {
2948     void *ptr = internalMalloc(size);
2949     if (!ptr) errno = ENOMEM;
2950     return ptr;
2951 }
2952 
2953 extern "C" void scalable_free(void *object)
2954 {
2955     internalFree(object);
2956 }
2957 
2958 #if MALLOC_ZONE_OVERLOAD_ENABLED
2959 extern "C" void __TBB_malloc_free_definite_size(void *object, size_t size)
2960 {
2961     internalPoolFree(defaultMemPool, object, size);
2962 }
2963 #endif
2964 
2965 /*
2966  * A variant that provides additional memory safety, by checking whether the given address
2967  * was obtained with this allocator, and if not redirecting to the provided alternative call.
2968  */
2969 extern "C" void __TBB_malloc_safer_free(void *object, void (*original_free)(void*))
2970 {
2971     if (!object)
2972         return;
2973 
2974     // tbbmalloc can allocate object only when tbbmalloc has been initialized
2975     if (mallocInitialized.load(std::memory_order_acquire) && defaultMemPool->extMemPool.backend.ptrCanBeValid(object)) {
2976         if (isLargeObject<unknownMem>(object)) {
2977             // must check 1st for large object, because small object check touches 4 pages on left,
2978             // and it can be inaccessible
2979             TLSData *tls = defaultMemPool->getTLS(/*create=*/false);
2980 
2981             defaultMemPool->putToLLOCache(tls, object);
2982             return;
2983         } else if (isSmallObject(object)) {
2984             freeSmallObject(object);
2985             return;
2986         }
2987     }
2988     if (original_free)
2989         original_free(object);
2990 }
2991 
2992 /********* End the free code        *************/
2993 
2994 /********* Code for scalable_realloc       ***********/
2995 
2996 /*
2997  * From K&R
2998  * "realloc changes the size of the object pointed to by p to size. The contents will
2999  * be unchanged up to the minimum of the old and the new sizes. If the new size is larger,
3000  * the new space is uninitialized. realloc returns a pointer to the new space, or
3001  * NULL if the request cannot be satisfied, in which case *p is unchanged."
3002  *
3003  */
3004 extern "C" void* scalable_realloc(void* ptr, size_t size)
3005 {
3006     void *tmp;
3007 
3008     if (!ptr)
3009         tmp = internalMalloc(size);
3010     else if (!size) {
3011         internalFree(ptr);
3012         return NULL;
3013     } else
3014         tmp = reallocAligned(defaultMemPool, ptr, size, 0);
3015 
3016     if (!tmp) errno = ENOMEM;
3017     return tmp;
3018 }
3019 
3020 /*
3021  * A variant that provides additional memory safety, by checking whether the given address
3022  * was obtained with this allocator, and if not redirecting to the provided alternative call.
3023  */
3024 extern "C" void* __TBB_malloc_safer_realloc(void* ptr, size_t sz, void* original_realloc)
3025 {
3026     void *tmp; // TODO: fix warnings about uninitialized use of tmp
3027 
3028     if (!ptr) {
3029         tmp = internalMalloc(sz);
3030     } else if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(ptr)) {
3031         if (!sz) {
3032             internalFree(ptr);
3033             return NULL;
3034         } else {
3035             tmp = reallocAligned(defaultMemPool, ptr, sz, 0);
3036         }
3037     }
3038 #if USE_WINTHREAD
3039     else if (original_realloc && sz) {
3040         orig_ptrs *original_ptrs = static_cast<orig_ptrs*>(original_realloc);
3041         if ( original_ptrs->msize ){
3042             size_t oldSize = original_ptrs->msize(ptr);
3043             tmp = internalMalloc(sz);
3044             if (tmp) {
3045                 memcpy(tmp, ptr, sz<oldSize? sz : oldSize);
3046                 if ( original_ptrs->free ){
3047                     original_ptrs->free( ptr );
3048                 }
3049             }
3050         } else
3051             tmp = NULL;
3052     }
3053 #else
3054     else if (original_realloc) {
3055         typedef void* (*realloc_ptr_t)(void*,size_t);
3056         realloc_ptr_t original_realloc_ptr;
3057         (void *&)original_realloc_ptr = original_realloc;
3058         tmp = original_realloc_ptr(ptr,sz);
3059     }
3060 #endif
3061     else tmp = NULL;
3062 
3063     if (!tmp) errno = ENOMEM;
3064     return tmp;
3065 }
3066 
3067 /********* End code for scalable_realloc   ***********/
3068 
3069 /********* Code for scalable_calloc   ***********/
3070 
3071 /*
3072  * From K&R
3073  * calloc returns a pointer to space for an array of nobj objects,
3074  * each of size size, or NULL if the request cannot be satisfied.
3075  * The space is initialized to zero bytes.
3076  *
3077  */
3078 
3079 extern "C" void * scalable_calloc(size_t nobj, size_t size)
3080 {
3081     // it's square root of maximal size_t value
3082     const size_t mult_not_overflow = size_t(1) << (sizeof(size_t)*CHAR_BIT/2);
3083     const size_t arraySize = nobj * size;
3084 
3085     // check for overflow during multiplication:
3086     if (nobj>=mult_not_overflow || size>=mult_not_overflow) // 1) heuristic check
3087         if (nobj && arraySize / nobj != size) {             // 2) exact check
3088             errno = ENOMEM;
3089             return NULL;
3090         }
3091     void* result = internalMalloc(arraySize);
3092     if (result)
3093         memset(result, 0, arraySize);
3094     else
3095         errno = ENOMEM;
3096     return result;
3097 }
3098 
3099 /********* End code for scalable_calloc   ***********/
3100 
3101 /********* Code for aligned allocation API **********/
3102 
3103 extern "C" int scalable_posix_memalign(void **memptr, size_t alignment, size_t size)
3104 {
3105     if ( !isPowerOfTwoAtLeast(alignment, sizeof(void*)) )
3106         return EINVAL;
3107     void *result = allocateAligned(defaultMemPool, size, alignment);
3108     if (!result)
3109         return ENOMEM;
3110     *memptr = result;
3111     return 0;
3112 }
3113 
3114 extern "C" void * scalable_aligned_malloc(size_t size, size_t alignment)
3115 {
3116     if (!isPowerOfTwo(alignment) || 0==size) {
3117         errno = EINVAL;
3118         return NULL;
3119     }
3120     void *tmp = allocateAligned(defaultMemPool, size, alignment);
3121     if (!tmp) errno = ENOMEM;
3122     return tmp;
3123 }
3124 
3125 extern "C" void * scalable_aligned_realloc(void *ptr, size_t size, size_t alignment)
3126 {
3127     if (!isPowerOfTwo(alignment)) {
3128         errno = EINVAL;
3129         return NULL;
3130     }
3131     void *tmp;
3132 
3133     if (!ptr)
3134         tmp = allocateAligned(defaultMemPool, size, alignment);
3135     else if (!size) {
3136         scalable_free(ptr);
3137         return NULL;
3138     } else
3139         tmp = reallocAligned(defaultMemPool, ptr, size, alignment);
3140 
3141     if (!tmp) errno = ENOMEM;
3142     return tmp;
3143 }
3144 
3145 extern "C" void * __TBB_malloc_safer_aligned_realloc(void *ptr, size_t size, size_t alignment, void* orig_function)
3146 {
3147     /* corner cases left out of reallocAligned to not deal with errno there */
3148     if (!isPowerOfTwo(alignment)) {
3149         errno = EINVAL;
3150         return NULL;
3151     }
3152     void *tmp = NULL;
3153 
3154     if (!ptr) {
3155         tmp = allocateAligned(defaultMemPool, size, alignment);
3156     } else if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(ptr)) {
3157         if (!size) {
3158             internalFree(ptr);
3159             return NULL;
3160         } else {
3161             tmp = reallocAligned(defaultMemPool, ptr, size, alignment);
3162         }
3163     }
3164 #if USE_WINTHREAD
3165     else {
3166         orig_aligned_ptrs *original_ptrs = static_cast<orig_aligned_ptrs*>(orig_function);
3167         if (size) {
3168             // Without orig_msize, we can't do anything with this.
3169             // Just keeping old pointer.
3170             if ( original_ptrs->aligned_msize ){
3171                 // set alignment and offset to have possibly correct oldSize
3172                 size_t oldSize = original_ptrs->aligned_msize(ptr, sizeof(void*), 0);
3173                 tmp = allocateAligned(defaultMemPool, size, alignment);
3174                 if (tmp) {
3175                     memcpy(tmp, ptr, size<oldSize? size : oldSize);
3176                     if ( original_ptrs->aligned_free ){
3177                         original_ptrs->aligned_free( ptr );
3178                     }
3179                 }
3180             }
3181         } else {
3182             if ( original_ptrs->aligned_free ){
3183                 original_ptrs->aligned_free( ptr );
3184             }
3185             return NULL;
3186         }
3187     }
3188 #else
3189     // As original_realloc can't align result, and there is no way to find
3190     // size of reallocating object, we are giving up.
3191     suppress_unused_warning(orig_function);
3192 #endif
3193     if (!tmp) errno = ENOMEM;
3194     return tmp;
3195 }
3196 
3197 extern "C" void scalable_aligned_free(void *ptr)
3198 {
3199     internalFree(ptr);
3200 }
3201 
3202 /********* end code for aligned allocation API **********/
3203 
3204 /********* Code for scalable_msize       ***********/
3205 
3206 /*
3207  * Returns the size of a memory block allocated in the heap.
3208  */
3209 extern "C" size_t scalable_msize(void* ptr)
3210 {
3211     if (ptr) {
3212         MALLOC_ASSERT(isRecognized(ptr), "Invalid pointer in scalable_msize detected.");
3213         return internalMsize(ptr);
3214     }
3215     errno = EINVAL;
3216     // Unlike _msize, return 0 in case of parameter error.
3217     // Returning size_t(-1) looks more like the way to troubles.
3218     return 0;
3219 }
3220 
3221 /*
3222  * A variant that provides additional memory safety, by checking whether the given address
3223  * was obtained with this allocator, and if not redirecting to the provided alternative call.
3224  */
3225 extern "C" size_t __TBB_malloc_safer_msize(void *object, size_t (*original_msize)(void*))
3226 {
3227     if (object) {
3228         // Check if the memory was allocated by scalable_malloc
3229         if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(object))
3230             return internalMsize(object);
3231         else if (original_msize)
3232             return original_msize(object);
3233     }
3234     // object is NULL or unknown, or foreign and no original_msize
3235 #if USE_WINTHREAD
3236     errno = EINVAL; // errno expected to be set only on this platform
3237 #endif
3238     return 0;
3239 }
3240 
3241 /*
3242  * The same as above but for _aligned_msize case
3243  */
3244 extern "C" size_t __TBB_malloc_safer_aligned_msize(void *object, size_t alignment, size_t offset, size_t (*orig_aligned_msize)(void*,size_t,size_t))
3245 {
3246     if (object) {
3247         // Check if the memory was allocated by scalable_malloc
3248         if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(object))
3249             return internalMsize(object);
3250         else if (orig_aligned_msize)
3251             return orig_aligned_msize(object,alignment,offset);
3252     }
3253     // object is NULL or unknown
3254     errno = EINVAL;
3255     return 0;
3256 }
3257 
3258 /********* End code for scalable_msize   ***********/
3259 
3260 extern "C" int scalable_allocation_mode(int param, intptr_t value)
3261 {
3262     if (param == TBBMALLOC_SET_SOFT_HEAP_LIMIT) {
3263         defaultMemPool->extMemPool.backend.setRecommendedMaxSize((size_t)value);
3264         return TBBMALLOC_OK;
3265     } else if (param == USE_HUGE_PAGES) {
3266 #if __linux__
3267         switch (value) {
3268         case 0:
3269         case 1:
3270             hugePages.setMode(value);
3271             return TBBMALLOC_OK;
3272         default:
3273             return TBBMALLOC_INVALID_PARAM;
3274         }
3275 #else
3276         return TBBMALLOC_NO_EFFECT;
3277 #endif
3278 #if __TBB_SOURCE_DIRECTLY_INCLUDED
3279     } else if (param == TBBMALLOC_INTERNAL_SOURCE_INCLUDED) {
3280         switch (value) {
3281         case 0: // used by dynamic library
3282         case 1: // used by static library or directly included sources
3283             usedBySrcIncluded = value;
3284             return TBBMALLOC_OK;
3285         default:
3286             return TBBMALLOC_INVALID_PARAM;
3287         }
3288 #endif
3289     } else if (param == TBBMALLOC_SET_HUGE_SIZE_THRESHOLD) {
3290         defaultMemPool->extMemPool.loc.setHugeSizeThreshold((size_t)value);
3291         return TBBMALLOC_OK;
3292     }
3293     return TBBMALLOC_INVALID_PARAM;
3294 }
3295 
3296 extern "C" int scalable_allocation_command(int cmd, void *param)
3297 {
3298     if (param)
3299         return TBBMALLOC_INVALID_PARAM;
3300 
3301     bool released = false;
3302     switch(cmd) {
3303     case TBBMALLOC_CLEAN_THREAD_BUFFERS:
3304         if (TLSData *tls = defaultMemPool->getTLS(/*create=*/false))
3305             released = tls->externalCleanup(/*cleanOnlyUnused*/false, /*cleanBins=*/true);
3306         break;
3307     case TBBMALLOC_CLEAN_ALL_BUFFERS:
3308         released = defaultMemPool->extMemPool.hardCachesCleanup();
3309         break;
3310     default:
3311         return TBBMALLOC_INVALID_PARAM;
3312     }
3313     return released ? TBBMALLOC_OK : TBBMALLOC_NO_EFFECT;
3314 }
3315