10446d81eSMichael Kruse //===------ Simplify.cpp ----------------------------------------*- C++ -*-===//
20446d81eSMichael Kruse //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60446d81eSMichael Kruse //
70446d81eSMichael Kruse //===----------------------------------------------------------------------===//
80446d81eSMichael Kruse //
90446d81eSMichael Kruse // Simplify a SCoP by removing unnecessary statements and accesses.
100446d81eSMichael Kruse //
110446d81eSMichael Kruse //===----------------------------------------------------------------------===//
120446d81eSMichael Kruse 
130446d81eSMichael Kruse #include "polly/Simplify.h"
140446d81eSMichael Kruse #include "polly/ScopInfo.h"
150446d81eSMichael Kruse #include "polly/ScopPass.h"
160446d81eSMichael Kruse #include "polly/Support/GICHelper.h"
1733204859STobias Grosser #include "polly/Support/ISLOStream.h"
18ce9617f4SMichael Kruse #include "polly/Support/ISLTools.h"
1922058c3fSMichael Kruse #include "polly/Support/VirtualInstruction.h"
200446d81eSMichael Kruse #include "llvm/ADT/Statistic.h"
2105da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
220446d81eSMichael Kruse #include "llvm/Support/Debug.h"
2323753c60SMichael Kruse 
240446d81eSMichael Kruse #define DEBUG_TYPE "polly-simplify"
250446d81eSMichael Kruse 
260446d81eSMichael Kruse using namespace llvm;
270446d81eSMichael Kruse using namespace polly;
280446d81eSMichael Kruse 
290446d81eSMichael Kruse namespace {
300446d81eSMichael Kruse 
3106ed5292SMichael Kruse #define TWO_STATISTICS(VARNAME, DESC)                                          \
3206ed5292SMichael Kruse   static llvm::Statistic VARNAME[2] = {                                        \
33126158f0SVolodymyr Sapsai       {DEBUG_TYPE, #VARNAME "0", DESC " (first)"},                             \
34126158f0SVolodymyr Sapsai       {DEBUG_TYPE, #VARNAME "1", DESC " (second)"}}
3506ed5292SMichael Kruse 
36693ef999SMichael Kruse /// Number of max disjuncts we allow in removeOverwrites(). This is to avoid
37693ef999SMichael Kruse /// that the analysis of accesses in a statement is becoming too complex. Chosen
38693ef999SMichael Kruse /// to be relatively small because all the common cases should access only few
39693ef999SMichael Kruse /// array elements per statement.
4044596fe6SRiccardo Mori static unsigned const SimplifyMaxDisjuncts = 4;
41693ef999SMichael Kruse 
4206ed5292SMichael Kruse TWO_STATISTICS(ScopsProcessed, "Number of SCoPs processed");
4306ed5292SMichael Kruse TWO_STATISTICS(ScopsModified, "Number of SCoPs simplified");
440446d81eSMichael Kruse 
456983741eSMichael Kruse TWO_STATISTICS(TotalEmptyDomainsRemoved,
466983741eSMichael Kruse                "Number of statement with empty domains removed in any SCoP");
4706ed5292SMichael Kruse TWO_STATISTICS(TotalOverwritesRemoved, "Number of removed overwritten writes");
4806ed5292SMichael Kruse TWO_STATISTICS(TotalWritesCoalesced, "Number of writes coalesced with another");
4906ed5292SMichael Kruse TWO_STATISTICS(TotalRedundantWritesRemoved,
500446d81eSMichael Kruse                "Number of writes of same value removed in any SCoP");
5106ed5292SMichael Kruse TWO_STATISTICS(TotalEmptyPartialAccessesRemoved,
52ab8f0d57SMichael Kruse                "Number of empty partial accesses removed");
5306ed5292SMichael Kruse TWO_STATISTICS(TotalDeadAccessesRemoved, "Number of dead accesses removed");
5406ed5292SMichael Kruse TWO_STATISTICS(TotalDeadInstructionsRemoved,
5522058c3fSMichael Kruse                "Number of unused instructions removed");
5606ed5292SMichael Kruse TWO_STATISTICS(TotalStmtsRemoved, "Number of statements removed in any SCoP");
5706ed5292SMichael Kruse 
5806ed5292SMichael Kruse TWO_STATISTICS(NumValueWrites, "Number of scalar value writes after Simplify");
5906ed5292SMichael Kruse TWO_STATISTICS(
6006ed5292SMichael Kruse     NumValueWritesInLoops,
6106ed5292SMichael Kruse     "Number of scalar value writes nested in affine loops after Simplify");
6206ed5292SMichael Kruse TWO_STATISTICS(NumPHIWrites,
6306ed5292SMichael Kruse                "Number of scalar phi writes after the first simplification");
6406ed5292SMichael Kruse TWO_STATISTICS(
6506ed5292SMichael Kruse     NumPHIWritesInLoops,
6606ed5292SMichael Kruse     "Number of scalar phi writes nested in affine loops after Simplify");
6706ed5292SMichael Kruse TWO_STATISTICS(NumSingletonWrites, "Number of singleton writes after Simplify");
6806ed5292SMichael Kruse TWO_STATISTICS(
6906ed5292SMichael Kruse     NumSingletonWritesInLoops,
7006ed5292SMichael Kruse     "Number of singleton writes nested in affine loops after Simplify");
710446d81eSMichael Kruse 
isImplicitRead(MemoryAccess * MA)72f263610bSMichael Kruse static bool isImplicitRead(MemoryAccess *MA) {
73f263610bSMichael Kruse   return MA->isRead() && MA->isOriginalScalarKind();
74f263610bSMichael Kruse }
75f263610bSMichael Kruse 
isExplicitAccess(MemoryAccess * MA)76f263610bSMichael Kruse static bool isExplicitAccess(MemoryAccess *MA) {
77f263610bSMichael Kruse   return MA->isOriginalArrayKind();
78f263610bSMichael Kruse }
79f263610bSMichael Kruse 
isImplicitWrite(MemoryAccess * MA)80f263610bSMichael Kruse static bool isImplicitWrite(MemoryAccess *MA) {
81f263610bSMichael Kruse   return MA->isWrite() && MA->isOriginalScalarKind();
82f263610bSMichael Kruse }
83f263610bSMichael Kruse 
84d5ee355fSRiccardo Mori /// Like isl::union_map::unite, but may also return an underapproximated
85693ef999SMichael Kruse /// result if getting too complex.
86693ef999SMichael Kruse ///
87693ef999SMichael Kruse /// This is implemented by adding disjuncts to the results until the limit is
88693ef999SMichael Kruse /// reached.
underapproximatedAddMap(isl::union_map UMap,isl::map Map)89693ef999SMichael Kruse static isl::union_map underapproximatedAddMap(isl::union_map UMap,
90693ef999SMichael Kruse                                               isl::map Map) {
91693ef999SMichael Kruse   if (UMap.is_null() || Map.is_null())
92693ef999SMichael Kruse     return {};
93693ef999SMichael Kruse 
94693ef999SMichael Kruse   isl::map PrevMap = UMap.extract_map(Map.get_space());
95693ef999SMichael Kruse 
96693ef999SMichael Kruse   // Fast path: If known that we cannot exceed the disjunct limit, just add
97693ef999SMichael Kruse   // them.
9844596fe6SRiccardo Mori   if (unsignedFromIslSize(PrevMap.n_basic_map()) +
9944596fe6SRiccardo Mori           unsignedFromIslSize(Map.n_basic_map()) <=
100693ef999SMichael Kruse       SimplifyMaxDisjuncts)
101d5ee355fSRiccardo Mori     return UMap.unite(Map);
102693ef999SMichael Kruse 
103693ef999SMichael Kruse   isl::map Result = isl::map::empty(PrevMap.get_space());
104a3387168STobias Grosser   for (isl::basic_map BMap : PrevMap.get_basic_map_list()) {
10544596fe6SRiccardo Mori     if (unsignedFromIslSize(Result.n_basic_map()) > SimplifyMaxDisjuncts)
106a3387168STobias Grosser       break;
107693ef999SMichael Kruse     Result = Result.unite(BMap);
108a3387168STobias Grosser   }
109a3387168STobias Grosser   for (isl::basic_map BMap : Map.get_basic_map_list()) {
11044596fe6SRiccardo Mori     if (unsignedFromIslSize(Result.n_basic_map()) > SimplifyMaxDisjuncts)
111a3387168STobias Grosser       break;
112693ef999SMichael Kruse     Result = Result.unite(BMap);
113a3387168STobias Grosser   }
114693ef999SMichael Kruse 
115693ef999SMichael Kruse   isl::union_map UResult =
116693ef999SMichael Kruse       UMap.subtract(isl::map::universe(PrevMap.get_space()));
117d5ee355fSRiccardo Mori   UResult.unite(Result);
118693ef999SMichael Kruse 
119693ef999SMichael Kruse   return UResult;
120693ef999SMichael Kruse }
12123753c60SMichael Kruse 
122bd93df93SMichael Kruse class SimplifyImpl final {
12323753c60SMichael Kruse private:
12423753c60SMichael Kruse   /// The invocation id (if there are multiple instances in the pass manager's
12523753c60SMichael Kruse   /// pipeline) to determine which statistics to update.
12623753c60SMichael Kruse   int CallNo;
12723753c60SMichael Kruse 
12823753c60SMichael Kruse   /// The last/current SCoP that is/has been processed.
12923753c60SMichael Kruse   Scop *S = nullptr;
13023753c60SMichael Kruse 
13123753c60SMichael Kruse   /// Number of statements with empty domains removed from the SCoP.
13223753c60SMichael Kruse   int EmptyDomainsRemoved = 0;
13323753c60SMichael Kruse 
13423753c60SMichael Kruse   /// Number of writes that are overwritten anyway.
13523753c60SMichael Kruse   int OverwritesRemoved = 0;
13623753c60SMichael Kruse 
13723753c60SMichael Kruse   /// Number of combined writes.
13823753c60SMichael Kruse   int WritesCoalesced = 0;
13923753c60SMichael Kruse 
14023753c60SMichael Kruse   /// Number of redundant writes removed from this SCoP.
14123753c60SMichael Kruse   int RedundantWritesRemoved = 0;
14223753c60SMichael Kruse 
14323753c60SMichael Kruse   /// Number of writes with empty access domain removed.
14423753c60SMichael Kruse   int EmptyPartialAccessesRemoved = 0;
14523753c60SMichael Kruse 
14623753c60SMichael Kruse   /// Number of unused accesses removed from this SCoP.
14723753c60SMichael Kruse   int DeadAccessesRemoved = 0;
14823753c60SMichael Kruse 
14923753c60SMichael Kruse   /// Number of unused instructions removed from this SCoP.
15023753c60SMichael Kruse   int DeadInstructionsRemoved = 0;
15123753c60SMichael Kruse 
15223753c60SMichael Kruse   /// Number of unnecessary statements removed from the SCoP.
15323753c60SMichael Kruse   int StmtsRemoved = 0;
15423753c60SMichael Kruse 
15523753c60SMichael Kruse   /// Remove statements that are never executed due to their domains being
15623753c60SMichael Kruse   /// empty.
15723753c60SMichael Kruse   ///
15823753c60SMichael Kruse   /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
15923753c60SMichael Kruse   /// effective domain, i.e. including the SCoP's context as used by some other
16023753c60SMichael Kruse   /// simplification methods in this pass. This is necessary because the
16123753c60SMichael Kruse   /// analysis on empty domains is unreliable, e.g. remove a scalar value
16223753c60SMichael Kruse   /// definition MemoryAccesses, but not its use.
16323753c60SMichael Kruse   void removeEmptyDomainStmts();
16423753c60SMichael Kruse 
16523753c60SMichael Kruse   /// Remove writes that are overwritten unconditionally later in the same
16623753c60SMichael Kruse   /// statement.
16723753c60SMichael Kruse   ///
16823753c60SMichael Kruse   /// There must be no read of the same value between the write (that is to be
16923753c60SMichael Kruse   /// removed) and the overwrite.
17023753c60SMichael Kruse   void removeOverwrites();
17123753c60SMichael Kruse 
17223753c60SMichael Kruse   /// Combine writes that write the same value if possible.
17323753c60SMichael Kruse   ///
17423753c60SMichael Kruse   /// This function is able to combine:
17523753c60SMichael Kruse   /// - Partial writes with disjoint domain.
17623753c60SMichael Kruse   /// - Writes that write to the same array element.
17723753c60SMichael Kruse   ///
17823753c60SMichael Kruse   /// In all cases, both writes must write the same values.
17923753c60SMichael Kruse   void coalesceWrites();
18023753c60SMichael Kruse 
18123753c60SMichael Kruse   /// Remove writes that just write the same value already stored in the
18223753c60SMichael Kruse   /// element.
18323753c60SMichael Kruse   void removeRedundantWrites();
18423753c60SMichael Kruse 
18523753c60SMichael Kruse   /// Remove statements without side effects.
18623753c60SMichael Kruse   void removeUnnecessaryStmts();
18723753c60SMichael Kruse 
18823753c60SMichael Kruse   /// Remove accesses that have an empty domain.
18923753c60SMichael Kruse   void removeEmptyPartialAccesses();
19023753c60SMichael Kruse 
19123753c60SMichael Kruse   /// Mark all reachable instructions and access, and sweep those that are not
19223753c60SMichael Kruse   /// reachable.
19323753c60SMichael Kruse   void markAndSweep(LoopInfo *LI);
19423753c60SMichael Kruse 
19523753c60SMichael Kruse   /// Print simplification statistics to @p OS.
19623753c60SMichael Kruse   void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const;
19723753c60SMichael Kruse 
19823753c60SMichael Kruse   /// Print the current state of all MemoryAccesses to @p OS.
19923753c60SMichael Kruse   void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const;
20023753c60SMichael Kruse 
20123753c60SMichael Kruse public:
SimplifyImpl(int CallNo=0)20223753c60SMichael Kruse   explicit SimplifyImpl(int CallNo = 0) : CallNo(CallNo) {}
20323753c60SMichael Kruse 
20423753c60SMichael Kruse   void run(Scop &S, LoopInfo *LI);
20523753c60SMichael Kruse 
20623753c60SMichael Kruse   void printScop(raw_ostream &OS, Scop &S) const;
207693ef999SMichael Kruse 
2080446d81eSMichael Kruse   /// Return whether at least one simplification has been applied.
20923753c60SMichael Kruse   bool isModified() const;
21023753c60SMichael Kruse };
21123753c60SMichael Kruse 
21223753c60SMichael Kruse /// Return whether at least one simplification has been applied.
isModified() const21323753c60SMichael Kruse bool SimplifyImpl::isModified() const {
2146983741eSMichael Kruse   return EmptyDomainsRemoved > 0 || OverwritesRemoved > 0 ||
2156983741eSMichael Kruse          WritesCoalesced > 0 || RedundantWritesRemoved > 0 ||
2166983741eSMichael Kruse          EmptyPartialAccessesRemoved > 0 || DeadAccessesRemoved > 0 ||
2176983741eSMichael Kruse          DeadInstructionsRemoved > 0 || StmtsRemoved > 0;
2186983741eSMichael Kruse }
2196983741eSMichael Kruse 
2206983741eSMichael Kruse /// Remove statements that are never executed due to their domains being
2216983741eSMichael Kruse /// empty.
2226983741eSMichael Kruse ///
2236983741eSMichael Kruse /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
2246983741eSMichael Kruse /// effective domain, i.e. including the SCoP's context as used by some other
2256983741eSMichael Kruse /// simplification methods in this pass. This is necessary because the
2266983741eSMichael Kruse /// analysis on empty domains is unreliable, e.g. remove a scalar value
2276983741eSMichael Kruse /// definition MemoryAccesses, but not its use.
removeEmptyDomainStmts()22823753c60SMichael Kruse void SimplifyImpl::removeEmptyDomainStmts() {
2296983741eSMichael Kruse   size_t NumStmtsBefore = S->getSize();
2306983741eSMichael Kruse 
2316538fff3SMichael Kruse   S->removeStmts([](ScopStmt &Stmt) -> bool {
2326983741eSMichael Kruse     auto EffectiveDomain =
2336983741eSMichael Kruse         Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
2346983741eSMichael Kruse     return EffectiveDomain.is_empty();
2356538fff3SMichael Kruse   });
2366983741eSMichael Kruse 
2376983741eSMichael Kruse   assert(NumStmtsBefore >= S->getSize());
2386983741eSMichael Kruse   EmptyDomainsRemoved = NumStmtsBefore - S->getSize();
2396983741eSMichael Kruse   LLVM_DEBUG(dbgs() << "Removed " << EmptyDomainsRemoved << " (of "
240deb00cf0SPengxuan Zheng                     << NumStmtsBefore << ") statements with empty domains \n");
2416983741eSMichael Kruse   TotalEmptyDomainsRemoved[CallNo] += EmptyDomainsRemoved;
2420446d81eSMichael Kruse }
2430446d81eSMichael Kruse 
244f263610bSMichael Kruse /// Remove writes that are overwritten unconditionally later in the same
245f263610bSMichael Kruse /// statement.
246f263610bSMichael Kruse ///
247f263610bSMichael Kruse /// There must be no read of the same value between the write (that is to be
248f263610bSMichael Kruse /// removed) and the overwrite.
removeOverwrites()24923753c60SMichael Kruse void SimplifyImpl::removeOverwrites() {
250f263610bSMichael Kruse   for (auto &Stmt : *S) {
251dcf8d696STobias Grosser     isl::set Domain = Stmt.getDomain();
252bad3ebbaSRiccardo Mori     isl::union_map WillBeOverwritten = isl::union_map::empty(S->getIslCtx());
253f263610bSMichael Kruse 
2549746f817SSiddharth Bhat     SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
255f263610bSMichael Kruse 
256f263610bSMichael Kruse     // Iterate in reverse order, so the overwrite comes before the write that
257f263610bSMichael Kruse     // is to be removed.
258f263610bSMichael Kruse     for (auto *MA : reverse(Accesses)) {
259f263610bSMichael Kruse 
260f263610bSMichael Kruse       // In region statements, the explicit accesses can be in blocks that are
261f263610bSMichael Kruse       // can be executed in any order. We therefore process only the implicit
262f263610bSMichael Kruse       // writes and stop after that.
263f263610bSMichael Kruse       if (Stmt.isRegionStmt() && isExplicitAccess(MA))
264f263610bSMichael Kruse         break;
265f263610bSMichael Kruse 
2661515f6b9STobias Grosser       auto AccRel = MA->getAccessRelation();
267f263610bSMichael Kruse       AccRel = AccRel.intersect_domain(Domain);
268b65ccc43STobias Grosser       AccRel = AccRel.intersect_params(S->getContext());
269f263610bSMichael Kruse 
270f263610bSMichael Kruse       // If a value is read in-between, do not consider it as overwritten.
271f263610bSMichael Kruse       if (MA->isRead()) {
272693ef999SMichael Kruse         // Invalidate all overwrites for the array it accesses to avoid too
273693ef999SMichael Kruse         // complex isl sets.
274693ef999SMichael Kruse         isl::map AccRelUniv = isl::map::universe(AccRel.get_space());
275693ef999SMichael Kruse         WillBeOverwritten = WillBeOverwritten.subtract(AccRelUniv);
276f263610bSMichael Kruse         continue;
277f263610bSMichael Kruse       }
278f263610bSMichael Kruse 
279f263610bSMichael Kruse       // If all of a write's elements are overwritten, remove it.
280f263610bSMichael Kruse       isl::union_map AccRelUnion = AccRel;
281b5f61bdeSTobias Grosser       if (AccRelUnion.is_subset(WillBeOverwritten)) {
282349506a9SNicola Zaghen         LLVM_DEBUG(dbgs() << "Removing " << MA
283f263610bSMichael Kruse                           << " which will be overwritten anyway\n");
284f263610bSMichael Kruse 
285f263610bSMichael Kruse         Stmt.removeSingleMemoryAccess(MA);
286f263610bSMichael Kruse         OverwritesRemoved++;
28706ed5292SMichael Kruse         TotalOverwritesRemoved[CallNo]++;
288f263610bSMichael Kruse       }
289f263610bSMichael Kruse 
290f263610bSMichael Kruse       // Unconditional writes overwrite other values.
291693ef999SMichael Kruse       if (MA->isMustWrite()) {
292693ef999SMichael Kruse         // Avoid too complex isl sets. If necessary, throw away some of the
293693ef999SMichael Kruse         // knowledge.
294deb00cf0SPengxuan Zheng         WillBeOverwritten = underapproximatedAddMap(WillBeOverwritten, AccRel);
295693ef999SMichael Kruse       }
296f263610bSMichael Kruse     }
297f263610bSMichael Kruse   }
298f263610bSMichael Kruse }
299f263610bSMichael Kruse 
300ce9617f4SMichael Kruse /// Combine writes that write the same value if possible.
301ce9617f4SMichael Kruse ///
302ce9617f4SMichael Kruse /// This function is able to combine:
303ce9617f4SMichael Kruse /// - Partial writes with disjoint domain.
304ce9617f4SMichael Kruse /// - Writes that write to the same array element.
305ce9617f4SMichael Kruse ///
306ce9617f4SMichael Kruse /// In all cases, both writes must write the same values.
coalesceWrites()30723753c60SMichael Kruse void SimplifyImpl::coalesceWrites() {
308ce9617f4SMichael Kruse   for (auto &Stmt : *S) {
309b65ccc43STobias Grosser     isl::set Domain = Stmt.getDomain().intersect_params(S->getContext());
310ce9617f4SMichael Kruse 
311ce9617f4SMichael Kruse     // We let isl do the lookup for the same-value condition. For this, we
312ce9617f4SMichael Kruse     // wrap llvm::Value into an isl::set such that isl can do the lookup in
313ce9617f4SMichael Kruse     // its hashtable implementation. llvm::Values are only compared within a
314ce9617f4SMichael Kruse     // ScopStmt, so the map can be local to this scope. TODO: Refactor with
315ce9617f4SMichael Kruse     // ZoneAlgorithm::makeValueSet()
316ce9617f4SMichael Kruse     SmallDenseMap<Value *, isl::set> ValueSets;
317ce9617f4SMichael Kruse     auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
318ce9617f4SMichael Kruse       assert(V);
319ce9617f4SMichael Kruse       isl::set &Result = ValueSets[V];
320ce9617f4SMichael Kruse       if (Result.is_null()) {
32100fd43b3SPhilip Pfaffe         isl::ctx Ctx = S->getIslCtx();
322deb00cf0SPengxuan Zheng         std::string Name = getIslCompatibleName(
323deb00cf0SPengxuan Zheng             "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
32400fd43b3SPhilip Pfaffe         isl::id Id = isl::id::alloc(Ctx, Name, V);
325ce9617f4SMichael Kruse         Result = isl::set::universe(
326ce9617f4SMichael Kruse             isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
327ce9617f4SMichael Kruse       }
328ce9617f4SMichael Kruse       return Result;
329ce9617f4SMichael Kruse     };
330ce9617f4SMichael Kruse 
331ce9617f4SMichael Kruse     // List of all eligible (for coalescing) writes of the future.
332ce9617f4SMichael Kruse     // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
333bad3ebbaSRiccardo Mori     isl::union_map FutureWrites = isl::union_map::empty(S->getIslCtx());
334ce9617f4SMichael Kruse 
335ce9617f4SMichael Kruse     // Iterate over accesses from the last to the first.
336ce9617f4SMichael Kruse     SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
337ce9617f4SMichael Kruse     for (MemoryAccess *MA : reverse(Accesses)) {
338ce9617f4SMichael Kruse       // In region statements, the explicit accesses can be in blocks that can
339ce9617f4SMichael Kruse       // be executed in any order. We therefore process only the implicit
340ce9617f4SMichael Kruse       // writes and stop after that.
341ce9617f4SMichael Kruse       if (Stmt.isRegionStmt() && isExplicitAccess(MA))
342ce9617f4SMichael Kruse         break;
343ce9617f4SMichael Kruse 
344ce9617f4SMichael Kruse       // { Domain[] -> Element[] }
345deb00cf0SPengxuan Zheng       isl::map AccRel = MA->getLatestAccessRelation().intersect_domain(Domain);
346ce9617f4SMichael Kruse 
347ce9617f4SMichael Kruse       // { [Domain[] -> Element[]] }
348ce9617f4SMichael Kruse       isl::set AccRelWrapped = AccRel.wrap();
349ce9617f4SMichael Kruse 
350ce9617f4SMichael Kruse       // { Value[] }
351ce9617f4SMichael Kruse       isl::set ValSet;
352ce9617f4SMichael Kruse 
353ce9617f4SMichael Kruse       if (MA->isMustWrite() && (MA->isOriginalScalarKind() ||
354ce9617f4SMichael Kruse                                 isa<StoreInst>(MA->getAccessInstruction()))) {
355ce9617f4SMichael Kruse         // Normally, tryGetValueStored() should be used to determine which
356ce9617f4SMichael Kruse         // element is written, but it can return nullptr; For PHI accesses,
357ce9617f4SMichael Kruse         // getAccessValue() returns the PHI instead of the PHI's incoming
358ce9617f4SMichael Kruse         // value. In this case, where we only compare values of a single
359ce9617f4SMichael Kruse         // statement, this is fine, because within a statement, a PHI in a
360ce9617f4SMichael Kruse         // successor block has always the same value as the incoming write. We
361ce9617f4SMichael Kruse         // still preferably use the incoming value directly so we also catch
362ce9617f4SMichael Kruse         // direct uses of that.
363ce9617f4SMichael Kruse         Value *StoredVal = MA->tryGetValueStored();
364ce9617f4SMichael Kruse         if (!StoredVal)
365ce9617f4SMichael Kruse           StoredVal = MA->getAccessValue();
366ce9617f4SMichael Kruse         ValSet = makeValueSet(StoredVal);
367ce9617f4SMichael Kruse 
368ce9617f4SMichael Kruse         // { Domain[] }
369ce9617f4SMichael Kruse         isl::set AccDomain = AccRel.domain();
370ce9617f4SMichael Kruse 
371ce9617f4SMichael Kruse         // Parts of the statement's domain that is not written by this access.
372ce9617f4SMichael Kruse         isl::set UndefDomain = Domain.subtract(AccDomain);
373ce9617f4SMichael Kruse 
374ce9617f4SMichael Kruse         // { Element[] }
375ce9617f4SMichael Kruse         isl::set ElementUniverse =
376ce9617f4SMichael Kruse             isl::set::universe(AccRel.get_space().range());
377ce9617f4SMichael Kruse 
378ce9617f4SMichael Kruse         // { Domain[] -> Element[] }
379ce9617f4SMichael Kruse         isl::map UndefAnything =
380ce9617f4SMichael Kruse             isl::map::from_domain_and_range(UndefDomain, ElementUniverse);
381ce9617f4SMichael Kruse 
382ce9617f4SMichael Kruse         // We are looking a compatible write access. The other write can
383ce9617f4SMichael Kruse         // access these elements...
384ce9617f4SMichael Kruse         isl::map AllowedAccesses = AccRel.unite(UndefAnything);
385ce9617f4SMichael Kruse 
386ce9617f4SMichael Kruse         // ... and must write the same value.
387ce9617f4SMichael Kruse         // { [Domain[] -> Element[]] -> Value[] }
388ce9617f4SMichael Kruse         isl::map Filter =
389ce9617f4SMichael Kruse             isl::map::from_domain_and_range(AllowedAccesses.wrap(), ValSet);
390ce9617f4SMichael Kruse 
391ce9617f4SMichael Kruse         // Lookup future write that fulfills these conditions.
392ce9617f4SMichael Kruse         // { [[Domain[] -> Element[]] -> Value[]] -> MemoryAccess[] }
393ce9617f4SMichael Kruse         isl::union_map Filtered =
394ce9617f4SMichael Kruse             FutureWrites.uncurry().intersect_domain(Filter.wrap());
395ce9617f4SMichael Kruse 
396ce9617f4SMichael Kruse         // Iterate through the candidates.
397a3387168STobias Grosser         for (isl::map Map : Filtered.get_map_list()) {
398ce9617f4SMichael Kruse           MemoryAccess *OtherMA = (MemoryAccess *)Map.get_space()
399ce9617f4SMichael Kruse                                       .get_tuple_id(isl::dim::out)
400ce9617f4SMichael Kruse                                       .get_user();
401ce9617f4SMichael Kruse 
402ce9617f4SMichael Kruse           isl::map OtherAccRel =
403ce9617f4SMichael Kruse               OtherMA->getLatestAccessRelation().intersect_domain(Domain);
404ce9617f4SMichael Kruse 
405ce9617f4SMichael Kruse           // The filter only guaranteed that some of OtherMA's accessed
406ce9617f4SMichael Kruse           // elements are allowed. Verify that it only accesses allowed
407ce9617f4SMichael Kruse           // elements. Otherwise, continue with the next candidate.
408ce9617f4SMichael Kruse           if (!OtherAccRel.is_subset(AllowedAccesses).is_true())
409a3387168STobias Grosser             continue;
410ce9617f4SMichael Kruse 
411ce9617f4SMichael Kruse           // The combined access relation.
412ce9617f4SMichael Kruse           // { Domain[] -> Element[] }
413ce9617f4SMichael Kruse           isl::map NewAccRel = AccRel.unite(OtherAccRel);
414ce9617f4SMichael Kruse           simplify(NewAccRel);
415ce9617f4SMichael Kruse 
416ce9617f4SMichael Kruse           // Carry out the coalescing.
417ce9617f4SMichael Kruse           Stmt.removeSingleMemoryAccess(MA);
4187b45af13STobias Grosser           OtherMA->setNewAccessRelation(NewAccRel);
419ce9617f4SMichael Kruse 
420ce9617f4SMichael Kruse           // We removed MA, OtherMA takes its role.
421ce9617f4SMichael Kruse           MA = OtherMA;
422ce9617f4SMichael Kruse 
42306ed5292SMichael Kruse           TotalWritesCoalesced[CallNo]++;
424ce9617f4SMichael Kruse           WritesCoalesced++;
425ce9617f4SMichael Kruse 
426ce9617f4SMichael Kruse           // Don't look for more candidates.
427a3387168STobias Grosser           break;
428a3387168STobias Grosser         }
429ce9617f4SMichael Kruse       }
430ce9617f4SMichael Kruse 
431ce9617f4SMichael Kruse       // Two writes cannot be coalesced if there is another access (to some of
432ce9617f4SMichael Kruse       // the written elements) between them. Remove all visited write accesses
433ce9617f4SMichael Kruse       // from the list of eligible writes. Don't just remove the accessed
434ce9617f4SMichael Kruse       // elements, but any MemoryAccess that touches any of the invalidated
435ce9617f4SMichael Kruse       // elements.
436693ef999SMichael Kruse       SmallPtrSet<MemoryAccess *, 2> TouchedAccesses;
437a3387168STobias Grosser       for (isl::map Map :
438a3387168STobias Grosser            FutureWrites.intersect_domain(AccRelWrapped).get_map_list()) {
439693ef999SMichael Kruse         MemoryAccess *MA = (MemoryAccess *)Map.get_space()
440ce9617f4SMichael Kruse                                .range()
441ce9617f4SMichael Kruse                                .unwrap()
442693ef999SMichael Kruse                                .get_tuple_id(isl::dim::out)
443693ef999SMichael Kruse                                .get_user();
444693ef999SMichael Kruse         TouchedAccesses.insert(MA);
445a3387168STobias Grosser       }
446693ef999SMichael Kruse       isl::union_map NewFutureWrites =
447bad3ebbaSRiccardo Mori           isl::union_map::empty(FutureWrites.ctx());
448a3387168STobias Grosser       for (isl::map FutureWrite : FutureWrites.get_map_list()) {
449693ef999SMichael Kruse         MemoryAccess *MA = (MemoryAccess *)FutureWrite.get_space()
450693ef999SMichael Kruse                                .range()
451693ef999SMichael Kruse                                .unwrap()
452693ef999SMichael Kruse                                .get_tuple_id(isl::dim::out)
453693ef999SMichael Kruse                                .get_user();
454693ef999SMichael Kruse         if (!TouchedAccesses.count(MA))
455d5ee355fSRiccardo Mori           NewFutureWrites = NewFutureWrites.unite(FutureWrite);
456a3387168STobias Grosser       }
457693ef999SMichael Kruse       FutureWrites = NewFutureWrites;
458ce9617f4SMichael Kruse 
459ce9617f4SMichael Kruse       if (MA->isMustWrite() && !ValSet.is_null()) {
460ce9617f4SMichael Kruse         // { MemoryAccess[] }
461ce9617f4SMichael Kruse         auto AccSet =
462ce9617f4SMichael Kruse             isl::set::universe(isl::space(S->getIslCtx(), 0, 0)
463ce9617f4SMichael Kruse                                    .set_tuple_id(isl::dim::set, MA->getId()));
464ce9617f4SMichael Kruse 
465ce9617f4SMichael Kruse         // { Val[] -> MemoryAccess[] }
466ce9617f4SMichael Kruse         isl::map ValAccSet = isl::map::from_domain_and_range(ValSet, AccSet);
467ce9617f4SMichael Kruse 
468ce9617f4SMichael Kruse         // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
469ce9617f4SMichael Kruse         isl::map AccRelValAcc =
470ce9617f4SMichael Kruse             isl::map::from_domain_and_range(AccRelWrapped, ValAccSet.wrap());
471d5ee355fSRiccardo Mori         FutureWrites = FutureWrites.unite(AccRelValAcc);
472ce9617f4SMichael Kruse       }
473ce9617f4SMichael Kruse     }
474ce9617f4SMichael Kruse   }
475ce9617f4SMichael Kruse }
476ce9617f4SMichael Kruse 
4770446d81eSMichael Kruse /// Remove writes that just write the same value already stored in the
4780446d81eSMichael Kruse /// element.
removeRedundantWrites()47923753c60SMichael Kruse void SimplifyImpl::removeRedundantWrites() {
4800446d81eSMichael Kruse   for (auto &Stmt : *S) {
481bc88a78cSMichael Kruse     SmallDenseMap<Value *, isl::set> ValueSets;
482bc88a78cSMichael Kruse     auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
483bc88a78cSMichael Kruse       assert(V);
484bc88a78cSMichael Kruse       isl::set &Result = ValueSets[V];
485bc88a78cSMichael Kruse       if (Result.is_null()) {
48600fd43b3SPhilip Pfaffe         isl_ctx *Ctx = S->getIslCtx().get();
487deb00cf0SPengxuan Zheng         std::string Name = getIslCompatibleName(
488deb00cf0SPengxuan Zheng             "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
489da3e8c4bSTobias Grosser         isl::id Id = isl::manage(isl_id_alloc(Ctx, Name.c_str(), V));
490bc88a78cSMichael Kruse         Result = isl::set::universe(
491bc88a78cSMichael Kruse             isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
4920446d81eSMichael Kruse       }
493bc88a78cSMichael Kruse       return Result;
494bc88a78cSMichael Kruse     };
4950446d81eSMichael Kruse 
496dcf8d696STobias Grosser     isl::set Domain = Stmt.getDomain();
497b65ccc43STobias Grosser     Domain = Domain.intersect_params(S->getContext());
4980446d81eSMichael Kruse 
499bc88a78cSMichael Kruse     // List of element reads that still have the same value while iterating
500bc88a78cSMichael Kruse     // through the MemoryAccesses.
501bc88a78cSMichael Kruse     // { [Domain[] -> Element[]] -> Val[] }
502bad3ebbaSRiccardo Mori     isl::union_map Known = isl::union_map::empty(S->getIslCtx());
5030446d81eSMichael Kruse 
504bc88a78cSMichael Kruse     SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
505bc88a78cSMichael Kruse     for (MemoryAccess *MA : Accesses) {
506bc88a78cSMichael Kruse       // Is the memory access in a defined order relative to the other
507bc88a78cSMichael Kruse       // accesses? In region statements, only the first and the last accesses
508bc88a78cSMichael Kruse       // have defined order. Execution of those in the middle may depend on
509bc88a78cSMichael Kruse       // runtime conditions an therefore cannot be modified.
510bc88a78cSMichael Kruse       bool IsOrdered =
511bc88a78cSMichael Kruse           Stmt.isBlockStmt() || MA->isOriginalScalarKind() ||
512bc88a78cSMichael Kruse           (!S->getBoxedLoops().size() && MA->getAccessInstruction() &&
513bc88a78cSMichael Kruse            Stmt.getEntryBlock() == MA->getAccessInstruction()->getParent());
5140446d81eSMichael Kruse 
515bc88a78cSMichael Kruse       isl::map AccRel = MA->getAccessRelation();
516bc88a78cSMichael Kruse       AccRel = AccRel.intersect_domain(Domain);
517bc88a78cSMichael Kruse       isl::set AccRelWrapped = AccRel.wrap();
518bc88a78cSMichael Kruse 
519bc88a78cSMichael Kruse       // Determine whether a write is redundant (stores only values that are
520bc88a78cSMichael Kruse       // already present in the written array elements) and remove it if this
521bc88a78cSMichael Kruse       // is the case.
522bc88a78cSMichael Kruse       if (IsOrdered && MA->isMustWrite() &&
523bc88a78cSMichael Kruse           (isa<StoreInst>(MA->getAccessInstruction()) ||
524bc88a78cSMichael Kruse            MA->isOriginalScalarKind())) {
525bc88a78cSMichael Kruse         Value *StoredVal = MA->tryGetValueStored();
526bc88a78cSMichael Kruse         if (!StoredVal)
527bc88a78cSMichael Kruse           StoredVal = MA->getAccessValue();
528bc88a78cSMichael Kruse 
529bc88a78cSMichael Kruse         if (StoredVal) {
530bc88a78cSMichael Kruse           // Lookup in the set of known values.
531bc88a78cSMichael Kruse           isl::map AccRelStoredVal = isl::map::from_domain_and_range(
532bc88a78cSMichael Kruse               AccRelWrapped, makeValueSet(StoredVal));
533bc88a78cSMichael Kruse           if (isl::union_map(AccRelStoredVal).is_subset(Known)) {
534349506a9SNicola Zaghen             LLVM_DEBUG(dbgs() << "Cleanup of " << MA << ":\n");
535349506a9SNicola Zaghen             LLVM_DEBUG(dbgs() << "      Scalar: " << *StoredVal << "\n");
536349506a9SNicola Zaghen             LLVM_DEBUG(dbgs() << "      AccRel: " << AccRel << "\n");
5370446d81eSMichael Kruse 
538bc88a78cSMichael Kruse             Stmt.removeSingleMemoryAccess(MA);
5390446d81eSMichael Kruse 
5400446d81eSMichael Kruse             RedundantWritesRemoved++;
54106ed5292SMichael Kruse             TotalRedundantWritesRemoved[CallNo]++;
5420446d81eSMichael Kruse           }
5430446d81eSMichael Kruse         }
544bc88a78cSMichael Kruse       }
545bc88a78cSMichael Kruse 
546bc88a78cSMichael Kruse       // Update the know values set.
547bc88a78cSMichael Kruse       if (MA->isRead()) {
548bc88a78cSMichael Kruse         // Loaded values are the currently known values of the array element
549bc88a78cSMichael Kruse         // it was loaded from.
550bc88a78cSMichael Kruse         Value *LoadedVal = MA->getAccessValue();
551bc88a78cSMichael Kruse         if (LoadedVal && IsOrdered) {
552bc88a78cSMichael Kruse           isl::map AccRelVal = isl::map::from_domain_and_range(
553bc88a78cSMichael Kruse               AccRelWrapped, makeValueSet(LoadedVal));
554bc88a78cSMichael Kruse 
555d5ee355fSRiccardo Mori           Known = Known.unite(AccRelVal);
556bc88a78cSMichael Kruse         }
557bc88a78cSMichael Kruse       } else if (MA->isWrite()) {
558bc88a78cSMichael Kruse         // Remove (possibly) overwritten values from the known elements set.
559bc88a78cSMichael Kruse         // We remove all elements of the accessed array to avoid too complex
560bc88a78cSMichael Kruse         // isl sets.
561bc88a78cSMichael Kruse         isl::set AccRelUniv = isl::set::universe(AccRelWrapped.get_space());
562bc88a78cSMichael Kruse         Known = Known.subtract_domain(AccRelUniv);
563bc88a78cSMichael Kruse 
564bc88a78cSMichael Kruse         // At this point, we could add the written value of must-writes.
565bc88a78cSMichael Kruse         // However, writing same values is already handled by
566bc88a78cSMichael Kruse         // coalesceWrites().
567bc88a78cSMichael Kruse       }
568bc88a78cSMichael Kruse     }
569bc88a78cSMichael Kruse   }
570bc88a78cSMichael Kruse }
5710446d81eSMichael Kruse 
5720446d81eSMichael Kruse /// Remove statements without side effects.
removeUnnecessaryStmts()57323753c60SMichael Kruse void SimplifyImpl::removeUnnecessaryStmts() {
5740446d81eSMichael Kruse   auto NumStmtsBefore = S->getSize();
5750446d81eSMichael Kruse   S->simplifySCoP(true);
5760446d81eSMichael Kruse   assert(NumStmtsBefore >= S->getSize());
5770446d81eSMichael Kruse   StmtsRemoved = NumStmtsBefore - S->getSize();
578349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Removed " << StmtsRemoved << " (of " << NumStmtsBefore
5790446d81eSMichael Kruse                     << ") statements\n");
58006ed5292SMichael Kruse   TotalStmtsRemoved[CallNo] += StmtsRemoved;
5810446d81eSMichael Kruse }
5820446d81eSMichael Kruse 
583ab8f0d57SMichael Kruse /// Remove accesses that have an empty domain.
removeEmptyPartialAccesses()58423753c60SMichael Kruse void SimplifyImpl::removeEmptyPartialAccesses() {
585ab8f0d57SMichael Kruse   for (ScopStmt &Stmt : *S) {
586ab8f0d57SMichael Kruse     // Defer the actual removal to not invalidate iterators.
587ab8f0d57SMichael Kruse     SmallVector<MemoryAccess *, 8> DeferredRemove;
588ab8f0d57SMichael Kruse 
589ab8f0d57SMichael Kruse     for (MemoryAccess *MA : Stmt) {
590ab8f0d57SMichael Kruse       if (!MA->isWrite())
591ab8f0d57SMichael Kruse         continue;
592ab8f0d57SMichael Kruse 
593325812acSTobias Grosser       isl::map AccRel = MA->getAccessRelation();
594ab8f0d57SMichael Kruse       if (!AccRel.is_empty().is_true())
595ab8f0d57SMichael Kruse         continue;
596ab8f0d57SMichael Kruse 
597349506a9SNicola Zaghen       LLVM_DEBUG(
598349506a9SNicola Zaghen           dbgs() << "Removing " << MA
599ab8f0d57SMichael Kruse                  << " because it's a partial access that never occurs\n");
600ab8f0d57SMichael Kruse       DeferredRemove.push_back(MA);
601ab8f0d57SMichael Kruse     }
602ab8f0d57SMichael Kruse 
603ab8f0d57SMichael Kruse     for (MemoryAccess *MA : DeferredRemove) {
604ab8f0d57SMichael Kruse       Stmt.removeSingleMemoryAccess(MA);
605ab8f0d57SMichael Kruse       EmptyPartialAccessesRemoved++;
60606ed5292SMichael Kruse       TotalEmptyPartialAccessesRemoved[CallNo]++;
607ab8f0d57SMichael Kruse     }
608ab8f0d57SMichael Kruse   }
609ab8f0d57SMichael Kruse }
610ab8f0d57SMichael Kruse 
61122058c3fSMichael Kruse /// Mark all reachable instructions and access, and sweep those that are not
61222058c3fSMichael Kruse /// reachable.
markAndSweep(LoopInfo * LI)61323753c60SMichael Kruse void SimplifyImpl::markAndSweep(LoopInfo *LI) {
61422058c3fSMichael Kruse   DenseSet<MemoryAccess *> UsedMA;
61522058c3fSMichael Kruse   DenseSet<VirtualInstruction> UsedInsts;
61622058c3fSMichael Kruse 
61722058c3fSMichael Kruse   // Get all reachable instructions and accesses.
61822058c3fSMichael Kruse   markReachable(S, LI, UsedInsts, UsedMA);
61922058c3fSMichael Kruse 
62022058c3fSMichael Kruse   // Remove all non-reachable accesses.
62122058c3fSMichael Kruse   // We need get all MemoryAccesses first, in order to not invalidate the
62222058c3fSMichael Kruse   // iterators when removing them.
62322058c3fSMichael Kruse   SmallVector<MemoryAccess *, 64> AllMAs;
62422058c3fSMichael Kruse   for (ScopStmt &Stmt : *S)
62522058c3fSMichael Kruse     AllMAs.append(Stmt.begin(), Stmt.end());
62622058c3fSMichael Kruse 
62722058c3fSMichael Kruse   for (MemoryAccess *MA : AllMAs) {
62822058c3fSMichael Kruse     if (UsedMA.count(MA))
62922058c3fSMichael Kruse       continue;
630349506a9SNicola Zaghen     LLVM_DEBUG(dbgs() << "Removing " << MA
631349506a9SNicola Zaghen                       << " because its value is not used\n");
63222058c3fSMichael Kruse     ScopStmt *Stmt = MA->getStatement();
63322058c3fSMichael Kruse     Stmt->removeSingleMemoryAccess(MA);
63422058c3fSMichael Kruse 
63522058c3fSMichael Kruse     DeadAccessesRemoved++;
63606ed5292SMichael Kruse     TotalDeadAccessesRemoved[CallNo]++;
63722058c3fSMichael Kruse   }
63822058c3fSMichael Kruse 
63922058c3fSMichael Kruse   // Remove all non-reachable instructions.
64022058c3fSMichael Kruse   for (ScopStmt &Stmt : *S) {
641420c4863SMichael Kruse     // Note that for region statements, we can only remove the non-terminator
642420c4863SMichael Kruse     // instructions of the entry block. All other instructions are not in the
643420c4863SMichael Kruse     // instructions list, but implicitly always part of the statement.
644cedd7a74SMichael Kruse 
64522058c3fSMichael Kruse     SmallVector<Instruction *, 32> AllInsts(Stmt.insts_begin(),
64622058c3fSMichael Kruse                                             Stmt.insts_end());
64722058c3fSMichael Kruse     SmallVector<Instruction *, 32> RemainInsts;
64822058c3fSMichael Kruse 
64922058c3fSMichael Kruse     for (Instruction *Inst : AllInsts) {
65022058c3fSMichael Kruse       auto It = UsedInsts.find({&Stmt, Inst});
65122058c3fSMichael Kruse       if (It == UsedInsts.end()) {
652349506a9SNicola Zaghen         LLVM_DEBUG(dbgs() << "Removing "; Inst->print(dbgs());
65322058c3fSMichael Kruse                    dbgs() << " because it is not used\n");
65422058c3fSMichael Kruse         DeadInstructionsRemoved++;
65506ed5292SMichael Kruse         TotalDeadInstructionsRemoved[CallNo]++;
65622058c3fSMichael Kruse         continue;
65722058c3fSMichael Kruse       }
65822058c3fSMichael Kruse 
65922058c3fSMichael Kruse       RemainInsts.push_back(Inst);
66022058c3fSMichael Kruse 
66122058c3fSMichael Kruse       // If instructions appear multiple times, keep only the first.
66222058c3fSMichael Kruse       UsedInsts.erase(It);
66322058c3fSMichael Kruse     }
66422058c3fSMichael Kruse 
66522058c3fSMichael Kruse     // Set the new instruction list to be only those we did not remove.
66622058c3fSMichael Kruse     Stmt.setInstructions(RemainInsts);
66722058c3fSMichael Kruse   }
66822058c3fSMichael Kruse }
66922058c3fSMichael Kruse 
6700446d81eSMichael Kruse /// Print simplification statistics to @p OS.
printStatistics(llvm::raw_ostream & OS,int Indent) const67123753c60SMichael Kruse void SimplifyImpl::printStatistics(llvm::raw_ostream &OS, int Indent) const {
6720446d81eSMichael Kruse   OS.indent(Indent) << "Statistics {\n";
6736983741eSMichael Kruse   OS.indent(Indent + 4) << "Empty domains removed: " << EmptyDomainsRemoved
6746983741eSMichael Kruse                         << '\n';
675deb00cf0SPengxuan Zheng   OS.indent(Indent + 4) << "Overwrites removed: " << OverwritesRemoved << '\n';
676ce9617f4SMichael Kruse   OS.indent(Indent + 4) << "Partial writes coalesced: " << WritesCoalesced
677ce9617f4SMichael Kruse                         << "\n";
6780446d81eSMichael Kruse   OS.indent(Indent + 4) << "Redundant writes removed: "
6790446d81eSMichael Kruse                         << RedundantWritesRemoved << "\n";
6806c8f91b9SMichael Kruse   OS.indent(Indent + 4) << "Accesses with empty domains removed: "
681ab8f0d57SMichael Kruse                         << EmptyPartialAccessesRemoved << "\n";
68222058c3fSMichael Kruse   OS.indent(Indent + 4) << "Dead accesses removed: " << DeadAccessesRemoved
68322058c3fSMichael Kruse                         << '\n';
68422058c3fSMichael Kruse   OS.indent(Indent + 4) << "Dead instructions removed: "
68522058c3fSMichael Kruse                         << DeadInstructionsRemoved << '\n';
6860446d81eSMichael Kruse   OS.indent(Indent + 4) << "Stmts removed: " << StmtsRemoved << "\n";
6870446d81eSMichael Kruse   OS.indent(Indent) << "}\n";
6880446d81eSMichael Kruse }
6890446d81eSMichael Kruse 
6900446d81eSMichael Kruse /// Print the current state of all MemoryAccesses to @p OS.
printAccesses(llvm::raw_ostream & OS,int Indent) const69123753c60SMichael Kruse void SimplifyImpl::printAccesses(llvm::raw_ostream &OS, int Indent) const {
6920446d81eSMichael Kruse   OS.indent(Indent) << "After accesses {\n";
6930446d81eSMichael Kruse   for (auto &Stmt : *S) {
6940446d81eSMichael Kruse     OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
6950446d81eSMichael Kruse     for (auto *MA : Stmt)
6960446d81eSMichael Kruse       MA->print(OS);
6970446d81eSMichael Kruse   }
6980446d81eSMichael Kruse   OS.indent(Indent) << "}\n";
6990446d81eSMichael Kruse }
7000446d81eSMichael Kruse 
run(Scop & S,LoopInfo * LI)70123753c60SMichael Kruse void SimplifyImpl::run(Scop &S, LoopInfo *LI) {
70223753c60SMichael Kruse   // Must not have run before.
70323753c60SMichael Kruse   assert(!this->S);
704629f9185SMichael Kruse   assert(!isModified());
7050446d81eSMichael Kruse 
7060446d81eSMichael Kruse   // Prepare processing of this SCoP.
7070446d81eSMichael Kruse   this->S = &S;
70806ed5292SMichael Kruse   ScopsProcessed[CallNo]++;
7090446d81eSMichael Kruse 
7106983741eSMichael Kruse   LLVM_DEBUG(dbgs() << "Removing statements that are never executed...\n");
7116983741eSMichael Kruse   removeEmptyDomainStmts();
7126983741eSMichael Kruse 
713349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Removing partial writes that never happen...\n");
71434a77780SMichael Kruse   removeEmptyPartialAccesses();
71534a77780SMichael Kruse 
716349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Removing overwrites...\n");
717f263610bSMichael Kruse   removeOverwrites();
718f263610bSMichael Kruse 
719349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Coalesce partial writes...\n");
720ce9617f4SMichael Kruse   coalesceWrites();
721ce9617f4SMichael Kruse 
722349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Removing redundant writes...\n");
7230446d81eSMichael Kruse   removeRedundantWrites();
7240446d81eSMichael Kruse 
725349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Cleanup unused accesses...\n");
72622058c3fSMichael Kruse   markAndSweep(LI);
72722058c3fSMichael Kruse 
728349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "Removing statements without side effects...\n");
7298e1280b8STobias Grosser   removeUnnecessaryStmts();
7300446d81eSMichael Kruse 
7310446d81eSMichael Kruse   if (isModified())
73206ed5292SMichael Kruse     ScopsModified[CallNo]++;
733349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
734349506a9SNicola Zaghen   LLVM_DEBUG(dbgs() << S);
7350446d81eSMichael Kruse 
73606ed5292SMichael Kruse   auto ScopStats = S.getStatistics();
73706ed5292SMichael Kruse   NumValueWrites[CallNo] += ScopStats.NumValueWrites;
73806ed5292SMichael Kruse   NumValueWritesInLoops[CallNo] += ScopStats.NumValueWritesInLoops;
73906ed5292SMichael Kruse   NumPHIWrites[CallNo] += ScopStats.NumPHIWrites;
74006ed5292SMichael Kruse   NumPHIWritesInLoops[CallNo] += ScopStats.NumPHIWritesInLoops;
74106ed5292SMichael Kruse   NumSingletonWrites[CallNo] += ScopStats.NumSingletonWrites;
74206ed5292SMichael Kruse   NumSingletonWritesInLoops[CallNo] += ScopStats.NumSingletonWritesInLoops;
7430446d81eSMichael Kruse }
7440446d81eSMichael Kruse 
printScop(raw_ostream & OS,Scop & S) const74523753c60SMichael Kruse void SimplifyImpl::printScop(raw_ostream &OS, Scop &S) const {
7460446d81eSMichael Kruse   assert(&S == this->S &&
7470446d81eSMichael Kruse          "Can only print analysis for the last processed SCoP");
7480446d81eSMichael Kruse   printStatistics(OS);
7490446d81eSMichael Kruse 
7500446d81eSMichael Kruse   if (!isModified()) {
7510446d81eSMichael Kruse     OS << "SCoP could not be simplified\n";
7520446d81eSMichael Kruse     return;
7530446d81eSMichael Kruse   }
7540446d81eSMichael Kruse   printAccesses(OS);
7550446d81eSMichael Kruse }
7560446d81eSMichael Kruse 
757bd93df93SMichael Kruse class SimplifyWrapperPass final : public ScopPass {
758deb00cf0SPengxuan Zheng public:
759deb00cf0SPengxuan Zheng   static char ID;
76023753c60SMichael Kruse   int CallNo;
76123753c60SMichael Kruse   Optional<SimplifyImpl> Impl;
762deb00cf0SPengxuan Zheng 
SimplifyWrapperPass(int CallNo=0)76323753c60SMichael Kruse   explicit SimplifyWrapperPass(int CallNo = 0) : ScopPass(ID), CallNo(CallNo) {}
764deb00cf0SPengxuan Zheng 
getAnalysisUsage(AnalysisUsage & AU) const765*3f3930a4SKazu Hirata   void getAnalysisUsage(AnalysisUsage &AU) const override {
766deb00cf0SPengxuan Zheng     AU.addRequiredTransitive<ScopInfoRegionPass>();
767deb00cf0SPengxuan Zheng     AU.addRequired<LoopInfoWrapperPass>();
768deb00cf0SPengxuan Zheng     AU.setPreservesAll();
769deb00cf0SPengxuan Zheng   }
770deb00cf0SPengxuan Zheng 
runOnScop(Scop & S)771*3f3930a4SKazu Hirata   bool runOnScop(Scop &S) override {
77223753c60SMichael Kruse     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
77323753c60SMichael Kruse 
77423753c60SMichael Kruse     Impl.emplace(CallNo);
77523753c60SMichael Kruse     Impl->run(S, LI);
77623753c60SMichael Kruse 
77723753c60SMichael Kruse     return false;
778deb00cf0SPengxuan Zheng   }
779deb00cf0SPengxuan Zheng 
printScop(raw_ostream & OS,Scop & S) const780*3f3930a4SKazu Hirata   void printScop(raw_ostream &OS, Scop &S) const override {
78123753c60SMichael Kruse     if (Impl)
78223753c60SMichael Kruse       Impl->printScop(OS, S);
783deb00cf0SPengxuan Zheng   }
784deb00cf0SPengxuan Zheng 
releaseMemory()785*3f3930a4SKazu Hirata   void releaseMemory() override { Impl.reset(); }
7860446d81eSMichael Kruse };
7870446d81eSMichael Kruse 
78813f758a8SMichael Kruse char SimplifyWrapperPass::ID;
7890446d81eSMichael Kruse 
79023753c60SMichael Kruse static llvm::PreservedAnalyses
runSimplifyUsingNPM(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U,int CallNo,raw_ostream * OS)79123753c60SMichael Kruse runSimplifyUsingNPM(Scop &S, ScopAnalysisManager &SAM,
79223753c60SMichael Kruse                     ScopStandardAnalysisResults &SAR, SPMUpdater &U, int CallNo,
79323753c60SMichael Kruse                     raw_ostream *OS) {
79423753c60SMichael Kruse   SimplifyImpl Impl(CallNo);
79523753c60SMichael Kruse   Impl.run(S, &SAR.LI);
79623753c60SMichael Kruse   if (OS) {
79723753c60SMichael Kruse     *OS << "Printing analysis 'Polly - Simplify' for region: '" << S.getName()
79823753c60SMichael Kruse         << "' in function '" << S.getFunction().getName() << "':\n";
79923753c60SMichael Kruse     Impl.printScop(*OS, S);
80023753c60SMichael Kruse   }
80123753c60SMichael Kruse 
80223753c60SMichael Kruse   if (!Impl.isModified())
803deb00cf0SPengxuan Zheng     return llvm::PreservedAnalyses::all();
804deb00cf0SPengxuan Zheng 
80513f758a8SMichael Kruse   PreservedAnalyses PA;
80613f758a8SMichael Kruse   PA.preserveSet<AllAnalysesOn<Module>>();
80713f758a8SMichael Kruse   PA.preserveSet<AllAnalysesOn<Function>>();
80813f758a8SMichael Kruse   PA.preserveSet<AllAnalysesOn<Loop>>();
80913f758a8SMichael Kruse   return PA;
810deb00cf0SPengxuan Zheng }
811deb00cf0SPengxuan Zheng 
81223753c60SMichael Kruse } // anonymous namespace
81323753c60SMichael Kruse 
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)81423753c60SMichael Kruse llvm::PreservedAnalyses SimplifyPass::run(Scop &S, ScopAnalysisManager &SAM,
81523753c60SMichael Kruse                                           ScopStandardAnalysisResults &SAR,
81623753c60SMichael Kruse                                           SPMUpdater &U) {
81723753c60SMichael Kruse   return runSimplifyUsingNPM(S, SAM, SAR, U, CallNo, nullptr);
81823753c60SMichael Kruse }
81923753c60SMichael Kruse 
820deb00cf0SPengxuan Zheng llvm::PreservedAnalyses
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)821deb00cf0SPengxuan Zheng SimplifyPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
822deb00cf0SPengxuan Zheng                          ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
82323753c60SMichael Kruse   return runSimplifyUsingNPM(S, SAM, SAR, U, CallNo, &OS);
824deb00cf0SPengxuan Zheng }
825deb00cf0SPengxuan Zheng 
getAccessesInOrder(ScopStmt & Stmt)82623753c60SMichael Kruse SmallVector<MemoryAccess *, 32> polly::getAccessesInOrder(ScopStmt &Stmt) {
827327e9ecbSTobias Grosser   SmallVector<MemoryAccess *, 32> Accesses;
828327e9ecbSTobias Grosser 
829327e9ecbSTobias Grosser   for (MemoryAccess *MemAcc : Stmt)
830327e9ecbSTobias Grosser     if (isImplicitRead(MemAcc))
831327e9ecbSTobias Grosser       Accesses.push_back(MemAcc);
832327e9ecbSTobias Grosser 
833327e9ecbSTobias Grosser   for (MemoryAccess *MemAcc : Stmt)
834327e9ecbSTobias Grosser     if (isExplicitAccess(MemAcc))
835327e9ecbSTobias Grosser       Accesses.push_back(MemAcc);
836327e9ecbSTobias Grosser 
837327e9ecbSTobias Grosser   for (MemoryAccess *MemAcc : Stmt)
838327e9ecbSTobias Grosser     if (isImplicitWrite(MemAcc))
839327e9ecbSTobias Grosser       Accesses.push_back(MemAcc);
840327e9ecbSTobias Grosser 
841327e9ecbSTobias Grosser   return Accesses;
842327e9ecbSTobias Grosser }
843327e9ecbSTobias Grosser 
createSimplifyWrapperPass(int CallNo)84413f758a8SMichael Kruse Pass *polly::createSimplifyWrapperPass(int CallNo) {
84513f758a8SMichael Kruse   return new SimplifyWrapperPass(CallNo);
846deb00cf0SPengxuan Zheng }
8470446d81eSMichael Kruse 
84813f758a8SMichael Kruse INITIALIZE_PASS_BEGIN(SimplifyWrapperPass, "polly-simplify", "Polly - Simplify",
849deb00cf0SPengxuan Zheng                       false, false)
85022058c3fSMichael Kruse INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
85113f758a8SMichael Kruse INITIALIZE_PASS_END(SimplifyWrapperPass, "polly-simplify", "Polly - Simplify",
852deb00cf0SPengxuan Zheng                     false, false)
8535c028081SMichael Kruse 
8545c028081SMichael Kruse //===----------------------------------------------------------------------===//
8555c028081SMichael Kruse 
8565c028081SMichael Kruse namespace {
8575c028081SMichael Kruse /// Print result from SimplifyWrapperPass.
858bd93df93SMichael Kruse class SimplifyPrinterLegacyPass final : public ScopPass {
8595c028081SMichael Kruse public:
8605c028081SMichael Kruse   static char ID;
8615c028081SMichael Kruse 
SimplifyPrinterLegacyPass()8625c028081SMichael Kruse   SimplifyPrinterLegacyPass() : SimplifyPrinterLegacyPass(outs()) {}
SimplifyPrinterLegacyPass(llvm::raw_ostream & OS)8635c028081SMichael Kruse   explicit SimplifyPrinterLegacyPass(llvm::raw_ostream &OS)
8645c028081SMichael Kruse       : ScopPass(ID), OS(OS) {}
8655c028081SMichael Kruse 
runOnScop(Scop & S)8665c028081SMichael Kruse   bool runOnScop(Scop &S) override {
8675c028081SMichael Kruse     SimplifyWrapperPass &P = getAnalysis<SimplifyWrapperPass>();
8685c028081SMichael Kruse 
8695c028081SMichael Kruse     OS << "Printing analysis '" << P.getPassName() << "' for region: '"
8705c028081SMichael Kruse        << S.getRegion().getNameStr() << "' in function '"
8715c028081SMichael Kruse        << S.getFunction().getName() << "':\n";
8725c028081SMichael Kruse     P.printScop(OS, S);
8735c028081SMichael Kruse 
8745c028081SMichael Kruse     return false;
8755c028081SMichael Kruse   }
8765c028081SMichael Kruse 
getAnalysisUsage(AnalysisUsage & AU) const8775c028081SMichael Kruse   void getAnalysisUsage(AnalysisUsage &AU) const override {
8785c028081SMichael Kruse     ScopPass::getAnalysisUsage(AU);
8795c028081SMichael Kruse     AU.addRequired<SimplifyWrapperPass>();
8805c028081SMichael Kruse     AU.setPreservesAll();
8815c028081SMichael Kruse   }
8825c028081SMichael Kruse 
8835c028081SMichael Kruse private:
8845c028081SMichael Kruse   llvm::raw_ostream &OS;
8855c028081SMichael Kruse };
8865c028081SMichael Kruse 
8875c028081SMichael Kruse char SimplifyPrinterLegacyPass::ID = 0;
8885c028081SMichael Kruse } // namespace
8895c028081SMichael Kruse 
createSimplifyPrinterLegacyPass(raw_ostream & OS)8905c028081SMichael Kruse Pass *polly::createSimplifyPrinterLegacyPass(raw_ostream &OS) {
8915c028081SMichael Kruse   return new SimplifyPrinterLegacyPass(OS);
8925c028081SMichael Kruse }
8935c028081SMichael Kruse 
8945c028081SMichael Kruse INITIALIZE_PASS_BEGIN(SimplifyPrinterLegacyPass, "polly-print-simplify",
8955c028081SMichael Kruse                       "Polly - Print Simplify actions", false, false)
8965c028081SMichael Kruse INITIALIZE_PASS_DEPENDENCY(SimplifyWrapperPass)
8975c028081SMichael Kruse INITIALIZE_PASS_END(SimplifyPrinterLegacyPass, "polly-print-simplify",
8985c028081SMichael Kruse                     "Polly - Print Simplify actions", false, false)
899