1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass the isl to calculate a schedule that is optimized for parallelism 11 // and tileablility. The algorithm used in isl is an optimized version of the 12 // algorithm described in following paper: 13 // 14 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 15 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. 16 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language 17 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. 18 //===----------------------------------------------------------------------===// 19 20 #include "polly/ScheduleOptimizer.h" 21 #include "isl/aff.h" 22 #include "isl/band.h" 23 #include "isl/constraint.h" 24 #include "isl/map.h" 25 #include "isl/options.h" 26 #include "isl/schedule.h" 27 #include "isl/space.h" 28 #include "polly/CodeGen/CodeGeneration.h" 29 #include "polly/Dependences.h" 30 #include "polly/LinkAllPasses.h" 31 #include "polly/Options.h" 32 #include "polly/ScopInfo.h" 33 #include "llvm/Support/Debug.h" 34 35 using namespace llvm; 36 using namespace polly; 37 38 #define DEBUG_TYPE "polly-opt-isl" 39 40 namespace polly { 41 bool DisablePollyTiling; 42 } 43 static cl::opt<bool, true> 44 DisableTiling("polly-no-tiling", cl::desc("Disable tiling in the scheduler"), 45 cl::location(polly::DisablePollyTiling), cl::init(false), 46 cl::ZeroOrMore, cl::cat(PollyCategory)); 47 48 static cl::opt<std::string> 49 OptimizeDeps("polly-opt-optimize-only", 50 cl::desc("Only a certain kind of dependences (all/raw)"), 51 cl::Hidden, cl::init("all"), cl::ZeroOrMore, 52 cl::cat(PollyCategory)); 53 54 static cl::opt<std::string> 55 SimplifyDeps("polly-opt-simplify-deps", 56 cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden, 57 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 58 59 static cl::opt<int> 60 MaxConstantTerm("polly-opt-max-constant-term", 61 cl::desc("The maximal constant term allowed (-1 is unlimited)"), 62 cl::Hidden, cl::init(20), cl::ZeroOrMore, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<int> 66 MaxCoefficient("polly-opt-max-coefficient", 67 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), 68 cl::Hidden, cl::init(20), cl::ZeroOrMore, 69 cl::cat(PollyCategory)); 70 71 static cl::opt<std::string> 72 FusionStrategy("polly-opt-fusion", 73 cl::desc("The fusion strategy to choose (min/max)"), cl::Hidden, 74 cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); 75 76 static cl::opt<std::string> 77 MaximizeBandDepth("polly-opt-maximize-bands", 78 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, 79 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 80 81 static cl::opt<int> 82 DefaultTileSize("polly-default-tile-size", 83 cl::desc("The default tile size (if not enough were provided by" 84 " --polly-tile-sizes)"), 85 cl::Hidden, cl::init(32), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 static cl::list<int> TileSizes("polly-tile-sizes", 89 cl::desc("A tile size" 90 " for each loop dimension, filled with" 91 " --polly-default-tile-size"), 92 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 93 cl::cat(PollyCategory)); 94 namespace { 95 96 class IslScheduleOptimizer : public ScopPass { 97 public: 98 static char ID; 99 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } 100 101 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } 102 103 virtual bool runOnScop(Scop &S); 104 void printScop(llvm::raw_ostream &OS) const; 105 void getAnalysisUsage(AnalysisUsage &AU) const; 106 107 private: 108 isl_schedule *LastSchedule; 109 110 static void extendScattering(Scop &S, unsigned NewDimensions); 111 112 /// @brief Create a map that describes a n-dimensonal tiling. 113 /// 114 /// getTileMap creates a map from a n-dimensional scattering space into an 115 /// 2*n-dimensional scattering space. The map describes a rectangular 116 /// tiling. 117 /// 118 /// Example: 119 /// scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64> 120 /// 121 /// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]: 122 /// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and 123 /// t1 % 64 = 0 and t1 <= s1 < t1 + 64} 124 /// 125 /// Before tiling: 126 /// 127 /// for (i = 0; i < N; i++) 128 /// for (j = 0; j < M; j++) 129 /// S(i,j) 130 /// 131 /// After tiling: 132 /// 133 /// for (t_i = 0; t_i < N; i+=32) 134 /// for (t_j = 0; t_j < M; j+=64) 135 /// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0 136 /// for (j = t_j; j < t_j + 64; j++) | Known that M % 64 = 0 137 /// S(i,j) 138 /// 139 static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions, 140 isl_space *SpaceModel); 141 142 /// @brief Get the schedule for this band. 143 /// 144 /// Polly applies transformations like tiling on top of the isl calculated 145 /// value. This can influence the number of scheduling dimension. The 146 /// number of schedule dimensions is returned in the parameter 'Dimension'. 147 static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions); 148 149 /// @brief Create a map that pre-vectorizes one scheduling dimension. 150 /// 151 /// getPrevectorMap creates a map that maps each input dimension to the same 152 /// output dimension, except for the dimension DimToVectorize. 153 /// DimToVectorize is strip mined by 'VectorWidth' and the newly created 154 /// point loop of DimToVectorize is moved to the innermost level. 155 /// 156 /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4): 157 /// 158 /// | Before transformation 159 /// | 160 /// | A[i,j] -> [i,j] 161 /// | 162 /// | for (i = 0; i < 128; i++) 163 /// | for (j = 0; j < 128; j++) 164 /// | A(i,j); 165 /// 166 /// Prevector map: 167 /// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip 168 /// 169 /// | After transformation: 170 /// | 171 /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip 172 /// | 173 /// | for (it = 0; it < 128; it+=4) 174 /// | for (j = 0; j < 128; j++) 175 /// | for (ip = max(0,it); ip < min(128, it + 3); ip++) 176 /// | A(ip,j); 177 /// 178 /// The goal of this transformation is to create a trivially vectorizable 179 /// loop. This means a parallel loop at the innermost level that has a 180 /// constant number of iterations corresponding to the target vector width. 181 /// 182 /// This transformation creates a loop at the innermost level. The loop has 183 /// a constant number of iterations, if the number of loop iterations at 184 /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is 185 /// currently constant and not yet target specific. This function does not 186 /// reason about parallelism. 187 static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize, 188 int ScheduleDimensions, int VectorWidth = 4); 189 190 /// @brief Get the scheduling map for a list of bands. 191 /// 192 /// Walk recursively the forest of bands to combine the schedules of the 193 /// individual bands to the overall schedule. In case tiling is requested, 194 /// the individual bands are tiled. 195 static isl_union_map *getScheduleForBandList(isl_band_list *BandList); 196 197 static isl_union_map *getScheduleMap(isl_schedule *Schedule); 198 199 using llvm::Pass::doFinalization; 200 201 virtual bool doFinalization() { 202 isl_schedule_free(LastSchedule); 203 LastSchedule = nullptr; 204 return true; 205 } 206 }; 207 } 208 209 char IslScheduleOptimizer::ID = 0; 210 211 void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) { 212 for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { 213 ScopStmt *Stmt = *SI; 214 unsigned OldDimensions = Stmt->getNumScattering(); 215 isl_space *Space; 216 isl_map *Map, *New; 217 218 Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions); 219 Map = isl_map_universe(Space); 220 221 for (unsigned i = 0; i < OldDimensions; i++) 222 Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i); 223 224 for (unsigned i = OldDimensions; i < NewDimensions; i++) 225 Map = isl_map_fix_si(Map, isl_dim_out, i, 0); 226 227 Map = isl_map_align_params(Map, S.getParamSpace()); 228 New = isl_map_apply_range(Stmt->getScattering(), Map); 229 Stmt->setScattering(New); 230 } 231 } 232 233 isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx, 234 int scheduleDimensions, 235 isl_space *SpaceModel) { 236 // We construct 237 // 238 // tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]: 239 // s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and 240 // s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64} 241 // 242 // and project out the auxilary dimensions a0 and a1. 243 isl_space *Space = 244 isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3); 245 isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space)); 246 247 isl_local_space *LocalSpace = isl_local_space_from_space(Space); 248 249 for (int x = 0; x < scheduleDimensions; x++) { 250 int sX = x; 251 int tX = x; 252 int pX = scheduleDimensions + x; 253 int aX = 2 * scheduleDimensions + x; 254 int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize; 255 assert(tileSize > 0 && "Invalid tile size"); 256 257 isl_constraint *c; 258 259 // sX = aX * tileSize; 260 c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); 261 isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1); 262 isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize); 263 tileMap = isl_basic_map_add_constraint(tileMap, c); 264 265 // pX = sX; 266 c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); 267 isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1); 268 isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1); 269 tileMap = isl_basic_map_add_constraint(tileMap, c); 270 271 // tX <= pX 272 c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); 273 isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1); 274 isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1); 275 tileMap = isl_basic_map_add_constraint(tileMap, c); 276 277 // pX <= tX + (tileSize - 1) 278 c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); 279 isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1); 280 isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1); 281 isl_constraint_set_constant_si(c, tileSize - 1); 282 tileMap = isl_basic_map_add_constraint(tileMap, c); 283 } 284 285 // Project out auxilary dimensions. 286 // 287 // The auxilary dimensions are transformed into existentially quantified ones. 288 // This reduces the number of visible scattering dimensions and allows Cloog 289 // to produces better code. 290 tileMap = isl_basic_map_project_out( 291 tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions); 292 isl_local_space_free(LocalSpace); 293 return tileMap; 294 } 295 296 isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band, 297 int *Dimensions) { 298 isl_union_map *PartialSchedule; 299 isl_ctx *ctx; 300 isl_space *Space; 301 isl_basic_map *TileMap; 302 isl_union_map *TileUMap; 303 304 PartialSchedule = isl_band_get_partial_schedule(Band); 305 *Dimensions = isl_band_n_member(Band); 306 307 if (DisableTiling) 308 return PartialSchedule; 309 310 // It does not make any sense to tile a band with just one dimension. 311 if (*Dimensions == 1) 312 return PartialSchedule; 313 314 ctx = isl_union_map_get_ctx(PartialSchedule); 315 Space = isl_union_map_get_space(PartialSchedule); 316 317 TileMap = getTileMap(ctx, *Dimensions, Space); 318 TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap)); 319 TileUMap = isl_union_map_align_params(TileUMap, Space); 320 *Dimensions = 2 * *Dimensions; 321 322 return isl_union_map_apply_range(PartialSchedule, TileUMap); 323 } 324 325 isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize, 326 int ScheduleDimensions, 327 int VectorWidth) { 328 isl_space *Space; 329 isl_local_space *LocalSpace, *LocalSpaceRange; 330 isl_set *Modulo; 331 isl_map *TilingMap; 332 isl_constraint *c; 333 isl_aff *Aff; 334 int PointDimension; /* ip */ 335 int TileDimension; /* it */ 336 isl_val *VectorWidthMP; 337 338 assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions); 339 340 Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1); 341 TilingMap = isl_map_universe(isl_space_copy(Space)); 342 LocalSpace = isl_local_space_from_space(Space); 343 PointDimension = ScheduleDimensions; 344 TileDimension = DimToVectorize; 345 346 // Create an identity map for everything except DimToVectorize and map 347 // DimToVectorize to the point loop at the innermost dimension. 348 for (int i = 0; i < ScheduleDimensions; i++) { 349 c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); 350 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1); 351 352 if (i == DimToVectorize) 353 isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1); 354 else 355 isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1); 356 357 TilingMap = isl_map_add_constraint(TilingMap, c); 358 } 359 360 // it % 'VectorWidth' = 0 361 LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace)); 362 Aff = isl_aff_zero_on_domain(LocalSpaceRange); 363 Aff = isl_aff_set_constant_si(Aff, VectorWidth); 364 Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1); 365 VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth); 366 Aff = isl_aff_mod_val(Aff, VectorWidthMP); 367 Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff)); 368 TilingMap = isl_map_intersect_range(TilingMap, Modulo); 369 370 // it <= ip 371 c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); 372 isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1); 373 isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1); 374 TilingMap = isl_map_add_constraint(TilingMap, c); 375 376 // ip <= it + ('VectorWidth' - 1) 377 c = isl_inequality_alloc(LocalSpace); 378 isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1); 379 isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1); 380 isl_constraint_set_constant_si(c, VectorWidth - 1); 381 TilingMap = isl_map_add_constraint(TilingMap, c); 382 383 return TilingMap; 384 } 385 386 isl_union_map * 387 IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) { 388 int NumBands; 389 isl_union_map *Schedule; 390 isl_ctx *ctx; 391 392 ctx = isl_band_list_get_ctx(BandList); 393 NumBands = isl_band_list_n_band(BandList); 394 Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0)); 395 396 for (int i = 0; i < NumBands; i++) { 397 isl_band *Band; 398 isl_union_map *PartialSchedule; 399 int ScheduleDimensions; 400 isl_space *Space; 401 402 Band = isl_band_list_get_band(BandList, i); 403 PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions); 404 Space = isl_union_map_get_space(PartialSchedule); 405 406 if (isl_band_has_children(Band)) { 407 isl_band_list *Children; 408 isl_union_map *SuffixSchedule; 409 410 Children = isl_band_get_children(Band); 411 SuffixSchedule = getScheduleForBandList(Children); 412 PartialSchedule = 413 isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule); 414 isl_band_list_free(Children); 415 } else if (PollyVectorizerChoice != VECTORIZER_NONE) { 416 // In case we are at the innermost band, we try to prepare for 417 // vectorization. This means, we look for the innermost parallel loop 418 // and strip mine this loop to the innermost level using a strip-mine 419 // factor corresponding to the number of vector iterations. 420 int NumDims = isl_band_n_member(Band); 421 for (int j = NumDims - 1; j >= 0; j--) { 422 if (isl_band_member_is_coincident(Band, j)) { 423 isl_map *TileMap; 424 isl_union_map *TileUMap; 425 426 TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j, 427 ScheduleDimensions); 428 TileUMap = isl_union_map_from_map(TileMap); 429 TileUMap = 430 isl_union_map_align_params(TileUMap, isl_space_copy(Space)); 431 PartialSchedule = 432 isl_union_map_apply_range(PartialSchedule, TileUMap); 433 break; 434 } 435 } 436 } 437 438 Schedule = isl_union_map_union(Schedule, PartialSchedule); 439 440 isl_band_free(Band); 441 isl_space_free(Space); 442 } 443 444 return Schedule; 445 } 446 447 isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) { 448 isl_band_list *BandList = isl_schedule_get_band_forest(Schedule); 449 isl_union_map *ScheduleMap = getScheduleForBandList(BandList); 450 isl_band_list_free(BandList); 451 return ScheduleMap; 452 } 453 454 bool IslScheduleOptimizer::runOnScop(Scop &S) { 455 Dependences *D = &getAnalysis<Dependences>(); 456 457 if (!D->hasValidDependences()) 458 return false; 459 460 isl_schedule_free(LastSchedule); 461 LastSchedule = nullptr; 462 463 // Build input data. 464 int ValidityKinds = 465 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 466 int ProximityKinds; 467 468 if (OptimizeDeps == "all") 469 ProximityKinds = 470 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 471 else if (OptimizeDeps == "raw") 472 ProximityKinds = Dependences::TYPE_RAW; 473 else { 474 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" 475 << " Falling back to optimizing all dependences.\n"; 476 ProximityKinds = 477 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 478 } 479 480 isl_union_set *Domain = S.getDomains(); 481 482 if (!Domain) 483 return false; 484 485 isl_union_map *Validity = D->getDependences(ValidityKinds); 486 isl_union_map *Proximity = D->getDependences(ProximityKinds); 487 488 // Simplify the dependences by removing the constraints introduced by the 489 // domains. This can speed up the scheduling time significantly, as large 490 // constant coefficients will be removed from the dependences. The 491 // introduction of some additional dependences reduces the possible 492 // transformations, but in most cases, such transformation do not seem to be 493 // interesting anyway. In some cases this option may stop the scheduler to 494 // find any schedule. 495 if (SimplifyDeps == "yes") { 496 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); 497 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); 498 Proximity = 499 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); 500 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); 501 } else if (SimplifyDeps != "no") { 502 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " 503 "or 'no'. Falling back to default: 'yes'\n"; 504 } 505 506 DEBUG(dbgs() << "\n\nCompute schedule from: "); 507 DEBUG(dbgs() << "Domain := "; isl_union_set_dump(Domain); dbgs() << ";\n"); 508 DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(Proximity); 509 dbgs() << ";\n"); 510 DEBUG(dbgs() << "Validity := "; isl_union_map_dump(Validity); 511 dbgs() << ";\n"); 512 513 int IslFusionStrategy; 514 515 if (FusionStrategy == "max") { 516 IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; 517 } else if (FusionStrategy == "min") { 518 IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN; 519 } else { 520 errs() << "warning: Unknown fusion strategy. Falling back to maximal " 521 "fusion.\n"; 522 IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; 523 } 524 525 int IslMaximizeBands; 526 527 if (MaximizeBandDepth == "yes") { 528 IslMaximizeBands = 1; 529 } else if (MaximizeBandDepth == "no") { 530 IslMaximizeBands = 0; 531 } else { 532 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" 533 " or 'no'. Falling back to default: 'yes'\n"; 534 IslMaximizeBands = 1; 535 } 536 537 isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy); 538 isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands); 539 isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm); 540 isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient); 541 542 isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE); 543 544 isl_schedule_constraints *ScheduleConstraints; 545 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); 546 ScheduleConstraints = 547 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); 548 ScheduleConstraints = isl_schedule_constraints_set_validity( 549 ScheduleConstraints, isl_union_map_copy(Validity)); 550 ScheduleConstraints = 551 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); 552 isl_schedule *Schedule; 553 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); 554 isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT); 555 556 // In cases the scheduler is not able to optimize the code, we just do not 557 // touch the schedule. 558 if (!Schedule) 559 return false; 560 561 DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n"); 562 563 isl_union_map *ScheduleMap = getScheduleMap(Schedule); 564 565 for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { 566 ScopStmt *Stmt = *SI; 567 isl_map *StmtSchedule; 568 isl_set *Domain = Stmt->getDomain(); 569 isl_union_map *StmtBand; 570 StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap), 571 isl_union_set_from_set(Domain)); 572 if (isl_union_map_is_empty(StmtBand)) { 573 StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace())); 574 isl_union_map_free(StmtBand); 575 } else { 576 assert(isl_union_map_n_map(StmtBand) == 1); 577 StmtSchedule = isl_map_from_union_map(StmtBand); 578 } 579 580 Stmt->setScattering(StmtSchedule); 581 } 582 583 isl_union_map_free(ScheduleMap); 584 LastSchedule = Schedule; 585 586 unsigned MaxScatDims = 0; 587 588 for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) 589 MaxScatDims = std::max((*SI)->getNumScattering(), MaxScatDims); 590 591 extendScattering(S, MaxScatDims); 592 return false; 593 } 594 595 void IslScheduleOptimizer::printScop(raw_ostream &OS) const { 596 isl_printer *p; 597 char *ScheduleStr; 598 599 OS << "Calculated schedule:\n"; 600 601 if (!LastSchedule) { 602 OS << "n/a\n"; 603 return; 604 } 605 606 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); 607 p = isl_printer_print_schedule(p, LastSchedule); 608 ScheduleStr = isl_printer_get_str(p); 609 isl_printer_free(p); 610 611 OS << ScheduleStr << "\n"; 612 } 613 614 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { 615 ScopPass::getAnalysisUsage(AU); 616 AU.addRequired<Dependences>(); 617 } 618 619 Pass *polly::createIslScheduleOptimizerPass() { 620 return new IslScheduleOptimizer(); 621 } 622 623 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", 624 "Polly - Optimize schedule of SCoP", false, false); 625 INITIALIZE_PASS_DEPENDENCY(Dependences); 626 INITIALIZE_PASS_DEPENDENCY(ScopInfo); 627 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", 628 "Polly - Optimize schedule of SCoP", false, false) 629