1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass the isl to calculate a schedule that is optimized for parallelism
11 // and tileablility. The algorithm used in isl is an optimized version of the
12 // algorithm described in following paper:
13 //
14 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
15 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
16 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
17 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
18 //===----------------------------------------------------------------------===//
19 
20 #include "polly/ScheduleOptimizer.h"
21 #include "isl/aff.h"
22 #include "isl/band.h"
23 #include "isl/constraint.h"
24 #include "isl/map.h"
25 #include "isl/options.h"
26 #include "isl/schedule.h"
27 #include "isl/space.h"
28 #include "polly/CodeGen/CodeGeneration.h"
29 #include "polly/DependenceInfo.h"
30 #include "polly/LinkAllPasses.h"
31 #include "polly/Options.h"
32 #include "polly/ScopInfo.h"
33 #include "polly/Support/GICHelper.h"
34 #include "llvm/Support/Debug.h"
35 
36 using namespace llvm;
37 using namespace polly;
38 
39 #define DEBUG_TYPE "polly-opt-isl"
40 
41 namespace polly {
42 bool DisablePollyTiling;
43 }
44 static cl::opt<bool, true>
45     DisableTiling("polly-no-tiling",
46                   cl::desc("Disable tiling in the scheduler"),
47                   cl::location(polly::DisablePollyTiling), cl::init(false),
48                   cl::ZeroOrMore, cl::cat(PollyCategory));
49 
50 static cl::opt<std::string>
51     OptimizeDeps("polly-opt-optimize-only",
52                  cl::desc("Only a certain kind of dependences (all/raw)"),
53                  cl::Hidden, cl::init("all"), cl::ZeroOrMore,
54                  cl::cat(PollyCategory));
55 
56 static cl::opt<std::string>
57     SimplifyDeps("polly-opt-simplify-deps",
58                  cl::desc("Dependences should be simplified (yes/no)"),
59                  cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
60                  cl::cat(PollyCategory));
61 
62 static cl::opt<int> MaxConstantTerm(
63     "polly-opt-max-constant-term",
64     cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
65     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
66 
67 static cl::opt<int> MaxCoefficient(
68     "polly-opt-max-coefficient",
69     cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
70     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
71 
72 static cl::opt<std::string> FusionStrategy(
73     "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
74     cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
75 
76 static cl::opt<std::string>
77     MaximizeBandDepth("polly-opt-maximize-bands",
78                       cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
79                       cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
80 
81 static cl::opt<int> DefaultTileSize(
82     "polly-default-tile-size",
83     cl::desc("The default tile size (if not enough were provided by"
84              " --polly-tile-sizes)"),
85     cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
86 
87 static cl::list<int> TileSizes("polly-tile-sizes",
88                                cl::desc("A tile size"
89                                         " for each loop dimension, filled with"
90                                         " --polly-default-tile-size"),
91                                cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
92                                cl::cat(PollyCategory));
93 namespace {
94 
95 class IslScheduleOptimizer : public ScopPass {
96 public:
97   static char ID;
98   explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
99 
100   ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
101 
102   bool runOnScop(Scop &S) override;
103   void printScop(raw_ostream &OS, Scop &S) const override;
104   void getAnalysisUsage(AnalysisUsage &AU) const override;
105 
106 private:
107   isl_schedule *LastSchedule;
108 
109   /// @brief Decide if the @p NewSchedule is profitable for @p S.
110   ///
111   /// @param S           The SCoP we optimize.
112   /// @param NewSchedule The new schedule we computed.
113   ///
114   /// @return True, if we believe @p NewSchedule is an improvement for @p S.
115   bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule);
116 
117   static void extendScattering(Scop &S, unsigned NewDimensions);
118 
119   /// @brief Create a map that describes a n-dimensonal tiling.
120   ///
121   /// getTileMap creates a map from a n-dimensional scattering space into an
122   /// 2*n-dimensional scattering space. The map describes a rectangular
123   /// tiling.
124   ///
125   /// Example:
126   ///   scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64>
127   ///
128   ///   tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
129   ///                        t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
130   ///                        t1 % 64 = 0 and t1 <= s1 < t1 + 64}
131   ///
132   ///  Before tiling:
133   ///
134   ///  for (i = 0; i < N; i++)
135   ///    for (j = 0; j < M; j++)
136   ///	S(i,j)
137   ///
138   ///  After tiling:
139   ///
140   ///  for (t_i = 0; t_i < N; i+=32)
141   ///    for (t_j = 0; t_j < M; j+=64)
142   ///	for (i = t_i; i < min(t_i + 32, N); i++)  | Unknown that N % 32 = 0
143   ///	  for (j = t_j; j < t_j + 64; j++)        |   Known that M % 64 = 0
144   ///	    S(i,j)
145   ///
146   static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions);
147 
148   /// @brief Get the schedule for this band.
149   ///
150   /// Polly applies transformations like tiling on top of the isl calculated
151   /// value.  This can influence the number of scheduling dimension. The
152   /// number of schedule dimensions is returned in the parameter 'Dimension'.
153   static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
154 
155   /// @brief Create a map that pre-vectorizes one scheduling dimension.
156   ///
157   /// getPrevectorMap creates a map that maps each input dimension to the same
158   /// output dimension, except for the dimension DimToVectorize.
159   /// DimToVectorize is strip mined by 'VectorWidth' and the newly created
160   /// point loop of DimToVectorize is moved to the innermost level.
161   ///
162   /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
163   ///
164   /// | Before transformation
165   /// |
166   /// | A[i,j] -> [i,j]
167   /// |
168   /// | for (i = 0; i < 128; i++)
169   /// |    for (j = 0; j < 128; j++)
170   /// |      A(i,j);
171   ///
172   ///   Prevector map:
173   ///   [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
174   ///
175   /// | After transformation:
176   /// |
177   /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
178   /// |
179   /// | for (it = 0; it < 128; it+=4)
180   /// |    for (j = 0; j < 128; j++)
181   /// |      for (ip = max(0,it); ip < min(128, it + 3); ip++)
182   /// |        A(ip,j);
183   ///
184   /// The goal of this transformation is to create a trivially vectorizable
185   /// loop.  This means a parallel loop at the innermost level that has a
186   /// constant number of iterations corresponding to the target vector width.
187   ///
188   /// This transformation creates a loop at the innermost level. The loop has
189   /// a constant number of iterations, if the number of loop iterations at
190   /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
191   /// currently constant and not yet target specific. This function does not
192   /// reason about parallelism.
193   static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
194                                   int ScheduleDimensions, int VectorWidth = 4);
195 
196   /// @brief Get the scheduling map for a list of bands.
197   ///
198   /// Walk recursively the forest of bands to combine the schedules of the
199   /// individual bands to the overall schedule. In case tiling is requested,
200   /// the individual bands are tiled.
201   static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
202 
203   static isl_union_map *getScheduleMap(isl_schedule *Schedule);
204 
205   using llvm::Pass::doFinalization;
206 
207   virtual bool doFinalization() override {
208     isl_schedule_free(LastSchedule);
209     LastSchedule = nullptr;
210     return true;
211   }
212 };
213 }
214 
215 char IslScheduleOptimizer::ID = 0;
216 
217 void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) {
218   for (ScopStmt *Stmt : S) {
219     unsigned OldDimensions = Stmt->getNumScattering();
220     isl_space *Space;
221     isl_map *Map, *New;
222 
223     Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
224     Map = isl_map_universe(Space);
225 
226     for (unsigned i = 0; i < OldDimensions; i++)
227       Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
228 
229     for (unsigned i = OldDimensions; i < NewDimensions; i++)
230       Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
231 
232     Map = isl_map_align_params(Map, S.getParamSpace());
233     New = isl_map_apply_range(Stmt->getScattering(), Map);
234     Stmt->setScattering(New);
235   }
236 }
237 
238 isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
239                                                 int scheduleDimensions) {
240   // We construct
241   //
242   // tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
243   //	                  s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and
244   //	                  s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64}
245   //
246   // and project out the auxilary dimensions a0 and a1.
247   isl_space *Space =
248       isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
249   isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
250 
251   isl_local_space *LocalSpace = isl_local_space_from_space(Space);
252 
253   for (int x = 0; x < scheduleDimensions; x++) {
254     int sX = x;
255     int tX = x;
256     int pX = scheduleDimensions + x;
257     int aX = 2 * scheduleDimensions + x;
258     int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize;
259     assert(tileSize > 0 && "Invalid tile size");
260 
261     isl_constraint *c;
262 
263     // sX = aX * tileSize;
264     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
265     isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
266     isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
267     tileMap = isl_basic_map_add_constraint(tileMap, c);
268 
269     // pX = sX;
270     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
271     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
272     isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
273     tileMap = isl_basic_map_add_constraint(tileMap, c);
274 
275     // tX <= pX
276     c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
277     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
278     isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
279     tileMap = isl_basic_map_add_constraint(tileMap, c);
280 
281     // pX <= tX + (tileSize - 1)
282     c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
283     isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
284     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
285     isl_constraint_set_constant_si(c, tileSize - 1);
286     tileMap = isl_basic_map_add_constraint(tileMap, c);
287   }
288 
289   // Project out auxilary dimensions.
290   //
291   // The auxilary dimensions are transformed into existentially quantified ones.
292   // This reduces the number of visible scattering dimensions and allows Cloog
293   // to produces better code.
294   tileMap = isl_basic_map_project_out(
295       tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
296   isl_local_space_free(LocalSpace);
297   return tileMap;
298 }
299 
300 isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
301                                                         int *Dimensions) {
302   isl_union_map *PartialSchedule;
303   isl_ctx *ctx;
304   isl_space *Space;
305   isl_basic_map *TileMap;
306   isl_union_map *TileUMap;
307 
308   PartialSchedule = isl_band_get_partial_schedule(Band);
309   *Dimensions = isl_band_n_member(Band);
310 
311   if (DisableTiling)
312     return PartialSchedule;
313 
314   // It does not make any sense to tile a band with just one dimension.
315   if (*Dimensions == 1)
316     return PartialSchedule;
317 
318   ctx = isl_union_map_get_ctx(PartialSchedule);
319   Space = isl_union_map_get_space(PartialSchedule);
320 
321   TileMap = getTileMap(ctx, *Dimensions);
322   TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
323   TileUMap = isl_union_map_align_params(TileUMap, Space);
324   *Dimensions = 2 * *Dimensions;
325 
326   return isl_union_map_apply_range(PartialSchedule, TileUMap);
327 }
328 
329 isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
330                                                int ScheduleDimensions,
331                                                int VectorWidth) {
332   isl_space *Space;
333   isl_local_space *LocalSpace, *LocalSpaceRange;
334   isl_set *Modulo;
335   isl_map *TilingMap;
336   isl_constraint *c;
337   isl_aff *Aff;
338   int PointDimension; /* ip */
339   int TileDimension;  /* it */
340   isl_val *VectorWidthMP;
341 
342   assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
343 
344   Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
345   TilingMap = isl_map_universe(isl_space_copy(Space));
346   LocalSpace = isl_local_space_from_space(Space);
347   PointDimension = ScheduleDimensions;
348   TileDimension = DimToVectorize;
349 
350   // Create an identity map for everything except DimToVectorize and map
351   // DimToVectorize to the point loop at the innermost dimension.
352   for (int i = 0; i < ScheduleDimensions; i++) {
353     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
354     c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
355 
356     if (i == DimToVectorize)
357       c = isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
358     else
359       c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
360 
361     TilingMap = isl_map_add_constraint(TilingMap, c);
362   }
363 
364   // it % 'VectorWidth' = 0
365   LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
366   Aff = isl_aff_zero_on_domain(LocalSpaceRange);
367   Aff = isl_aff_set_constant_si(Aff, VectorWidth);
368   Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
369   VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
370   Aff = isl_aff_mod_val(Aff, VectorWidthMP);
371   Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
372   TilingMap = isl_map_intersect_range(TilingMap, Modulo);
373 
374   // it <= ip
375   c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
376   isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1);
377   isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
378   TilingMap = isl_map_add_constraint(TilingMap, c);
379 
380   // ip <= it + ('VectorWidth' - 1)
381   c = isl_inequality_alloc(LocalSpace);
382   isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
383   isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
384   isl_constraint_set_constant_si(c, VectorWidth - 1);
385   TilingMap = isl_map_add_constraint(TilingMap, c);
386 
387   return TilingMap;
388 }
389 
390 isl_union_map *
391 IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
392   int NumBands;
393   isl_union_map *Schedule;
394   isl_ctx *ctx;
395 
396   ctx = isl_band_list_get_ctx(BandList);
397   NumBands = isl_band_list_n_band(BandList);
398   Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
399 
400   for (int i = 0; i < NumBands; i++) {
401     isl_band *Band;
402     isl_union_map *PartialSchedule;
403     int ScheduleDimensions;
404     isl_space *Space;
405 
406     Band = isl_band_list_get_band(BandList, i);
407     PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions);
408     Space = isl_union_map_get_space(PartialSchedule);
409 
410     if (isl_band_has_children(Band)) {
411       isl_band_list *Children;
412       isl_union_map *SuffixSchedule;
413 
414       Children = isl_band_get_children(Band);
415       SuffixSchedule = getScheduleForBandList(Children);
416       PartialSchedule =
417           isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
418       isl_band_list_free(Children);
419     } else if (PollyVectorizerChoice != VECTORIZER_NONE) {
420       // In case we are at the innermost band, we try to prepare for
421       // vectorization. This means, we look for the innermost parallel loop
422       // and strip mine this loop to the innermost level using a strip-mine
423       // factor corresponding to the number of vector iterations.
424       int NumDims = isl_band_n_member(Band);
425       for (int j = NumDims - 1; j >= 0; j--) {
426         if (isl_band_member_is_coincident(Band, j)) {
427           isl_map *TileMap;
428           isl_union_map *TileUMap;
429 
430           TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j,
431                                     ScheduleDimensions);
432           TileUMap = isl_union_map_from_map(TileMap);
433           TileUMap =
434               isl_union_map_align_params(TileUMap, isl_space_copy(Space));
435           PartialSchedule =
436               isl_union_map_apply_range(PartialSchedule, TileUMap);
437           break;
438         }
439       }
440     }
441 
442     Schedule = isl_union_map_union(Schedule, PartialSchedule);
443 
444     isl_band_free(Band);
445     isl_space_free(Space);
446   }
447 
448   return Schedule;
449 }
450 
451 isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) {
452   isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
453   isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
454   isl_band_list_free(BandList);
455   return ScheduleMap;
456 }
457 
458 bool IslScheduleOptimizer::isProfitableSchedule(
459     Scop &S, __isl_keep isl_union_map *NewSchedule) {
460   // To understand if the schedule has been optimized we check if the schedule
461   // has changed at all.
462   // TODO: We can improve this by tracking if any necessarily beneficial
463   // transformations have been performed. This can e.g. be tiling, loop
464   // interchange, or ...) We can track this either at the place where the
465   // transformation has been performed or, in case of automatic ILP based
466   // optimizations, by comparing (yet to be defined) performance metrics
467   // before/after the scheduling optimizer
468   // (e.g., #stride-one accesses)
469   isl_union_map *OldSchedule = S.getSchedule();
470   bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
471   isl_union_map_free(OldSchedule);
472   return changed;
473 }
474 
475 bool IslScheduleOptimizer::runOnScop(Scop &S) {
476 
477   // Skip empty SCoPs but still allow code generation as it will delete the
478   // loops present but not needed.
479   if (S.getSize() == 0) {
480     S.markAsOptimized();
481     return false;
482   }
483 
484   const Dependences &D = getAnalysis<DependenceInfo>().getDependences();
485 
486   if (!D.hasValidDependences())
487     return false;
488 
489   isl_schedule_free(LastSchedule);
490   LastSchedule = nullptr;
491 
492   // Build input data.
493   int ValidityKinds =
494       Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
495   int ProximityKinds;
496 
497   if (OptimizeDeps == "all")
498     ProximityKinds =
499         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
500   else if (OptimizeDeps == "raw")
501     ProximityKinds = Dependences::TYPE_RAW;
502   else {
503     errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
504            << " Falling back to optimizing all dependences.\n";
505     ProximityKinds =
506         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
507   }
508 
509   isl_union_set *Domain = S.getDomains();
510 
511   if (!Domain)
512     return false;
513 
514   isl_union_map *Validity = D.getDependences(ValidityKinds);
515   isl_union_map *Proximity = D.getDependences(ProximityKinds);
516 
517   // Simplify the dependences by removing the constraints introduced by the
518   // domains. This can speed up the scheduling time significantly, as large
519   // constant coefficients will be removed from the dependences. The
520   // introduction of some additional dependences reduces the possible
521   // transformations, but in most cases, such transformation do not seem to be
522   // interesting anyway. In some cases this option may stop the scheduler to
523   // find any schedule.
524   if (SimplifyDeps == "yes") {
525     Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
526     Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
527     Proximity =
528         isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
529     Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
530   } else if (SimplifyDeps != "no") {
531     errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
532               "or 'no'. Falling back to default: 'yes'\n";
533   }
534 
535   DEBUG(dbgs() << "\n\nCompute schedule from: ");
536   DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
537   DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
538   DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
539 
540   int IslFusionStrategy;
541 
542   if (FusionStrategy == "max") {
543     IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
544   } else if (FusionStrategy == "min") {
545     IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
546   } else {
547     errs() << "warning: Unknown fusion strategy. Falling back to maximal "
548               "fusion.\n";
549     IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
550   }
551 
552   int IslMaximizeBands;
553 
554   if (MaximizeBandDepth == "yes") {
555     IslMaximizeBands = 1;
556   } else if (MaximizeBandDepth == "no") {
557     IslMaximizeBands = 0;
558   } else {
559     errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
560               " or 'no'. Falling back to default: 'yes'\n";
561     IslMaximizeBands = 1;
562   }
563 
564   isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
565   isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
566   isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
567   isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
568 
569   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
570 
571   isl_schedule_constraints *ScheduleConstraints;
572   ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
573   ScheduleConstraints =
574       isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
575   ScheduleConstraints = isl_schedule_constraints_set_validity(
576       ScheduleConstraints, isl_union_map_copy(Validity));
577   ScheduleConstraints =
578       isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
579   isl_schedule *Schedule;
580   Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
581   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
582 
583   // In cases the scheduler is not able to optimize the code, we just do not
584   // touch the schedule.
585   if (!Schedule)
586     return false;
587 
588   DEBUG(dbgs() << "Schedule := " << stringFromIslObj(Schedule) << ";\n");
589 
590   isl_union_map *NewSchedule = getScheduleMap(Schedule);
591 
592   // Check if the optimizations performed were profitable, otherwise exit early.
593   if (!isProfitableSchedule(S, NewSchedule)) {
594     isl_schedule_free(Schedule);
595     isl_union_map_free(NewSchedule);
596     return false;
597   }
598 
599   S.markAsOptimized();
600 
601   for (ScopStmt *Stmt : S) {
602     isl_map *StmtSchedule;
603     isl_set *Domain = Stmt->getDomain();
604     isl_union_map *StmtBand;
605     StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(NewSchedule),
606                                               isl_union_set_from_set(Domain));
607     if (isl_union_map_is_empty(StmtBand)) {
608       StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace()));
609       isl_union_map_free(StmtBand);
610     } else {
611       assert(isl_union_map_n_map(StmtBand) == 1);
612       StmtSchedule = isl_map_from_union_map(StmtBand);
613     }
614 
615     Stmt->setScattering(StmtSchedule);
616   }
617 
618   isl_union_map_free(NewSchedule);
619   LastSchedule = Schedule;
620 
621   unsigned MaxScatDims = 0;
622 
623   for (ScopStmt *Stmt : S)
624     MaxScatDims = std::max(Stmt->getNumScattering(), MaxScatDims);
625 
626   extendScattering(S, MaxScatDims);
627   return false;
628 }
629 
630 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
631   isl_printer *p;
632   char *ScheduleStr;
633 
634   OS << "Calculated schedule:\n";
635 
636   if (!LastSchedule) {
637     OS << "n/a\n";
638     return;
639   }
640 
641   p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
642   p = isl_printer_print_schedule(p, LastSchedule);
643   ScheduleStr = isl_printer_get_str(p);
644   isl_printer_free(p);
645 
646   OS << ScheduleStr << "\n";
647 }
648 
649 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
650   ScopPass::getAnalysisUsage(AU);
651   AU.addRequired<DependenceInfo>();
652 }
653 
654 Pass *polly::createIslScheduleOptimizerPass() {
655   return new IslScheduleOptimizer();
656 }
657 
658 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
659                       "Polly - Optimize schedule of SCoP", false, false);
660 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
661 INITIALIZE_PASS_DEPENDENCY(ScopInfo);
662 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
663                     "Polly - Optimize schedule of SCoP", false, false)
664