xref: /oneTBB/src/tbb/task_group_context.cpp (revision 7196bb4f)
1 /*
2     Copyright (c) 2005-2022 Intel Corporation
3 
4     Licensed under the Apache License, Version 2.0 (the "License");
5     you may not use this file except in compliance with the License.
6     You may obtain a copy of the License at
7 
8         http://www.apache.org/licenses/LICENSE-2.0
9 
10     Unless required by applicable law or agreed to in writing, software
11     distributed under the License is distributed on an "AS IS" BASIS,
12     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13     See the License for the specific language governing permissions and
14     limitations under the License.
15 */
16 
17 #include "oneapi/tbb/detail/_config.h"
18 #include "oneapi/tbb/tbb_allocator.h"
19 #include "oneapi/tbb/task_group.h"
20 #include "governor.h"
21 #include "thread_data.h"
22 #include "scheduler_common.h"
23 #include "itt_notify.h"
24 #include "task_dispatcher.h"
25 
26 #include <type_traits>
27 
28 namespace tbb {
29 namespace detail {
30 namespace r1 {
31 
32 //------------------------------------------------------------------------
33 // tbb_exception_ptr
34 //------------------------------------------------------------------------
35 tbb_exception_ptr* tbb_exception_ptr::allocate() noexcept {
36     tbb_exception_ptr* eptr = (tbb_exception_ptr*)allocate_memory(sizeof(tbb_exception_ptr));
37     return eptr ? new (eptr) tbb_exception_ptr(std::current_exception()) : nullptr;
38 }
39 
40 void tbb_exception_ptr::destroy() noexcept {
41     this->~tbb_exception_ptr();
42     deallocate_memory(this);
43 }
44 
45 void tbb_exception_ptr::throw_self() {
46     if (governor::rethrow_exception_broken()) fix_broken_rethrow();
47     std::rethrow_exception(my_ptr);
48 }
49 
50 //------------------------------------------------------------------------
51 // task_group_context
52 //------------------------------------------------------------------------
53 
54 void task_group_context_impl::destroy(d1::task_group_context& ctx) {
55     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
56 
57     if (ctx.my_context_list != nullptr) {
58         __TBB_ASSERT(ctx.my_state.load(std::memory_order_relaxed) == d1::task_group_context::state::bound, nullptr);
59         // The owner can be destroyed at any moment. Access the associate data with caution.
60         ctx.my_context_list->remove(ctx.my_node);
61     }
62     d1::cpu_ctl_env* ctl = reinterpret_cast<d1::cpu_ctl_env*>(&ctx.my_cpu_ctl_env);
63 #if _MSC_VER && _MSC_VER <= 1900 && !__INTEL_COMPILER
64     suppress_unused_warning(ctl);
65 #endif
66     ctl->~cpu_ctl_env();
67 
68     auto exception = ctx.my_exception.load(std::memory_order_relaxed);
69     if (exception) {
70         exception->destroy();
71     }
72     ITT_STACK_DESTROY(ctx.my_itt_caller);
73 
74     poison_pointer(ctx.my_parent);
75     poison_pointer(ctx.my_context_list);
76     poison_pointer(ctx.my_node.my_next_node);
77     poison_pointer(ctx.my_node.my_prev_node);
78     poison_pointer(ctx.my_exception);
79     poison_pointer(ctx.my_itt_caller);
80 
81     ctx.my_state.store(d1::task_group_context::state::dead, std::memory_order_release);
82 }
83 
84 void task_group_context_impl::initialize(d1::task_group_context& ctx) {
85     ITT_TASK_GROUP(&ctx, ctx.my_name, nullptr);
86 
87     ctx.my_node.my_next_node = &ctx.my_node;
88     ctx.my_node.my_prev_node = &ctx.my_node;
89     ctx.my_cpu_ctl_env = 0;
90     ctx.my_cancellation_requested = 0;
91     ctx.my_may_have_children.store(0, std::memory_order_relaxed);
92     // Set the created state to bound at the first usage.
93     ctx.my_state.store(d1::task_group_context::state::created, std::memory_order_relaxed);
94     ctx.my_parent = nullptr;
95     ctx.my_context_list = nullptr;
96     ctx.my_exception.store(nullptr, std::memory_order_relaxed);
97     ctx.my_itt_caller = nullptr;
98 
99     static_assert(sizeof(d1::cpu_ctl_env) <= sizeof(ctx.my_cpu_ctl_env), "FPU settings storage does not fit to uint64_t");
100     d1::cpu_ctl_env* ctl = new (&ctx.my_cpu_ctl_env) d1::cpu_ctl_env;
101     if (ctx.my_traits.fp_settings)
102         ctl->get_env();
103 }
104 
105 void task_group_context_impl::register_with(d1::task_group_context& ctx, thread_data* td) {
106     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
107     __TBB_ASSERT(td, nullptr);
108     ctx.my_context_list = td->my_context_list;
109 
110     ctx.my_context_list->push_front(ctx.my_node);
111 }
112 
113 void task_group_context_impl::bind_to_impl(d1::task_group_context& ctx, thread_data* td) {
114     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
115     __TBB_ASSERT(ctx.my_state.load(std::memory_order_relaxed) == d1::task_group_context::state::locked, "The context can be bound only under the lock.");
116     __TBB_ASSERT(!ctx.my_parent, "Parent is set before initial binding");
117 
118     ctx.my_parent = td->my_task_dispatcher->m_execute_data_ext.context;
119     __TBB_ASSERT(ctx.my_parent, nullptr);
120 
121     // Inherit FPU settings only if the context has not captured FPU settings yet.
122     if (!ctx.my_traits.fp_settings)
123         copy_fp_settings(ctx, *ctx.my_parent);
124 
125     // Condition below prevents unnecessary thrashing parent context's cache line
126     if (ctx.my_parent->my_may_have_children.load(std::memory_order_relaxed) != d1::task_group_context::may_have_children) {
127         ctx.my_parent->my_may_have_children.store(d1::task_group_context::may_have_children, std::memory_order_relaxed); // full fence is below
128     }
129     if (ctx.my_parent->my_parent) {
130         // Even if this context were made accessible for state change propagation
131         // (by placing store_with_release(td->my_context_list_state.head.my_next, &ctx.my_node)
132         // above), it still could be missed if state propagation from a grand-ancestor
133         // was underway concurrently with binding.
134         // Speculative propagation from the parent together with epoch counters
135         // detecting possibility of such a race allow to avoid taking locks when
136         // there is no contention.
137 
138         // Acquire fence is necessary to prevent reordering subsequent speculative
139         // loads of parent state data out of the scope where epoch counters comparison
140         // can reliably validate it.
141         uintptr_t local_count_snapshot = ctx.my_parent->my_context_list->epoch.load(std::memory_order_acquire);
142         // Speculative propagation of parent's state. The speculation will be
143         // validated by the epoch counters check further on.
144         ctx.my_cancellation_requested.store(ctx.my_parent->my_cancellation_requested.load(std::memory_order_relaxed), std::memory_order_relaxed);
145         register_with(ctx, td); // Issues full fence
146 
147         // If no state propagation was detected by the following condition, the above
148         // full fence guarantees that the parent had correct state during speculative
149         // propagation before the fence. Otherwise the propagation from parent is
150         // repeated under the lock.
151         if (local_count_snapshot != the_context_state_propagation_epoch.load(std::memory_order_relaxed)) {
152             // Another thread may be propagating state change right now. So resort to lock.
153             context_state_propagation_mutex_type::scoped_lock lock(the_context_state_propagation_mutex);
154             ctx.my_cancellation_requested.store(ctx.my_parent->my_cancellation_requested.load(std::memory_order_relaxed), std::memory_order_relaxed);
155         }
156     } else {
157         register_with(ctx, td); // Issues full fence
158         // As we do not have grand-ancestors, concurrent state propagation (if any)
159         // may originate only from the parent context, and thus it is safe to directly
160         // copy the state from it.
161         ctx.my_cancellation_requested.store(ctx.my_parent->my_cancellation_requested.load(std::memory_order_relaxed), std::memory_order_relaxed);
162     }
163 }
164 
165 void task_group_context_impl::bind_to(d1::task_group_context& ctx, thread_data* td) {
166     d1::task_group_context::state state = ctx.my_state.load(std::memory_order_acquire);
167     if (state <= d1::task_group_context::state::locked) {
168         if (state == d1::task_group_context::state::created &&
169 #if defined(__INTEL_COMPILER) && __INTEL_COMPILER <= 1910
170             ((std::atomic<typename std::underlying_type<d1::task_group_context::state>::type>&)ctx.my_state).compare_exchange_strong(
171                 (typename std::underlying_type<d1::task_group_context::state>::type&)state,
172                 (typename std::underlying_type<d1::task_group_context::state>::type)d1::task_group_context::state::locked)
173 #else
174             ctx.my_state.compare_exchange_strong(state, d1::task_group_context::state::locked)
175 #endif
176             ) {
177             // If we are in the outermost task dispatch loop of an external thread, then
178             // there is nothing to bind this context to, and we skip the binding part
179             // treating the context as isolated.
180             __TBB_ASSERT(td->my_task_dispatcher->m_execute_data_ext.context != nullptr, nullptr);
181             d1::task_group_context::state release_state{};
182             if (td->my_task_dispatcher->m_execute_data_ext.context == td->my_arena->my_default_ctx || !ctx.my_traits.bound) {
183                 if (!ctx.my_traits.fp_settings) {
184                     copy_fp_settings(ctx, *td->my_arena->my_default_ctx);
185                 }
186                 release_state = d1::task_group_context::state::isolated;
187             } else {
188                 bind_to_impl(ctx, td);
189                 release_state = d1::task_group_context::state::bound;
190             }
191             ITT_STACK_CREATE(ctx.my_itt_caller);
192             ctx.my_state.store(release_state, std::memory_order_release);
193         }
194         spin_wait_while_eq(ctx.my_state, d1::task_group_context::state::locked);
195     }
196     __TBB_ASSERT(ctx.my_state.load(std::memory_order_relaxed) != d1::task_group_context::state::created, nullptr);
197     __TBB_ASSERT(ctx.my_state.load(std::memory_order_relaxed) != d1::task_group_context::state::locked, nullptr);
198 }
199 
200 template <typename T>
201 void task_group_context_impl::propagate_task_group_state(d1::task_group_context& ctx, std::atomic<T> d1::task_group_context::* mptr_state, d1::task_group_context& src, T new_state) {
202     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
203     /*  1. if ((ctx.*mptr_state).load(std::memory_order_relaxed) == new_state):
204             Nothing to do, whether descending from "src" or not, so no need to scan.
205             Hopefully this happens often thanks to earlier invocations.
206             This optimization is enabled by LIFO order in the context lists:
207                 - new contexts are bound to the beginning of lists;
208                 - descendants are newer than ancestors;
209                 - earlier invocations are therefore likely to "paint" long chains.
210         2. if (&ctx != &src):
211             This clause is disjunct from the traversal below, which skips src entirely.
212             Note that src.*mptr_state is not necessarily still equal to new_state (another thread may have changed it again).
213             Such interference is probably not frequent enough to aim for optimisation by writing new_state again (to make the other thread back down).
214             Letting the other thread prevail may also be fairer.
215     */
216     if ((ctx.*mptr_state).load(std::memory_order_relaxed) != new_state && &ctx != &src) {
217         for (d1::task_group_context* ancestor = ctx.my_parent; ancestor != nullptr; ancestor = ancestor->my_parent) {
218             if (ancestor == &src) {
219                 for (d1::task_group_context* c = &ctx; c != ancestor; c = c->my_parent)
220                     (c->*mptr_state).store(new_state, std::memory_order_relaxed);
221                 break;
222             }
223         }
224     }
225 }
226 
227 template <typename T>
228 void thread_data::propagate_task_group_state(std::atomic<T> d1::task_group_context::* mptr_state, d1::task_group_context& src, T new_state) {
229     mutex::scoped_lock lock(my_context_list->m_mutex);
230     // Acquire fence is necessary to ensure that the subsequent node->my_next load
231     // returned the correct value in case it was just inserted in another thread.
232     // The fence also ensures visibility of the correct ctx.my_parent value.
233     for (context_list::iterator it = my_context_list->begin(); it != my_context_list->end(); ++it) {
234         d1::task_group_context& ctx = __TBB_get_object_ref(d1::task_group_context, my_node, &(*it));
235         if ((ctx.*mptr_state).load(std::memory_order_relaxed) != new_state)
236             task_group_context_impl::propagate_task_group_state(ctx, mptr_state, src, new_state);
237     }
238     // Sync up local propagation epoch with the global one. Release fence prevents
239     // reordering of possible store to *mptr_state after the sync point.
240     my_context_list->epoch.store(the_context_state_propagation_epoch.load(std::memory_order_relaxed), std::memory_order_release);
241 }
242 
243 template <typename T>
244 bool market::propagate_task_group_state(std::atomic<T> d1::task_group_context::* mptr_state, d1::task_group_context& src, T new_state) {
245     if (src.my_may_have_children.load(std::memory_order_relaxed) != d1::task_group_context::may_have_children)
246         return true;
247     // The whole propagation algorithm is under the lock in order to ensure correctness
248     // in case of concurrent state changes at the different levels of the context tree.
249     // See comment at the bottom of scheduler.cpp
250     context_state_propagation_mutex_type::scoped_lock lock(the_context_state_propagation_mutex);
251     if ((src.*mptr_state).load(std::memory_order_relaxed) != new_state)
252         // Another thread has concurrently changed the state. Back down.
253         return false;
254     // Advance global state propagation epoch
255     ++the_context_state_propagation_epoch;
256     // Propagate to all workers and external threads and sync up their local epochs with the global one
257     unsigned num_workers = my_first_unused_worker_idx;
258     for (unsigned i = 0; i < num_workers; ++i) {
259         thread_data* td = my_workers[i].load(std::memory_order_acquire);
260         // If the worker is only about to be registered, skip it.
261         if (td)
262             td->propagate_task_group_state(mptr_state, src, new_state);
263     }
264     // Propagate to all external threads
265     // The whole propagation sequence is locked, thus no contention is expected
266     for (thread_data_list_type::iterator it = my_masters.begin(); it != my_masters.end(); it++)
267         it->propagate_task_group_state(mptr_state, src, new_state);
268     return true;
269 }
270 
271 bool task_group_context_impl::cancel_group_execution(d1::task_group_context& ctx) {
272     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
273     __TBB_ASSERT(ctx.my_cancellation_requested.load(std::memory_order_relaxed) <= 1, "The cancellation state can be either 0 or 1");
274     if (ctx.my_cancellation_requested.load(std::memory_order_relaxed) || ctx.my_cancellation_requested.exchange(1)) {
275         // This task group and any descendants have already been canceled.
276         // (A newly added descendant would inherit its parent's ctx.my_cancellation_requested,
277         // not missing out on any cancellation still being propagated, and a context cannot be uncanceled.)
278         return false;
279     }
280     governor::get_thread_data()->my_arena->my_market->propagate_task_group_state(&d1::task_group_context::my_cancellation_requested, ctx, uint32_t(1));
281     return true;
282 }
283 
284 bool task_group_context_impl::is_group_execution_cancelled(const d1::task_group_context& ctx) {
285     return ctx.my_cancellation_requested.load(std::memory_order_relaxed) != 0;
286 }
287 
288 // IMPORTANT: It is assumed that this method is not used concurrently!
289 void task_group_context_impl::reset(d1::task_group_context& ctx) {
290     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
291     //! TODO: Add assertion that this context does not have children
292     // No fences are necessary since this context can be accessed from another thread
293     // only after stealing happened (which means necessary fences were used).
294 
295     auto exception = ctx.my_exception.load(std::memory_order_relaxed);
296     if (exception) {
297         exception->destroy();
298         ctx.my_exception.store(nullptr, std::memory_order_relaxed);
299     }
300     ctx.my_cancellation_requested = 0;
301 }
302 
303 // IMPORTANT: It is assumed that this method is not used concurrently!
304 void task_group_context_impl::capture_fp_settings(d1::task_group_context& ctx) {
305     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
306     //! TODO: Add assertion that this context does not have children
307     // No fences are necessary since this context can be accessed from another thread
308     // only after stealing happened (which means necessary fences were used).
309     d1::cpu_ctl_env* ctl = reinterpret_cast<d1::cpu_ctl_env*>(&ctx.my_cpu_ctl_env);
310     if (!ctx.my_traits.fp_settings) {
311         ctl = new (&ctx.my_cpu_ctl_env) d1::cpu_ctl_env;
312         ctx.my_traits.fp_settings = true;
313     }
314     ctl->get_env();
315 }
316 
317 void task_group_context_impl::copy_fp_settings(d1::task_group_context& ctx, const d1::task_group_context& src) {
318     __TBB_ASSERT(!is_poisoned(ctx.my_context_list), nullptr);
319     __TBB_ASSERT(!ctx.my_traits.fp_settings, "The context already has FPU settings.");
320     __TBB_ASSERT(src.my_traits.fp_settings, "The source context does not have FPU settings.");
321 
322     const d1::cpu_ctl_env* src_ctl = reinterpret_cast<const d1::cpu_ctl_env*>(&src.my_cpu_ctl_env);
323     new (&ctx.my_cpu_ctl_env) d1::cpu_ctl_env(*src_ctl);
324     ctx.my_traits.fp_settings = true;
325 }
326 
327 /*
328     Comments:
329 
330 1.  The premise of the cancellation support implementation is that cancellations are
331     not part of the hot path of the program execution. Therefore all changes in its
332     implementation in order to reduce the overhead of the cancellation control flow
333     should be done only in ways that do not increase overhead of the normal execution.
334 
335     In general, contexts are used by all threads and their descendants are created in
336     different threads as well. In order to minimize impact of the cross-thread tree
337     maintenance (first of all because of the synchronization), the tree of contexts
338     is split into pieces, each of which is handled by a single thread. Such pieces
339     are represented as lists of contexts, members of which are contexts that were
340     bound to their parents in the given thread.
341 
342     The context tree maintenance and cancellation propagation algorithms are designed
343     in such a manner that cross-thread access to a context list will take place only
344     when cancellation signal is sent (by user or when an exception happens), and
345     synchronization is necessary only then. Thus the normal execution flow (without
346     exceptions and cancellation) remains free from any synchronization done on
347     behalf of exception handling and cancellation support.
348 
349 2.  Consider parallel cancellations at the different levels of the context tree:
350 
351         Ctx1 <- Cancelled by Thread1            |- Thread2 started processing
352          |                                      |
353         Ctx2                                    |- Thread1 started processing
354          |                                   T1 |- Thread2 finishes and syncs up local counters
355         Ctx3 <- Cancelled by Thread2            |
356          |                                      |- Ctx5 is bound to Ctx2
357         Ctx4                                    |
358                                              T2 |- Thread1 reaches Ctx2
359 
360     Thread-propagator of each cancellation increments global counter. However the thread
361     propagating the cancellation from the outermost context (Thread1) may be the last
362     to finish. Which means that the local counters may be synchronized earlier (by Thread2,
363     at Time1) than it propagated cancellation into Ctx2 (at time Time2). If a new context
364     (Ctx5) is created and bound to Ctx2 between Time1 and Time2, checking its parent only
365     (Ctx2) may result in cancellation request being lost.
366 
367     This issue is solved by doing the whole propagation under the lock.
368 
369     If we need more concurrency while processing parallel cancellations, we could try
370     the following modification of the propagation algorithm:
371 
372     advance global counter and remember it
373     for each thread:
374         scan thread's list of contexts
375     for each thread:
376         sync up its local counter only if the global counter has not been changed
377 
378     However this version of the algorithm requires more analysis and verification.
379 */
380 
381 void __TBB_EXPORTED_FUNC initialize(d1::task_group_context& ctx) {
382     task_group_context_impl::initialize(ctx);
383 }
384 void __TBB_EXPORTED_FUNC destroy(d1::task_group_context& ctx) {
385     task_group_context_impl::destroy(ctx);
386 }
387 void __TBB_EXPORTED_FUNC reset(d1::task_group_context& ctx) {
388     task_group_context_impl::reset(ctx);
389 }
390 bool __TBB_EXPORTED_FUNC cancel_group_execution(d1::task_group_context& ctx) {
391     return task_group_context_impl::cancel_group_execution(ctx);
392 }
393 bool __TBB_EXPORTED_FUNC is_group_execution_cancelled(d1::task_group_context& ctx) {
394     return task_group_context_impl::is_group_execution_cancelled(ctx);
395 }
396 void __TBB_EXPORTED_FUNC capture_fp_settings(d1::task_group_context& ctx) {
397     task_group_context_impl::capture_fp_settings(ctx);
398 }
399 
400 } // namespace r1
401 } // namespace detail
402 } // namespace tbb
403 
404