151c0b2f7Stbbdev /* 2b15aabb3Stbbdev Copyright (c) 2005-2021 Intel Corporation 351c0b2f7Stbbdev 451c0b2f7Stbbdev Licensed under the Apache License, Version 2.0 (the "License"); 551c0b2f7Stbbdev you may not use this file except in compliance with the License. 651c0b2f7Stbbdev You may obtain a copy of the License at 751c0b2f7Stbbdev 851c0b2f7Stbbdev http://www.apache.org/licenses/LICENSE-2.0 951c0b2f7Stbbdev 1051c0b2f7Stbbdev Unless required by applicable law or agreed to in writing, software 1151c0b2f7Stbbdev distributed under the License is distributed on an "AS IS" BASIS, 1251c0b2f7Stbbdev WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 1351c0b2f7Stbbdev See the License for the specific language governing permissions and 1451c0b2f7Stbbdev limitations under the License. 1551c0b2f7Stbbdev */ 1651c0b2f7Stbbdev 1751c0b2f7Stbbdev #include "tbbmalloc_internal.h" 1851c0b2f7Stbbdev #include <errno.h> 1951c0b2f7Stbbdev #include <new> /* for placement new */ 2051c0b2f7Stbbdev #include <string.h> /* for memset */ 2151c0b2f7Stbbdev 2249e08aacStbbdev #include "oneapi/tbb/version.h" 2351c0b2f7Stbbdev #include "../tbb/environment.h" 2451c0b2f7Stbbdev #include "../tbb/itt_notify.h" // for __TBB_load_ittnotify() 2551c0b2f7Stbbdev 2651c0b2f7Stbbdev #if USE_PTHREAD 2751c0b2f7Stbbdev #define TlsSetValue_func pthread_setspecific 2851c0b2f7Stbbdev #define TlsGetValue_func pthread_getspecific 2951c0b2f7Stbbdev #define GetMyTID() pthread_self() 3051c0b2f7Stbbdev #include <sched.h> 3151c0b2f7Stbbdev inline void do_yield() {sched_yield();} 3251c0b2f7Stbbdev extern "C" { static void mallocThreadShutdownNotification(void*); } 3351c0b2f7Stbbdev #if __sun || __SUNPRO_CC 3451c0b2f7Stbbdev #define __asm__ asm 3551c0b2f7Stbbdev #endif 3651c0b2f7Stbbdev #include <unistd.h> // sysconf(_SC_PAGESIZE) 3751c0b2f7Stbbdev #elif USE_WINTHREAD 3851c0b2f7Stbbdev #define GetMyTID() GetCurrentThreadId() 3951c0b2f7Stbbdev #if __TBB_WIN8UI_SUPPORT 4051c0b2f7Stbbdev #include<thread> 4151c0b2f7Stbbdev #define TlsSetValue_func FlsSetValue 4251c0b2f7Stbbdev #define TlsGetValue_func FlsGetValue 4351c0b2f7Stbbdev #define TlsAlloc() FlsAlloc(NULL) 4451c0b2f7Stbbdev #define TLS_ALLOC_FAILURE FLS_OUT_OF_INDEXES 4551c0b2f7Stbbdev #define TlsFree FlsFree 4651c0b2f7Stbbdev inline void do_yield() {std::this_thread::yield();} 4751c0b2f7Stbbdev #else 4851c0b2f7Stbbdev #define TlsSetValue_func TlsSetValue 4951c0b2f7Stbbdev #define TlsGetValue_func TlsGetValue 5051c0b2f7Stbbdev #define TLS_ALLOC_FAILURE TLS_OUT_OF_INDEXES 5151c0b2f7Stbbdev inline void do_yield() {SwitchToThread();} 5251c0b2f7Stbbdev #endif 5351c0b2f7Stbbdev #else 5451c0b2f7Stbbdev #error Must define USE_PTHREAD or USE_WINTHREAD 5551c0b2f7Stbbdev #endif 5651c0b2f7Stbbdev 5751c0b2f7Stbbdev #define FREELIST_NONBLOCKING 1 5851c0b2f7Stbbdev 5951c0b2f7Stbbdev namespace rml { 6051c0b2f7Stbbdev class MemoryPool; 6151c0b2f7Stbbdev namespace internal { 6251c0b2f7Stbbdev 6351c0b2f7Stbbdev class Block; 6451c0b2f7Stbbdev class MemoryPool; 6551c0b2f7Stbbdev 6651c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 6751c0b2f7Stbbdev 6851c0b2f7Stbbdev inline bool isMallocInitialized(); 6951c0b2f7Stbbdev 7051c0b2f7Stbbdev #endif // MALLOC_CHECK_RECURSION 7151c0b2f7Stbbdev 7251c0b2f7Stbbdev /** Support for handling the special UNUSABLE pointer state **/ 7351c0b2f7Stbbdev const intptr_t UNUSABLE = 0x1; 7451c0b2f7Stbbdev inline bool isSolidPtr( void* ptr ) { 7551c0b2f7Stbbdev return (UNUSABLE|(intptr_t)ptr)!=UNUSABLE; 7651c0b2f7Stbbdev } 7751c0b2f7Stbbdev inline bool isNotForUse( void* ptr ) { 7851c0b2f7Stbbdev return (intptr_t)ptr==UNUSABLE; 7951c0b2f7Stbbdev } 8051c0b2f7Stbbdev 8151c0b2f7Stbbdev /* 8251c0b2f7Stbbdev * Block::objectSize value used to mark blocks allocated by startupAlloc 8351c0b2f7Stbbdev */ 8451c0b2f7Stbbdev const uint16_t startupAllocObjSizeMark = ~(uint16_t)0; 8551c0b2f7Stbbdev 8651c0b2f7Stbbdev /* 8751c0b2f7Stbbdev * The following constant is used to define the size of struct Block, the block header. 8851c0b2f7Stbbdev * The intent is to have the size of a Block multiple of the cache line size, this allows us to 8951c0b2f7Stbbdev * get good alignment at the cost of some overhead equal to the amount of padding included in the Block. 9051c0b2f7Stbbdev */ 9151c0b2f7Stbbdev const int blockHeaderAlignment = estimatedCacheLineSize; 9251c0b2f7Stbbdev 9351c0b2f7Stbbdev /********* The data structures and global objects **************/ 9451c0b2f7Stbbdev 9551c0b2f7Stbbdev /* 9651c0b2f7Stbbdev * The malloc routines themselves need to be able to occasionally malloc some space, 9751c0b2f7Stbbdev * in order to set up the structures used by the thread local structures. This 9851c0b2f7Stbbdev * routine performs that functions. 9951c0b2f7Stbbdev */ 10051c0b2f7Stbbdev class BootStrapBlocks { 10151c0b2f7Stbbdev MallocMutex bootStrapLock; 10251c0b2f7Stbbdev Block *bootStrapBlock; 10351c0b2f7Stbbdev Block *bootStrapBlockUsed; 10451c0b2f7Stbbdev FreeObject *bootStrapObjectList; 10551c0b2f7Stbbdev public: 10651c0b2f7Stbbdev void *allocate(MemoryPool *memPool, size_t size); 10751c0b2f7Stbbdev void free(void* ptr); 10851c0b2f7Stbbdev void reset(); 10951c0b2f7Stbbdev }; 11051c0b2f7Stbbdev 11151c0b2f7Stbbdev #if USE_INTERNAL_TID 11251c0b2f7Stbbdev class ThreadId { 11351c0b2f7Stbbdev static tls_key_t Tid_key; 11451c0b2f7Stbbdev std::atomic<intptr_t> ThreadCount; 11551c0b2f7Stbbdev 11651c0b2f7Stbbdev unsigned int id; 11751c0b2f7Stbbdev 11851c0b2f7Stbbdev static unsigned int tlsNumber() { 11951c0b2f7Stbbdev unsigned int result = reinterpret_cast<intptr_t>(TlsGetValue_func(Tid_key)); 12051c0b2f7Stbbdev if( !result ) { 12151c0b2f7Stbbdev RecursiveMallocCallProtector scoped; 12251c0b2f7Stbbdev // Thread-local value is zero -> first call from this thread, 12351c0b2f7Stbbdev // need to initialize with next ID value (IDs start from 1) 12451c0b2f7Stbbdev result = ++ThreadCount; // returned new value! 12551c0b2f7Stbbdev TlsSetValue_func( Tid_key, reinterpret_cast<void*>(result) ); 12651c0b2f7Stbbdev } 12751c0b2f7Stbbdev return result; 12851c0b2f7Stbbdev } 12951c0b2f7Stbbdev public: 13051c0b2f7Stbbdev static bool init() { 13151c0b2f7Stbbdev #if USE_WINTHREAD 13251c0b2f7Stbbdev Tid_key = TlsAlloc(); 13351c0b2f7Stbbdev if (Tid_key == TLS_ALLOC_FAILURE) 13451c0b2f7Stbbdev return false; 13551c0b2f7Stbbdev #else 13651c0b2f7Stbbdev int status = pthread_key_create( &Tid_key, NULL ); 13751c0b2f7Stbbdev if ( status ) { 13851c0b2f7Stbbdev fprintf (stderr, "The memory manager cannot create tls key during initialization\n"); 13951c0b2f7Stbbdev return false; 14051c0b2f7Stbbdev } 14151c0b2f7Stbbdev #endif /* USE_WINTHREAD */ 14251c0b2f7Stbbdev return true; 14351c0b2f7Stbbdev } 144478de5b1Stbbdev #if __TBB_SOURCE_DIRECTLY_INCLUDED 14551c0b2f7Stbbdev static void destroy() { 14651c0b2f7Stbbdev if( Tid_key ) { 14751c0b2f7Stbbdev #if USE_WINTHREAD 14851c0b2f7Stbbdev BOOL status = !(TlsFree( Tid_key )); // fail is zero 14951c0b2f7Stbbdev #else 15051c0b2f7Stbbdev int status = pthread_key_delete( Tid_key ); 15151c0b2f7Stbbdev #endif /* USE_WINTHREAD */ 15251c0b2f7Stbbdev if ( status ) 15351c0b2f7Stbbdev fprintf (stderr, "The memory manager cannot delete tls key\n"); 15451c0b2f7Stbbdev Tid_key = 0; 15551c0b2f7Stbbdev } 15651c0b2f7Stbbdev } 157478de5b1Stbbdev #endif 15851c0b2f7Stbbdev 15951c0b2f7Stbbdev ThreadId() : id(ThreadId::tlsNumber()) {} 16051c0b2f7Stbbdev bool isCurrentThreadId() const { return id == ThreadId::tlsNumber(); } 16151c0b2f7Stbbdev 16251c0b2f7Stbbdev #if COLLECT_STATISTICS || MALLOC_TRACE 16351c0b2f7Stbbdev friend unsigned int getThreadId() { return ThreadId::tlsNumber(); } 16451c0b2f7Stbbdev #endif 16551c0b2f7Stbbdev #if COLLECT_STATISTICS 16651c0b2f7Stbbdev static unsigned getMaxThreadId() { return ThreadCount.load(std::memory_order_relaxed); } 16751c0b2f7Stbbdev 16851c0b2f7Stbbdev friend int STAT_increment(ThreadId tid, int bin, int ctr); 16951c0b2f7Stbbdev #endif 17051c0b2f7Stbbdev }; 17151c0b2f7Stbbdev 17251c0b2f7Stbbdev tls_key_t ThreadId::Tid_key; 17351c0b2f7Stbbdev intptr_t ThreadId::ThreadCount; 17451c0b2f7Stbbdev 17551c0b2f7Stbbdev #if COLLECT_STATISTICS 17651c0b2f7Stbbdev int STAT_increment(ThreadId tid, int bin, int ctr) 17751c0b2f7Stbbdev { 17851c0b2f7Stbbdev return ::STAT_increment(tid.id, bin, ctr); 17951c0b2f7Stbbdev } 18051c0b2f7Stbbdev #endif 18151c0b2f7Stbbdev 18251c0b2f7Stbbdev #else // USE_INTERNAL_TID 18351c0b2f7Stbbdev 18451c0b2f7Stbbdev class ThreadId { 18551c0b2f7Stbbdev #if USE_PTHREAD 186478de5b1Stbbdev std::atomic<pthread_t> tid; 18751c0b2f7Stbbdev #else 188478de5b1Stbbdev std::atomic<DWORD> tid; 18951c0b2f7Stbbdev #endif 19051c0b2f7Stbbdev public: 19151c0b2f7Stbbdev ThreadId() : tid(GetMyTID()) {} 19251c0b2f7Stbbdev #if USE_PTHREAD 193478de5b1Stbbdev bool isCurrentThreadId() const { return pthread_equal(pthread_self(), tid.load(std::memory_order_relaxed)); } 19451c0b2f7Stbbdev #else 195478de5b1Stbbdev bool isCurrentThreadId() const { return GetCurrentThreadId() == tid.load(std::memory_order_relaxed); } 19651c0b2f7Stbbdev #endif 197478de5b1Stbbdev ThreadId& operator=(const ThreadId& other) { 198478de5b1Stbbdev tid.store(other.tid.load(std::memory_order_relaxed), std::memory_order_relaxed); 199478de5b1Stbbdev return *this; 200478de5b1Stbbdev } 20151c0b2f7Stbbdev static bool init() { return true; } 202478de5b1Stbbdev #if __TBB_SOURCE_DIRECTLY_INCLUDED 20351c0b2f7Stbbdev static void destroy() {} 204478de5b1Stbbdev #endif 20551c0b2f7Stbbdev }; 20651c0b2f7Stbbdev 20751c0b2f7Stbbdev #endif // USE_INTERNAL_TID 20851c0b2f7Stbbdev 20951c0b2f7Stbbdev /*********** Code to provide thread ID and a thread-local void pointer **********/ 21051c0b2f7Stbbdev 21151c0b2f7Stbbdev bool TLSKey::init() 21251c0b2f7Stbbdev { 21351c0b2f7Stbbdev #if USE_WINTHREAD 21451c0b2f7Stbbdev TLS_pointer_key = TlsAlloc(); 21551c0b2f7Stbbdev if (TLS_pointer_key == TLS_ALLOC_FAILURE) 21651c0b2f7Stbbdev return false; 21751c0b2f7Stbbdev #else 21851c0b2f7Stbbdev int status = pthread_key_create( &TLS_pointer_key, mallocThreadShutdownNotification ); 21951c0b2f7Stbbdev if ( status ) 22051c0b2f7Stbbdev return false; 22151c0b2f7Stbbdev #endif /* USE_WINTHREAD */ 22251c0b2f7Stbbdev return true; 22351c0b2f7Stbbdev } 22451c0b2f7Stbbdev 22551c0b2f7Stbbdev bool TLSKey::destroy() 22651c0b2f7Stbbdev { 22751c0b2f7Stbbdev #if USE_WINTHREAD 22851c0b2f7Stbbdev BOOL status1 = !(TlsFree(TLS_pointer_key)); // fail is zero 22951c0b2f7Stbbdev #else 23051c0b2f7Stbbdev int status1 = pthread_key_delete(TLS_pointer_key); 23151c0b2f7Stbbdev #endif /* USE_WINTHREAD */ 23251c0b2f7Stbbdev MALLOC_ASSERT(!status1, "The memory manager cannot delete tls key."); 23351c0b2f7Stbbdev return status1==0; 23451c0b2f7Stbbdev } 23551c0b2f7Stbbdev 23651c0b2f7Stbbdev inline TLSData* TLSKey::getThreadMallocTLS() const 23751c0b2f7Stbbdev { 23851c0b2f7Stbbdev return (TLSData *)TlsGetValue_func( TLS_pointer_key ); 23951c0b2f7Stbbdev } 24051c0b2f7Stbbdev 24151c0b2f7Stbbdev inline void TLSKey::setThreadMallocTLS( TLSData * newvalue ) { 24251c0b2f7Stbbdev RecursiveMallocCallProtector scoped; 24351c0b2f7Stbbdev TlsSetValue_func( TLS_pointer_key, newvalue ); 24451c0b2f7Stbbdev } 24551c0b2f7Stbbdev 24651c0b2f7Stbbdev /* The 'next' field in the block header has to maintain some invariants: 24751c0b2f7Stbbdev * it needs to be on a 16K boundary and the first field in the block. 24851c0b2f7Stbbdev * Any value stored there needs to have the lower 14 bits set to 0 24951c0b2f7Stbbdev * so that various assert work. This means that if you want to smash this memory 25051c0b2f7Stbbdev * for debugging purposes you will need to obey this invariant. 25151c0b2f7Stbbdev * The total size of the header needs to be a power of 2 to simplify 25251c0b2f7Stbbdev * the alignment requirements. For now it is a 128 byte structure. 25351c0b2f7Stbbdev * To avoid false sharing, the fields changed only locally are separated 25451c0b2f7Stbbdev * from the fields changed by foreign threads. 25551c0b2f7Stbbdev * Changing the size of the block header would require to change 25651c0b2f7Stbbdev * some bin allocation sizes, in particular "fitting" sizes (see above). 25751c0b2f7Stbbdev */ 25851c0b2f7Stbbdev class Bin; 25951c0b2f7Stbbdev class StartupBlock; 26051c0b2f7Stbbdev 26151c0b2f7Stbbdev class MemoryPool { 26251c0b2f7Stbbdev // if no explicit grainsize, expect to see malloc in user's pAlloc 26351c0b2f7Stbbdev // and set reasonable low granularity 26451c0b2f7Stbbdev static const size_t defaultGranularity = estimatedCacheLineSize; 26551c0b2f7Stbbdev 26651c0b2f7Stbbdev MemoryPool(); // deny 26751c0b2f7Stbbdev public: 26851c0b2f7Stbbdev static MallocMutex memPoolListLock; 26951c0b2f7Stbbdev 27051c0b2f7Stbbdev // list of all active pools is used to release 27151c0b2f7Stbbdev // all TLS data on thread termination or library unload 27251c0b2f7Stbbdev MemoryPool *next, 27351c0b2f7Stbbdev *prev; 27451c0b2f7Stbbdev ExtMemoryPool extMemPool; 27551c0b2f7Stbbdev BootStrapBlocks bootStrapBlocks; 27651c0b2f7Stbbdev 27751c0b2f7Stbbdev static void initDefaultPool(); 27851c0b2f7Stbbdev 27951c0b2f7Stbbdev bool init(intptr_t poolId, const MemPoolPolicy* memPoolPolicy); 28051c0b2f7Stbbdev bool reset(); 28151c0b2f7Stbbdev bool destroy(); 28251c0b2f7Stbbdev void onThreadShutdown(TLSData *tlsData); 28351c0b2f7Stbbdev 28451c0b2f7Stbbdev inline TLSData *getTLS(bool create); 28551c0b2f7Stbbdev void clearTLS() { extMemPool.tlsPointerKey.setThreadMallocTLS(NULL); } 28651c0b2f7Stbbdev 28751c0b2f7Stbbdev Block *getEmptyBlock(size_t size); 28851c0b2f7Stbbdev void returnEmptyBlock(Block *block, bool poolTheBlock); 28951c0b2f7Stbbdev 29051c0b2f7Stbbdev // get/put large object to/from local large object cache 29151c0b2f7Stbbdev void *getFromLLOCache(TLSData *tls, size_t size, size_t alignment); 29251c0b2f7Stbbdev void putToLLOCache(TLSData *tls, void *object); 29351c0b2f7Stbbdev }; 29451c0b2f7Stbbdev 29551c0b2f7Stbbdev static intptr_t defaultMemPool_space[sizeof(MemoryPool)/sizeof(intptr_t) + 29651c0b2f7Stbbdev (sizeof(MemoryPool)%sizeof(intptr_t)? 1 : 0)]; 29751c0b2f7Stbbdev static MemoryPool *defaultMemPool = (MemoryPool*)defaultMemPool_space; 29851c0b2f7Stbbdev const size_t MemoryPool::defaultGranularity; 29951c0b2f7Stbbdev // zero-initialized 30051c0b2f7Stbbdev MallocMutex MemoryPool::memPoolListLock; 30151c0b2f7Stbbdev // TODO: move huge page status to default pool, because that's its states 30251c0b2f7Stbbdev HugePagesStatus hugePages; 30351c0b2f7Stbbdev static bool usedBySrcIncluded = false; 30451c0b2f7Stbbdev 30551c0b2f7Stbbdev // Padding helpers 30651c0b2f7Stbbdev template<size_t padd> 30751c0b2f7Stbbdev struct PaddingImpl { 30851c0b2f7Stbbdev size_t __padding[padd]; 30951c0b2f7Stbbdev }; 31051c0b2f7Stbbdev 31151c0b2f7Stbbdev template<> 31251c0b2f7Stbbdev struct PaddingImpl<0> {}; 31351c0b2f7Stbbdev 31451c0b2f7Stbbdev template<int N> 31551c0b2f7Stbbdev struct Padding : PaddingImpl<N/sizeof(size_t)> {}; 31651c0b2f7Stbbdev 31751c0b2f7Stbbdev // Slab block is 16KB-aligned. To prevent false sharing, separate locally-accessed 31851c0b2f7Stbbdev // fields and fields commonly accessed by not owner threads. 31951c0b2f7Stbbdev class GlobalBlockFields : public BlockI { 32051c0b2f7Stbbdev protected: 32151c0b2f7Stbbdev std::atomic<FreeObject*> publicFreeList; 322478de5b1Stbbdev std::atomic<Block*> nextPrivatizable; 32351c0b2f7Stbbdev MemoryPool *poolPtr; 32451c0b2f7Stbbdev }; 32551c0b2f7Stbbdev 32651c0b2f7Stbbdev class LocalBlockFields : public GlobalBlockFields, Padding<blockHeaderAlignment - sizeof(GlobalBlockFields)> { 32751c0b2f7Stbbdev protected: 32851c0b2f7Stbbdev Block *next; 32951c0b2f7Stbbdev Block *previous; /* Use double linked list to speed up removal */ 33051c0b2f7Stbbdev FreeObject *bumpPtr; /* Bump pointer moves from the end to the beginning of a block */ 33151c0b2f7Stbbdev FreeObject *freeList; 33251c0b2f7Stbbdev /* Pointer to local data for the owner thread. Used for fast finding tls 33351c0b2f7Stbbdev when releasing object from a block that current thread owned. 33451c0b2f7Stbbdev NULL for orphaned blocks. */ 335478de5b1Stbbdev std::atomic<TLSData*> tlsPtr; 33651c0b2f7Stbbdev ThreadId ownerTid; /* the ID of the thread that owns or last owned the block */ 33751c0b2f7Stbbdev BackRefIdx backRefIdx; 33851c0b2f7Stbbdev uint16_t allocatedCount; /* Number of objects allocated (obviously by the owning thread) */ 33951c0b2f7Stbbdev uint16_t objectSize; 34051c0b2f7Stbbdev bool isFull; 34151c0b2f7Stbbdev 34251c0b2f7Stbbdev friend class FreeBlockPool; 34351c0b2f7Stbbdev friend class StartupBlock; 34451c0b2f7Stbbdev friend class LifoList; 34551c0b2f7Stbbdev friend void *BootStrapBlocks::allocate(MemoryPool *, size_t); 34651c0b2f7Stbbdev friend bool OrphanedBlocks::cleanup(Backend*); 34751c0b2f7Stbbdev friend Block *MemoryPool::getEmptyBlock(size_t); 34851c0b2f7Stbbdev }; 34951c0b2f7Stbbdev 35051c0b2f7Stbbdev // Use inheritance to guarantee that a user data start on next cache line. 35151c0b2f7Stbbdev // Can't use member for it, because when LocalBlockFields already on cache line, 35251c0b2f7Stbbdev // we must have no additional memory consumption for all compilers. 35351c0b2f7Stbbdev class Block : public LocalBlockFields, 35451c0b2f7Stbbdev Padding<2*blockHeaderAlignment - sizeof(LocalBlockFields)> { 35551c0b2f7Stbbdev public: 35651c0b2f7Stbbdev bool empty() const { 35751c0b2f7Stbbdev if (allocatedCount > 0) return false; 35851c0b2f7Stbbdev MALLOC_ASSERT(!isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT); 35951c0b2f7Stbbdev return true; 36051c0b2f7Stbbdev } 36151c0b2f7Stbbdev inline FreeObject* allocate(); 36251c0b2f7Stbbdev inline FreeObject *allocateFromFreeList(); 36351c0b2f7Stbbdev 36451c0b2f7Stbbdev inline bool adjustFullness(); 36551c0b2f7Stbbdev void adjustPositionInBin(Bin* bin = NULL); 366478de5b1Stbbdev #if MALLOC_DEBUG 36751c0b2f7Stbbdev bool freeListNonNull() { return freeList; } 368478de5b1Stbbdev #endif 36951c0b2f7Stbbdev void freePublicObject(FreeObject *objectToFree); 37051c0b2f7Stbbdev inline void freeOwnObject(void *object); 37151c0b2f7Stbbdev void reset(); 37251c0b2f7Stbbdev void privatizePublicFreeList( bool reset = true ); 37351c0b2f7Stbbdev void restoreBumpPtr(); 37451c0b2f7Stbbdev void privatizeOrphaned(TLSData *tls, unsigned index); 37551c0b2f7Stbbdev bool readyToShare(); 37651c0b2f7Stbbdev void shareOrphaned(intptr_t binTag, unsigned index); 37751c0b2f7Stbbdev unsigned int getSize() const { 37851c0b2f7Stbbdev MALLOC_ASSERT(isStartupAllocObject() || objectSize<minLargeObjectSize, 37951c0b2f7Stbbdev "Invalid object size"); 38051c0b2f7Stbbdev return isStartupAllocObject()? 0 : objectSize; 38151c0b2f7Stbbdev } 38251c0b2f7Stbbdev const BackRefIdx *getBackRefIdx() const { return &backRefIdx; } 38351c0b2f7Stbbdev inline bool isOwnedByCurrentThread() const; 38451c0b2f7Stbbdev bool isStartupAllocObject() const { return objectSize == startupAllocObjSizeMark; } 38551c0b2f7Stbbdev inline FreeObject *findObjectToFree(const void *object) const; 38651c0b2f7Stbbdev void checkFreePrecond(const void *object) const { 38751c0b2f7Stbbdev #if MALLOC_DEBUG 38851c0b2f7Stbbdev const char *msg = "Possible double free or heap corruption."; 38951c0b2f7Stbbdev // small objects are always at least sizeof(size_t) Byte aligned, 39051c0b2f7Stbbdev // try to check this before this dereference as for invalid objects 39151c0b2f7Stbbdev // this may be unreadable 39251c0b2f7Stbbdev MALLOC_ASSERT(isAligned(object, sizeof(size_t)), "Try to free invalid small object"); 393478de5b1Stbbdev #if !__TBB_USE_THREAD_SANITIZER 39451c0b2f7Stbbdev // releasing to free slab 39551c0b2f7Stbbdev MALLOC_ASSERT(allocatedCount>0, msg); 396478de5b1Stbbdev #endif 39751c0b2f7Stbbdev // must not point to slab's header 39851c0b2f7Stbbdev MALLOC_ASSERT((uintptr_t)object - (uintptr_t)this >= sizeof(Block), msg); 39951c0b2f7Stbbdev if (startupAllocObjSizeMark == objectSize) // startup block 40051c0b2f7Stbbdev MALLOC_ASSERT(object<=bumpPtr, msg); 40151c0b2f7Stbbdev else { 40251c0b2f7Stbbdev // non-startup objects are 8 Byte aligned 40351c0b2f7Stbbdev MALLOC_ASSERT(isAligned(object, 8), "Try to free invalid small object"); 404478de5b1Stbbdev FreeObject *toFree = findObjectToFree(object); 405478de5b1Stbbdev #if !__TBB_USE_THREAD_SANITIZER 40651c0b2f7Stbbdev MALLOC_ASSERT(allocatedCount <= (slabSize-sizeof(Block))/objectSize 40751c0b2f7Stbbdev && (!bumpPtr || object>bumpPtr), msg); 40851c0b2f7Stbbdev // check against head of freeList, as this is mostly 40951c0b2f7Stbbdev // expected after double free 41051c0b2f7Stbbdev MALLOC_ASSERT(toFree != freeList, msg); 411478de5b1Stbbdev #endif 41251c0b2f7Stbbdev // check against head of publicFreeList, to detect double free 41351c0b2f7Stbbdev // involving foreign thread 41451c0b2f7Stbbdev MALLOC_ASSERT(toFree != publicFreeList.load(std::memory_order_relaxed), msg); 41551c0b2f7Stbbdev } 41651c0b2f7Stbbdev #else 41751c0b2f7Stbbdev suppress_unused_warning(object); 41851c0b2f7Stbbdev #endif 41951c0b2f7Stbbdev } 42051c0b2f7Stbbdev void initEmptyBlock(TLSData *tls, size_t size); 42151c0b2f7Stbbdev size_t findObjectSize(void *object) const; 42251c0b2f7Stbbdev MemoryPool *getMemPool() const { return poolPtr; } // do not use on the hot path! 42351c0b2f7Stbbdev 42451c0b2f7Stbbdev protected: 42551c0b2f7Stbbdev void cleanBlockHeader(); 42651c0b2f7Stbbdev 42751c0b2f7Stbbdev private: 42851c0b2f7Stbbdev static const float emptyEnoughRatio; /* Threshold on free space needed to "reactivate" a block */ 42951c0b2f7Stbbdev 43051c0b2f7Stbbdev inline FreeObject *allocateFromBumpPtr(); 43151c0b2f7Stbbdev inline FreeObject *findAllocatedObject(const void *address) const; 432478de5b1Stbbdev #if MALLOC_DEBUG 43351c0b2f7Stbbdev inline bool isProperlyPlaced(const void *object) const; 434478de5b1Stbbdev #endif 43551c0b2f7Stbbdev inline void markOwned(TLSData *tls) { 436478de5b1Stbbdev MALLOC_ASSERT(!tlsPtr.load(std::memory_order_relaxed), ASSERT_TEXT); 43751c0b2f7Stbbdev ownerTid = ThreadId(); /* save the ID of the current thread */ 438478de5b1Stbbdev tlsPtr.store(tls, std::memory_order_relaxed); 43951c0b2f7Stbbdev } 44051c0b2f7Stbbdev inline void markOrphaned() { 441478de5b1Stbbdev MALLOC_ASSERT(tlsPtr.load(std::memory_order_relaxed), ASSERT_TEXT); 442478de5b1Stbbdev tlsPtr.store(nullptr, std::memory_order_relaxed); 44351c0b2f7Stbbdev } 44451c0b2f7Stbbdev 44551c0b2f7Stbbdev friend class Bin; 44651c0b2f7Stbbdev friend class TLSData; 44751c0b2f7Stbbdev friend bool MemoryPool::destroy(); 44851c0b2f7Stbbdev }; 44951c0b2f7Stbbdev 45051c0b2f7Stbbdev const float Block::emptyEnoughRatio = 1.0 / 4.0; 45151c0b2f7Stbbdev 45251c0b2f7Stbbdev static_assert(sizeof(Block) <= 2*estimatedCacheLineSize, 45351c0b2f7Stbbdev "The class Block does not fit into 2 cache lines on this platform. " 45451c0b2f7Stbbdev "Defining USE_INTERNAL_TID may help to fix it."); 45551c0b2f7Stbbdev 45651c0b2f7Stbbdev class Bin { 45751c0b2f7Stbbdev private: 458478de5b1Stbbdev public: 45951c0b2f7Stbbdev Block *activeBlk; 46051c0b2f7Stbbdev std::atomic<Block*> mailbox; 46151c0b2f7Stbbdev MallocMutex mailLock; 46251c0b2f7Stbbdev 46351c0b2f7Stbbdev public: 46451c0b2f7Stbbdev inline Block* getActiveBlock() const { return activeBlk; } 46551c0b2f7Stbbdev void resetActiveBlock() { activeBlk = NULL; } 46651c0b2f7Stbbdev inline void setActiveBlock(Block *block); 46751c0b2f7Stbbdev inline Block* setPreviousBlockActive(); 46851c0b2f7Stbbdev Block* getPrivatizedFreeListBlock(); 46951c0b2f7Stbbdev void moveBlockToFront(Block *block); 47051c0b2f7Stbbdev bool cleanPublicFreeLists(); 47151c0b2f7Stbbdev void processEmptyBlock(Block *block, bool poolTheBlock); 47251c0b2f7Stbbdev void addPublicFreeListBlock(Block* block); 47351c0b2f7Stbbdev 47451c0b2f7Stbbdev void outofTLSBin(Block* block); 47551c0b2f7Stbbdev void verifyTLSBin(size_t size) const; 47651c0b2f7Stbbdev void pushTLSBin(Block* block); 47751c0b2f7Stbbdev 478478de5b1Stbbdev #if MALLOC_DEBUG 47951c0b2f7Stbbdev void verifyInitState() const { 48051c0b2f7Stbbdev MALLOC_ASSERT( !activeBlk, ASSERT_TEXT ); 48151c0b2f7Stbbdev MALLOC_ASSERT( !mailbox.load(std::memory_order_relaxed), ASSERT_TEXT ); 48251c0b2f7Stbbdev } 483478de5b1Stbbdev #endif 48451c0b2f7Stbbdev 48551c0b2f7Stbbdev friend void Block::freePublicObject (FreeObject *objectToFree); 48651c0b2f7Stbbdev }; 48751c0b2f7Stbbdev 48851c0b2f7Stbbdev /********* End of the data structures **************/ 48951c0b2f7Stbbdev 49051c0b2f7Stbbdev /* 49151c0b2f7Stbbdev * There are bins for all 8 byte aligned objects less than this segregated size; 8 bins in total 49251c0b2f7Stbbdev */ 49351c0b2f7Stbbdev const uint32_t minSmallObjectIndex = 0; 49451c0b2f7Stbbdev const uint32_t numSmallObjectBins = 8; 49551c0b2f7Stbbdev const uint32_t maxSmallObjectSize = 64; 49651c0b2f7Stbbdev 49751c0b2f7Stbbdev /* 49851c0b2f7Stbbdev * There are 4 bins between each couple of powers of 2 [64-128-256-...] 49951c0b2f7Stbbdev * from maxSmallObjectSize till this size; 16 bins in total 50051c0b2f7Stbbdev */ 50151c0b2f7Stbbdev const uint32_t minSegregatedObjectIndex = minSmallObjectIndex+numSmallObjectBins; 50251c0b2f7Stbbdev const uint32_t numSegregatedObjectBins = 16; 50351c0b2f7Stbbdev const uint32_t maxSegregatedObjectSize = 1024; 50451c0b2f7Stbbdev 50551c0b2f7Stbbdev /* 50651c0b2f7Stbbdev * And there are 5 bins with allocation sizes that are multiples of estimatedCacheLineSize 50751c0b2f7Stbbdev * and selected to fit 9, 6, 4, 3, and 2 allocations in a block. 50851c0b2f7Stbbdev */ 50951c0b2f7Stbbdev const uint32_t minFittingIndex = minSegregatedObjectIndex+numSegregatedObjectBins; 51051c0b2f7Stbbdev const uint32_t numFittingBins = 5; 51151c0b2f7Stbbdev 51251c0b2f7Stbbdev const uint32_t fittingAlignment = estimatedCacheLineSize; 51351c0b2f7Stbbdev 51451c0b2f7Stbbdev #define SET_FITTING_SIZE(N) ( (slabSize-sizeof(Block))/N ) & ~(fittingAlignment-1) 51551c0b2f7Stbbdev // For blockSize=16*1024, sizeof(Block)=2*estimatedCacheLineSize and fittingAlignment=estimatedCacheLineSize, 51651c0b2f7Stbbdev // the comments show the fitting sizes and the amounts left unused for estimatedCacheLineSize=64/128: 51751c0b2f7Stbbdev const uint32_t fittingSize1 = SET_FITTING_SIZE(9); // 1792/1792 128/000 51851c0b2f7Stbbdev const uint32_t fittingSize2 = SET_FITTING_SIZE(6); // 2688/2688 128/000 51951c0b2f7Stbbdev const uint32_t fittingSize3 = SET_FITTING_SIZE(4); // 4032/3968 128/256 52051c0b2f7Stbbdev const uint32_t fittingSize4 = SET_FITTING_SIZE(3); // 5376/5376 128/000 52151c0b2f7Stbbdev const uint32_t fittingSize5 = SET_FITTING_SIZE(2); // 8128/8064 000/000 52251c0b2f7Stbbdev #undef SET_FITTING_SIZE 52351c0b2f7Stbbdev 52451c0b2f7Stbbdev /* 52551c0b2f7Stbbdev * The total number of thread-specific Block-based bins 52651c0b2f7Stbbdev */ 52751c0b2f7Stbbdev const uint32_t numBlockBins = minFittingIndex+numFittingBins; 52851c0b2f7Stbbdev 52951c0b2f7Stbbdev /* 53051c0b2f7Stbbdev * Objects of this size and larger are considered large objects. 53151c0b2f7Stbbdev */ 53251c0b2f7Stbbdev const uint32_t minLargeObjectSize = fittingSize5 + 1; 53351c0b2f7Stbbdev 53451c0b2f7Stbbdev /* 53551c0b2f7Stbbdev * Per-thread pool of slab blocks. Idea behind it is to not share with other 53651c0b2f7Stbbdev * threads memory that are likely in local cache(s) of our CPU. 53751c0b2f7Stbbdev */ 53851c0b2f7Stbbdev class FreeBlockPool { 53951c0b2f7Stbbdev private: 54051c0b2f7Stbbdev std::atomic<Block*> head; 54151c0b2f7Stbbdev int size; 54251c0b2f7Stbbdev Backend *backend; 54351c0b2f7Stbbdev bool lastAccessMiss; 54451c0b2f7Stbbdev public: 54551c0b2f7Stbbdev static const int POOL_HIGH_MARK = 32; 54651c0b2f7Stbbdev static const int POOL_LOW_MARK = 8; 54751c0b2f7Stbbdev 54851c0b2f7Stbbdev class ResOfGet { 54951c0b2f7Stbbdev ResOfGet(); 55051c0b2f7Stbbdev public: 55151c0b2f7Stbbdev Block* block; 55251c0b2f7Stbbdev bool lastAccMiss; 55351c0b2f7Stbbdev ResOfGet(Block *b, bool lastMiss) : block(b), lastAccMiss(lastMiss) {} 55451c0b2f7Stbbdev }; 55551c0b2f7Stbbdev 55651c0b2f7Stbbdev // allocated in zero-initialized memory 55751c0b2f7Stbbdev FreeBlockPool(Backend *bknd) : backend(bknd) {} 55851c0b2f7Stbbdev ResOfGet getBlock(); 55951c0b2f7Stbbdev void returnBlock(Block *block); 56051c0b2f7Stbbdev bool externalCleanup(); // can be called by another thread 56151c0b2f7Stbbdev }; 56251c0b2f7Stbbdev 56351c0b2f7Stbbdev template<int LOW_MARK, int HIGH_MARK> 56451c0b2f7Stbbdev class LocalLOCImpl { 56551c0b2f7Stbbdev private: 56651c0b2f7Stbbdev static const size_t MAX_TOTAL_SIZE = 4*1024*1024; 56751c0b2f7Stbbdev // TODO: can single-linked list be faster here? 56851c0b2f7Stbbdev LargeMemoryBlock *tail; // need it when do releasing on overflow 56951c0b2f7Stbbdev std::atomic<LargeMemoryBlock*> head; 57051c0b2f7Stbbdev size_t totalSize; 57151c0b2f7Stbbdev int numOfBlocks; 57251c0b2f7Stbbdev public: 57351c0b2f7Stbbdev bool put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool); 57451c0b2f7Stbbdev LargeMemoryBlock *get(size_t size); 57551c0b2f7Stbbdev bool externalCleanup(ExtMemoryPool *extMemPool); 57651c0b2f7Stbbdev #if __TBB_MALLOC_WHITEBOX_TEST 57751c0b2f7Stbbdev LocalLOCImpl() : head(NULL), tail(NULL), totalSize(0), numOfBlocks(0) {} 57851c0b2f7Stbbdev static size_t getMaxSize() { return MAX_TOTAL_SIZE; } 57951c0b2f7Stbbdev static const int LOC_HIGH_MARK = HIGH_MARK; 58051c0b2f7Stbbdev #else 58151c0b2f7Stbbdev // no ctor, object must be created in zero-initialized memory 58251c0b2f7Stbbdev #endif 58351c0b2f7Stbbdev }; 58451c0b2f7Stbbdev 58551c0b2f7Stbbdev typedef LocalLOCImpl<8,32> LocalLOC; // set production code parameters 58651c0b2f7Stbbdev 58751c0b2f7Stbbdev class TLSData : public TLSRemote { 58851c0b2f7Stbbdev MemoryPool *memPool; 58951c0b2f7Stbbdev public: 59051c0b2f7Stbbdev Bin bin[numBlockBinLimit]; 59151c0b2f7Stbbdev FreeBlockPool freeSlabBlocks; 59251c0b2f7Stbbdev LocalLOC lloc; 59351c0b2f7Stbbdev unsigned currCacheIdx; 59451c0b2f7Stbbdev private: 595478de5b1Stbbdev std::atomic<bool> unused; 59651c0b2f7Stbbdev public: 59751c0b2f7Stbbdev TLSData(MemoryPool *mPool, Backend *bknd) : memPool(mPool), freeSlabBlocks(bknd) {} 59851c0b2f7Stbbdev MemoryPool *getMemPool() const { return memPool; } 59951c0b2f7Stbbdev Bin* getAllocationBin(size_t size); 60051c0b2f7Stbbdev void release(); 60151c0b2f7Stbbdev bool externalCleanup(bool cleanOnlyUnused, bool cleanBins) { 602478de5b1Stbbdev if (!unused.load(std::memory_order_relaxed) && cleanOnlyUnused) return false; 60351c0b2f7Stbbdev // Heavy operation in terms of synchronization complexity, 60451c0b2f7Stbbdev // should be called only for the current thread 60551c0b2f7Stbbdev bool released = cleanBins ? cleanupBlockBins() : false; 60651c0b2f7Stbbdev // both cleanups to be called, and the order is not important 60751c0b2f7Stbbdev return released | lloc.externalCleanup(&memPool->extMemPool) | freeSlabBlocks.externalCleanup(); 60851c0b2f7Stbbdev } 60951c0b2f7Stbbdev bool cleanupBlockBins(); 610478de5b1Stbbdev void markUsed() { unused.store(false, std::memory_order_relaxed); } // called by owner when TLS touched 611478de5b1Stbbdev void markUnused() { unused.store(true, std::memory_order_relaxed); } // can be called by not owner thread 61251c0b2f7Stbbdev }; 61351c0b2f7Stbbdev 61451c0b2f7Stbbdev TLSData *TLSKey::createTLS(MemoryPool *memPool, Backend *backend) 61551c0b2f7Stbbdev { 61651c0b2f7Stbbdev MALLOC_ASSERT( sizeof(TLSData) >= sizeof(Bin) * numBlockBins + sizeof(FreeBlockPool), ASSERT_TEXT ); 61751c0b2f7Stbbdev TLSData* tls = (TLSData*) memPool->bootStrapBlocks.allocate(memPool, sizeof(TLSData)); 61851c0b2f7Stbbdev if ( !tls ) 61951c0b2f7Stbbdev return NULL; 62051c0b2f7Stbbdev new(tls) TLSData(memPool, backend); 62151c0b2f7Stbbdev /* the block contains zeroes after bootStrapMalloc, so bins are initialized */ 62251c0b2f7Stbbdev #if MALLOC_DEBUG 62351c0b2f7Stbbdev for (uint32_t i = 0; i < numBlockBinLimit; i++) 62451c0b2f7Stbbdev tls->bin[i].verifyInitState(); 62551c0b2f7Stbbdev #endif 62651c0b2f7Stbbdev setThreadMallocTLS(tls); 62751c0b2f7Stbbdev memPool->extMemPool.allLocalCaches.registerThread(tls); 62851c0b2f7Stbbdev return tls; 62951c0b2f7Stbbdev } 63051c0b2f7Stbbdev 63151c0b2f7Stbbdev bool TLSData::cleanupBlockBins() 63251c0b2f7Stbbdev { 63351c0b2f7Stbbdev bool released = false; 63451c0b2f7Stbbdev for (uint32_t i = 0; i < numBlockBinLimit; i++) { 63551c0b2f7Stbbdev released |= bin[i].cleanPublicFreeLists(); 63651c0b2f7Stbbdev // After cleaning public free lists, only the active block might be empty. 63751c0b2f7Stbbdev // Do not use processEmptyBlock because it will just restore bumpPtr. 63851c0b2f7Stbbdev Block *block = bin[i].getActiveBlock(); 63951c0b2f7Stbbdev if (block && block->empty()) { 64051c0b2f7Stbbdev bin[i].outofTLSBin(block); 64151c0b2f7Stbbdev memPool->returnEmptyBlock(block, /*poolTheBlock=*/false); 64251c0b2f7Stbbdev released = true; 64351c0b2f7Stbbdev } 64451c0b2f7Stbbdev } 64551c0b2f7Stbbdev return released; 64651c0b2f7Stbbdev } 64751c0b2f7Stbbdev 64851c0b2f7Stbbdev bool ExtMemoryPool::releaseAllLocalCaches() 64951c0b2f7Stbbdev { 65051c0b2f7Stbbdev // Iterate all registered TLS data and clean LLOC and Slab pools 65151c0b2f7Stbbdev bool released = allLocalCaches.cleanup(/*cleanOnlyUnused=*/false); 65251c0b2f7Stbbdev 65351c0b2f7Stbbdev // Bins privatization is done only for the current thread 65451c0b2f7Stbbdev if (TLSData *tlsData = tlsPointerKey.getThreadMallocTLS()) 65551c0b2f7Stbbdev released |= tlsData->cleanupBlockBins(); 65651c0b2f7Stbbdev 65751c0b2f7Stbbdev return released; 65851c0b2f7Stbbdev } 65951c0b2f7Stbbdev 66051c0b2f7Stbbdev void AllLocalCaches::registerThread(TLSRemote *tls) 66151c0b2f7Stbbdev { 66251c0b2f7Stbbdev tls->prev = NULL; 66351c0b2f7Stbbdev MallocMutex::scoped_lock lock(listLock); 66451c0b2f7Stbbdev MALLOC_ASSERT(head!=tls, ASSERT_TEXT); 66551c0b2f7Stbbdev tls->next = head; 66651c0b2f7Stbbdev if (head) 66751c0b2f7Stbbdev head->prev = tls; 66851c0b2f7Stbbdev head = tls; 66951c0b2f7Stbbdev MALLOC_ASSERT(head->next!=head, ASSERT_TEXT); 67051c0b2f7Stbbdev } 67151c0b2f7Stbbdev 67251c0b2f7Stbbdev void AllLocalCaches::unregisterThread(TLSRemote *tls) 67351c0b2f7Stbbdev { 67451c0b2f7Stbbdev MallocMutex::scoped_lock lock(listLock); 67551c0b2f7Stbbdev MALLOC_ASSERT(head, "Can't unregister thread: no threads are registered."); 67651c0b2f7Stbbdev if (head == tls) 67751c0b2f7Stbbdev head = tls->next; 67851c0b2f7Stbbdev if (tls->next) 67951c0b2f7Stbbdev tls->next->prev = tls->prev; 68051c0b2f7Stbbdev if (tls->prev) 68151c0b2f7Stbbdev tls->prev->next = tls->next; 68251c0b2f7Stbbdev MALLOC_ASSERT(!tls->next || tls->next->next!=tls->next, ASSERT_TEXT); 68351c0b2f7Stbbdev } 68451c0b2f7Stbbdev 68551c0b2f7Stbbdev bool AllLocalCaches::cleanup(bool cleanOnlyUnused) 68651c0b2f7Stbbdev { 68751c0b2f7Stbbdev bool released = false; 68851c0b2f7Stbbdev { 68951c0b2f7Stbbdev MallocMutex::scoped_lock lock(listLock); 69051c0b2f7Stbbdev for (TLSRemote *curr=head; curr; curr=curr->next) 69151c0b2f7Stbbdev released |= static_cast<TLSData*>(curr)->externalCleanup(cleanOnlyUnused, /*cleanBins=*/false); 69251c0b2f7Stbbdev } 69351c0b2f7Stbbdev return released; 69451c0b2f7Stbbdev } 69551c0b2f7Stbbdev 69651c0b2f7Stbbdev void AllLocalCaches::markUnused() 69751c0b2f7Stbbdev { 69851c0b2f7Stbbdev bool locked; 69951c0b2f7Stbbdev MallocMutex::scoped_lock lock(listLock, /*block=*/false, &locked); 70051c0b2f7Stbbdev if (!locked) // not wait for marking if someone doing something with it 70151c0b2f7Stbbdev return; 70251c0b2f7Stbbdev 70351c0b2f7Stbbdev for (TLSRemote *curr=head; curr; curr=curr->next) 70451c0b2f7Stbbdev static_cast<TLSData*>(curr)->markUnused(); 70551c0b2f7Stbbdev } 70651c0b2f7Stbbdev 70751c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 70851c0b2f7Stbbdev MallocMutex RecursiveMallocCallProtector::rmc_mutex; 7098b6f831cStbbdev std::atomic<pthread_t> RecursiveMallocCallProtector::owner_thread; 710478de5b1Stbbdev std::atomic<void*> RecursiveMallocCallProtector::autoObjPtr; 71151c0b2f7Stbbdev bool RecursiveMallocCallProtector::mallocRecursionDetected; 71251c0b2f7Stbbdev #if __FreeBSD__ 71351c0b2f7Stbbdev bool RecursiveMallocCallProtector::canUsePthread; 71451c0b2f7Stbbdev #endif 71551c0b2f7Stbbdev 71651c0b2f7Stbbdev #endif 71751c0b2f7Stbbdev 71851c0b2f7Stbbdev /*********** End code to provide thread ID and a TLS pointer **********/ 71951c0b2f7Stbbdev 72051c0b2f7Stbbdev // Parameter for isLargeObject, keeps our expectations on memory origin. 72151c0b2f7Stbbdev // Assertions must use unknownMem to reliably report object invalidity. 72251c0b2f7Stbbdev enum MemoryOrigin { 72351c0b2f7Stbbdev ourMem, // allocated by TBB allocator 72451c0b2f7Stbbdev unknownMem // can be allocated by system allocator or TBB allocator 72551c0b2f7Stbbdev }; 72651c0b2f7Stbbdev 727478de5b1Stbbdev template<MemoryOrigin> 728478de5b1Stbbdev #if __TBB_USE_THREAD_SANITIZER 729478de5b1Stbbdev // We have a real race when accessing the large object header for 730478de5b1Stbbdev // non large objects (e.g. small or foreign objects). 731478de5b1Stbbdev // Therefore, we need to hide this access from the thread sanitizer 732478de5b1Stbbdev __attribute__((no_sanitize("thread"))) 733478de5b1Stbbdev #endif 734478de5b1Stbbdev bool isLargeObject(void *object); 73551c0b2f7Stbbdev static void *internalMalloc(size_t size); 73651c0b2f7Stbbdev static void internalFree(void *object); 73751c0b2f7Stbbdev static void *internalPoolMalloc(MemoryPool* mPool, size_t size); 73851c0b2f7Stbbdev static bool internalPoolFree(MemoryPool *mPool, void *object, size_t size); 73951c0b2f7Stbbdev 74051c0b2f7Stbbdev #if !MALLOC_DEBUG 74151c0b2f7Stbbdev #if __INTEL_COMPILER || _MSC_VER 74251c0b2f7Stbbdev #define NOINLINE(decl) __declspec(noinline) decl 74351c0b2f7Stbbdev #define ALWAYSINLINE(decl) __forceinline decl 74451c0b2f7Stbbdev #elif __GNUC__ 74551c0b2f7Stbbdev #define NOINLINE(decl) decl __attribute__ ((noinline)) 74651c0b2f7Stbbdev #define ALWAYSINLINE(decl) decl __attribute__ ((always_inline)) 74751c0b2f7Stbbdev #else 74851c0b2f7Stbbdev #define NOINLINE(decl) decl 74951c0b2f7Stbbdev #define ALWAYSINLINE(decl) decl 75051c0b2f7Stbbdev #endif 75151c0b2f7Stbbdev 75251c0b2f7Stbbdev static NOINLINE( bool doInitialization() ); 75351c0b2f7Stbbdev ALWAYSINLINE( bool isMallocInitialized() ); 75451c0b2f7Stbbdev 75551c0b2f7Stbbdev #undef ALWAYSINLINE 75651c0b2f7Stbbdev #undef NOINLINE 75751c0b2f7Stbbdev #endif /* !MALLOC_DEBUG */ 75851c0b2f7Stbbdev 75951c0b2f7Stbbdev 76051c0b2f7Stbbdev /********* Now some rough utility code to deal with indexing the size bins. **************/ 76151c0b2f7Stbbdev 76251c0b2f7Stbbdev /* 76351c0b2f7Stbbdev * Given a number return the highest non-zero bit in it. It is intended to work with 32-bit values only. 7649e15720bStbbdev * Moreover, on some platforms, for sake of simplicity and performance, it is narrowed to only serve for 64 to 1023. 76551c0b2f7Stbbdev * This is enough for current algorithm of distribution of sizes among bins. 76651c0b2f7Stbbdev * __TBB_Log2 is not used here to minimize dependencies on TBB specific sources. 76751c0b2f7Stbbdev */ 76851c0b2f7Stbbdev #if _WIN64 && _MSC_VER>=1400 && !__INTEL_COMPILER 76951c0b2f7Stbbdev extern "C" unsigned char _BitScanReverse( unsigned long* i, unsigned long w ); 77051c0b2f7Stbbdev #pragma intrinsic(_BitScanReverse) 77151c0b2f7Stbbdev #endif 77251c0b2f7Stbbdev static inline unsigned int highestBitPos(unsigned int n) 77351c0b2f7Stbbdev { 77451c0b2f7Stbbdev MALLOC_ASSERT( n>=64 && n<1024, ASSERT_TEXT ); // only needed for bsr array lookup, but always true 77551c0b2f7Stbbdev unsigned int pos; 77651c0b2f7Stbbdev #if __ARCH_x86_32||__ARCH_x86_64 77751c0b2f7Stbbdev 77851c0b2f7Stbbdev # if __linux__||__APPLE__||__FreeBSD__||__NetBSD__||__OpenBSD__||__sun||__MINGW32__ 77951c0b2f7Stbbdev __asm__ ("bsr %1,%0" : "=r"(pos) : "r"(n)); 78051c0b2f7Stbbdev # elif (_WIN32 && (!_WIN64 || __INTEL_COMPILER)) 78151c0b2f7Stbbdev __asm 78251c0b2f7Stbbdev { 78351c0b2f7Stbbdev bsr eax, n 78451c0b2f7Stbbdev mov pos, eax 78551c0b2f7Stbbdev } 78651c0b2f7Stbbdev # elif _WIN64 && _MSC_VER>=1400 78751c0b2f7Stbbdev _BitScanReverse((unsigned long*)&pos, (unsigned long)n); 78851c0b2f7Stbbdev # else 78951c0b2f7Stbbdev # error highestBitPos() not implemented for this platform 79051c0b2f7Stbbdev # endif 79151c0b2f7Stbbdev #elif __arm__ 79251c0b2f7Stbbdev __asm__ __volatile__ 79351c0b2f7Stbbdev ( 79451c0b2f7Stbbdev "clz %0, %1\n" 79551c0b2f7Stbbdev "rsb %0, %0, %2\n" 79651c0b2f7Stbbdev :"=r" (pos) :"r" (n), "I" (31) 79751c0b2f7Stbbdev ); 79851c0b2f7Stbbdev #else 79951c0b2f7Stbbdev static unsigned int bsr[16] = {0/*N/A*/,6,7,7,8,8,8,8,9,9,9,9,9,9,9,9}; 80051c0b2f7Stbbdev pos = bsr[ n>>6 ]; 80151c0b2f7Stbbdev #endif /* __ARCH_* */ 80251c0b2f7Stbbdev return pos; 80351c0b2f7Stbbdev } 80451c0b2f7Stbbdev 80551c0b2f7Stbbdev unsigned int getSmallObjectIndex(unsigned int size) 80651c0b2f7Stbbdev { 80751c0b2f7Stbbdev unsigned int result = (size-1)>>3; 808*fa944e19SMircho Rodozov if (sizeof(void*)==8) { 809*fa944e19SMircho Rodozov // For 64-bit malloc, 16 byte alignment is needed except for bin 0. 81051c0b2f7Stbbdev if (result) result |= 1; // 0,1,3,5,7; bins 2,4,6 are not aligned to 16 bytes 811*fa944e19SMircho Rodozov } 81251c0b2f7Stbbdev return result; 81351c0b2f7Stbbdev } 814478de5b1Stbbdev 81551c0b2f7Stbbdev /* 81651c0b2f7Stbbdev * Depending on indexRequest, for a given size return either the index into the bin 81751c0b2f7Stbbdev * for objects of this size, or the actual size of objects in this bin. 81851c0b2f7Stbbdev */ 81951c0b2f7Stbbdev template<bool indexRequest> 82051c0b2f7Stbbdev static unsigned int getIndexOrObjectSize (unsigned int size) 82151c0b2f7Stbbdev { 82251c0b2f7Stbbdev if (size <= maxSmallObjectSize) { // selection from 8/16/24/32/40/48/56/64 823478de5b1Stbbdev unsigned int index = getSmallObjectIndex( size ); 82451c0b2f7Stbbdev /* Bin 0 is for 8 bytes, bin 1 is for 16, and so forth */ 82551c0b2f7Stbbdev return indexRequest ? index : (index+1)<<3; 82651c0b2f7Stbbdev } 82751c0b2f7Stbbdev else if (size <= maxSegregatedObjectSize ) { // 80/96/112/128 / 160/192/224/256 / 320/384/448/512 / 640/768/896/1024 82851c0b2f7Stbbdev unsigned int order = highestBitPos(size-1); // which group of bin sizes? 82951c0b2f7Stbbdev MALLOC_ASSERT( 6<=order && order<=9, ASSERT_TEXT ); 83051c0b2f7Stbbdev if (indexRequest) 83151c0b2f7Stbbdev return minSegregatedObjectIndex - (4*6) - 4 + (4*order) + ((size-1)>>(order-2)); 83251c0b2f7Stbbdev else { 83351c0b2f7Stbbdev unsigned int alignment = 128 >> (9-order); // alignment in the group 83451c0b2f7Stbbdev MALLOC_ASSERT( alignment==16 || alignment==32 || alignment==64 || alignment==128, ASSERT_TEXT ); 83551c0b2f7Stbbdev return alignUp(size,alignment); 83651c0b2f7Stbbdev } 83751c0b2f7Stbbdev } 83851c0b2f7Stbbdev else { 83951c0b2f7Stbbdev if( size <= fittingSize3 ) { 84051c0b2f7Stbbdev if( size <= fittingSize2 ) { 84151c0b2f7Stbbdev if( size <= fittingSize1 ) 84251c0b2f7Stbbdev return indexRequest ? minFittingIndex : fittingSize1; 84351c0b2f7Stbbdev else 84451c0b2f7Stbbdev return indexRequest ? minFittingIndex+1 : fittingSize2; 84551c0b2f7Stbbdev } else 84651c0b2f7Stbbdev return indexRequest ? minFittingIndex+2 : fittingSize3; 84751c0b2f7Stbbdev } else { 84851c0b2f7Stbbdev if( size <= fittingSize5 ) { 84951c0b2f7Stbbdev if( size <= fittingSize4 ) 85051c0b2f7Stbbdev return indexRequest ? minFittingIndex+3 : fittingSize4; 85151c0b2f7Stbbdev else 85251c0b2f7Stbbdev return indexRequest ? minFittingIndex+4 : fittingSize5; 85351c0b2f7Stbbdev } else { 85451c0b2f7Stbbdev MALLOC_ASSERT( 0,ASSERT_TEXT ); // this should not happen 85551c0b2f7Stbbdev return ~0U; 85651c0b2f7Stbbdev } 85751c0b2f7Stbbdev } 85851c0b2f7Stbbdev } 85951c0b2f7Stbbdev } 86051c0b2f7Stbbdev 86151c0b2f7Stbbdev static unsigned int getIndex (unsigned int size) 86251c0b2f7Stbbdev { 86351c0b2f7Stbbdev return getIndexOrObjectSize</*indexRequest=*/true>(size); 86451c0b2f7Stbbdev } 86551c0b2f7Stbbdev 86651c0b2f7Stbbdev static unsigned int getObjectSize (unsigned int size) 86751c0b2f7Stbbdev { 86851c0b2f7Stbbdev return getIndexOrObjectSize</*indexRequest=*/false>(size); 86951c0b2f7Stbbdev } 87051c0b2f7Stbbdev 87151c0b2f7Stbbdev 87251c0b2f7Stbbdev void *BootStrapBlocks::allocate(MemoryPool *memPool, size_t size) 87351c0b2f7Stbbdev { 87451c0b2f7Stbbdev FreeObject *result; 87551c0b2f7Stbbdev 87651c0b2f7Stbbdev MALLOC_ASSERT( size == sizeof(TLSData), ASSERT_TEXT ); 87751c0b2f7Stbbdev 87851c0b2f7Stbbdev { // Lock with acquire 87951c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(bootStrapLock); 88051c0b2f7Stbbdev 88151c0b2f7Stbbdev if( bootStrapObjectList) { 88251c0b2f7Stbbdev result = bootStrapObjectList; 88351c0b2f7Stbbdev bootStrapObjectList = bootStrapObjectList->next; 88451c0b2f7Stbbdev } else { 88551c0b2f7Stbbdev if (!bootStrapBlock) { 88651c0b2f7Stbbdev bootStrapBlock = memPool->getEmptyBlock(size); 88751c0b2f7Stbbdev if (!bootStrapBlock) return NULL; 88851c0b2f7Stbbdev } 88951c0b2f7Stbbdev result = bootStrapBlock->bumpPtr; 89051c0b2f7Stbbdev bootStrapBlock->bumpPtr = (FreeObject *)((uintptr_t)bootStrapBlock->bumpPtr - bootStrapBlock->objectSize); 89151c0b2f7Stbbdev if ((uintptr_t)bootStrapBlock->bumpPtr < (uintptr_t)bootStrapBlock+sizeof(Block)) { 89251c0b2f7Stbbdev bootStrapBlock->bumpPtr = NULL; 89351c0b2f7Stbbdev bootStrapBlock->next = bootStrapBlockUsed; 89451c0b2f7Stbbdev bootStrapBlockUsed = bootStrapBlock; 89551c0b2f7Stbbdev bootStrapBlock = NULL; 89651c0b2f7Stbbdev } 89751c0b2f7Stbbdev } 89851c0b2f7Stbbdev } // Unlock with release 89951c0b2f7Stbbdev memset (result, 0, size); 90051c0b2f7Stbbdev return (void*)result; 90151c0b2f7Stbbdev } 90251c0b2f7Stbbdev 90351c0b2f7Stbbdev void BootStrapBlocks::free(void* ptr) 90451c0b2f7Stbbdev { 90551c0b2f7Stbbdev MALLOC_ASSERT( ptr, ASSERT_TEXT ); 90651c0b2f7Stbbdev { // Lock with acquire 90751c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(bootStrapLock); 90851c0b2f7Stbbdev ((FreeObject*)ptr)->next = bootStrapObjectList; 90951c0b2f7Stbbdev bootStrapObjectList = (FreeObject*)ptr; 91051c0b2f7Stbbdev } // Unlock with release 91151c0b2f7Stbbdev } 91251c0b2f7Stbbdev 91351c0b2f7Stbbdev void BootStrapBlocks::reset() 91451c0b2f7Stbbdev { 91551c0b2f7Stbbdev bootStrapBlock = bootStrapBlockUsed = NULL; 91651c0b2f7Stbbdev bootStrapObjectList = NULL; 91751c0b2f7Stbbdev } 91851c0b2f7Stbbdev 91951c0b2f7Stbbdev #if !(FREELIST_NONBLOCKING) 92051c0b2f7Stbbdev static MallocMutex publicFreeListLock; // lock for changes of publicFreeList 92151c0b2f7Stbbdev #endif 92251c0b2f7Stbbdev 92351c0b2f7Stbbdev /********* End rough utility code **************/ 92451c0b2f7Stbbdev 92551c0b2f7Stbbdev /* LifoList assumes zero initialization so a vector of it can be created 92651c0b2f7Stbbdev * by just allocating some space with no call to constructor. 92751c0b2f7Stbbdev * On Linux, it seems to be necessary to avoid linking with C++ libraries. 92851c0b2f7Stbbdev * 92951c0b2f7Stbbdev * By usage convention there is no race on the initialization. */ 930478de5b1Stbbdev LifoList::LifoList( ) : top(nullptr) 93151c0b2f7Stbbdev { 93251c0b2f7Stbbdev // MallocMutex assumes zero initialization 93351c0b2f7Stbbdev memset(&lock, 0, sizeof(MallocMutex)); 93451c0b2f7Stbbdev } 93551c0b2f7Stbbdev 93651c0b2f7Stbbdev void LifoList::push(Block *block) 93751c0b2f7Stbbdev { 93851c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(lock); 939478de5b1Stbbdev block->next = top.load(std::memory_order_relaxed); 940478de5b1Stbbdev top.store(block, std::memory_order_relaxed); 94151c0b2f7Stbbdev } 94251c0b2f7Stbbdev 94351c0b2f7Stbbdev Block *LifoList::pop() 94451c0b2f7Stbbdev { 945478de5b1Stbbdev Block* block = nullptr; 946478de5b1Stbbdev if (top.load(std::memory_order_relaxed)) { 94751c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(lock); 948478de5b1Stbbdev block = top.load(std::memory_order_relaxed); 949478de5b1Stbbdev if (block) { 950478de5b1Stbbdev top.store(block->next, std::memory_order_relaxed); 95151c0b2f7Stbbdev } 95251c0b2f7Stbbdev } 95351c0b2f7Stbbdev return block; 95451c0b2f7Stbbdev } 95551c0b2f7Stbbdev 95651c0b2f7Stbbdev Block *LifoList::grab() 95751c0b2f7Stbbdev { 958478de5b1Stbbdev Block *block = nullptr; 959478de5b1Stbbdev if (top.load(std::memory_order_relaxed)) { 96051c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(lock); 961478de5b1Stbbdev block = top.load(std::memory_order_relaxed); 962478de5b1Stbbdev top.store(nullptr, std::memory_order_relaxed); 96351c0b2f7Stbbdev } 96451c0b2f7Stbbdev return block; 96551c0b2f7Stbbdev } 96651c0b2f7Stbbdev 96751c0b2f7Stbbdev /********* Thread and block related code *************/ 96851c0b2f7Stbbdev 96951c0b2f7Stbbdev template<bool poolDestroy> void AllLargeBlocksList::releaseAll(Backend *backend) { 97051c0b2f7Stbbdev LargeMemoryBlock *next, *lmb = loHead; 97151c0b2f7Stbbdev loHead = NULL; 97251c0b2f7Stbbdev 97351c0b2f7Stbbdev for (; lmb; lmb = next) { 97451c0b2f7Stbbdev next = lmb->gNext; 97551c0b2f7Stbbdev if (poolDestroy) { 97651c0b2f7Stbbdev // as it's pool destruction, no need to return object to backend, 97751c0b2f7Stbbdev // only remove backrefs, as they are global 97851c0b2f7Stbbdev removeBackRef(lmb->backRefIdx); 97951c0b2f7Stbbdev } else { 98051c0b2f7Stbbdev // clean g(Next|Prev) to prevent removing lmb 98151c0b2f7Stbbdev // from AllLargeBlocksList inside returnLargeObject 98251c0b2f7Stbbdev lmb->gNext = lmb->gPrev = NULL; 98351c0b2f7Stbbdev backend->returnLargeObject(lmb); 98451c0b2f7Stbbdev } 98551c0b2f7Stbbdev } 98651c0b2f7Stbbdev } 98751c0b2f7Stbbdev 98851c0b2f7Stbbdev TLSData* MemoryPool::getTLS(bool create) 98951c0b2f7Stbbdev { 99051c0b2f7Stbbdev TLSData* tls = extMemPool.tlsPointerKey.getThreadMallocTLS(); 99151c0b2f7Stbbdev if (create && !tls) 99251c0b2f7Stbbdev tls = extMemPool.tlsPointerKey.createTLS(this, &extMemPool.backend); 99351c0b2f7Stbbdev return tls; 99451c0b2f7Stbbdev } 99551c0b2f7Stbbdev 99651c0b2f7Stbbdev /* 99751c0b2f7Stbbdev * Return the bin for the given size. 99851c0b2f7Stbbdev */ 99951c0b2f7Stbbdev inline Bin* TLSData::getAllocationBin(size_t size) 100051c0b2f7Stbbdev { 100151c0b2f7Stbbdev return bin + getIndex(size); 100251c0b2f7Stbbdev } 100351c0b2f7Stbbdev 100451c0b2f7Stbbdev /* Return an empty uninitialized block in a non-blocking fashion. */ 100551c0b2f7Stbbdev Block *MemoryPool::getEmptyBlock(size_t size) 100651c0b2f7Stbbdev { 100751c0b2f7Stbbdev TLSData* tls = getTLS(/*create=*/false); 100851c0b2f7Stbbdev // try to use per-thread cache, if TLS available 100951c0b2f7Stbbdev FreeBlockPool::ResOfGet resOfGet = tls? 101051c0b2f7Stbbdev tls->freeSlabBlocks.getBlock() : FreeBlockPool::ResOfGet(NULL, false); 101151c0b2f7Stbbdev Block *result = resOfGet.block; 101251c0b2f7Stbbdev 101351c0b2f7Stbbdev if (!result) { // not found in local cache, asks backend for slabs 101451c0b2f7Stbbdev int num = resOfGet.lastAccMiss? Backend::numOfSlabAllocOnMiss : 1; 101551c0b2f7Stbbdev BackRefIdx backRefIdx[Backend::numOfSlabAllocOnMiss]; 101651c0b2f7Stbbdev 101751c0b2f7Stbbdev result = static_cast<Block*>(extMemPool.backend.getSlabBlock(num)); 101851c0b2f7Stbbdev if (!result) return NULL; 101951c0b2f7Stbbdev 102051c0b2f7Stbbdev if (!extMemPool.userPool()) 102151c0b2f7Stbbdev for (int i=0; i<num; i++) { 102251c0b2f7Stbbdev backRefIdx[i] = BackRefIdx::newBackRef(/*largeObj=*/false); 102351c0b2f7Stbbdev if (backRefIdx[i].isInvalid()) { 102451c0b2f7Stbbdev // roll back resource allocation 102551c0b2f7Stbbdev for (int j=0; j<i; j++) 102651c0b2f7Stbbdev removeBackRef(backRefIdx[j]); 102751c0b2f7Stbbdev Block *b = result; 102851c0b2f7Stbbdev for (int j=0; j<num; b=(Block*)((uintptr_t)b+slabSize), j++) 102951c0b2f7Stbbdev extMemPool.backend.putSlabBlock(b); 103051c0b2f7Stbbdev return NULL; 103151c0b2f7Stbbdev } 103251c0b2f7Stbbdev } 103351c0b2f7Stbbdev // resources were allocated, register blocks 103451c0b2f7Stbbdev Block *b = result; 103551c0b2f7Stbbdev for (int i=0; i<num; b=(Block*)((uintptr_t)b+slabSize), i++) { 103651c0b2f7Stbbdev // slab block in user's pool must have invalid backRefIdx 103751c0b2f7Stbbdev if (extMemPool.userPool()) { 103851c0b2f7Stbbdev new (&b->backRefIdx) BackRefIdx(); 103951c0b2f7Stbbdev } else { 104051c0b2f7Stbbdev setBackRef(backRefIdx[i], b); 104151c0b2f7Stbbdev b->backRefIdx = backRefIdx[i]; 104251c0b2f7Stbbdev } 1043478de5b1Stbbdev b->tlsPtr.store(tls, std::memory_order_relaxed); 104451c0b2f7Stbbdev b->poolPtr = this; 104551c0b2f7Stbbdev // all but first one go to per-thread pool 104651c0b2f7Stbbdev if (i > 0) { 104751c0b2f7Stbbdev MALLOC_ASSERT(tls, ASSERT_TEXT); 104851c0b2f7Stbbdev tls->freeSlabBlocks.returnBlock(b); 104951c0b2f7Stbbdev } 105051c0b2f7Stbbdev } 105151c0b2f7Stbbdev } 105251c0b2f7Stbbdev MALLOC_ASSERT(result, ASSERT_TEXT); 105351c0b2f7Stbbdev result->initEmptyBlock(tls, size); 105451c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(result->objectSize), allocBlockNew); 105551c0b2f7Stbbdev return result; 105651c0b2f7Stbbdev } 105751c0b2f7Stbbdev 105851c0b2f7Stbbdev void MemoryPool::returnEmptyBlock(Block *block, bool poolTheBlock) 105951c0b2f7Stbbdev { 106051c0b2f7Stbbdev block->reset(); 106151c0b2f7Stbbdev if (poolTheBlock) { 106251c0b2f7Stbbdev getTLS(/*create=*/false)->freeSlabBlocks.returnBlock(block); 106351c0b2f7Stbbdev } else { 106451c0b2f7Stbbdev // slab blocks in user's pools do not have valid backRefIdx 106551c0b2f7Stbbdev if (!extMemPool.userPool()) 106651c0b2f7Stbbdev removeBackRef(*(block->getBackRefIdx())); 106751c0b2f7Stbbdev extMemPool.backend.putSlabBlock(block); 106851c0b2f7Stbbdev } 106951c0b2f7Stbbdev } 107051c0b2f7Stbbdev 107151c0b2f7Stbbdev bool ExtMemoryPool::init(intptr_t poolId, rawAllocType rawAlloc, 107251c0b2f7Stbbdev rawFreeType rawFree, size_t granularity, 107351c0b2f7Stbbdev bool keepAllMemory, bool fixedPool) 107451c0b2f7Stbbdev { 107551c0b2f7Stbbdev this->poolId = poolId; 107651c0b2f7Stbbdev this->rawAlloc = rawAlloc; 107751c0b2f7Stbbdev this->rawFree = rawFree; 107851c0b2f7Stbbdev this->granularity = granularity; 107951c0b2f7Stbbdev this->keepAllMemory = keepAllMemory; 108051c0b2f7Stbbdev this->fixedPool = fixedPool; 108151c0b2f7Stbbdev this->delayRegsReleasing = false; 108251c0b2f7Stbbdev if (!initTLS()) 108351c0b2f7Stbbdev return false; 108451c0b2f7Stbbdev loc.init(this); 108551c0b2f7Stbbdev backend.init(this); 108651c0b2f7Stbbdev MALLOC_ASSERT(isPoolValid(), NULL); 108751c0b2f7Stbbdev return true; 108851c0b2f7Stbbdev } 108951c0b2f7Stbbdev 109051c0b2f7Stbbdev bool ExtMemoryPool::initTLS() { return tlsPointerKey.init(); } 109151c0b2f7Stbbdev 109251c0b2f7Stbbdev bool MemoryPool::init(intptr_t poolId, const MemPoolPolicy *policy) 109351c0b2f7Stbbdev { 109451c0b2f7Stbbdev if (!extMemPool.init(poolId, policy->pAlloc, policy->pFree, 109551c0b2f7Stbbdev policy->granularity? policy->granularity : defaultGranularity, 109651c0b2f7Stbbdev policy->keepAllMemory, policy->fixedPool)) 109751c0b2f7Stbbdev return false; 109851c0b2f7Stbbdev { 109951c0b2f7Stbbdev MallocMutex::scoped_lock lock(memPoolListLock); 110051c0b2f7Stbbdev next = defaultMemPool->next; 110151c0b2f7Stbbdev defaultMemPool->next = this; 110251c0b2f7Stbbdev prev = defaultMemPool; 110351c0b2f7Stbbdev if (next) 110451c0b2f7Stbbdev next->prev = this; 110551c0b2f7Stbbdev } 110651c0b2f7Stbbdev return true; 110751c0b2f7Stbbdev } 110851c0b2f7Stbbdev 110951c0b2f7Stbbdev bool MemoryPool::reset() 111051c0b2f7Stbbdev { 111151c0b2f7Stbbdev MALLOC_ASSERT(extMemPool.userPool(), "No reset for the system pool."); 111251c0b2f7Stbbdev // memory is not releasing during pool reset 111351c0b2f7Stbbdev // TODO: mark regions to release unused on next reset() 111451c0b2f7Stbbdev extMemPool.delayRegionsReleasing(true); 111551c0b2f7Stbbdev 111651c0b2f7Stbbdev bootStrapBlocks.reset(); 111751c0b2f7Stbbdev extMemPool.lmbList.releaseAll</*poolDestroy=*/false>(&extMemPool.backend); 111851c0b2f7Stbbdev if (!extMemPool.reset()) 111951c0b2f7Stbbdev return false; 112051c0b2f7Stbbdev 112151c0b2f7Stbbdev if (!extMemPool.initTLS()) 112251c0b2f7Stbbdev return false; 112351c0b2f7Stbbdev extMemPool.delayRegionsReleasing(false); 112451c0b2f7Stbbdev return true; 112551c0b2f7Stbbdev } 112651c0b2f7Stbbdev 112751c0b2f7Stbbdev bool MemoryPool::destroy() 112851c0b2f7Stbbdev { 112951c0b2f7Stbbdev #if __TBB_MALLOC_LOCACHE_STAT 113051c0b2f7Stbbdev extMemPool.loc.reportStat(stdout); 113151c0b2f7Stbbdev #endif 113251c0b2f7Stbbdev #if __TBB_MALLOC_BACKEND_STAT 113351c0b2f7Stbbdev extMemPool.backend.reportStat(stdout); 113451c0b2f7Stbbdev #endif 113551c0b2f7Stbbdev { 113651c0b2f7Stbbdev MallocMutex::scoped_lock lock(memPoolListLock); 113751c0b2f7Stbbdev // remove itself from global pool list 113851c0b2f7Stbbdev if (prev) 113951c0b2f7Stbbdev prev->next = next; 114051c0b2f7Stbbdev if (next) 114151c0b2f7Stbbdev next->prev = prev; 114251c0b2f7Stbbdev } 114351c0b2f7Stbbdev // slab blocks in non-default pool do not have backreferences, 114451c0b2f7Stbbdev // only large objects do 114551c0b2f7Stbbdev if (extMemPool.userPool()) 114651c0b2f7Stbbdev extMemPool.lmbList.releaseAll</*poolDestroy=*/true>(&extMemPool.backend); 114751c0b2f7Stbbdev else { 114851c0b2f7Stbbdev // only one non-userPool() is supported now 114951c0b2f7Stbbdev MALLOC_ASSERT(this==defaultMemPool, NULL); 115051c0b2f7Stbbdev // There and below in extMemPool.destroy(), do not restore initial state 115151c0b2f7Stbbdev // for user pool, because it's just about to be released. But for system 115251c0b2f7Stbbdev // pool restoring, we do not want to do zeroing of it on subsequent reload. 115351c0b2f7Stbbdev bootStrapBlocks.reset(); 115451c0b2f7Stbbdev extMemPool.orphanedBlocks.reset(); 115551c0b2f7Stbbdev } 115651c0b2f7Stbbdev return extMemPool.destroy(); 115751c0b2f7Stbbdev } 115851c0b2f7Stbbdev 115951c0b2f7Stbbdev void MemoryPool::onThreadShutdown(TLSData *tlsData) 116051c0b2f7Stbbdev { 116151c0b2f7Stbbdev if (tlsData) { // might be called for "empty" TLS 116251c0b2f7Stbbdev tlsData->release(); 116351c0b2f7Stbbdev bootStrapBlocks.free(tlsData); 116451c0b2f7Stbbdev clearTLS(); 116551c0b2f7Stbbdev } 116651c0b2f7Stbbdev } 116751c0b2f7Stbbdev 116851c0b2f7Stbbdev #if MALLOC_DEBUG 116951c0b2f7Stbbdev void Bin::verifyTLSBin (size_t size) const 117051c0b2f7Stbbdev { 117151c0b2f7Stbbdev /* The debug version verifies the TLSBin as needed */ 117251c0b2f7Stbbdev uint32_t objSize = getObjectSize(size); 117351c0b2f7Stbbdev 117451c0b2f7Stbbdev if (activeBlk) { 117551c0b2f7Stbbdev MALLOC_ASSERT( activeBlk->isOwnedByCurrentThread(), ASSERT_TEXT ); 117651c0b2f7Stbbdev MALLOC_ASSERT( activeBlk->objectSize == objSize, ASSERT_TEXT ); 117751c0b2f7Stbbdev #if MALLOC_DEBUG>1 117851c0b2f7Stbbdev for (Block* temp = activeBlk->next; temp; temp=temp->next) { 117951c0b2f7Stbbdev MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); 118051c0b2f7Stbbdev MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); 118151c0b2f7Stbbdev MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); 118251c0b2f7Stbbdev MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); 118351c0b2f7Stbbdev if (temp->next) { 118451c0b2f7Stbbdev MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); 118551c0b2f7Stbbdev } 118651c0b2f7Stbbdev } 118751c0b2f7Stbbdev for (Block* temp = activeBlk->previous; temp; temp=temp->previous) { 118851c0b2f7Stbbdev MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); 118951c0b2f7Stbbdev MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); 119051c0b2f7Stbbdev MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); 119151c0b2f7Stbbdev MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); 119251c0b2f7Stbbdev if (temp->previous) { 119351c0b2f7Stbbdev MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); 119451c0b2f7Stbbdev } 119551c0b2f7Stbbdev } 119651c0b2f7Stbbdev #endif /* MALLOC_DEBUG>1 */ 119751c0b2f7Stbbdev } 119851c0b2f7Stbbdev } 119951c0b2f7Stbbdev #else /* MALLOC_DEBUG */ 120051c0b2f7Stbbdev inline void Bin::verifyTLSBin (size_t) const { } 120151c0b2f7Stbbdev #endif /* MALLOC_DEBUG */ 120251c0b2f7Stbbdev 120351c0b2f7Stbbdev /* 120451c0b2f7Stbbdev * Add a block to the start of this tls bin list. 120551c0b2f7Stbbdev */ 120651c0b2f7Stbbdev void Bin::pushTLSBin(Block* block) 120751c0b2f7Stbbdev { 120851c0b2f7Stbbdev /* The objectSize should be defined and not a parameter 120951c0b2f7Stbbdev because the function is applied to partially filled blocks as well */ 121051c0b2f7Stbbdev unsigned int size = block->objectSize; 121151c0b2f7Stbbdev 121251c0b2f7Stbbdev MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); 121351c0b2f7Stbbdev MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); 121451c0b2f7Stbbdev MALLOC_ASSERT( block->next == NULL, ASSERT_TEXT ); 121551c0b2f7Stbbdev MALLOC_ASSERT( block->previous == NULL, ASSERT_TEXT ); 121651c0b2f7Stbbdev 121751c0b2f7Stbbdev MALLOC_ASSERT( this, ASSERT_TEXT ); 121851c0b2f7Stbbdev verifyTLSBin(size); 121951c0b2f7Stbbdev 122051c0b2f7Stbbdev block->next = activeBlk; 122151c0b2f7Stbbdev if( activeBlk ) { 122251c0b2f7Stbbdev block->previous = activeBlk->previous; 122351c0b2f7Stbbdev activeBlk->previous = block; 122451c0b2f7Stbbdev if( block->previous ) 122551c0b2f7Stbbdev block->previous->next = block; 122651c0b2f7Stbbdev } else { 122751c0b2f7Stbbdev activeBlk = block; 122851c0b2f7Stbbdev } 122951c0b2f7Stbbdev 123051c0b2f7Stbbdev verifyTLSBin(size); 123151c0b2f7Stbbdev } 123251c0b2f7Stbbdev 123351c0b2f7Stbbdev /* 123451c0b2f7Stbbdev * Take a block out of its tls bin (e.g. before removal). 123551c0b2f7Stbbdev */ 123651c0b2f7Stbbdev void Bin::outofTLSBin(Block* block) 123751c0b2f7Stbbdev { 123851c0b2f7Stbbdev unsigned int size = block->objectSize; 123951c0b2f7Stbbdev 124051c0b2f7Stbbdev MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); 124151c0b2f7Stbbdev MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); 124251c0b2f7Stbbdev 124351c0b2f7Stbbdev MALLOC_ASSERT( this, ASSERT_TEXT ); 124451c0b2f7Stbbdev verifyTLSBin(size); 124551c0b2f7Stbbdev 124651c0b2f7Stbbdev if (block == activeBlk) { 124751c0b2f7Stbbdev activeBlk = block->previous? block->previous : block->next; 124851c0b2f7Stbbdev } 124951c0b2f7Stbbdev /* Unlink the block */ 125051c0b2f7Stbbdev if (block->previous) { 125151c0b2f7Stbbdev MALLOC_ASSERT( block->previous->next == block, ASSERT_TEXT ); 125251c0b2f7Stbbdev block->previous->next = block->next; 125351c0b2f7Stbbdev } 125451c0b2f7Stbbdev if (block->next) { 125551c0b2f7Stbbdev MALLOC_ASSERT( block->next->previous == block, ASSERT_TEXT ); 125651c0b2f7Stbbdev block->next->previous = block->previous; 125751c0b2f7Stbbdev } 125851c0b2f7Stbbdev block->next = NULL; 125951c0b2f7Stbbdev block->previous = NULL; 126051c0b2f7Stbbdev 126151c0b2f7Stbbdev verifyTLSBin(size); 126251c0b2f7Stbbdev } 126351c0b2f7Stbbdev 126451c0b2f7Stbbdev Block* Bin::getPrivatizedFreeListBlock() 126551c0b2f7Stbbdev { 126651c0b2f7Stbbdev Block* block; 126751c0b2f7Stbbdev MALLOC_ASSERT( this, ASSERT_TEXT ); 126851c0b2f7Stbbdev // if this method is called, active block usage must be unsuccessful 126951c0b2f7Stbbdev MALLOC_ASSERT( !activeBlk && !mailbox.load(std::memory_order_relaxed) || activeBlk && activeBlk->isFull, ASSERT_TEXT ); 127051c0b2f7Stbbdev 127151c0b2f7Stbbdev // the counter should be changed STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); 127251c0b2f7Stbbdev if (!mailbox.load(std::memory_order_acquire)) // hotpath is empty mailbox 127351c0b2f7Stbbdev return NULL; 127451c0b2f7Stbbdev else { // mailbox is not empty, take lock and inspect it 127551c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(mailLock); 127651c0b2f7Stbbdev block = mailbox.load(std::memory_order_relaxed); 127751c0b2f7Stbbdev if( block ) { 127851c0b2f7Stbbdev MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); 1279478de5b1Stbbdev MALLOC_ASSERT( !isNotForUse(block->nextPrivatizable.load(std::memory_order_relaxed)), ASSERT_TEXT ); 1280478de5b1Stbbdev mailbox.store(block->nextPrivatizable.load(std::memory_order_relaxed), std::memory_order_relaxed); 1281478de5b1Stbbdev block->nextPrivatizable.store((Block*)this, std::memory_order_relaxed); 128251c0b2f7Stbbdev } 128351c0b2f7Stbbdev } 128451c0b2f7Stbbdev if( block ) { 128551c0b2f7Stbbdev MALLOC_ASSERT( isSolidPtr(block->publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT ); 128651c0b2f7Stbbdev block->privatizePublicFreeList(); 128751c0b2f7Stbbdev block->adjustPositionInBin(this); 128851c0b2f7Stbbdev } 128951c0b2f7Stbbdev return block; 129051c0b2f7Stbbdev } 129151c0b2f7Stbbdev 129251c0b2f7Stbbdev void Bin::addPublicFreeListBlock(Block* block) 129351c0b2f7Stbbdev { 129451c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(mailLock); 1295478de5b1Stbbdev block->nextPrivatizable.store(mailbox.load(std::memory_order_relaxed), std::memory_order_relaxed); 129651c0b2f7Stbbdev mailbox.store(block, std::memory_order_relaxed); 129751c0b2f7Stbbdev } 129851c0b2f7Stbbdev 129951c0b2f7Stbbdev // Process publicly freed objects in all blocks and return empty blocks 130051c0b2f7Stbbdev // to the backend in order to reduce overall footprint. 130151c0b2f7Stbbdev bool Bin::cleanPublicFreeLists() 130251c0b2f7Stbbdev { 130351c0b2f7Stbbdev Block* block; 130451c0b2f7Stbbdev if (!mailbox.load(std::memory_order_acquire)) 130551c0b2f7Stbbdev return false; 130651c0b2f7Stbbdev else { 130751c0b2f7Stbbdev // Grab all the blocks in the mailbox 130851c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(mailLock); 130951c0b2f7Stbbdev block = mailbox.load(std::memory_order_relaxed); 131051c0b2f7Stbbdev mailbox.store(NULL, std::memory_order_relaxed); 131151c0b2f7Stbbdev } 131251c0b2f7Stbbdev bool released = false; 131351c0b2f7Stbbdev while (block) { 131451c0b2f7Stbbdev MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); 1315478de5b1Stbbdev Block* tmp = block->nextPrivatizable.load(std::memory_order_relaxed); 1316478de5b1Stbbdev block->nextPrivatizable.store((Block*)this, std::memory_order_relaxed); 131751c0b2f7Stbbdev block->privatizePublicFreeList(); 131851c0b2f7Stbbdev if (block->empty()) { 131951c0b2f7Stbbdev processEmptyBlock(block, /*poolTheBlock=*/false); 132051c0b2f7Stbbdev released = true; 132151c0b2f7Stbbdev } else 132251c0b2f7Stbbdev block->adjustPositionInBin(this); 132351c0b2f7Stbbdev block = tmp; 132451c0b2f7Stbbdev } 132551c0b2f7Stbbdev return released; 132651c0b2f7Stbbdev } 132751c0b2f7Stbbdev 132851c0b2f7Stbbdev bool Block::adjustFullness() 132951c0b2f7Stbbdev { 133051c0b2f7Stbbdev if (bumpPtr) { 133151c0b2f7Stbbdev /* If we are still using a bump ptr for this block it is empty enough to use. */ 133251c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); 133351c0b2f7Stbbdev isFull = false; 133451c0b2f7Stbbdev } else { 133551c0b2f7Stbbdev const float threshold = (slabSize - sizeof(Block)) * (1 - emptyEnoughRatio); 133651c0b2f7Stbbdev /* allocatedCount shows how many objects in the block are in use; however it still counts 133751c0b2f7Stbbdev * blocks freed by other threads; so prior call to privatizePublicFreeList() is recommended */ 133851c0b2f7Stbbdev isFull = (allocatedCount*objectSize > threshold) ? true : false; 133951c0b2f7Stbbdev #if COLLECT_STATISTICS 134051c0b2f7Stbbdev if (isFull) 134151c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), examineNotEmpty); 134251c0b2f7Stbbdev else 134351c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); 134451c0b2f7Stbbdev #endif 134551c0b2f7Stbbdev } 134651c0b2f7Stbbdev return isFull; 134751c0b2f7Stbbdev } 134851c0b2f7Stbbdev 134951c0b2f7Stbbdev // This method resides in class Block, and not in class Bin, in order to avoid 135051c0b2f7Stbbdev // calling getAllocationBin on a reasonably hot path in Block::freeOwnObject 135151c0b2f7Stbbdev void Block::adjustPositionInBin(Bin* bin/*=NULL*/) 135251c0b2f7Stbbdev { 135351c0b2f7Stbbdev // If the block were full, but became empty enough to use, 135451c0b2f7Stbbdev // move it to the front of the list 135551c0b2f7Stbbdev if (isFull && !adjustFullness()) { 135651c0b2f7Stbbdev if (!bin) 1357478de5b1Stbbdev bin = tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize); 135851c0b2f7Stbbdev bin->moveBlockToFront(this); 135951c0b2f7Stbbdev } 136051c0b2f7Stbbdev } 136151c0b2f7Stbbdev 136251c0b2f7Stbbdev /* Restore the bump pointer for an empty block that is planned to use */ 136351c0b2f7Stbbdev void Block::restoreBumpPtr() 136451c0b2f7Stbbdev { 136551c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount == 0, ASSERT_TEXT ); 136651c0b2f7Stbbdev MALLOC_ASSERT( !isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT ); 136751c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), freeRestoreBumpPtr); 136851c0b2f7Stbbdev bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); 136951c0b2f7Stbbdev freeList = NULL; 137051c0b2f7Stbbdev isFull = false; 137151c0b2f7Stbbdev } 137251c0b2f7Stbbdev 137351c0b2f7Stbbdev void Block::freeOwnObject(void *object) 137451c0b2f7Stbbdev { 1375478de5b1Stbbdev tlsPtr.load(std::memory_order_relaxed)->markUsed(); 137651c0b2f7Stbbdev allocatedCount--; 137751c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); 137851c0b2f7Stbbdev #if COLLECT_STATISTICS 137951c0b2f7Stbbdev // Note that getAllocationBin is not called on the hottest path with statistics off. 1380478de5b1Stbbdev if (tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize)->getActiveBlock() != this) 138151c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), freeToInactiveBlock); 138251c0b2f7Stbbdev else 138351c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), freeToActiveBlock); 138451c0b2f7Stbbdev #endif 138551c0b2f7Stbbdev if (empty()) { 138651c0b2f7Stbbdev // If the last object of a slab is freed, the slab cannot be marked full 138751c0b2f7Stbbdev MALLOC_ASSERT(!isFull, ASSERT_TEXT); 1388478de5b1Stbbdev tlsPtr.load(std::memory_order_relaxed)->getAllocationBin(objectSize)->processEmptyBlock(this, /*poolTheBlock=*/true); 138951c0b2f7Stbbdev } else { // hot path 139051c0b2f7Stbbdev FreeObject *objectToFree = findObjectToFree(object); 139151c0b2f7Stbbdev objectToFree->next = freeList; 139251c0b2f7Stbbdev freeList = objectToFree; 139351c0b2f7Stbbdev adjustPositionInBin(); 139451c0b2f7Stbbdev } 139551c0b2f7Stbbdev } 139651c0b2f7Stbbdev 139751c0b2f7Stbbdev void Block::freePublicObject (FreeObject *objectToFree) 139851c0b2f7Stbbdev { 1399478de5b1Stbbdev FreeObject* localPublicFreeList{}; 140051c0b2f7Stbbdev 140151c0b2f7Stbbdev MALLOC_ITT_SYNC_RELEASING(&publicFreeList); 140251c0b2f7Stbbdev #if FREELIST_NONBLOCKING 140351c0b2f7Stbbdev // TBB_REVAMP_TODO: make it non atomic in non-blocking scenario 1404478de5b1Stbbdev localPublicFreeList = publicFreeList.load(std::memory_order_relaxed); 140551c0b2f7Stbbdev do { 1406478de5b1Stbbdev objectToFree->next = localPublicFreeList; 140751c0b2f7Stbbdev // no backoff necessary because trying to make change, not waiting for a change 1408478de5b1Stbbdev } while( !publicFreeList.compare_exchange_strong(localPublicFreeList, objectToFree) ); 140951c0b2f7Stbbdev #else 141051c0b2f7Stbbdev STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); 141151c0b2f7Stbbdev { 141251c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(publicFreeListLock); 141351c0b2f7Stbbdev localPublicFreeList = objectToFree->next = publicFreeList; 141451c0b2f7Stbbdev publicFreeList = objectToFree; 141551c0b2f7Stbbdev } 141651c0b2f7Stbbdev #endif 141751c0b2f7Stbbdev 141851c0b2f7Stbbdev if( localPublicFreeList==NULL ) { 141951c0b2f7Stbbdev // if the block is abandoned, its nextPrivatizable pointer should be UNUSABLE 142051c0b2f7Stbbdev // otherwise, it should point to the bin the block belongs to. 142151c0b2f7Stbbdev // reading nextPrivatizable is thread-safe below, because: 142251c0b2f7Stbbdev // 1) the executing thread atomically got publicFreeList==NULL and changed it to non-NULL; 142351c0b2f7Stbbdev // 2) only owning thread can change it back to NULL, 142451c0b2f7Stbbdev // 3) but it can not be done until the block is put to the mailbox 142551c0b2f7Stbbdev // So the executing thread is now the only one that can change nextPrivatizable 1426478de5b1Stbbdev Block* next = nextPrivatizable.load(std::memory_order_acquire); 1427478de5b1Stbbdev if( !isNotForUse(next) ) { 1428478de5b1Stbbdev MALLOC_ASSERT( next!=nullptr, ASSERT_TEXT ); 1429478de5b1Stbbdev Bin* theBin = (Bin*) next; 143051c0b2f7Stbbdev #if MALLOC_DEBUG && TBB_REVAMP_TODO 143151c0b2f7Stbbdev // FIXME: The thread that returns the block is not the block's owner. 143251c0b2f7Stbbdev // The below assertion compares 'theBin' against the caller's local bin, thus, it always fails. 143351c0b2f7Stbbdev // Need to find a way to get the correct remote bin for comparison. 143451c0b2f7Stbbdev { // check that nextPrivatizable points to the bin the block belongs to 143551c0b2f7Stbbdev uint32_t index = getIndex( objectSize ); 143651c0b2f7Stbbdev TLSData* tls = getThreadMallocTLS(); 143751c0b2f7Stbbdev MALLOC_ASSERT( theBin==tls->bin+index, ASSERT_TEXT ); 143851c0b2f7Stbbdev } 143951c0b2f7Stbbdev #endif // MALLOC_DEBUG 144051c0b2f7Stbbdev theBin->addPublicFreeListBlock(this); 144151c0b2f7Stbbdev } 144251c0b2f7Stbbdev } 144351c0b2f7Stbbdev STAT_increment(getThreadId(), ThreadCommonCounters, freeToOtherThread); 1444478de5b1Stbbdev STAT_increment(ownerTid.load(std::memory_order_relaxed), getIndex(objectSize), freeByOtherThread); 144551c0b2f7Stbbdev } 144651c0b2f7Stbbdev 144751c0b2f7Stbbdev // Make objects freed by other threads available for use again 144851c0b2f7Stbbdev void Block::privatizePublicFreeList( bool reset ) 144951c0b2f7Stbbdev { 145051c0b2f7Stbbdev FreeObject *localPublicFreeList; 145151c0b2f7Stbbdev // If reset is false, publicFreeList should not be zeroed but set to UNUSABLE 145251c0b2f7Stbbdev // to properly synchronize with other threads freeing objects to this slab. 145351c0b2f7Stbbdev const intptr_t endMarker = reset ? 0 : UNUSABLE; 145451c0b2f7Stbbdev 145551c0b2f7Stbbdev // Only the owner thread may reset the pointer to NULL 145651c0b2f7Stbbdev MALLOC_ASSERT( isOwnedByCurrentThread() || !reset, ASSERT_TEXT ); 145751c0b2f7Stbbdev #if FREELIST_NONBLOCKING 145851c0b2f7Stbbdev localPublicFreeList = publicFreeList.exchange((FreeObject*)endMarker); 145951c0b2f7Stbbdev #else 146051c0b2f7Stbbdev STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); 146151c0b2f7Stbbdev { 146251c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(publicFreeListLock); 146351c0b2f7Stbbdev localPublicFreeList = publicFreeList; 146451c0b2f7Stbbdev publicFreeList = endMarker; 146551c0b2f7Stbbdev } 146651c0b2f7Stbbdev #endif 146751c0b2f7Stbbdev MALLOC_ITT_SYNC_ACQUIRED(&publicFreeList); 146851c0b2f7Stbbdev MALLOC_ASSERT( !(reset && isNotForUse(publicFreeList)), ASSERT_TEXT ); 146951c0b2f7Stbbdev 147051c0b2f7Stbbdev // publicFreeList must have been UNUSABLE or valid, but not NULL 147151c0b2f7Stbbdev MALLOC_ASSERT( localPublicFreeList!=NULL, ASSERT_TEXT ); 147251c0b2f7Stbbdev if( isSolidPtr(localPublicFreeList) ) { 147351c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount <= (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); 147451c0b2f7Stbbdev /* other threads did not change the counter freeing our blocks */ 147551c0b2f7Stbbdev allocatedCount--; 147651c0b2f7Stbbdev FreeObject *temp = localPublicFreeList; 147751c0b2f7Stbbdev while( isSolidPtr(temp->next) ){ // the list will end with either NULL or UNUSABLE 147851c0b2f7Stbbdev temp = temp->next; 147951c0b2f7Stbbdev allocatedCount--; 148051c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); 148151c0b2f7Stbbdev } 148251c0b2f7Stbbdev /* merge with local freeList */ 148351c0b2f7Stbbdev temp->next = freeList; 148451c0b2f7Stbbdev freeList = localPublicFreeList; 148551c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), allocPrivatized); 148651c0b2f7Stbbdev } 148751c0b2f7Stbbdev } 148851c0b2f7Stbbdev 148951c0b2f7Stbbdev void Block::privatizeOrphaned(TLSData *tls, unsigned index) 149051c0b2f7Stbbdev { 149151c0b2f7Stbbdev Bin* bin = tls->bin + index; 149251c0b2f7Stbbdev STAT_increment(getThreadId(), index, allocBlockPublic); 149351c0b2f7Stbbdev next = NULL; 149451c0b2f7Stbbdev previous = NULL; 149551c0b2f7Stbbdev MALLOC_ASSERT( publicFreeList.load(std::memory_order_relaxed) != NULL, ASSERT_TEXT ); 149651c0b2f7Stbbdev /* There is not a race here since no other thread owns this block */ 149751c0b2f7Stbbdev markOwned(tls); 149851c0b2f7Stbbdev // It is safe to change nextPrivatizable, as publicFreeList is not null 1499478de5b1Stbbdev MALLOC_ASSERT( isNotForUse(nextPrivatizable.load(std::memory_order_relaxed)), ASSERT_TEXT ); 1500478de5b1Stbbdev nextPrivatizable.store((Block*)bin, std::memory_order_relaxed); 150151c0b2f7Stbbdev // the next call is required to change publicFreeList to 0 150251c0b2f7Stbbdev privatizePublicFreeList(); 150351c0b2f7Stbbdev if( empty() ) { 150451c0b2f7Stbbdev restoreBumpPtr(); 150551c0b2f7Stbbdev } else { 150651c0b2f7Stbbdev adjustFullness(); // check the block fullness and set isFull 150751c0b2f7Stbbdev } 150851c0b2f7Stbbdev MALLOC_ASSERT( !isNotForUse(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT ); 150951c0b2f7Stbbdev } 151051c0b2f7Stbbdev 151151c0b2f7Stbbdev 151251c0b2f7Stbbdev bool Block::readyToShare() 151351c0b2f7Stbbdev { 151451c0b2f7Stbbdev FreeObject* oldVal = NULL; 151551c0b2f7Stbbdev #if FREELIST_NONBLOCKING 151651c0b2f7Stbbdev publicFreeList.compare_exchange_strong(oldVal, (FreeObject*)UNUSABLE); 151751c0b2f7Stbbdev #else 151851c0b2f7Stbbdev STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); 151951c0b2f7Stbbdev { 152051c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(publicFreeListLock); 152151c0b2f7Stbbdev if ( (oldVal=publicFreeList)==NULL ) 152251c0b2f7Stbbdev (intptr_t&)(publicFreeList) = UNUSABLE; 152351c0b2f7Stbbdev } 152451c0b2f7Stbbdev #endif 152551c0b2f7Stbbdev return oldVal==NULL; 152651c0b2f7Stbbdev } 152751c0b2f7Stbbdev 152851c0b2f7Stbbdev void Block::shareOrphaned(intptr_t binTag, unsigned index) 152951c0b2f7Stbbdev { 153051c0b2f7Stbbdev MALLOC_ASSERT( binTag, ASSERT_TEXT ); 153151c0b2f7Stbbdev // unreferenced formal parameter warning 153251c0b2f7Stbbdev tbb::detail::suppress_unused_warning(index); 153351c0b2f7Stbbdev STAT_increment(getThreadId(), index, freeBlockPublic); 153451c0b2f7Stbbdev markOrphaned(); 1535478de5b1Stbbdev bool syncOnMailbox = false; 1536478de5b1Stbbdev if ((intptr_t)nextPrivatizable.load(std::memory_order_relaxed) == binTag) { 153751c0b2f7Stbbdev // First check passed: the block is not in mailbox yet. 153851c0b2f7Stbbdev // Need to set publicFreeList to non-zero, so other threads 153951c0b2f7Stbbdev // will not change nextPrivatizable and it can be zeroed. 154051c0b2f7Stbbdev if ( !readyToShare() ) { 154151c0b2f7Stbbdev // another thread freed an object; we need to wait until it finishes. 154251c0b2f7Stbbdev // There is no need for exponential backoff, as the wait here is not for a lock; 154351c0b2f7Stbbdev // but need to yield, so the thread we wait has a chance to run. 154451c0b2f7Stbbdev // TODO: add a pause to also be friendly to hyperthreads 154551c0b2f7Stbbdev int count = 256; 1546478de5b1Stbbdev while ((intptr_t)nextPrivatizable.load(std::memory_order_relaxed) == binTag) { 154751c0b2f7Stbbdev if (--count==0) { 154851c0b2f7Stbbdev do_yield(); 154951c0b2f7Stbbdev count = 256; 155051c0b2f7Stbbdev } 155151c0b2f7Stbbdev } 155251c0b2f7Stbbdev } 155351c0b2f7Stbbdev } 155451c0b2f7Stbbdev MALLOC_ASSERT( publicFreeList.load(std::memory_order_relaxed) !=NULL, ASSERT_TEXT ); 155551c0b2f7Stbbdev // now it is safe to change our data 155651c0b2f7Stbbdev previous = NULL; 155751c0b2f7Stbbdev // it is caller responsibility to ensure that the list of blocks 155851c0b2f7Stbbdev // formed by nextPrivatizable pointers is kept consistent if required. 155951c0b2f7Stbbdev // if only called from thread shutdown code, it does not matter. 1560478de5b1Stbbdev nextPrivatizable.store((Block*)UNUSABLE, std::memory_order_relaxed); 156151c0b2f7Stbbdev } 156251c0b2f7Stbbdev 156351c0b2f7Stbbdev void Block::cleanBlockHeader() 156451c0b2f7Stbbdev { 1565478de5b1Stbbdev next = nullptr; 1566478de5b1Stbbdev previous = nullptr; 1567478de5b1Stbbdev freeList = nullptr; 156851c0b2f7Stbbdev allocatedCount = 0; 156951c0b2f7Stbbdev isFull = false; 1570478de5b1Stbbdev tlsPtr.store(nullptr, std::memory_order_relaxed); 157151c0b2f7Stbbdev 1572478de5b1Stbbdev publicFreeList.store(nullptr, std::memory_order_relaxed); 157351c0b2f7Stbbdev } 157451c0b2f7Stbbdev 157551c0b2f7Stbbdev void Block::initEmptyBlock(TLSData *tls, size_t size) 157651c0b2f7Stbbdev { 157751c0b2f7Stbbdev // Having getIndex and getObjectSize called next to each other 157851c0b2f7Stbbdev // allows better compiler optimization as they basically share the code. 157951c0b2f7Stbbdev unsigned int index = getIndex(size); 158051c0b2f7Stbbdev unsigned int objSz = getObjectSize(size); 158151c0b2f7Stbbdev 158251c0b2f7Stbbdev cleanBlockHeader(); 158351c0b2f7Stbbdev objectSize = objSz; 158451c0b2f7Stbbdev markOwned(tls); 158551c0b2f7Stbbdev // bump pointer should be prepared for first allocation - thus mode it down to objectSize 158651c0b2f7Stbbdev bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); 158751c0b2f7Stbbdev 158851c0b2f7Stbbdev // each block should have the address where the head of the list of "privatizable" blocks is kept 158951c0b2f7Stbbdev // the only exception is a block for boot strap which is initialized when TLS is yet NULL 1590478de5b1Stbbdev nextPrivatizable.store( tls? (Block*)(tls->bin + index) : nullptr, std::memory_order_relaxed); 159151c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] Empty block %p is initialized, owner is %ld, objectSize is %d, bumpPtr is %p\n", 1592478de5b1Stbbdev this, tlsPtr.load(std::memory_order_relaxed) ? getThreadId() : -1, objectSize, bumpPtr )); 159351c0b2f7Stbbdev } 159451c0b2f7Stbbdev 159551c0b2f7Stbbdev Block *OrphanedBlocks::get(TLSData *tls, unsigned int size) 159651c0b2f7Stbbdev { 159751c0b2f7Stbbdev // TODO: try to use index from getAllocationBin 159851c0b2f7Stbbdev unsigned int index = getIndex(size); 159951c0b2f7Stbbdev Block *block = bins[index].pop(); 160051c0b2f7Stbbdev if (block) { 160151c0b2f7Stbbdev MALLOC_ITT_SYNC_ACQUIRED(bins+index); 160251c0b2f7Stbbdev block->privatizeOrphaned(tls, index); 160351c0b2f7Stbbdev } 160451c0b2f7Stbbdev return block; 160551c0b2f7Stbbdev } 160651c0b2f7Stbbdev 160751c0b2f7Stbbdev void OrphanedBlocks::put(intptr_t binTag, Block *block) 160851c0b2f7Stbbdev { 160951c0b2f7Stbbdev unsigned int index = getIndex(block->getSize()); 161051c0b2f7Stbbdev block->shareOrphaned(binTag, index); 161151c0b2f7Stbbdev MALLOC_ITT_SYNC_RELEASING(bins+index); 161251c0b2f7Stbbdev bins[index].push(block); 161351c0b2f7Stbbdev } 161451c0b2f7Stbbdev 161551c0b2f7Stbbdev void OrphanedBlocks::reset() 161651c0b2f7Stbbdev { 161751c0b2f7Stbbdev for (uint32_t i=0; i<numBlockBinLimit; i++) 161851c0b2f7Stbbdev new (bins+i) LifoList(); 161951c0b2f7Stbbdev } 162051c0b2f7Stbbdev 162151c0b2f7Stbbdev bool OrphanedBlocks::cleanup(Backend* backend) 162251c0b2f7Stbbdev { 162351c0b2f7Stbbdev bool released = false; 162451c0b2f7Stbbdev for (uint32_t i=0; i<numBlockBinLimit; i++) { 162551c0b2f7Stbbdev Block* block = bins[i].grab(); 162651c0b2f7Stbbdev MALLOC_ITT_SYNC_ACQUIRED(bins+i); 162751c0b2f7Stbbdev while (block) { 162851c0b2f7Stbbdev Block* next = block->next; 162951c0b2f7Stbbdev block->privatizePublicFreeList( /*reset=*/false ); // do not set publicFreeList to NULL 163051c0b2f7Stbbdev if (block->empty()) { 163151c0b2f7Stbbdev block->reset(); 163251c0b2f7Stbbdev // slab blocks in user's pools do not have valid backRefIdx 163351c0b2f7Stbbdev if (!backend->inUserPool()) 163451c0b2f7Stbbdev removeBackRef(*(block->getBackRefIdx())); 163551c0b2f7Stbbdev backend->putSlabBlock(block); 163651c0b2f7Stbbdev released = true; 163751c0b2f7Stbbdev } else { 163851c0b2f7Stbbdev MALLOC_ITT_SYNC_RELEASING(bins+i); 163951c0b2f7Stbbdev bins[i].push(block); 164051c0b2f7Stbbdev } 164151c0b2f7Stbbdev block = next; 164251c0b2f7Stbbdev } 164351c0b2f7Stbbdev } 164451c0b2f7Stbbdev return released; 164551c0b2f7Stbbdev } 164651c0b2f7Stbbdev 164751c0b2f7Stbbdev FreeBlockPool::ResOfGet FreeBlockPool::getBlock() 164851c0b2f7Stbbdev { 164951c0b2f7Stbbdev Block *b = head.exchange(NULL); 165051c0b2f7Stbbdev 165151c0b2f7Stbbdev if (b) { 165251c0b2f7Stbbdev size--; 165351c0b2f7Stbbdev Block *newHead = b->next; 165451c0b2f7Stbbdev lastAccessMiss = false; 165551c0b2f7Stbbdev head.store(newHead, std::memory_order_release); 165651c0b2f7Stbbdev } else { 165751c0b2f7Stbbdev lastAccessMiss = true; 165851c0b2f7Stbbdev } 165951c0b2f7Stbbdev return ResOfGet(b, lastAccessMiss); 166051c0b2f7Stbbdev } 166151c0b2f7Stbbdev 166251c0b2f7Stbbdev void FreeBlockPool::returnBlock(Block *block) 166351c0b2f7Stbbdev { 166451c0b2f7Stbbdev MALLOC_ASSERT( size <= POOL_HIGH_MARK, ASSERT_TEXT ); 166551c0b2f7Stbbdev Block *localHead = head.exchange(NULL); 166651c0b2f7Stbbdev 166751c0b2f7Stbbdev if (!localHead) { 166851c0b2f7Stbbdev size = 0; // head was stolen by externalClean, correct size accordingly 166951c0b2f7Stbbdev } else if (size == POOL_HIGH_MARK) { 167051c0b2f7Stbbdev // release cold blocks and add hot one, 167151c0b2f7Stbbdev // so keep POOL_LOW_MARK-1 blocks and add new block to head 167251c0b2f7Stbbdev Block *headToFree = localHead, *helper; 167351c0b2f7Stbbdev for (int i=0; i<POOL_LOW_MARK-2; i++) 167451c0b2f7Stbbdev headToFree = headToFree->next; 167551c0b2f7Stbbdev Block *last = headToFree; 167651c0b2f7Stbbdev headToFree = headToFree->next; 167751c0b2f7Stbbdev last->next = NULL; 167851c0b2f7Stbbdev size = POOL_LOW_MARK-1; 167951c0b2f7Stbbdev for (Block *currBl = headToFree; currBl; currBl = helper) { 168051c0b2f7Stbbdev helper = currBl->next; 168151c0b2f7Stbbdev // slab blocks in user's pools do not have valid backRefIdx 168251c0b2f7Stbbdev if (!backend->inUserPool()) 168351c0b2f7Stbbdev removeBackRef(currBl->backRefIdx); 168451c0b2f7Stbbdev backend->putSlabBlock(currBl); 168551c0b2f7Stbbdev } 168651c0b2f7Stbbdev } 168751c0b2f7Stbbdev size++; 168851c0b2f7Stbbdev block->next = localHead; 168951c0b2f7Stbbdev head.store(block, std::memory_order_release); 169051c0b2f7Stbbdev } 169151c0b2f7Stbbdev 169251c0b2f7Stbbdev bool FreeBlockPool::externalCleanup() 169351c0b2f7Stbbdev { 169451c0b2f7Stbbdev Block *helper; 169551c0b2f7Stbbdev bool released = false; 169651c0b2f7Stbbdev 169751c0b2f7Stbbdev for (Block *currBl=head.exchange(NULL); currBl; currBl=helper) { 169851c0b2f7Stbbdev helper = currBl->next; 169951c0b2f7Stbbdev // slab blocks in user's pools do not have valid backRefIdx 170051c0b2f7Stbbdev if (!backend->inUserPool()) 170151c0b2f7Stbbdev removeBackRef(currBl->backRefIdx); 170251c0b2f7Stbbdev backend->putSlabBlock(currBl); 170351c0b2f7Stbbdev released = true; 170451c0b2f7Stbbdev } 170551c0b2f7Stbbdev return released; 170651c0b2f7Stbbdev } 170751c0b2f7Stbbdev 170851c0b2f7Stbbdev /* Prepare the block for returning to FreeBlockPool */ 170951c0b2f7Stbbdev void Block::reset() 171051c0b2f7Stbbdev { 171151c0b2f7Stbbdev // it is caller's responsibility to ensure no data is lost before calling this 171251c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount==0, ASSERT_TEXT ); 171351c0b2f7Stbbdev MALLOC_ASSERT( !isSolidPtr(publicFreeList.load(std::memory_order_relaxed)), ASSERT_TEXT ); 171451c0b2f7Stbbdev if (!isStartupAllocObject()) 171551c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), freeBlockBack); 171651c0b2f7Stbbdev 171751c0b2f7Stbbdev cleanBlockHeader(); 171851c0b2f7Stbbdev 1719478de5b1Stbbdev nextPrivatizable.store(nullptr, std::memory_order_relaxed); 172051c0b2f7Stbbdev 172151c0b2f7Stbbdev objectSize = 0; 172251c0b2f7Stbbdev // for an empty block, bump pointer should point right after the end of the block 172351c0b2f7Stbbdev bumpPtr = (FreeObject *)((uintptr_t)this + slabSize); 172451c0b2f7Stbbdev } 172551c0b2f7Stbbdev 172651c0b2f7Stbbdev inline void Bin::setActiveBlock (Block *block) 172751c0b2f7Stbbdev { 172851c0b2f7Stbbdev // MALLOC_ASSERT( bin, ASSERT_TEXT ); 172951c0b2f7Stbbdev MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); 173051c0b2f7Stbbdev // it is the caller responsibility to keep bin consistence (i.e. ensure this block is in the bin list) 173151c0b2f7Stbbdev activeBlk = block; 173251c0b2f7Stbbdev } 173351c0b2f7Stbbdev 173451c0b2f7Stbbdev inline Block* Bin::setPreviousBlockActive() 173551c0b2f7Stbbdev { 173651c0b2f7Stbbdev MALLOC_ASSERT( activeBlk, ASSERT_TEXT ); 173751c0b2f7Stbbdev Block* temp = activeBlk->previous; 173851c0b2f7Stbbdev if( temp ) { 173951c0b2f7Stbbdev MALLOC_ASSERT( !(temp->isFull), ASSERT_TEXT ); 174051c0b2f7Stbbdev activeBlk = temp; 174151c0b2f7Stbbdev } 174251c0b2f7Stbbdev return temp; 174351c0b2f7Stbbdev } 174451c0b2f7Stbbdev 174551c0b2f7Stbbdev inline bool Block::isOwnedByCurrentThread() const { 1746478de5b1Stbbdev return tlsPtr.load(std::memory_order_relaxed) && ownerTid.isCurrentThreadId(); 174751c0b2f7Stbbdev } 174851c0b2f7Stbbdev 174951c0b2f7Stbbdev FreeObject *Block::findObjectToFree(const void *object) const 175051c0b2f7Stbbdev { 175151c0b2f7Stbbdev FreeObject *objectToFree; 175251c0b2f7Stbbdev // Due to aligned allocations, a pointer passed to scalable_free 175351c0b2f7Stbbdev // might differ from the address of internally allocated object. 175451c0b2f7Stbbdev // Small objects however should always be fine. 175551c0b2f7Stbbdev if (objectSize <= maxSegregatedObjectSize) 175651c0b2f7Stbbdev objectToFree = (FreeObject*)object; 175751c0b2f7Stbbdev // "Fitting size" allocations are suspicious if aligned higher than naturally 175851c0b2f7Stbbdev else { 175951c0b2f7Stbbdev if ( ! isAligned(object,2*fittingAlignment) ) 176051c0b2f7Stbbdev // TODO: the above check is questionable - it gives false negatives in ~50% cases, 176151c0b2f7Stbbdev // so might even be slower in average than unconditional use of findAllocatedObject. 176251c0b2f7Stbbdev // here it should be a "real" object 176351c0b2f7Stbbdev objectToFree = (FreeObject*)object; 176451c0b2f7Stbbdev else 176551c0b2f7Stbbdev // here object can be an aligned address, so applying additional checks 176651c0b2f7Stbbdev objectToFree = findAllocatedObject(object); 176751c0b2f7Stbbdev MALLOC_ASSERT( isAligned(objectToFree,fittingAlignment), ASSERT_TEXT ); 176851c0b2f7Stbbdev } 176951c0b2f7Stbbdev MALLOC_ASSERT( isProperlyPlaced(objectToFree), ASSERT_TEXT ); 177051c0b2f7Stbbdev 177151c0b2f7Stbbdev return objectToFree; 177251c0b2f7Stbbdev } 177351c0b2f7Stbbdev 177451c0b2f7Stbbdev void TLSData::release() 177551c0b2f7Stbbdev { 177651c0b2f7Stbbdev memPool->extMemPool.allLocalCaches.unregisterThread(this); 177751c0b2f7Stbbdev externalCleanup(/*cleanOnlyUnused=*/false, /*cleanBins=*/false); 177851c0b2f7Stbbdev 177951c0b2f7Stbbdev for (unsigned index = 0; index < numBlockBins; index++) { 178051c0b2f7Stbbdev Block *activeBlk = bin[index].getActiveBlock(); 178151c0b2f7Stbbdev if (!activeBlk) 178251c0b2f7Stbbdev continue; 178351c0b2f7Stbbdev Block *threadlessBlock = activeBlk->previous; 1784478de5b1Stbbdev bool syncOnMailbox = false; 178551c0b2f7Stbbdev while (threadlessBlock) { 178651c0b2f7Stbbdev Block *threadBlock = threadlessBlock->previous; 178751c0b2f7Stbbdev if (threadlessBlock->empty()) { 178851c0b2f7Stbbdev /* we destroy the thread, so not use its block pool */ 178951c0b2f7Stbbdev memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); 179051c0b2f7Stbbdev } else { 179151c0b2f7Stbbdev memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); 1792478de5b1Stbbdev syncOnMailbox = true; 179351c0b2f7Stbbdev } 179451c0b2f7Stbbdev threadlessBlock = threadBlock; 179551c0b2f7Stbbdev } 179651c0b2f7Stbbdev threadlessBlock = activeBlk; 179751c0b2f7Stbbdev while (threadlessBlock) { 179851c0b2f7Stbbdev Block *threadBlock = threadlessBlock->next; 179951c0b2f7Stbbdev if (threadlessBlock->empty()) { 180051c0b2f7Stbbdev /* we destroy the thread, so not use its block pool */ 180151c0b2f7Stbbdev memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); 180251c0b2f7Stbbdev } else { 180351c0b2f7Stbbdev memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); 1804478de5b1Stbbdev syncOnMailbox = true; 180551c0b2f7Stbbdev } 180651c0b2f7Stbbdev threadlessBlock = threadBlock; 180751c0b2f7Stbbdev } 180851c0b2f7Stbbdev bin[index].resetActiveBlock(); 1809478de5b1Stbbdev 1810478de5b1Stbbdev if (syncOnMailbox) { 1811478de5b1Stbbdev // Although, we synchronized on nextPrivatizable inside a block, we still need to 1812478de5b1Stbbdev // synchronize on the bin lifetime because the thread releasing an object into the public 1813478de5b1Stbbdev // free list is touching the bin (mailbox and mailLock) 1814478de5b1Stbbdev MallocMutex::scoped_lock scoped_cs(bin[index].mailLock); 1815478de5b1Stbbdev } 181651c0b2f7Stbbdev } 181751c0b2f7Stbbdev } 181851c0b2f7Stbbdev 181951c0b2f7Stbbdev 182051c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 182151c0b2f7Stbbdev // TODO: Use dedicated heap for this 182251c0b2f7Stbbdev 182351c0b2f7Stbbdev /* 182451c0b2f7Stbbdev * It's a special kind of allocation that can be used when malloc is 182551c0b2f7Stbbdev * not available (either during startup or when malloc was already called and 182651c0b2f7Stbbdev * we are, say, inside pthread_setspecific's call). 182751c0b2f7Stbbdev * Block can contain objects of different sizes, 182851c0b2f7Stbbdev * allocations are performed by moving bump pointer and increasing of object counter, 182951c0b2f7Stbbdev * releasing is done via counter of objects allocated in the block 183051c0b2f7Stbbdev * or moving bump pointer if releasing object is on a bound. 183151c0b2f7Stbbdev * TODO: make bump pointer to grow to the same backward direction as all the others. 183251c0b2f7Stbbdev */ 183351c0b2f7Stbbdev 183451c0b2f7Stbbdev class StartupBlock : public Block { 183551c0b2f7Stbbdev size_t availableSize() const { 183651c0b2f7Stbbdev return slabSize - ((uintptr_t)bumpPtr - (uintptr_t)this); 183751c0b2f7Stbbdev } 183851c0b2f7Stbbdev static StartupBlock *getBlock(); 183951c0b2f7Stbbdev public: 184051c0b2f7Stbbdev static FreeObject *allocate(size_t size); 184151c0b2f7Stbbdev static size_t msize(void *ptr) { return *((size_t*)ptr - 1); } 184251c0b2f7Stbbdev void free(void *ptr); 184351c0b2f7Stbbdev }; 184451c0b2f7Stbbdev 184551c0b2f7Stbbdev static MallocMutex startupMallocLock; 184651c0b2f7Stbbdev static StartupBlock *firstStartupBlock; 184751c0b2f7Stbbdev 184851c0b2f7Stbbdev StartupBlock *StartupBlock::getBlock() 184951c0b2f7Stbbdev { 185051c0b2f7Stbbdev BackRefIdx backRefIdx = BackRefIdx::newBackRef(/*largeObj=*/false); 185151c0b2f7Stbbdev if (backRefIdx.isInvalid()) return NULL; 185251c0b2f7Stbbdev 185351c0b2f7Stbbdev StartupBlock *block = static_cast<StartupBlock*>( 185451c0b2f7Stbbdev defaultMemPool->extMemPool.backend.getSlabBlock(1)); 185551c0b2f7Stbbdev if (!block) return NULL; 185651c0b2f7Stbbdev 185751c0b2f7Stbbdev block->cleanBlockHeader(); 185851c0b2f7Stbbdev setBackRef(backRefIdx, block); 185951c0b2f7Stbbdev block->backRefIdx = backRefIdx; 186051c0b2f7Stbbdev // use startupAllocObjSizeMark to mark objects from startup block marker 186151c0b2f7Stbbdev block->objectSize = startupAllocObjSizeMark; 186251c0b2f7Stbbdev block->bumpPtr = (FreeObject *)((uintptr_t)block + sizeof(StartupBlock)); 186351c0b2f7Stbbdev return block; 186451c0b2f7Stbbdev } 186551c0b2f7Stbbdev 186651c0b2f7Stbbdev FreeObject *StartupBlock::allocate(size_t size) 186751c0b2f7Stbbdev { 186851c0b2f7Stbbdev FreeObject *result; 186951c0b2f7Stbbdev StartupBlock *newBlock = NULL; 187051c0b2f7Stbbdev bool newBlockUnused = false; 187151c0b2f7Stbbdev 187251c0b2f7Stbbdev /* Objects must be aligned on their natural bounds, 187351c0b2f7Stbbdev and objects bigger than word on word's bound. */ 187451c0b2f7Stbbdev size = alignUp(size, sizeof(size_t)); 187551c0b2f7Stbbdev // We need size of an object to implement msize. 187651c0b2f7Stbbdev size_t reqSize = size + sizeof(size_t); 187751c0b2f7Stbbdev { 187851c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(startupMallocLock); 187951c0b2f7Stbbdev // Re-check whether we need a new block (conditions might have changed) 188051c0b2f7Stbbdev if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) { 188151c0b2f7Stbbdev if (!newBlock) { 188251c0b2f7Stbbdev newBlock = StartupBlock::getBlock(); 188351c0b2f7Stbbdev if (!newBlock) return NULL; 188451c0b2f7Stbbdev } 188551c0b2f7Stbbdev newBlock->next = (Block*)firstStartupBlock; 188651c0b2f7Stbbdev if (firstStartupBlock) 188751c0b2f7Stbbdev firstStartupBlock->previous = (Block*)newBlock; 188851c0b2f7Stbbdev firstStartupBlock = newBlock; 1889478de5b1Stbbdev } 189051c0b2f7Stbbdev result = firstStartupBlock->bumpPtr; 189151c0b2f7Stbbdev firstStartupBlock->allocatedCount++; 189251c0b2f7Stbbdev firstStartupBlock->bumpPtr = 189351c0b2f7Stbbdev (FreeObject *)((uintptr_t)firstStartupBlock->bumpPtr + reqSize); 189451c0b2f7Stbbdev } 189551c0b2f7Stbbdev 189651c0b2f7Stbbdev // keep object size at the negative offset 189751c0b2f7Stbbdev *((size_t*)result) = size; 189851c0b2f7Stbbdev return (FreeObject*)((size_t*)result+1); 189951c0b2f7Stbbdev } 190051c0b2f7Stbbdev 190151c0b2f7Stbbdev void StartupBlock::free(void *ptr) 190251c0b2f7Stbbdev { 190351c0b2f7Stbbdev Block* blockToRelease = NULL; 190451c0b2f7Stbbdev { 190551c0b2f7Stbbdev MallocMutex::scoped_lock scoped_cs(startupMallocLock); 190651c0b2f7Stbbdev 190751c0b2f7Stbbdev MALLOC_ASSERT(firstStartupBlock, ASSERT_TEXT); 190851c0b2f7Stbbdev MALLOC_ASSERT(startupAllocObjSizeMark==objectSize 190951c0b2f7Stbbdev && allocatedCount>0, ASSERT_TEXT); 191051c0b2f7Stbbdev MALLOC_ASSERT((uintptr_t)ptr>=(uintptr_t)this+sizeof(StartupBlock) 191151c0b2f7Stbbdev && (uintptr_t)ptr+StartupBlock::msize(ptr)<=(uintptr_t)this+slabSize, 191251c0b2f7Stbbdev ASSERT_TEXT); 191351c0b2f7Stbbdev if (0 == --allocatedCount) { 191451c0b2f7Stbbdev if (this == firstStartupBlock) 191551c0b2f7Stbbdev firstStartupBlock = (StartupBlock*)firstStartupBlock->next; 191651c0b2f7Stbbdev if (previous) 191751c0b2f7Stbbdev previous->next = next; 191851c0b2f7Stbbdev if (next) 191951c0b2f7Stbbdev next->previous = previous; 192051c0b2f7Stbbdev blockToRelease = this; 192151c0b2f7Stbbdev } else if ((uintptr_t)ptr + StartupBlock::msize(ptr) == (uintptr_t)bumpPtr) { 192251c0b2f7Stbbdev // last object in the block released 192351c0b2f7Stbbdev FreeObject *newBump = (FreeObject*)((size_t*)ptr - 1); 192451c0b2f7Stbbdev MALLOC_ASSERT((uintptr_t)newBump>(uintptr_t)this+sizeof(StartupBlock), 192551c0b2f7Stbbdev ASSERT_TEXT); 192651c0b2f7Stbbdev bumpPtr = newBump; 192751c0b2f7Stbbdev } 192851c0b2f7Stbbdev } 192951c0b2f7Stbbdev if (blockToRelease) { 193051c0b2f7Stbbdev blockToRelease->previous = blockToRelease->next = NULL; 193151c0b2f7Stbbdev defaultMemPool->returnEmptyBlock(blockToRelease, /*poolTheBlock=*/false); 193251c0b2f7Stbbdev } 193351c0b2f7Stbbdev } 193451c0b2f7Stbbdev 193551c0b2f7Stbbdev #endif /* MALLOC_CHECK_RECURSION */ 193651c0b2f7Stbbdev 193751c0b2f7Stbbdev /********* End thread related code *************/ 193851c0b2f7Stbbdev 193951c0b2f7Stbbdev /********* Library initialization *************/ 194051c0b2f7Stbbdev 194151c0b2f7Stbbdev //! Value indicating the state of initialization. 194251c0b2f7Stbbdev /* 0 = initialization not started. 194351c0b2f7Stbbdev * 1 = initialization started but not finished. 194451c0b2f7Stbbdev * 2 = initialization finished. 194551c0b2f7Stbbdev * In theory, we only need values 0 and 2. But value 1 is nonetheless 194651c0b2f7Stbbdev * useful for detecting errors in the double-check pattern. 194751c0b2f7Stbbdev */ 194851c0b2f7Stbbdev static std::atomic<intptr_t> mallocInitialized{0}; // implicitly initialized to 0 194951c0b2f7Stbbdev static MallocMutex initMutex; 195051c0b2f7Stbbdev 195151c0b2f7Stbbdev /** The leading "\0" is here so that applying "strings" to the binary 195251c0b2f7Stbbdev delivers a clean result. */ 195351c0b2f7Stbbdev static char VersionString[] = "\0" TBBMALLOC_VERSION_STRINGS; 195451c0b2f7Stbbdev 195551c0b2f7Stbbdev #if USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) 195651c0b2f7Stbbdev 195751c0b2f7Stbbdev /* Decrease race interval between dynamic library unloading and pthread key 195851c0b2f7Stbbdev destructor. Protect only Pthreads with supported unloading. */ 195951c0b2f7Stbbdev class ShutdownSync { 196051c0b2f7Stbbdev /* flag is the number of threads in pthread key dtor body 196151c0b2f7Stbbdev (i.e., between threadDtorStart() and threadDtorDone()) 196251c0b2f7Stbbdev or the signal to skip dtor, if flag < 0 */ 196351c0b2f7Stbbdev std::atomic<intptr_t> flag; 196451c0b2f7Stbbdev static const intptr_t skipDtor = INTPTR_MIN/2; 196551c0b2f7Stbbdev public: 196651c0b2f7Stbbdev void init() { flag.store(0, std::memory_order_release); } 196751c0b2f7Stbbdev /* Suppose that 2*abs(skipDtor) or more threads never call threadDtorStart() 196851c0b2f7Stbbdev simultaneously, so flag never becomes negative because of that. */ 196951c0b2f7Stbbdev bool threadDtorStart() { 197051c0b2f7Stbbdev if (flag.load(std::memory_order_acquire) < 0) 197151c0b2f7Stbbdev return false; 197251c0b2f7Stbbdev if (++flag <= 0) { // note that new value returned 197351c0b2f7Stbbdev flag.fetch_sub(1); // flag is spoiled by us, restore it 197451c0b2f7Stbbdev return false; 197551c0b2f7Stbbdev } 197651c0b2f7Stbbdev return true; 197751c0b2f7Stbbdev } 197851c0b2f7Stbbdev void threadDtorDone() { 197951c0b2f7Stbbdev flag.fetch_sub(1); 198051c0b2f7Stbbdev } 198151c0b2f7Stbbdev void processExit() { 198251c0b2f7Stbbdev if (flag.fetch_add(skipDtor) != 0) { 198351c0b2f7Stbbdev SpinWaitUntilEq(flag, skipDtor); 198451c0b2f7Stbbdev } 198551c0b2f7Stbbdev } 198651c0b2f7Stbbdev }; 198751c0b2f7Stbbdev 198851c0b2f7Stbbdev #else 198951c0b2f7Stbbdev 199051c0b2f7Stbbdev class ShutdownSync { 199151c0b2f7Stbbdev public: 199251c0b2f7Stbbdev void init() { } 199351c0b2f7Stbbdev bool threadDtorStart() { return true; } 199451c0b2f7Stbbdev void threadDtorDone() { } 199551c0b2f7Stbbdev void processExit() { } 199651c0b2f7Stbbdev }; 199751c0b2f7Stbbdev 199851c0b2f7Stbbdev #endif // USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) 199951c0b2f7Stbbdev 200051c0b2f7Stbbdev static ShutdownSync shutdownSync; 200151c0b2f7Stbbdev 200251c0b2f7Stbbdev inline bool isMallocInitialized() { 200351c0b2f7Stbbdev // Load must have acquire fence; otherwise thread taking "initialized" path 200451c0b2f7Stbbdev // might perform textually later loads *before* mallocInitialized becomes 2. 200551c0b2f7Stbbdev return 2 == mallocInitialized.load(std::memory_order_acquire); 200651c0b2f7Stbbdev } 200751c0b2f7Stbbdev 200851c0b2f7Stbbdev /* Caller is responsible for ensuring this routine is called exactly once. */ 200951c0b2f7Stbbdev extern "C" void MallocInitializeITT() { 201051c0b2f7Stbbdev #if __TBB_USE_ITT_NOTIFY 201151c0b2f7Stbbdev if (!usedBySrcIncluded) 201251c0b2f7Stbbdev tbb::detail::r1::__TBB_load_ittnotify(); 201351c0b2f7Stbbdev #endif 201451c0b2f7Stbbdev } 201551c0b2f7Stbbdev 201651c0b2f7Stbbdev void MemoryPool::initDefaultPool() { 201751c0b2f7Stbbdev hugePages.init(); 201851c0b2f7Stbbdev } 201951c0b2f7Stbbdev 202051c0b2f7Stbbdev /* 202151c0b2f7Stbbdev * Allocator initialization routine; 202251c0b2f7Stbbdev * it is called lazily on the very first scalable_malloc call. 202351c0b2f7Stbbdev */ 202451c0b2f7Stbbdev static bool initMemoryManager() 202551c0b2f7Stbbdev { 202651c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] sizeof(Block) is %d (expected 128); sizeof(uintptr_t) is %d\n", 202751c0b2f7Stbbdev sizeof(Block), sizeof(uintptr_t) )); 202851c0b2f7Stbbdev MALLOC_ASSERT( 2*blockHeaderAlignment == sizeof(Block), ASSERT_TEXT ); 202951c0b2f7Stbbdev MALLOC_ASSERT( sizeof(FreeObject) == sizeof(void*), ASSERT_TEXT ); 203051c0b2f7Stbbdev MALLOC_ASSERT( isAligned(defaultMemPool, sizeof(intptr_t)), 203151c0b2f7Stbbdev "Memory pool must be void*-aligned for atomic to work over aligned arguments."); 203251c0b2f7Stbbdev 203351c0b2f7Stbbdev #if USE_WINTHREAD 203451c0b2f7Stbbdev const size_t granularity = 64*1024; // granulatity of VirtualAlloc 203551c0b2f7Stbbdev #else 203651c0b2f7Stbbdev // POSIX.1-2001-compliant way to get page size 203751c0b2f7Stbbdev const size_t granularity = sysconf(_SC_PAGESIZE); 203851c0b2f7Stbbdev #endif 203951c0b2f7Stbbdev if (!defaultMemPool) { 204051c0b2f7Stbbdev // Do not rely on static constructors and do the assignment in case 204151c0b2f7Stbbdev // of library static section not initialized at this call yet. 204251c0b2f7Stbbdev defaultMemPool = (MemoryPool*)defaultMemPool_space; 204351c0b2f7Stbbdev } 204451c0b2f7Stbbdev bool initOk = defaultMemPool-> 204551c0b2f7Stbbdev extMemPool.init(0, NULL, NULL, granularity, 204651c0b2f7Stbbdev /*keepAllMemory=*/false, /*fixedPool=*/false); 204751c0b2f7Stbbdev // TODO: extMemPool.init() to not allocate memory 204851c0b2f7Stbbdev if (!initOk || !initBackRefMaster(&defaultMemPool->extMemPool.backend) || !ThreadId::init()) 204951c0b2f7Stbbdev return false; 205051c0b2f7Stbbdev MemoryPool::initDefaultPool(); 205151c0b2f7Stbbdev // init() is required iff initMemoryManager() is called 205251c0b2f7Stbbdev // after mallocProcessShutdownNotification() 205351c0b2f7Stbbdev shutdownSync.init(); 205451c0b2f7Stbbdev #if COLLECT_STATISTICS 205551c0b2f7Stbbdev initStatisticsCollection(); 205651c0b2f7Stbbdev #endif 205751c0b2f7Stbbdev return true; 205851c0b2f7Stbbdev } 205951c0b2f7Stbbdev 206051c0b2f7Stbbdev static bool GetBoolEnvironmentVariable(const char* name) { 206151c0b2f7Stbbdev return tbb::detail::r1::GetBoolEnvironmentVariable(name); 206251c0b2f7Stbbdev } 206351c0b2f7Stbbdev 206451c0b2f7Stbbdev //! Ensures that initMemoryManager() is called once and only once. 206551c0b2f7Stbbdev /** Does not return until initMemoryManager() has been completed by a thread. 206651c0b2f7Stbbdev There is no need to call this routine if mallocInitialized==2 . */ 206751c0b2f7Stbbdev static bool doInitialization() 206851c0b2f7Stbbdev { 206951c0b2f7Stbbdev MallocMutex::scoped_lock lock( initMutex ); 207051c0b2f7Stbbdev if (mallocInitialized.load(std::memory_order_relaxed)!=2) { 207151c0b2f7Stbbdev MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==0, ASSERT_TEXT ); 207251c0b2f7Stbbdev mallocInitialized.store(1, std::memory_order_relaxed); 207351c0b2f7Stbbdev RecursiveMallocCallProtector scoped; 207451c0b2f7Stbbdev if (!initMemoryManager()) { 207551c0b2f7Stbbdev mallocInitialized.store(0, std::memory_order_relaxed); // restore and out 207651c0b2f7Stbbdev return false; 207751c0b2f7Stbbdev } 207851c0b2f7Stbbdev #ifdef MALLOC_EXTRA_INITIALIZATION 207951c0b2f7Stbbdev MALLOC_EXTRA_INITIALIZATION; 208051c0b2f7Stbbdev #endif 208151c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 208251c0b2f7Stbbdev RecursiveMallocCallProtector::detectNaiveOverload(); 208351c0b2f7Stbbdev #endif 208451c0b2f7Stbbdev MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==1, ASSERT_TEXT ); 208551c0b2f7Stbbdev // Store must have release fence, otherwise mallocInitialized==2 208651c0b2f7Stbbdev // might become remotely visible before side effects of 208751c0b2f7Stbbdev // initMemoryManager() become remotely visible. 208851c0b2f7Stbbdev mallocInitialized.store(2, std::memory_order_release); 208951c0b2f7Stbbdev if( GetBoolEnvironmentVariable("TBB_VERSION") ) { 209051c0b2f7Stbbdev fputs(VersionString+1,stderr); 209151c0b2f7Stbbdev hugePages.printStatus(); 209251c0b2f7Stbbdev } 209351c0b2f7Stbbdev } 209451c0b2f7Stbbdev /* It can't be 0 or I would have initialized it */ 209551c0b2f7Stbbdev MALLOC_ASSERT( mallocInitialized.load(std::memory_order_relaxed)==2, ASSERT_TEXT ); 209651c0b2f7Stbbdev return true; 209751c0b2f7Stbbdev } 209851c0b2f7Stbbdev 209951c0b2f7Stbbdev /********* End library initialization *************/ 210051c0b2f7Stbbdev 210151c0b2f7Stbbdev /********* The malloc show begins *************/ 210251c0b2f7Stbbdev 210351c0b2f7Stbbdev 210451c0b2f7Stbbdev FreeObject *Block::allocateFromFreeList() 210551c0b2f7Stbbdev { 210651c0b2f7Stbbdev FreeObject *result; 210751c0b2f7Stbbdev 210851c0b2f7Stbbdev if (!freeList) return NULL; 210951c0b2f7Stbbdev 211051c0b2f7Stbbdev result = freeList; 211151c0b2f7Stbbdev MALLOC_ASSERT( result, ASSERT_TEXT ); 211251c0b2f7Stbbdev 211351c0b2f7Stbbdev freeList = result->next; 211451c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); 211551c0b2f7Stbbdev allocatedCount++; 211651c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), allocFreeListUsed); 211751c0b2f7Stbbdev 211851c0b2f7Stbbdev return result; 211951c0b2f7Stbbdev } 212051c0b2f7Stbbdev 212151c0b2f7Stbbdev FreeObject *Block::allocateFromBumpPtr() 212251c0b2f7Stbbdev { 212351c0b2f7Stbbdev FreeObject *result = bumpPtr; 212451c0b2f7Stbbdev if (result) { 212551c0b2f7Stbbdev bumpPtr = (FreeObject *) ((uintptr_t) bumpPtr - objectSize); 212651c0b2f7Stbbdev if ( (uintptr_t)bumpPtr < (uintptr_t)this+sizeof(Block) ) { 212751c0b2f7Stbbdev bumpPtr = NULL; 212851c0b2f7Stbbdev } 212951c0b2f7Stbbdev MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); 213051c0b2f7Stbbdev allocatedCount++; 213151c0b2f7Stbbdev STAT_increment(getThreadId(), getIndex(objectSize), allocBumpPtrUsed); 213251c0b2f7Stbbdev } 213351c0b2f7Stbbdev return result; 213451c0b2f7Stbbdev } 213551c0b2f7Stbbdev 213651c0b2f7Stbbdev inline FreeObject* Block::allocate() 213751c0b2f7Stbbdev { 213851c0b2f7Stbbdev MALLOC_ASSERT( isOwnedByCurrentThread(), ASSERT_TEXT ); 213951c0b2f7Stbbdev 214051c0b2f7Stbbdev /* for better cache locality, first looking in the free list. */ 214151c0b2f7Stbbdev if ( FreeObject *result = allocateFromFreeList() ) { 214251c0b2f7Stbbdev return result; 214351c0b2f7Stbbdev } 214451c0b2f7Stbbdev MALLOC_ASSERT( !freeList, ASSERT_TEXT ); 214551c0b2f7Stbbdev 214651c0b2f7Stbbdev /* if free list is empty, try thread local bump pointer allocation. */ 214751c0b2f7Stbbdev if ( FreeObject *result = allocateFromBumpPtr() ) { 214851c0b2f7Stbbdev return result; 214951c0b2f7Stbbdev } 215051c0b2f7Stbbdev MALLOC_ASSERT( !bumpPtr, ASSERT_TEXT ); 215151c0b2f7Stbbdev 215251c0b2f7Stbbdev /* the block is considered full. */ 215351c0b2f7Stbbdev isFull = true; 215451c0b2f7Stbbdev return NULL; 215551c0b2f7Stbbdev } 215651c0b2f7Stbbdev 215751c0b2f7Stbbdev size_t Block::findObjectSize(void *object) const 215851c0b2f7Stbbdev { 215951c0b2f7Stbbdev size_t blSize = getSize(); 216051c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 216151c0b2f7Stbbdev // Currently, there is no aligned allocations from startup blocks, 216251c0b2f7Stbbdev // so we can return just StartupBlock::msize(). 216351c0b2f7Stbbdev // TODO: This must be extended if we add aligned allocation from startup blocks. 216451c0b2f7Stbbdev if (!blSize) 216551c0b2f7Stbbdev return StartupBlock::msize(object); 216651c0b2f7Stbbdev #endif 216751c0b2f7Stbbdev // object can be aligned, so real size can be less than block's 216851c0b2f7Stbbdev size_t size = 216951c0b2f7Stbbdev blSize - ((uintptr_t)object - (uintptr_t)findObjectToFree(object)); 217051c0b2f7Stbbdev MALLOC_ASSERT(size>0 && size<minLargeObjectSize, ASSERT_TEXT); 217151c0b2f7Stbbdev return size; 217251c0b2f7Stbbdev } 217351c0b2f7Stbbdev 217451c0b2f7Stbbdev void Bin::moveBlockToFront(Block *block) 217551c0b2f7Stbbdev { 217651c0b2f7Stbbdev /* move the block to the front of the bin */ 217751c0b2f7Stbbdev if (block == activeBlk) return; 217851c0b2f7Stbbdev outofTLSBin(block); 217951c0b2f7Stbbdev pushTLSBin(block); 218051c0b2f7Stbbdev } 218151c0b2f7Stbbdev 218251c0b2f7Stbbdev void Bin::processEmptyBlock(Block *block, bool poolTheBlock) 218351c0b2f7Stbbdev { 218451c0b2f7Stbbdev if (block != activeBlk) { 218551c0b2f7Stbbdev /* We are not using this block; return it to the pool */ 218651c0b2f7Stbbdev outofTLSBin(block); 218751c0b2f7Stbbdev block->getMemPool()->returnEmptyBlock(block, poolTheBlock); 218851c0b2f7Stbbdev } else { 218951c0b2f7Stbbdev /* all objects are free - let's restore the bump pointer */ 219051c0b2f7Stbbdev block->restoreBumpPtr(); 219151c0b2f7Stbbdev } 219251c0b2f7Stbbdev } 219351c0b2f7Stbbdev 219451c0b2f7Stbbdev template<int LOW_MARK, int HIGH_MARK> 219551c0b2f7Stbbdev bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool) 219651c0b2f7Stbbdev { 219751c0b2f7Stbbdev const size_t size = object->unalignedSize; 219851c0b2f7Stbbdev // not spoil cache with too large object, that can cause its total cleanup 219951c0b2f7Stbbdev if (size > MAX_TOTAL_SIZE) 220051c0b2f7Stbbdev return false; 220151c0b2f7Stbbdev LargeMemoryBlock *localHead = head.exchange(NULL); 220251c0b2f7Stbbdev 220351c0b2f7Stbbdev object->prev = NULL; 220451c0b2f7Stbbdev object->next = localHead; 220551c0b2f7Stbbdev if (localHead) 220651c0b2f7Stbbdev localHead->prev = object; 220751c0b2f7Stbbdev else { 220851c0b2f7Stbbdev // those might not be cleaned during local cache stealing, correct them 220951c0b2f7Stbbdev totalSize = 0; 221051c0b2f7Stbbdev numOfBlocks = 0; 221151c0b2f7Stbbdev tail = object; 221251c0b2f7Stbbdev } 221351c0b2f7Stbbdev localHead = object; 221451c0b2f7Stbbdev totalSize += size; 221551c0b2f7Stbbdev numOfBlocks++; 221651c0b2f7Stbbdev // must meet both size and number of cached objects constrains 221751c0b2f7Stbbdev if (totalSize > MAX_TOTAL_SIZE || numOfBlocks >= HIGH_MARK) { 221851c0b2f7Stbbdev // scanning from tail until meet conditions 221951c0b2f7Stbbdev while (totalSize > MAX_TOTAL_SIZE || numOfBlocks > LOW_MARK) { 222051c0b2f7Stbbdev totalSize -= tail->unalignedSize; 222151c0b2f7Stbbdev numOfBlocks--; 222251c0b2f7Stbbdev tail = tail->prev; 222351c0b2f7Stbbdev } 222451c0b2f7Stbbdev LargeMemoryBlock *headToRelease = tail->next; 222551c0b2f7Stbbdev tail->next = NULL; 222651c0b2f7Stbbdev 222751c0b2f7Stbbdev extMemPool->freeLargeObjectList(headToRelease); 222851c0b2f7Stbbdev } 222951c0b2f7Stbbdev 223051c0b2f7Stbbdev head.store(localHead, std::memory_order_release); 223151c0b2f7Stbbdev return true; 223251c0b2f7Stbbdev } 223351c0b2f7Stbbdev 223451c0b2f7Stbbdev template<int LOW_MARK, int HIGH_MARK> 223551c0b2f7Stbbdev LargeMemoryBlock *LocalLOCImpl<LOW_MARK, HIGH_MARK>::get(size_t size) 223651c0b2f7Stbbdev { 223751c0b2f7Stbbdev LargeMemoryBlock *localHead, *res = NULL; 223851c0b2f7Stbbdev 223951c0b2f7Stbbdev if (size > MAX_TOTAL_SIZE) 224051c0b2f7Stbbdev return NULL; 224151c0b2f7Stbbdev 224251c0b2f7Stbbdev // TBB_REVAMP_TODO: review this line 224351c0b2f7Stbbdev if (!head.load(std::memory_order_acquire) || (localHead = head.exchange(NULL)) == NULL) { 224451c0b2f7Stbbdev // do not restore totalSize, numOfBlocks and tail at this point, 224551c0b2f7Stbbdev // as they are used only in put(), where they must be restored 224651c0b2f7Stbbdev return NULL; 224751c0b2f7Stbbdev } 224851c0b2f7Stbbdev 224951c0b2f7Stbbdev for (LargeMemoryBlock *curr = localHead; curr; curr=curr->next) { 225051c0b2f7Stbbdev if (curr->unalignedSize == size) { 225151c0b2f7Stbbdev res = curr; 225251c0b2f7Stbbdev if (curr->next) 225351c0b2f7Stbbdev curr->next->prev = curr->prev; 225451c0b2f7Stbbdev else 225551c0b2f7Stbbdev tail = curr->prev; 225651c0b2f7Stbbdev if (curr != localHead) 225751c0b2f7Stbbdev curr->prev->next = curr->next; 225851c0b2f7Stbbdev else 225951c0b2f7Stbbdev localHead = curr->next; 226051c0b2f7Stbbdev totalSize -= size; 226151c0b2f7Stbbdev numOfBlocks--; 226251c0b2f7Stbbdev break; 226351c0b2f7Stbbdev } 226451c0b2f7Stbbdev } 226551c0b2f7Stbbdev 226651c0b2f7Stbbdev head.store(localHead, std::memory_order_release); 226751c0b2f7Stbbdev return res; 226851c0b2f7Stbbdev } 226951c0b2f7Stbbdev 227051c0b2f7Stbbdev template<int LOW_MARK, int HIGH_MARK> 227151c0b2f7Stbbdev bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::externalCleanup(ExtMemoryPool *extMemPool) 227251c0b2f7Stbbdev { 227351c0b2f7Stbbdev if (LargeMemoryBlock *localHead = head.exchange(NULL)) { 227451c0b2f7Stbbdev extMemPool->freeLargeObjectList(localHead); 227551c0b2f7Stbbdev return true; 227651c0b2f7Stbbdev } 227751c0b2f7Stbbdev return false; 227851c0b2f7Stbbdev } 227951c0b2f7Stbbdev 228051c0b2f7Stbbdev void *MemoryPool::getFromLLOCache(TLSData* tls, size_t size, size_t alignment) 228151c0b2f7Stbbdev { 228251c0b2f7Stbbdev LargeMemoryBlock *lmb = NULL; 228351c0b2f7Stbbdev 228451c0b2f7Stbbdev size_t headersSize = sizeof(LargeMemoryBlock)+sizeof(LargeObjectHdr); 228551c0b2f7Stbbdev size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+alignment); 228651c0b2f7Stbbdev if (allocationSize < size) // allocationSize is wrapped around after alignToBin 228751c0b2f7Stbbdev return NULL; 228851c0b2f7Stbbdev MALLOC_ASSERT(allocationSize >= alignment, "Overflow must be checked before."); 228951c0b2f7Stbbdev 229051c0b2f7Stbbdev if (tls) { 229151c0b2f7Stbbdev tls->markUsed(); 229251c0b2f7Stbbdev lmb = tls->lloc.get(allocationSize); 229351c0b2f7Stbbdev } 229451c0b2f7Stbbdev if (!lmb) 229551c0b2f7Stbbdev lmb = extMemPool.mallocLargeObject(this, allocationSize); 229651c0b2f7Stbbdev 229751c0b2f7Stbbdev if (lmb) { 229851c0b2f7Stbbdev // doing shuffle we suppose that alignment offset guarantees 229951c0b2f7Stbbdev // that different cache lines are in use 230051c0b2f7Stbbdev MALLOC_ASSERT(alignment >= estimatedCacheLineSize, ASSERT_TEXT); 230151c0b2f7Stbbdev 230251c0b2f7Stbbdev void *alignedArea = (void*)alignUp((uintptr_t)lmb+headersSize, alignment); 230351c0b2f7Stbbdev uintptr_t alignedRight = 230451c0b2f7Stbbdev alignDown((uintptr_t)lmb+lmb->unalignedSize - size, alignment); 230551c0b2f7Stbbdev // Has some room to shuffle object between cache lines? 230651c0b2f7Stbbdev // Note that alignedRight and alignedArea are aligned at alignment. 230751c0b2f7Stbbdev unsigned ptrDelta = alignedRight - (uintptr_t)alignedArea; 230851c0b2f7Stbbdev if (ptrDelta && tls) { // !tls is cold path 230951c0b2f7Stbbdev // for the hot path of alignment==estimatedCacheLineSize, 231051c0b2f7Stbbdev // allow compilers to use shift for division 231151c0b2f7Stbbdev // (since estimatedCacheLineSize is a power-of-2 constant) 231251c0b2f7Stbbdev unsigned numOfPossibleOffsets = alignment == estimatedCacheLineSize? 231351c0b2f7Stbbdev ptrDelta / estimatedCacheLineSize : 231451c0b2f7Stbbdev ptrDelta / alignment; 231551c0b2f7Stbbdev unsigned myCacheIdx = ++tls->currCacheIdx; 231651c0b2f7Stbbdev unsigned offset = myCacheIdx % numOfPossibleOffsets; 231751c0b2f7Stbbdev 231851c0b2f7Stbbdev // Move object to a cache line with an offset that is different from 231951c0b2f7Stbbdev // previous allocation. This supposedly allows us to use cache 232051c0b2f7Stbbdev // associativity more efficiently. 232151c0b2f7Stbbdev alignedArea = (void*)((uintptr_t)alignedArea + offset*alignment); 232251c0b2f7Stbbdev } 232351c0b2f7Stbbdev MALLOC_ASSERT((uintptr_t)lmb+lmb->unalignedSize >= 232451c0b2f7Stbbdev (uintptr_t)alignedArea+size, "Object doesn't fit the block."); 232551c0b2f7Stbbdev LargeObjectHdr *header = (LargeObjectHdr*)alignedArea-1; 232651c0b2f7Stbbdev header->memoryBlock = lmb; 232751c0b2f7Stbbdev header->backRefIdx = lmb->backRefIdx; 232851c0b2f7Stbbdev setBackRef(header->backRefIdx, header); 232951c0b2f7Stbbdev 233051c0b2f7Stbbdev lmb->objectSize = size; 233151c0b2f7Stbbdev 233251c0b2f7Stbbdev MALLOC_ASSERT( isLargeObject<unknownMem>(alignedArea), ASSERT_TEXT ); 233351c0b2f7Stbbdev MALLOC_ASSERT( isAligned(alignedArea, alignment), ASSERT_TEXT ); 233451c0b2f7Stbbdev 233551c0b2f7Stbbdev return alignedArea; 233651c0b2f7Stbbdev } 233751c0b2f7Stbbdev return NULL; 233851c0b2f7Stbbdev } 233951c0b2f7Stbbdev 234051c0b2f7Stbbdev void MemoryPool::putToLLOCache(TLSData *tls, void *object) 234151c0b2f7Stbbdev { 234251c0b2f7Stbbdev LargeObjectHdr *header = (LargeObjectHdr*)object - 1; 234351c0b2f7Stbbdev // overwrite backRefIdx to simplify double free detection 234451c0b2f7Stbbdev header->backRefIdx = BackRefIdx(); 234551c0b2f7Stbbdev 234651c0b2f7Stbbdev if (tls) { 234751c0b2f7Stbbdev tls->markUsed(); 234851c0b2f7Stbbdev if (tls->lloc.put(header->memoryBlock, &extMemPool)) 234951c0b2f7Stbbdev return; 235051c0b2f7Stbbdev } 235151c0b2f7Stbbdev extMemPool.freeLargeObject(header->memoryBlock); 235251c0b2f7Stbbdev } 235351c0b2f7Stbbdev 235451c0b2f7Stbbdev /* 235551c0b2f7Stbbdev * All aligned allocations fall into one of the following categories: 235651c0b2f7Stbbdev * 1. if both request size and alignment are <= maxSegregatedObjectSize, 235751c0b2f7Stbbdev * we just align the size up, and request this amount, because for every size 235851c0b2f7Stbbdev * aligned to some power of 2, the allocated object is at least that aligned. 235951c0b2f7Stbbdev * 2. for size<minLargeObjectSize, check if already guaranteed fittingAlignment is enough. 236051c0b2f7Stbbdev * 3. if size+alignment<minLargeObjectSize, we take an object of fittingSizeN and align 236151c0b2f7Stbbdev * its address up; given such pointer, scalable_free could find the real object. 236251c0b2f7Stbbdev * Wrapping of size+alignment is impossible because maximal allowed 236351c0b2f7Stbbdev * alignment plus minLargeObjectSize can't lead to wrapping. 236451c0b2f7Stbbdev * 4. otherwise, aligned large object is allocated. 236551c0b2f7Stbbdev */ 236651c0b2f7Stbbdev static void *allocateAligned(MemoryPool *memPool, size_t size, size_t alignment) 236751c0b2f7Stbbdev { 236851c0b2f7Stbbdev MALLOC_ASSERT( isPowerOfTwo(alignment), ASSERT_TEXT ); 236951c0b2f7Stbbdev 237051c0b2f7Stbbdev if (!isMallocInitialized()) 237151c0b2f7Stbbdev if (!doInitialization()) 237251c0b2f7Stbbdev return NULL; 237351c0b2f7Stbbdev 237451c0b2f7Stbbdev void *result; 237551c0b2f7Stbbdev if (size<=maxSegregatedObjectSize && alignment<=maxSegregatedObjectSize) 237651c0b2f7Stbbdev result = internalPoolMalloc(memPool, alignUp(size? size: sizeof(size_t), alignment)); 237751c0b2f7Stbbdev else if (size<minLargeObjectSize) { 237851c0b2f7Stbbdev if (alignment<=fittingAlignment) 237951c0b2f7Stbbdev result = internalPoolMalloc(memPool, size); 238051c0b2f7Stbbdev else if (size+alignment < minLargeObjectSize) { 238151c0b2f7Stbbdev void *unaligned = internalPoolMalloc(memPool, size+alignment); 238251c0b2f7Stbbdev if (!unaligned) return NULL; 238351c0b2f7Stbbdev result = alignUp(unaligned, alignment); 238451c0b2f7Stbbdev } else 238551c0b2f7Stbbdev goto LargeObjAlloc; 238651c0b2f7Stbbdev } else { 238751c0b2f7Stbbdev LargeObjAlloc: 238851c0b2f7Stbbdev TLSData *tls = memPool->getTLS(/*create=*/true); 238951c0b2f7Stbbdev // take into account only alignment that are higher then natural 239051c0b2f7Stbbdev result = 239151c0b2f7Stbbdev memPool->getFromLLOCache(tls, size, largeObjectAlignment>alignment? 239251c0b2f7Stbbdev largeObjectAlignment: alignment); 239351c0b2f7Stbbdev } 239451c0b2f7Stbbdev 239551c0b2f7Stbbdev MALLOC_ASSERT( isAligned(result, alignment), ASSERT_TEXT ); 239651c0b2f7Stbbdev return result; 239751c0b2f7Stbbdev } 239851c0b2f7Stbbdev 239951c0b2f7Stbbdev static void *reallocAligned(MemoryPool *memPool, void *ptr, 240051c0b2f7Stbbdev size_t newSize, size_t alignment = 0) 240151c0b2f7Stbbdev { 240251c0b2f7Stbbdev void *result; 240351c0b2f7Stbbdev size_t copySize; 240451c0b2f7Stbbdev 240551c0b2f7Stbbdev if (isLargeObject<ourMem>(ptr)) { 240651c0b2f7Stbbdev LargeMemoryBlock* lmb = ((LargeObjectHdr *)ptr - 1)->memoryBlock; 240751c0b2f7Stbbdev copySize = lmb->unalignedSize-((uintptr_t)ptr-(uintptr_t)lmb); 240851c0b2f7Stbbdev 240951c0b2f7Stbbdev // Apply different strategies if size decreases 241051c0b2f7Stbbdev if (newSize <= copySize && (0 == alignment || isAligned(ptr, alignment))) { 241151c0b2f7Stbbdev 241251c0b2f7Stbbdev // For huge objects (that do not fit in backend cache), keep the same space unless 241351c0b2f7Stbbdev // the new size is at least twice smaller 241451c0b2f7Stbbdev bool isMemoryBlockHuge = copySize > memPool->extMemPool.backend.getMaxBinnedSize(); 241551c0b2f7Stbbdev size_t threshold = isMemoryBlockHuge ? copySize / 2 : 0; 241651c0b2f7Stbbdev if (newSize > threshold) { 241751c0b2f7Stbbdev lmb->objectSize = newSize; 241851c0b2f7Stbbdev return ptr; 241951c0b2f7Stbbdev } 242051c0b2f7Stbbdev // TODO: For large objects suitable for the backend cache, 242151c0b2f7Stbbdev // split out the excessive part and put it to the backend. 242251c0b2f7Stbbdev } 242351c0b2f7Stbbdev // Reallocate for real 242451c0b2f7Stbbdev copySize = lmb->objectSize; 242551c0b2f7Stbbdev #if BACKEND_HAS_MREMAP 242651c0b2f7Stbbdev if (void *r = memPool->extMemPool.remap(ptr, copySize, newSize, 242751c0b2f7Stbbdev alignment < largeObjectAlignment ? largeObjectAlignment : alignment)) 242851c0b2f7Stbbdev return r; 242951c0b2f7Stbbdev #endif 243051c0b2f7Stbbdev result = alignment ? allocateAligned(memPool, newSize, alignment) : 243151c0b2f7Stbbdev internalPoolMalloc(memPool, newSize); 243251c0b2f7Stbbdev 243351c0b2f7Stbbdev } else { 243451c0b2f7Stbbdev Block* block = (Block *)alignDown(ptr, slabSize); 243551c0b2f7Stbbdev copySize = block->findObjectSize(ptr); 243651c0b2f7Stbbdev 243751c0b2f7Stbbdev // TODO: Move object to another bin if size decreases and the current bin is "empty enough". 243851c0b2f7Stbbdev // Currently, in case of size decreasing, old pointer is returned 243951c0b2f7Stbbdev if (newSize <= copySize && (0==alignment || isAligned(ptr, alignment))) { 244051c0b2f7Stbbdev return ptr; 244151c0b2f7Stbbdev } else { 244251c0b2f7Stbbdev result = alignment ? allocateAligned(memPool, newSize, alignment) : 244351c0b2f7Stbbdev internalPoolMalloc(memPool, newSize); 244451c0b2f7Stbbdev } 244551c0b2f7Stbbdev } 244651c0b2f7Stbbdev if (result) { 244751c0b2f7Stbbdev memcpy(result, ptr, copySize < newSize ? copySize : newSize); 244851c0b2f7Stbbdev internalPoolFree(memPool, ptr, 0); 244951c0b2f7Stbbdev } 245051c0b2f7Stbbdev return result; 245151c0b2f7Stbbdev } 245251c0b2f7Stbbdev 2453478de5b1Stbbdev #if MALLOC_DEBUG 245451c0b2f7Stbbdev /* A predicate checks if an object is properly placed inside its block */ 245551c0b2f7Stbbdev inline bool Block::isProperlyPlaced(const void *object) const 245651c0b2f7Stbbdev { 245751c0b2f7Stbbdev return 0 == ((uintptr_t)this + slabSize - (uintptr_t)object) % objectSize; 245851c0b2f7Stbbdev } 2459478de5b1Stbbdev #endif 246051c0b2f7Stbbdev 246151c0b2f7Stbbdev /* Finds the real object inside the block */ 246251c0b2f7Stbbdev FreeObject *Block::findAllocatedObject(const void *address) const 246351c0b2f7Stbbdev { 246451c0b2f7Stbbdev // calculate offset from the end of the block space 246551c0b2f7Stbbdev uint16_t offset = (uintptr_t)this + slabSize - (uintptr_t)address; 246651c0b2f7Stbbdev MALLOC_ASSERT( offset<=slabSize-sizeof(Block), ASSERT_TEXT ); 246751c0b2f7Stbbdev // find offset difference from a multiple of allocation size 246851c0b2f7Stbbdev offset %= objectSize; 246951c0b2f7Stbbdev // and move the address down to where the real object starts. 247051c0b2f7Stbbdev return (FreeObject*)((uintptr_t)address - (offset? objectSize-offset: 0)); 247151c0b2f7Stbbdev } 247251c0b2f7Stbbdev 247351c0b2f7Stbbdev /* 247451c0b2f7Stbbdev * Bad dereference caused by a foreign pointer is possible only here, not earlier in call chain. 247551c0b2f7Stbbdev * Separate function isolates SEH code, as it has bad influence on compiler optimization. 247651c0b2f7Stbbdev */ 247751c0b2f7Stbbdev static inline BackRefIdx safer_dereference (const BackRefIdx *ptr) 247851c0b2f7Stbbdev { 247951c0b2f7Stbbdev BackRefIdx id; 248051c0b2f7Stbbdev #if _MSC_VER 248151c0b2f7Stbbdev __try { 248251c0b2f7Stbbdev #endif 2483478de5b1Stbbdev id = dereference(ptr); 248451c0b2f7Stbbdev #if _MSC_VER 248551c0b2f7Stbbdev } __except( GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION? 248651c0b2f7Stbbdev EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH ) { 248751c0b2f7Stbbdev id = BackRefIdx(); 248851c0b2f7Stbbdev } 248951c0b2f7Stbbdev #endif 249051c0b2f7Stbbdev return id; 249151c0b2f7Stbbdev } 249251c0b2f7Stbbdev 249351c0b2f7Stbbdev template<MemoryOrigin memOrigin> 249451c0b2f7Stbbdev bool isLargeObject(void *object) 249551c0b2f7Stbbdev { 249651c0b2f7Stbbdev if (!isAligned(object, largeObjectAlignment)) 249751c0b2f7Stbbdev return false; 249851c0b2f7Stbbdev LargeObjectHdr *header = (LargeObjectHdr*)object - 1; 249951c0b2f7Stbbdev BackRefIdx idx = (memOrigin == unknownMem) ? 2500478de5b1Stbbdev safer_dereference(&header->backRefIdx) : dereference(&header->backRefIdx); 250151c0b2f7Stbbdev 250251c0b2f7Stbbdev return idx.isLargeObject() 250351c0b2f7Stbbdev // in valid LargeObjectHdr memoryBlock is not NULL 250451c0b2f7Stbbdev && header->memoryBlock 250551c0b2f7Stbbdev // in valid LargeObjectHdr memoryBlock points somewhere before header 250651c0b2f7Stbbdev // TODO: more strict check 250751c0b2f7Stbbdev && (uintptr_t)header->memoryBlock < (uintptr_t)header 250851c0b2f7Stbbdev && getBackRef(idx) == header; 250951c0b2f7Stbbdev } 251051c0b2f7Stbbdev 251151c0b2f7Stbbdev static inline bool isSmallObject (void *ptr) 251251c0b2f7Stbbdev { 251351c0b2f7Stbbdev Block* expectedBlock = (Block*)alignDown(ptr, slabSize); 251451c0b2f7Stbbdev const BackRefIdx* idx = expectedBlock->getBackRefIdx(); 251551c0b2f7Stbbdev 251651c0b2f7Stbbdev bool isSmall = expectedBlock == getBackRef(safer_dereference(idx)); 251751c0b2f7Stbbdev if (isSmall) 251851c0b2f7Stbbdev expectedBlock->checkFreePrecond(ptr); 251951c0b2f7Stbbdev return isSmall; 252051c0b2f7Stbbdev } 252151c0b2f7Stbbdev 252251c0b2f7Stbbdev /**** Check if an object was allocated by scalable_malloc ****/ 252351c0b2f7Stbbdev static inline bool isRecognized (void* ptr) 252451c0b2f7Stbbdev { 252551c0b2f7Stbbdev return defaultMemPool->extMemPool.backend.ptrCanBeValid(ptr) && 252651c0b2f7Stbbdev (isLargeObject<unknownMem>(ptr) || isSmallObject(ptr)); 252751c0b2f7Stbbdev } 252851c0b2f7Stbbdev 252951c0b2f7Stbbdev static inline void freeSmallObject(void *object) 253051c0b2f7Stbbdev { 253151c0b2f7Stbbdev /* mask low bits to get the block */ 253251c0b2f7Stbbdev Block *block = (Block *)alignDown(object, slabSize); 253351c0b2f7Stbbdev block->checkFreePrecond(object); 253451c0b2f7Stbbdev 253551c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 253651c0b2f7Stbbdev if (block->isStartupAllocObject()) { 253751c0b2f7Stbbdev ((StartupBlock *)block)->free(object); 253851c0b2f7Stbbdev return; 253951c0b2f7Stbbdev } 254051c0b2f7Stbbdev #endif 254151c0b2f7Stbbdev if (block->isOwnedByCurrentThread()) { 254251c0b2f7Stbbdev block->freeOwnObject(object); 254351c0b2f7Stbbdev } else { /* Slower path to add to the shared list, the allocatedCount is updated by the owner thread in malloc. */ 254451c0b2f7Stbbdev FreeObject *objectToFree = block->findObjectToFree(object); 254551c0b2f7Stbbdev block->freePublicObject(objectToFree); 254651c0b2f7Stbbdev } 254751c0b2f7Stbbdev } 254851c0b2f7Stbbdev 254951c0b2f7Stbbdev static void *internalPoolMalloc(MemoryPool* memPool, size_t size) 255051c0b2f7Stbbdev { 255151c0b2f7Stbbdev Bin* bin; 255251c0b2f7Stbbdev Block * mallocBlock; 255351c0b2f7Stbbdev 255451c0b2f7Stbbdev if (!memPool) return NULL; 255551c0b2f7Stbbdev 255651c0b2f7Stbbdev if (!size) size = sizeof(size_t); 255751c0b2f7Stbbdev 255851c0b2f7Stbbdev TLSData *tls = memPool->getTLS(/*create=*/true); 255951c0b2f7Stbbdev 256051c0b2f7Stbbdev /* Allocate a large object */ 256151c0b2f7Stbbdev if (size >= minLargeObjectSize) 256251c0b2f7Stbbdev return memPool->getFromLLOCache(tls, size, largeObjectAlignment); 256351c0b2f7Stbbdev 256451c0b2f7Stbbdev if (!tls) return NULL; 256551c0b2f7Stbbdev 256651c0b2f7Stbbdev tls->markUsed(); 256751c0b2f7Stbbdev /* 256851c0b2f7Stbbdev * Get an element in thread-local array corresponding to the given size; 256951c0b2f7Stbbdev * It keeps ptr to the active block for allocations of this size 257051c0b2f7Stbbdev */ 257151c0b2f7Stbbdev bin = tls->getAllocationBin(size); 257251c0b2f7Stbbdev if ( !bin ) return NULL; 257351c0b2f7Stbbdev 257451c0b2f7Stbbdev /* Get a block to try to allocate in. */ 257551c0b2f7Stbbdev for( mallocBlock = bin->getActiveBlock(); mallocBlock; 257651c0b2f7Stbbdev mallocBlock = bin->setPreviousBlockActive() ) // the previous block should be empty enough 257751c0b2f7Stbbdev { 257851c0b2f7Stbbdev if( FreeObject *result = mallocBlock->allocate() ) 257951c0b2f7Stbbdev return result; 258051c0b2f7Stbbdev } 258151c0b2f7Stbbdev 258251c0b2f7Stbbdev /* 258351c0b2f7Stbbdev * else privatize publicly freed objects in some block and allocate from it 258451c0b2f7Stbbdev */ 258551c0b2f7Stbbdev mallocBlock = bin->getPrivatizedFreeListBlock(); 258651c0b2f7Stbbdev if (mallocBlock) { 258751c0b2f7Stbbdev MALLOC_ASSERT( mallocBlock->freeListNonNull(), ASSERT_TEXT ); 258851c0b2f7Stbbdev if ( FreeObject *result = mallocBlock->allocateFromFreeList() ) 258951c0b2f7Stbbdev return result; 259051c0b2f7Stbbdev /* Else something strange happened, need to retry from the beginning; */ 259151c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in public free list; reentering.\n" )); 259251c0b2f7Stbbdev return internalPoolMalloc(memPool, size); 259351c0b2f7Stbbdev } 259451c0b2f7Stbbdev 259551c0b2f7Stbbdev /* 259651c0b2f7Stbbdev * no suitable own blocks, try to get a partial block that some other thread has discarded. 259751c0b2f7Stbbdev */ 259851c0b2f7Stbbdev mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); 259951c0b2f7Stbbdev while (mallocBlock) { 260051c0b2f7Stbbdev bin->pushTLSBin(mallocBlock); 260151c0b2f7Stbbdev bin->setActiveBlock(mallocBlock); // TODO: move under the below condition? 260251c0b2f7Stbbdev if( FreeObject *result = mallocBlock->allocate() ) 260351c0b2f7Stbbdev return result; 260451c0b2f7Stbbdev mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); 260551c0b2f7Stbbdev } 260651c0b2f7Stbbdev 260751c0b2f7Stbbdev /* 260851c0b2f7Stbbdev * else try to get a new empty block 260951c0b2f7Stbbdev */ 261051c0b2f7Stbbdev mallocBlock = memPool->getEmptyBlock(size); 261151c0b2f7Stbbdev if (mallocBlock) { 261251c0b2f7Stbbdev bin->pushTLSBin(mallocBlock); 261351c0b2f7Stbbdev bin->setActiveBlock(mallocBlock); 261451c0b2f7Stbbdev if( FreeObject *result = mallocBlock->allocate() ) 261551c0b2f7Stbbdev return result; 261651c0b2f7Stbbdev /* Else something strange happened, need to retry from the beginning; */ 261751c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in empty block; reentering.\n" )); 261851c0b2f7Stbbdev return internalPoolMalloc(memPool, size); 261951c0b2f7Stbbdev } 262051c0b2f7Stbbdev /* 262151c0b2f7Stbbdev * else nothing works so return NULL 262251c0b2f7Stbbdev */ 262351c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] No memory found, returning NULL.\n" )); 262451c0b2f7Stbbdev return NULL; 262551c0b2f7Stbbdev } 262651c0b2f7Stbbdev 262751c0b2f7Stbbdev // When size==0 (i.e. unknown), detect here whether the object is large. 262851c0b2f7Stbbdev // For size is known and < minLargeObjectSize, we still need to check 262951c0b2f7Stbbdev // if the actual object is large, because large objects might be used 263051c0b2f7Stbbdev // for aligned small allocations. 263151c0b2f7Stbbdev static bool internalPoolFree(MemoryPool *memPool, void *object, size_t size) 263251c0b2f7Stbbdev { 263351c0b2f7Stbbdev if (!memPool || !object) return false; 263451c0b2f7Stbbdev 263551c0b2f7Stbbdev // The library is initialized at allocation call, so releasing while 263651c0b2f7Stbbdev // not initialized means foreign object is releasing. 263751c0b2f7Stbbdev MALLOC_ASSERT(isMallocInitialized(), ASSERT_TEXT); 263851c0b2f7Stbbdev MALLOC_ASSERT(memPool->extMemPool.userPool() || isRecognized(object), 263951c0b2f7Stbbdev "Invalid pointer during object releasing is detected."); 264051c0b2f7Stbbdev 264151c0b2f7Stbbdev if (size >= minLargeObjectSize || isLargeObject<ourMem>(object)) 264251c0b2f7Stbbdev memPool->putToLLOCache(memPool->getTLS(/*create=*/false), object); 264351c0b2f7Stbbdev else 264451c0b2f7Stbbdev freeSmallObject(object); 264551c0b2f7Stbbdev return true; 264651c0b2f7Stbbdev } 264751c0b2f7Stbbdev 264851c0b2f7Stbbdev static void *internalMalloc(size_t size) 264951c0b2f7Stbbdev { 265051c0b2f7Stbbdev if (!size) size = sizeof(size_t); 265151c0b2f7Stbbdev 265251c0b2f7Stbbdev #if MALLOC_CHECK_RECURSION 265351c0b2f7Stbbdev if (RecursiveMallocCallProtector::sameThreadActive()) 265451c0b2f7Stbbdev return size<minLargeObjectSize? StartupBlock::allocate(size) : 265551c0b2f7Stbbdev // nested allocation, so skip tls 265651c0b2f7Stbbdev (FreeObject*)defaultMemPool->getFromLLOCache(NULL, size, slabSize); 265751c0b2f7Stbbdev #endif 265851c0b2f7Stbbdev 265951c0b2f7Stbbdev if (!isMallocInitialized()) 266051c0b2f7Stbbdev if (!doInitialization()) 266151c0b2f7Stbbdev return NULL; 266251c0b2f7Stbbdev return internalPoolMalloc(defaultMemPool, size); 266351c0b2f7Stbbdev } 266451c0b2f7Stbbdev 266551c0b2f7Stbbdev static void internalFree(void *object) 266651c0b2f7Stbbdev { 266751c0b2f7Stbbdev internalPoolFree(defaultMemPool, object, 0); 266851c0b2f7Stbbdev } 266951c0b2f7Stbbdev 267051c0b2f7Stbbdev static size_t internalMsize(void* ptr) 267151c0b2f7Stbbdev { 267251c0b2f7Stbbdev MALLOC_ASSERT(ptr, "Invalid pointer passed to internalMsize"); 267351c0b2f7Stbbdev if (isLargeObject<ourMem>(ptr)) { 267451c0b2f7Stbbdev // TODO: return the maximum memory size, that can be written to this object 267551c0b2f7Stbbdev LargeMemoryBlock* lmb = ((LargeObjectHdr*)ptr - 1)->memoryBlock; 267651c0b2f7Stbbdev return lmb->objectSize; 267751c0b2f7Stbbdev } else { 267851c0b2f7Stbbdev Block *block = (Block*)alignDown(ptr, slabSize); 267951c0b2f7Stbbdev return block->findObjectSize(ptr); 268051c0b2f7Stbbdev } 268151c0b2f7Stbbdev } 268251c0b2f7Stbbdev 268351c0b2f7Stbbdev } // namespace internal 268451c0b2f7Stbbdev 268551c0b2f7Stbbdev using namespace rml::internal; 268651c0b2f7Stbbdev 268751c0b2f7Stbbdev // legacy entry point saved for compatibility with binaries complied 268851c0b2f7Stbbdev // with pre-6003 versions of TBB 268951c0b2f7Stbbdev rml::MemoryPool *pool_create(intptr_t pool_id, const MemPoolPolicy *policy) 269051c0b2f7Stbbdev { 269151c0b2f7Stbbdev rml::MemoryPool *pool; 269251c0b2f7Stbbdev MemPoolPolicy pol(policy->pAlloc, policy->pFree, policy->granularity); 269351c0b2f7Stbbdev 269451c0b2f7Stbbdev pool_create_v1(pool_id, &pol, &pool); 269551c0b2f7Stbbdev return pool; 269651c0b2f7Stbbdev } 269751c0b2f7Stbbdev 269851c0b2f7Stbbdev rml::MemPoolError pool_create_v1(intptr_t pool_id, const MemPoolPolicy *policy, 269951c0b2f7Stbbdev rml::MemoryPool **pool) 270051c0b2f7Stbbdev { 270151c0b2f7Stbbdev if ( !policy->pAlloc || policy->version<MemPoolPolicy::TBBMALLOC_POOL_VERSION 270251c0b2f7Stbbdev // empty pFree allowed only for fixed pools 270351c0b2f7Stbbdev || !(policy->fixedPool || policy->pFree)) { 270451c0b2f7Stbbdev *pool = NULL; 270551c0b2f7Stbbdev return INVALID_POLICY; 270651c0b2f7Stbbdev } 270751c0b2f7Stbbdev if ( policy->version>MemPoolPolicy::TBBMALLOC_POOL_VERSION // future versions are not supported 270851c0b2f7Stbbdev // new flags can be added in place of reserved, but default 270951c0b2f7Stbbdev // behaviour must be supported by this version 271051c0b2f7Stbbdev || policy->reserved ) { 271151c0b2f7Stbbdev *pool = NULL; 271251c0b2f7Stbbdev return UNSUPPORTED_POLICY; 271351c0b2f7Stbbdev } 271451c0b2f7Stbbdev if (!isMallocInitialized()) 271551c0b2f7Stbbdev if (!doInitialization()) { 271651c0b2f7Stbbdev *pool = NULL; 271751c0b2f7Stbbdev return NO_MEMORY; 271851c0b2f7Stbbdev } 271951c0b2f7Stbbdev rml::internal::MemoryPool *memPool = 272051c0b2f7Stbbdev (rml::internal::MemoryPool*)internalMalloc((sizeof(rml::internal::MemoryPool))); 272151c0b2f7Stbbdev if (!memPool) { 272251c0b2f7Stbbdev *pool = NULL; 272351c0b2f7Stbbdev return NO_MEMORY; 272451c0b2f7Stbbdev } 272551c0b2f7Stbbdev memset(memPool, 0, sizeof(rml::internal::MemoryPool)); 272651c0b2f7Stbbdev if (!memPool->init(pool_id, policy)) { 272751c0b2f7Stbbdev internalFree(memPool); 272851c0b2f7Stbbdev *pool = NULL; 272951c0b2f7Stbbdev return NO_MEMORY; 273051c0b2f7Stbbdev } 273151c0b2f7Stbbdev 273251c0b2f7Stbbdev *pool = (rml::MemoryPool*)memPool; 273351c0b2f7Stbbdev return POOL_OK; 273451c0b2f7Stbbdev } 273551c0b2f7Stbbdev 273651c0b2f7Stbbdev bool pool_destroy(rml::MemoryPool* memPool) 273751c0b2f7Stbbdev { 273851c0b2f7Stbbdev if (!memPool) return false; 273951c0b2f7Stbbdev bool ret = ((rml::internal::MemoryPool*)memPool)->destroy(); 274051c0b2f7Stbbdev internalFree(memPool); 274151c0b2f7Stbbdev 274251c0b2f7Stbbdev return ret; 274351c0b2f7Stbbdev } 274451c0b2f7Stbbdev 274551c0b2f7Stbbdev bool pool_reset(rml::MemoryPool* memPool) 274651c0b2f7Stbbdev { 274751c0b2f7Stbbdev if (!memPool) return false; 274851c0b2f7Stbbdev 274951c0b2f7Stbbdev return ((rml::internal::MemoryPool*)memPool)->reset(); 275051c0b2f7Stbbdev } 275151c0b2f7Stbbdev 275251c0b2f7Stbbdev void *pool_malloc(rml::MemoryPool* mPool, size_t size) 275351c0b2f7Stbbdev { 275451c0b2f7Stbbdev return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); 275551c0b2f7Stbbdev } 275651c0b2f7Stbbdev 275751c0b2f7Stbbdev void *pool_realloc(rml::MemoryPool* mPool, void *object, size_t size) 275851c0b2f7Stbbdev { 275951c0b2f7Stbbdev if (!object) 276051c0b2f7Stbbdev return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); 276151c0b2f7Stbbdev if (!size) { 276251c0b2f7Stbbdev internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); 276351c0b2f7Stbbdev return NULL; 276451c0b2f7Stbbdev } 276551c0b2f7Stbbdev return reallocAligned((rml::internal::MemoryPool*)mPool, object, size, 0); 276651c0b2f7Stbbdev } 276751c0b2f7Stbbdev 276851c0b2f7Stbbdev void *pool_aligned_malloc(rml::MemoryPool* mPool, size_t size, size_t alignment) 276951c0b2f7Stbbdev { 277051c0b2f7Stbbdev if (!isPowerOfTwo(alignment) || 0==size) 277151c0b2f7Stbbdev return NULL; 277251c0b2f7Stbbdev 277351c0b2f7Stbbdev return allocateAligned((rml::internal::MemoryPool*)mPool, size, alignment); 277451c0b2f7Stbbdev } 277551c0b2f7Stbbdev 277651c0b2f7Stbbdev void *pool_aligned_realloc(rml::MemoryPool* memPool, void *ptr, size_t size, size_t alignment) 277751c0b2f7Stbbdev { 277851c0b2f7Stbbdev if (!isPowerOfTwo(alignment)) 277951c0b2f7Stbbdev return NULL; 278051c0b2f7Stbbdev rml::internal::MemoryPool *mPool = (rml::internal::MemoryPool*)memPool; 278151c0b2f7Stbbdev void *tmp; 278251c0b2f7Stbbdev 278351c0b2f7Stbbdev if (!ptr) 278451c0b2f7Stbbdev tmp = allocateAligned(mPool, size, alignment); 278551c0b2f7Stbbdev else if (!size) { 278651c0b2f7Stbbdev internalPoolFree(mPool, ptr, 0); 278751c0b2f7Stbbdev return NULL; 278851c0b2f7Stbbdev } else 278951c0b2f7Stbbdev tmp = reallocAligned(mPool, ptr, size, alignment); 279051c0b2f7Stbbdev 279151c0b2f7Stbbdev return tmp; 279251c0b2f7Stbbdev } 279351c0b2f7Stbbdev 279451c0b2f7Stbbdev bool pool_free(rml::MemoryPool *mPool, void *object) 279551c0b2f7Stbbdev { 279651c0b2f7Stbbdev return internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); 279751c0b2f7Stbbdev } 279851c0b2f7Stbbdev 279951c0b2f7Stbbdev rml::MemoryPool *pool_identify(void *object) 280051c0b2f7Stbbdev { 280151c0b2f7Stbbdev rml::internal::MemoryPool *pool; 280251c0b2f7Stbbdev if (isLargeObject<ourMem>(object)) { 280351c0b2f7Stbbdev LargeObjectHdr *header = (LargeObjectHdr*)object - 1; 280451c0b2f7Stbbdev pool = header->memoryBlock->pool; 280551c0b2f7Stbbdev } else { 280651c0b2f7Stbbdev Block *block = (Block*)alignDown(object, slabSize); 280751c0b2f7Stbbdev pool = block->getMemPool(); 280851c0b2f7Stbbdev } 280951c0b2f7Stbbdev // do not return defaultMemPool, as it can't be used in pool_free() etc 281051c0b2f7Stbbdev __TBB_ASSERT_RELEASE(pool!=defaultMemPool, 281151c0b2f7Stbbdev "rml::pool_identify() can't be used for scalable_malloc() etc results."); 281251c0b2f7Stbbdev return (rml::MemoryPool*)pool; 281351c0b2f7Stbbdev } 281451c0b2f7Stbbdev 281551c0b2f7Stbbdev size_t pool_msize(rml::MemoryPool *mPool, void* object) 281651c0b2f7Stbbdev { 281751c0b2f7Stbbdev if (object) { 281851c0b2f7Stbbdev // No assert for object recognition, cause objects allocated from non-default 281951c0b2f7Stbbdev // memory pool do not participate in range checking and do not have valid backreferences for 282051c0b2f7Stbbdev // small objects. Instead, check that an object belong to the certain memory pool. 282151c0b2f7Stbbdev MALLOC_ASSERT_EX(mPool == pool_identify(object), "Object does not belong to the specified pool"); 282251c0b2f7Stbbdev return internalMsize(object); 282351c0b2f7Stbbdev } 282451c0b2f7Stbbdev errno = EINVAL; 282551c0b2f7Stbbdev // Unlike _msize, return 0 in case of parameter error. 282651c0b2f7Stbbdev // Returning size_t(-1) looks more like the way to troubles. 282751c0b2f7Stbbdev return 0; 282851c0b2f7Stbbdev } 282951c0b2f7Stbbdev 283051c0b2f7Stbbdev } // namespace rml 283151c0b2f7Stbbdev 283251c0b2f7Stbbdev using namespace rml::internal; 283351c0b2f7Stbbdev 283451c0b2f7Stbbdev #if MALLOC_TRACE 283551c0b2f7Stbbdev static unsigned int threadGoingDownCount = 0; 283651c0b2f7Stbbdev #endif 283751c0b2f7Stbbdev 283851c0b2f7Stbbdev /* 283951c0b2f7Stbbdev * When a thread is shutting down this routine should be called to remove all the thread ids 284051c0b2f7Stbbdev * from the malloc blocks and replace them with a NULL thread id. 284151c0b2f7Stbbdev * 284251c0b2f7Stbbdev * For pthreads, the function is set as a callback in pthread_key_create for TLS bin. 284351c0b2f7Stbbdev * It will be automatically called at thread exit with the key value as the argument, 284451c0b2f7Stbbdev * unless that value is NULL. 284551c0b2f7Stbbdev * For Windows, it is called from DllMain( DLL_THREAD_DETACH ). 284651c0b2f7Stbbdev * 284751c0b2f7Stbbdev * However neither of the above is called for the main process thread, so the routine 284851c0b2f7Stbbdev * also needs to be called during the process shutdown. 284951c0b2f7Stbbdev * 285051c0b2f7Stbbdev */ 285151c0b2f7Stbbdev // TODO: Consider making this function part of class MemoryPool. 285251c0b2f7Stbbdev void doThreadShutdownNotification(TLSData* tls, bool main_thread) 285351c0b2f7Stbbdev { 285451c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return start %d\n", 285551c0b2f7Stbbdev getThreadId(), threadGoingDownCount++ )); 285651c0b2f7Stbbdev 285751c0b2f7Stbbdev #if USE_PTHREAD 285851c0b2f7Stbbdev if (tls) { 285951c0b2f7Stbbdev if (!shutdownSync.threadDtorStart()) return; 286051c0b2f7Stbbdev tls->getMemPool()->onThreadShutdown(tls); 286151c0b2f7Stbbdev shutdownSync.threadDtorDone(); 286251c0b2f7Stbbdev } else 286351c0b2f7Stbbdev #endif 286451c0b2f7Stbbdev { 286551c0b2f7Stbbdev suppress_unused_warning(tls); // not used on Windows 286651c0b2f7Stbbdev // The default pool is safe to use at this point: 286751c0b2f7Stbbdev // on Linux, only the main thread can go here before destroying defaultMemPool; 286851c0b2f7Stbbdev // on Windows, shutdown is synchronized via loader lock and isMallocInitialized(). 286951c0b2f7Stbbdev // See also __TBB_mallocProcessShutdownNotification() 287051c0b2f7Stbbdev defaultMemPool->onThreadShutdown(defaultMemPool->getTLS(/*create=*/false)); 287151c0b2f7Stbbdev // Take lock to walk through other pools; but waiting might be dangerous at this point 287251c0b2f7Stbbdev // (e.g. on Windows the main thread might deadlock) 287351c0b2f7Stbbdev bool locked; 287451c0b2f7Stbbdev MallocMutex::scoped_lock lock(MemoryPool::memPoolListLock, /*wait=*/!main_thread, &locked); 287551c0b2f7Stbbdev if (locked) { // the list is safe to process 287651c0b2f7Stbbdev for (MemoryPool *memPool = defaultMemPool->next; memPool; memPool = memPool->next) 287751c0b2f7Stbbdev memPool->onThreadShutdown(memPool->getTLS(/*create=*/false)); 287851c0b2f7Stbbdev } 287951c0b2f7Stbbdev } 288051c0b2f7Stbbdev 288151c0b2f7Stbbdev TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return end\n", getThreadId() )); 288251c0b2f7Stbbdev } 288351c0b2f7Stbbdev 288451c0b2f7Stbbdev #if USE_PTHREAD 288551c0b2f7Stbbdev void mallocThreadShutdownNotification(void* arg) 288651c0b2f7Stbbdev { 288751c0b2f7Stbbdev // The routine is called for each pool (as TLS dtor) on each thread, except for the main thread 288851c0b2f7Stbbdev if (!isMallocInitialized()) return; 288951c0b2f7Stbbdev doThreadShutdownNotification((TLSData*)arg, false); 289051c0b2f7Stbbdev } 289151c0b2f7Stbbdev #else 289251c0b2f7Stbbdev extern "C" void __TBB_mallocThreadShutdownNotification() 289351c0b2f7Stbbdev { 289451c0b2f7Stbbdev // The routine is called once per thread on Windows 289551c0b2f7Stbbdev if (!isMallocInitialized()) return; 289651c0b2f7Stbbdev doThreadShutdownNotification(NULL, false); 289751c0b2f7Stbbdev } 289851c0b2f7Stbbdev #endif 289951c0b2f7Stbbdev 290051c0b2f7Stbbdev extern "C" void __TBB_mallocProcessShutdownNotification(bool windows_process_dying) 290151c0b2f7Stbbdev { 290251c0b2f7Stbbdev if (!isMallocInitialized()) return; 290351c0b2f7Stbbdev 290451c0b2f7Stbbdev // Don't clean allocator internals if the entire process is exiting 290551c0b2f7Stbbdev if (!windows_process_dying) { 290651c0b2f7Stbbdev doThreadShutdownNotification(NULL, /*main_thread=*/true); 290751c0b2f7Stbbdev } 290851c0b2f7Stbbdev #if __TBB_MALLOC_LOCACHE_STAT 290951c0b2f7Stbbdev printf("cache hit ratio %f, size hit %f\n", 291051c0b2f7Stbbdev 1.*cacheHits/mallocCalls, 1.*memHitKB/memAllocKB); 291151c0b2f7Stbbdev defaultMemPool->extMemPool.loc.reportStat(stdout); 291251c0b2f7Stbbdev #endif 291351c0b2f7Stbbdev 291451c0b2f7Stbbdev shutdownSync.processExit(); 291551c0b2f7Stbbdev #if __TBB_SOURCE_DIRECTLY_INCLUDED 291651c0b2f7Stbbdev /* Pthread keys must be deleted as soon as possible to not call key dtor 291751c0b2f7Stbbdev on thread termination when then the tbbmalloc code can be already unloaded. 291851c0b2f7Stbbdev */ 291951c0b2f7Stbbdev defaultMemPool->destroy(); 292051c0b2f7Stbbdev destroyBackRefMaster(&defaultMemPool->extMemPool.backend); 292151c0b2f7Stbbdev ThreadId::destroy(); // Delete key for thread id 292251c0b2f7Stbbdev hugePages.reset(); 292351c0b2f7Stbbdev // new total malloc initialization is possible after this point 292451c0b2f7Stbbdev mallocInitialized.store(0, std::memory_order_release); 292551c0b2f7Stbbdev #elif __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND 292651c0b2f7Stbbdev /* In most cases we prevent unloading tbbmalloc, and don't clean up memory 292751c0b2f7Stbbdev on process shutdown. When impossible to prevent, library unload results 292851c0b2f7Stbbdev in shutdown notification, and it makes sense to release unused memory 292951c0b2f7Stbbdev at that point (we can't release all memory because it's possible that 293051c0b2f7Stbbdev it will be accessed after this point). 293151c0b2f7Stbbdev TODO: better support systems where we can't prevent unloading by removing 293251c0b2f7Stbbdev pthread destructors and releasing caches. 293351c0b2f7Stbbdev */ 293451c0b2f7Stbbdev defaultMemPool->extMemPool.hardCachesCleanup(); 293551c0b2f7Stbbdev #endif // __TBB_SOURCE_DIRECTLY_INCLUDED 293651c0b2f7Stbbdev 293751c0b2f7Stbbdev #if COLLECT_STATISTICS 293851c0b2f7Stbbdev unsigned nThreads = ThreadId::getMaxThreadId(); 293951c0b2f7Stbbdev for( int i=1; i<=nThreads && i<MAX_THREADS; ++i ) 294051c0b2f7Stbbdev STAT_print(i); 294151c0b2f7Stbbdev #endif 294251c0b2f7Stbbdev if (!usedBySrcIncluded) 294351c0b2f7Stbbdev MALLOC_ITT_FINI_ITTLIB(); 294451c0b2f7Stbbdev } 294551c0b2f7Stbbdev 294651c0b2f7Stbbdev extern "C" void * scalable_malloc(size_t size) 294751c0b2f7Stbbdev { 294851c0b2f7Stbbdev void *ptr = internalMalloc(size); 294951c0b2f7Stbbdev if (!ptr) errno = ENOMEM; 295051c0b2f7Stbbdev return ptr; 295151c0b2f7Stbbdev } 295251c0b2f7Stbbdev 295351c0b2f7Stbbdev extern "C" void scalable_free(void *object) 295451c0b2f7Stbbdev { 295551c0b2f7Stbbdev internalFree(object); 295651c0b2f7Stbbdev } 295751c0b2f7Stbbdev 295851c0b2f7Stbbdev #if MALLOC_ZONE_OVERLOAD_ENABLED 295951c0b2f7Stbbdev extern "C" void __TBB_malloc_free_definite_size(void *object, size_t size) 296051c0b2f7Stbbdev { 296151c0b2f7Stbbdev internalPoolFree(defaultMemPool, object, size); 296251c0b2f7Stbbdev } 296351c0b2f7Stbbdev #endif 296451c0b2f7Stbbdev 296551c0b2f7Stbbdev /* 296651c0b2f7Stbbdev * A variant that provides additional memory safety, by checking whether the given address 296751c0b2f7Stbbdev * was obtained with this allocator, and if not redirecting to the provided alternative call. 296851c0b2f7Stbbdev */ 296951c0b2f7Stbbdev extern "C" void __TBB_malloc_safer_free(void *object, void (*original_free)(void*)) 297051c0b2f7Stbbdev { 297151c0b2f7Stbbdev if (!object) 297251c0b2f7Stbbdev return; 297351c0b2f7Stbbdev 297451c0b2f7Stbbdev // tbbmalloc can allocate object only when tbbmalloc has been initialized 297551c0b2f7Stbbdev if (mallocInitialized.load(std::memory_order_acquire) && defaultMemPool->extMemPool.backend.ptrCanBeValid(object)) { 297651c0b2f7Stbbdev if (isLargeObject<unknownMem>(object)) { 297751c0b2f7Stbbdev // must check 1st for large object, because small object check touches 4 pages on left, 297851c0b2f7Stbbdev // and it can be inaccessible 297951c0b2f7Stbbdev TLSData *tls = defaultMemPool->getTLS(/*create=*/false); 298051c0b2f7Stbbdev 298151c0b2f7Stbbdev defaultMemPool->putToLLOCache(tls, object); 298251c0b2f7Stbbdev return; 298351c0b2f7Stbbdev } else if (isSmallObject(object)) { 298451c0b2f7Stbbdev freeSmallObject(object); 298551c0b2f7Stbbdev return; 298651c0b2f7Stbbdev } 298751c0b2f7Stbbdev } 298851c0b2f7Stbbdev if (original_free) 298951c0b2f7Stbbdev original_free(object); 299051c0b2f7Stbbdev } 299151c0b2f7Stbbdev 299251c0b2f7Stbbdev /********* End the free code *************/ 299351c0b2f7Stbbdev 299451c0b2f7Stbbdev /********* Code for scalable_realloc ***********/ 299551c0b2f7Stbbdev 299651c0b2f7Stbbdev /* 299751c0b2f7Stbbdev * From K&R 299851c0b2f7Stbbdev * "realloc changes the size of the object pointed to by p to size. The contents will 299951c0b2f7Stbbdev * be unchanged up to the minimum of the old and the new sizes. If the new size is larger, 300051c0b2f7Stbbdev * the new space is uninitialized. realloc returns a pointer to the new space, or 300151c0b2f7Stbbdev * NULL if the request cannot be satisfied, in which case *p is unchanged." 300251c0b2f7Stbbdev * 300351c0b2f7Stbbdev */ 300451c0b2f7Stbbdev extern "C" void* scalable_realloc(void* ptr, size_t size) 300551c0b2f7Stbbdev { 300651c0b2f7Stbbdev void *tmp; 300751c0b2f7Stbbdev 300851c0b2f7Stbbdev if (!ptr) 300951c0b2f7Stbbdev tmp = internalMalloc(size); 301051c0b2f7Stbbdev else if (!size) { 301151c0b2f7Stbbdev internalFree(ptr); 301251c0b2f7Stbbdev return NULL; 301351c0b2f7Stbbdev } else 301451c0b2f7Stbbdev tmp = reallocAligned(defaultMemPool, ptr, size, 0); 301551c0b2f7Stbbdev 301651c0b2f7Stbbdev if (!tmp) errno = ENOMEM; 301751c0b2f7Stbbdev return tmp; 301851c0b2f7Stbbdev } 301951c0b2f7Stbbdev 302051c0b2f7Stbbdev /* 302151c0b2f7Stbbdev * A variant that provides additional memory safety, by checking whether the given address 302251c0b2f7Stbbdev * was obtained with this allocator, and if not redirecting to the provided alternative call. 302351c0b2f7Stbbdev */ 302451c0b2f7Stbbdev extern "C" void* __TBB_malloc_safer_realloc(void* ptr, size_t sz, void* original_realloc) 302551c0b2f7Stbbdev { 302651c0b2f7Stbbdev void *tmp; // TODO: fix warnings about uninitialized use of tmp 302751c0b2f7Stbbdev 302851c0b2f7Stbbdev if (!ptr) { 302951c0b2f7Stbbdev tmp = internalMalloc(sz); 303051c0b2f7Stbbdev } else if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(ptr)) { 303151c0b2f7Stbbdev if (!sz) { 303251c0b2f7Stbbdev internalFree(ptr); 303351c0b2f7Stbbdev return NULL; 303451c0b2f7Stbbdev } else { 303551c0b2f7Stbbdev tmp = reallocAligned(defaultMemPool, ptr, sz, 0); 303651c0b2f7Stbbdev } 303751c0b2f7Stbbdev } 303851c0b2f7Stbbdev #if USE_WINTHREAD 303951c0b2f7Stbbdev else if (original_realloc && sz) { 304051c0b2f7Stbbdev orig_ptrs *original_ptrs = static_cast<orig_ptrs*>(original_realloc); 304151c0b2f7Stbbdev if ( original_ptrs->msize ){ 304251c0b2f7Stbbdev size_t oldSize = original_ptrs->msize(ptr); 304351c0b2f7Stbbdev tmp = internalMalloc(sz); 304451c0b2f7Stbbdev if (tmp) { 304551c0b2f7Stbbdev memcpy(tmp, ptr, sz<oldSize? sz : oldSize); 304651c0b2f7Stbbdev if ( original_ptrs->free ){ 304751c0b2f7Stbbdev original_ptrs->free( ptr ); 304851c0b2f7Stbbdev } 304951c0b2f7Stbbdev } 305051c0b2f7Stbbdev } else 305151c0b2f7Stbbdev tmp = NULL; 305251c0b2f7Stbbdev } 305351c0b2f7Stbbdev #else 305451c0b2f7Stbbdev else if (original_realloc) { 305551c0b2f7Stbbdev typedef void* (*realloc_ptr_t)(void*,size_t); 305651c0b2f7Stbbdev realloc_ptr_t original_realloc_ptr; 305751c0b2f7Stbbdev (void *&)original_realloc_ptr = original_realloc; 305851c0b2f7Stbbdev tmp = original_realloc_ptr(ptr,sz); 305951c0b2f7Stbbdev } 306051c0b2f7Stbbdev #endif 306151c0b2f7Stbbdev else tmp = NULL; 306251c0b2f7Stbbdev 306351c0b2f7Stbbdev if (!tmp) errno = ENOMEM; 306451c0b2f7Stbbdev return tmp; 306551c0b2f7Stbbdev } 306651c0b2f7Stbbdev 306751c0b2f7Stbbdev /********* End code for scalable_realloc ***********/ 306851c0b2f7Stbbdev 306951c0b2f7Stbbdev /********* Code for scalable_calloc ***********/ 307051c0b2f7Stbbdev 307151c0b2f7Stbbdev /* 307251c0b2f7Stbbdev * From K&R 307351c0b2f7Stbbdev * calloc returns a pointer to space for an array of nobj objects, 307451c0b2f7Stbbdev * each of size size, or NULL if the request cannot be satisfied. 307551c0b2f7Stbbdev * The space is initialized to zero bytes. 307651c0b2f7Stbbdev * 307751c0b2f7Stbbdev */ 307851c0b2f7Stbbdev 307951c0b2f7Stbbdev extern "C" void * scalable_calloc(size_t nobj, size_t size) 308051c0b2f7Stbbdev { 308151c0b2f7Stbbdev // it's square root of maximal size_t value 308251c0b2f7Stbbdev const size_t mult_not_overflow = size_t(1) << (sizeof(size_t)*CHAR_BIT/2); 308351c0b2f7Stbbdev const size_t arraySize = nobj * size; 308451c0b2f7Stbbdev 308551c0b2f7Stbbdev // check for overflow during multiplication: 308651c0b2f7Stbbdev if (nobj>=mult_not_overflow || size>=mult_not_overflow) // 1) heuristic check 308751c0b2f7Stbbdev if (nobj && arraySize / nobj != size) { // 2) exact check 308851c0b2f7Stbbdev errno = ENOMEM; 308951c0b2f7Stbbdev return NULL; 309051c0b2f7Stbbdev } 309151c0b2f7Stbbdev void* result = internalMalloc(arraySize); 309251c0b2f7Stbbdev if (result) 309351c0b2f7Stbbdev memset(result, 0, arraySize); 309451c0b2f7Stbbdev else 309551c0b2f7Stbbdev errno = ENOMEM; 309651c0b2f7Stbbdev return result; 309751c0b2f7Stbbdev } 309851c0b2f7Stbbdev 309951c0b2f7Stbbdev /********* End code for scalable_calloc ***********/ 310051c0b2f7Stbbdev 310151c0b2f7Stbbdev /********* Code for aligned allocation API **********/ 310251c0b2f7Stbbdev 310351c0b2f7Stbbdev extern "C" int scalable_posix_memalign(void **memptr, size_t alignment, size_t size) 310451c0b2f7Stbbdev { 310551c0b2f7Stbbdev if ( !isPowerOfTwoAtLeast(alignment, sizeof(void*)) ) 310651c0b2f7Stbbdev return EINVAL; 310751c0b2f7Stbbdev void *result = allocateAligned(defaultMemPool, size, alignment); 310851c0b2f7Stbbdev if (!result) 310951c0b2f7Stbbdev return ENOMEM; 311051c0b2f7Stbbdev *memptr = result; 311151c0b2f7Stbbdev return 0; 311251c0b2f7Stbbdev } 311351c0b2f7Stbbdev 311451c0b2f7Stbbdev extern "C" void * scalable_aligned_malloc(size_t size, size_t alignment) 311551c0b2f7Stbbdev { 311651c0b2f7Stbbdev if (!isPowerOfTwo(alignment) || 0==size) { 311751c0b2f7Stbbdev errno = EINVAL; 311851c0b2f7Stbbdev return NULL; 311951c0b2f7Stbbdev } 312051c0b2f7Stbbdev void *tmp = allocateAligned(defaultMemPool, size, alignment); 312151c0b2f7Stbbdev if (!tmp) errno = ENOMEM; 312251c0b2f7Stbbdev return tmp; 312351c0b2f7Stbbdev } 312451c0b2f7Stbbdev 312551c0b2f7Stbbdev extern "C" void * scalable_aligned_realloc(void *ptr, size_t size, size_t alignment) 312651c0b2f7Stbbdev { 312751c0b2f7Stbbdev if (!isPowerOfTwo(alignment)) { 312851c0b2f7Stbbdev errno = EINVAL; 312951c0b2f7Stbbdev return NULL; 313051c0b2f7Stbbdev } 313151c0b2f7Stbbdev void *tmp; 313251c0b2f7Stbbdev 313351c0b2f7Stbbdev if (!ptr) 313451c0b2f7Stbbdev tmp = allocateAligned(defaultMemPool, size, alignment); 313551c0b2f7Stbbdev else if (!size) { 313651c0b2f7Stbbdev scalable_free(ptr); 313751c0b2f7Stbbdev return NULL; 313851c0b2f7Stbbdev } else 313951c0b2f7Stbbdev tmp = reallocAligned(defaultMemPool, ptr, size, alignment); 314051c0b2f7Stbbdev 314151c0b2f7Stbbdev if (!tmp) errno = ENOMEM; 314251c0b2f7Stbbdev return tmp; 314351c0b2f7Stbbdev } 314451c0b2f7Stbbdev 314551c0b2f7Stbbdev extern "C" void * __TBB_malloc_safer_aligned_realloc(void *ptr, size_t size, size_t alignment, void* orig_function) 314651c0b2f7Stbbdev { 314751c0b2f7Stbbdev /* corner cases left out of reallocAligned to not deal with errno there */ 314851c0b2f7Stbbdev if (!isPowerOfTwo(alignment)) { 314951c0b2f7Stbbdev errno = EINVAL; 315051c0b2f7Stbbdev return NULL; 315151c0b2f7Stbbdev } 315251c0b2f7Stbbdev void *tmp = NULL; 315351c0b2f7Stbbdev 315451c0b2f7Stbbdev if (!ptr) { 315551c0b2f7Stbbdev tmp = allocateAligned(defaultMemPool, size, alignment); 315651c0b2f7Stbbdev } else if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(ptr)) { 315751c0b2f7Stbbdev if (!size) { 315851c0b2f7Stbbdev internalFree(ptr); 315951c0b2f7Stbbdev return NULL; 316051c0b2f7Stbbdev } else { 316151c0b2f7Stbbdev tmp = reallocAligned(defaultMemPool, ptr, size, alignment); 316251c0b2f7Stbbdev } 316351c0b2f7Stbbdev } 316451c0b2f7Stbbdev #if USE_WINTHREAD 316551c0b2f7Stbbdev else { 316651c0b2f7Stbbdev orig_aligned_ptrs *original_ptrs = static_cast<orig_aligned_ptrs*>(orig_function); 316751c0b2f7Stbbdev if (size) { 316851c0b2f7Stbbdev // Without orig_msize, we can't do anything with this. 316951c0b2f7Stbbdev // Just keeping old pointer. 317051c0b2f7Stbbdev if ( original_ptrs->aligned_msize ){ 317151c0b2f7Stbbdev // set alignment and offset to have possibly correct oldSize 317251c0b2f7Stbbdev size_t oldSize = original_ptrs->aligned_msize(ptr, sizeof(void*), 0); 317351c0b2f7Stbbdev tmp = allocateAligned(defaultMemPool, size, alignment); 317451c0b2f7Stbbdev if (tmp) { 317551c0b2f7Stbbdev memcpy(tmp, ptr, size<oldSize? size : oldSize); 317651c0b2f7Stbbdev if ( original_ptrs->aligned_free ){ 317751c0b2f7Stbbdev original_ptrs->aligned_free( ptr ); 317851c0b2f7Stbbdev } 317951c0b2f7Stbbdev } 318051c0b2f7Stbbdev } 318151c0b2f7Stbbdev } else { 318251c0b2f7Stbbdev if ( original_ptrs->aligned_free ){ 318351c0b2f7Stbbdev original_ptrs->aligned_free( ptr ); 318451c0b2f7Stbbdev } 318551c0b2f7Stbbdev return NULL; 318651c0b2f7Stbbdev } 318751c0b2f7Stbbdev } 318851c0b2f7Stbbdev #else 318951c0b2f7Stbbdev // As original_realloc can't align result, and there is no way to find 319051c0b2f7Stbbdev // size of reallocating object, we are giving up. 319151c0b2f7Stbbdev suppress_unused_warning(orig_function); 319251c0b2f7Stbbdev #endif 319351c0b2f7Stbbdev if (!tmp) errno = ENOMEM; 319451c0b2f7Stbbdev return tmp; 319551c0b2f7Stbbdev } 319651c0b2f7Stbbdev 319751c0b2f7Stbbdev extern "C" void scalable_aligned_free(void *ptr) 319851c0b2f7Stbbdev { 319951c0b2f7Stbbdev internalFree(ptr); 320051c0b2f7Stbbdev } 320151c0b2f7Stbbdev 320251c0b2f7Stbbdev /********* end code for aligned allocation API **********/ 320351c0b2f7Stbbdev 320451c0b2f7Stbbdev /********* Code for scalable_msize ***********/ 320551c0b2f7Stbbdev 320651c0b2f7Stbbdev /* 320751c0b2f7Stbbdev * Returns the size of a memory block allocated in the heap. 320851c0b2f7Stbbdev */ 320951c0b2f7Stbbdev extern "C" size_t scalable_msize(void* ptr) 321051c0b2f7Stbbdev { 321151c0b2f7Stbbdev if (ptr) { 321251c0b2f7Stbbdev MALLOC_ASSERT(isRecognized(ptr), "Invalid pointer in scalable_msize detected."); 321351c0b2f7Stbbdev return internalMsize(ptr); 321451c0b2f7Stbbdev } 321551c0b2f7Stbbdev errno = EINVAL; 321651c0b2f7Stbbdev // Unlike _msize, return 0 in case of parameter error. 321751c0b2f7Stbbdev // Returning size_t(-1) looks more like the way to troubles. 321851c0b2f7Stbbdev return 0; 321951c0b2f7Stbbdev } 322051c0b2f7Stbbdev 322151c0b2f7Stbbdev /* 322251c0b2f7Stbbdev * A variant that provides additional memory safety, by checking whether the given address 322351c0b2f7Stbbdev * was obtained with this allocator, and if not redirecting to the provided alternative call. 322451c0b2f7Stbbdev */ 322551c0b2f7Stbbdev extern "C" size_t __TBB_malloc_safer_msize(void *object, size_t (*original_msize)(void*)) 322651c0b2f7Stbbdev { 322751c0b2f7Stbbdev if (object) { 322851c0b2f7Stbbdev // Check if the memory was allocated by scalable_malloc 322951c0b2f7Stbbdev if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(object)) 323051c0b2f7Stbbdev return internalMsize(object); 323151c0b2f7Stbbdev else if (original_msize) 323251c0b2f7Stbbdev return original_msize(object); 323351c0b2f7Stbbdev } 323451c0b2f7Stbbdev // object is NULL or unknown, or foreign and no original_msize 323551c0b2f7Stbbdev #if USE_WINTHREAD 323651c0b2f7Stbbdev errno = EINVAL; // errno expected to be set only on this platform 323751c0b2f7Stbbdev #endif 323851c0b2f7Stbbdev return 0; 323951c0b2f7Stbbdev } 324051c0b2f7Stbbdev 324151c0b2f7Stbbdev /* 324251c0b2f7Stbbdev * The same as above but for _aligned_msize case 324351c0b2f7Stbbdev */ 324451c0b2f7Stbbdev extern "C" size_t __TBB_malloc_safer_aligned_msize(void *object, size_t alignment, size_t offset, size_t (*orig_aligned_msize)(void*,size_t,size_t)) 324551c0b2f7Stbbdev { 324651c0b2f7Stbbdev if (object) { 324751c0b2f7Stbbdev // Check if the memory was allocated by scalable_malloc 324851c0b2f7Stbbdev if (mallocInitialized.load(std::memory_order_acquire) && isRecognized(object)) 324951c0b2f7Stbbdev return internalMsize(object); 325051c0b2f7Stbbdev else if (orig_aligned_msize) 325151c0b2f7Stbbdev return orig_aligned_msize(object,alignment,offset); 325251c0b2f7Stbbdev } 325351c0b2f7Stbbdev // object is NULL or unknown 325451c0b2f7Stbbdev errno = EINVAL; 325551c0b2f7Stbbdev return 0; 325651c0b2f7Stbbdev } 325751c0b2f7Stbbdev 325851c0b2f7Stbbdev /********* End code for scalable_msize ***********/ 325951c0b2f7Stbbdev 326051c0b2f7Stbbdev extern "C" int scalable_allocation_mode(int param, intptr_t value) 326151c0b2f7Stbbdev { 326251c0b2f7Stbbdev if (param == TBBMALLOC_SET_SOFT_HEAP_LIMIT) { 326351c0b2f7Stbbdev defaultMemPool->extMemPool.backend.setRecommendedMaxSize((size_t)value); 326451c0b2f7Stbbdev return TBBMALLOC_OK; 326551c0b2f7Stbbdev } else if (param == USE_HUGE_PAGES) { 326651c0b2f7Stbbdev #if __linux__ 326751c0b2f7Stbbdev switch (value) { 326851c0b2f7Stbbdev case 0: 326951c0b2f7Stbbdev case 1: 327051c0b2f7Stbbdev hugePages.setMode(value); 327151c0b2f7Stbbdev return TBBMALLOC_OK; 327251c0b2f7Stbbdev default: 327351c0b2f7Stbbdev return TBBMALLOC_INVALID_PARAM; 327451c0b2f7Stbbdev } 327551c0b2f7Stbbdev #else 327651c0b2f7Stbbdev return TBBMALLOC_NO_EFFECT; 327751c0b2f7Stbbdev #endif 327851c0b2f7Stbbdev #if __TBB_SOURCE_DIRECTLY_INCLUDED 327951c0b2f7Stbbdev } else if (param == TBBMALLOC_INTERNAL_SOURCE_INCLUDED) { 328051c0b2f7Stbbdev switch (value) { 328151c0b2f7Stbbdev case 0: // used by dynamic library 328251c0b2f7Stbbdev case 1: // used by static library or directly included sources 328351c0b2f7Stbbdev usedBySrcIncluded = value; 328451c0b2f7Stbbdev return TBBMALLOC_OK; 328551c0b2f7Stbbdev default: 328651c0b2f7Stbbdev return TBBMALLOC_INVALID_PARAM; 328751c0b2f7Stbbdev } 328851c0b2f7Stbbdev #endif 328951c0b2f7Stbbdev } else if (param == TBBMALLOC_SET_HUGE_SIZE_THRESHOLD) { 329051c0b2f7Stbbdev defaultMemPool->extMemPool.loc.setHugeSizeThreshold((size_t)value); 329151c0b2f7Stbbdev return TBBMALLOC_OK; 329251c0b2f7Stbbdev } 329351c0b2f7Stbbdev return TBBMALLOC_INVALID_PARAM; 329451c0b2f7Stbbdev } 329551c0b2f7Stbbdev 329651c0b2f7Stbbdev extern "C" int scalable_allocation_command(int cmd, void *param) 329751c0b2f7Stbbdev { 329851c0b2f7Stbbdev if (param) 329951c0b2f7Stbbdev return TBBMALLOC_INVALID_PARAM; 330051c0b2f7Stbbdev 330151c0b2f7Stbbdev bool released = false; 330251c0b2f7Stbbdev switch(cmd) { 330351c0b2f7Stbbdev case TBBMALLOC_CLEAN_THREAD_BUFFERS: 330451c0b2f7Stbbdev if (TLSData *tls = defaultMemPool->getTLS(/*create=*/false)) 330551c0b2f7Stbbdev released = tls->externalCleanup(/*cleanOnlyUnused*/false, /*cleanBins=*/true); 330651c0b2f7Stbbdev break; 330751c0b2f7Stbbdev case TBBMALLOC_CLEAN_ALL_BUFFERS: 330851c0b2f7Stbbdev released = defaultMemPool->extMemPool.hardCachesCleanup(); 330951c0b2f7Stbbdev break; 331051c0b2f7Stbbdev default: 331151c0b2f7Stbbdev return TBBMALLOC_INVALID_PARAM; 331251c0b2f7Stbbdev } 331351c0b2f7Stbbdev return released ? TBBMALLOC_OK : TBBMALLOC_NO_EFFECT; 331451c0b2f7Stbbdev } 3315