1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass generates an entirey new schedule tree from the data dependences 11 // and iteration domains. The new schedule tree is computed in two steps: 12 // 13 // 1) The isl scheduling optimizer is run 14 // 15 // The isl scheduling optimizer creates a new schedule tree that maximizes 16 // parallelism and tileability and minimizes data-dependence distances. The 17 // algorithm used is a modified version of the ``Pluto'' algorithm: 18 // 19 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 20 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. 21 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language 22 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. 23 // 24 // 2) A set of post-scheduling transformations is applied on the schedule tree. 25 // 26 // These optimizations include: 27 // 28 // - Tiling of the innermost tilable bands 29 // - Prevectorization - The coice of a possible outer loop that is strip-mined 30 // to the innermost level to enable inner-loop 31 // vectorization. 32 // - Some optimizations for spatial locality are also planned. 33 // 34 // For a detailed description of the schedule tree itself please see section 6 35 // of: 36 // 37 // Polyhedral AST generation is more than scanning polyhedra 38 // Tobias Grosser, Sven Verdoolaege, Albert Cohen 39 // ACM Transations on Programming Languages and Systems (TOPLAS), 40 // 37(4), July 2015 41 // http://www.grosser.es/#pub-polyhedral-AST-generation 42 // 43 // This publication also contains a detailed discussion of the different options 44 // for polyhedral loop unrolling, full/partial tile separation and other uses 45 // of the schedule tree. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "polly/ScheduleOptimizer.h" 50 #include "polly/CodeGen/CodeGeneration.h" 51 #include "polly/DependenceInfo.h" 52 #include "polly/LinkAllPasses.h" 53 #include "polly/Options.h" 54 #include "polly/ScopInfo.h" 55 #include "polly/Support/GICHelper.h" 56 #include "llvm/Support/Debug.h" 57 #include "isl/aff.h" 58 #include "isl/band.h" 59 #include "isl/constraint.h" 60 #include "isl/map.h" 61 #include "isl/options.h" 62 #include "isl/printer.h" 63 #include "isl/schedule.h" 64 #include "isl/schedule_node.h" 65 #include "isl/space.h" 66 #include "isl/union_map.h" 67 #include "isl/union_set.h" 68 69 using namespace llvm; 70 using namespace polly; 71 72 #define DEBUG_TYPE "polly-opt-isl" 73 74 static cl::opt<std::string> 75 OptimizeDeps("polly-opt-optimize-only", 76 cl::desc("Only a certain kind of dependences (all/raw)"), 77 cl::Hidden, cl::init("all"), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<std::string> 81 SimplifyDeps("polly-opt-simplify-deps", 82 cl::desc("Dependences should be simplified (yes/no)"), 83 cl::Hidden, cl::init("yes"), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 86 static cl::opt<int> MaxConstantTerm( 87 "polly-opt-max-constant-term", 88 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, 89 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 90 91 static cl::opt<int> MaxCoefficient( 92 "polly-opt-max-coefficient", 93 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, 94 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 95 96 static cl::opt<std::string> FusionStrategy( 97 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), 98 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); 99 100 static cl::opt<std::string> 101 MaximizeBandDepth("polly-opt-maximize-bands", 102 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, 103 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 104 105 static cl::opt<int> PrevectorWidth( 106 "polly-prevect-width", 107 cl::desc( 108 "The number of loop iterations to strip-mine for pre-vectorization"), 109 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); 110 111 static cl::opt<bool> FirstLevelTiling("polly-tiling", 112 cl::desc("Enable loop tiling"), 113 cl::init(true), cl::ZeroOrMore, 114 cl::cat(PollyCategory)); 115 116 static cl::opt<int> FirstLevelDefaultTileSize( 117 "polly-default-tile-size", 118 cl::desc("The default tile size (if not enough were provided by" 119 " --polly-tile-sizes)"), 120 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); 121 122 static cl::list<int> FirstLevelTileSizes( 123 "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled " 124 "with --polly-default-tile-size"), 125 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 126 127 static cl::opt<bool> 128 SecondLevelTiling("polly-2nd-level-tiling", 129 cl::desc("Enable a 2nd level loop of loop tiling"), 130 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 131 132 static cl::opt<int> SecondLevelDefaultTileSize( 133 "polly-2nd-level-default-tile-size", 134 cl::desc("The default 2nd-level tile size (if not enough were provided by" 135 " --polly-2nd-level-tile-sizes)"), 136 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); 137 138 static cl::list<int> 139 SecondLevelTileSizes("polly-2nd-level-tile-sizes", 140 cl::desc("A tile size for each loop dimension, filled " 141 "with --polly-default-tile-size"), 142 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 143 cl::cat(PollyCategory)); 144 145 static cl::opt<bool> RegisterTiling("polly-register-tiling", 146 cl::desc("Enable register tiling"), 147 cl::init(false), cl::ZeroOrMore, 148 cl::cat(PollyCategory)); 149 150 static cl::opt<int> RegisterDefaultTileSize( 151 "polly-register-tiling-default-tile-size", 152 cl::desc("The default register tile size (if not enough were provided by" 153 " --polly-register-tile-sizes)"), 154 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); 155 156 static cl::list<int> 157 RegisterTileSizes("polly-register-tile-sizes", 158 cl::desc("A tile size for each loop dimension, filled " 159 "with --polly-register-tile-size"), 160 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 161 cl::cat(PollyCategory)); 162 163 /// @brief Create an isl_union_set, which describes the isolate option based 164 /// on IsoalteDomain. 165 /// 166 /// @param IsolateDomain An isl_set whose last dimension is the only one that 167 /// should belong to the current band node. 168 static __isl_give isl_union_set * 169 getIsolateOptions(__isl_take isl_set *IsolateDomain) { 170 auto Dims = isl_set_dim(IsolateDomain, isl_dim_set); 171 auto *IsolateRelation = isl_map_from_domain(IsolateDomain); 172 IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0, 173 isl_dim_in, Dims - 1, 1); 174 auto *IsolateOption = isl_map_wrap(IsolateRelation); 175 auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", NULL); 176 return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id)); 177 } 178 179 /// @brief Create an isl_union_set, which describes the atomic option for the 180 /// dimension of the current node. 181 /// 182 /// It may help to reduce the size of generated code. 183 /// 184 /// @param Ctx An isl_ctx, which is used to create the isl_union_set. 185 static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) { 186 auto *Space = isl_space_set_alloc(Ctx, 0, 1); 187 auto *AtomicOption = isl_set_universe(Space); 188 auto *Id = isl_id_alloc(Ctx, "atomic", NULL); 189 return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id)); 190 } 191 192 /// @brief Make the last dimension of Set to take values 193 /// from 0 to VectorWidth - 1. 194 /// 195 /// @param Set A set, which should be modified. 196 /// @param VectorWidth A parameter, which determines the constraint. 197 static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set, 198 int VectorWidth) { 199 auto Dims = isl_set_dim(Set, isl_dim_set); 200 auto Space = isl_set_get_space(Set); 201 auto *LocalSpace = isl_local_space_from_space(Space); 202 auto *ExtConstr = 203 isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace)); 204 ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0); 205 ExtConstr = 206 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1); 207 Set = isl_set_add_constraint(Set, ExtConstr); 208 ExtConstr = isl_constraint_alloc_inequality(LocalSpace); 209 ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1); 210 ExtConstr = 211 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1); 212 return isl_set_add_constraint(Set, ExtConstr); 213 } 214 215 /// @brief Build the desired set of partial tile prefixes. 216 /// 217 /// We build a set of partial tile prefixes, which are prefixes of the vector 218 /// loop that have exactly VectorWidth iterations. 219 /// 220 /// 1. Get all prefixes of the vector loop. 221 /// 2. Extend it to a set, which has exactly VectorWidth iterations for 222 /// any prefix from the set that was built on the previous step. 223 /// 3. Subtract loop domain from it, project out the vector loop dimension and 224 /// get a set of prefixes, which don’t have exactly VectorWidth iterations. 225 /// 4. Subtract it from all prefixes of the vector loop and get the desired 226 /// set. 227 /// 228 /// @param ScheduleRange A range of a map, which describes a prefix schedule 229 /// relation. 230 static __isl_give isl_set * 231 getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) { 232 auto Dims = isl_set_dim(ScheduleRange, isl_dim_set); 233 auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange), 234 isl_dim_set, Dims - 1, 1); 235 auto *ExtentPrefixes = 236 isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1); 237 ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth); 238 auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange); 239 BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1); 240 return isl_set_subtract(LoopPrefixes, BadPrefixes); 241 } 242 243 __isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles( 244 __isl_take isl_schedule_node *Node, int VectorWidth) { 245 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 246 Node = isl_schedule_node_child(Node, 0); 247 Node = isl_schedule_node_child(Node, 0); 248 auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node); 249 auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap); 250 auto *ScheduleRange = isl_map_range(ScheduleRelation); 251 auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); 252 auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain)); 253 auto *IsolateOption = getIsolateOptions(IsolateDomain); 254 Node = isl_schedule_node_parent(Node); 255 Node = isl_schedule_node_parent(Node); 256 auto *Options = isl_union_set_union(IsolateOption, AtomicOption); 257 Node = isl_schedule_node_band_set_ast_build_options(Node, Options); 258 return Node; 259 } 260 261 __isl_give isl_schedule_node * 262 ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node, 263 unsigned DimToVectorize, 264 int VectorWidth) { 265 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 266 267 auto Space = isl_schedule_node_band_get_space(Node); 268 auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set); 269 isl_space_free(Space); 270 assert(DimToVectorize < ScheduleDimensions); 271 272 if (DimToVectorize > 0) { 273 Node = isl_schedule_node_band_split(Node, DimToVectorize); 274 Node = isl_schedule_node_child(Node, 0); 275 } 276 if (DimToVectorize < ScheduleDimensions - 1) 277 Node = isl_schedule_node_band_split(Node, 1); 278 Space = isl_schedule_node_band_get_space(Node); 279 auto Sizes = isl_multi_val_zero(Space); 280 auto Ctx = isl_schedule_node_get_ctx(Node); 281 Sizes = 282 isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth)); 283 Node = isl_schedule_node_band_tile(Node, Sizes); 284 Node = isolateFullPartialTiles(Node, VectorWidth); 285 Node = isl_schedule_node_child(Node, 0); 286 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, 287 // we will have troubles to match it in the backend. 288 Node = isl_schedule_node_band_set_ast_build_options( 289 Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }")); 290 Node = isl_schedule_node_band_sink(Node); 291 Node = isl_schedule_node_child(Node, 0); 292 return Node; 293 } 294 295 __isl_give isl_schedule_node * 296 ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node, 297 const char *Identifier, ArrayRef<int> TileSizes, 298 int DefaultTileSize) { 299 auto Ctx = isl_schedule_node_get_ctx(Node); 300 auto Space = isl_schedule_node_band_get_space(Node); 301 auto Dims = isl_space_dim(Space, isl_dim_set); 302 auto Sizes = isl_multi_val_zero(Space); 303 std::string IdentifierString(Identifier); 304 for (unsigned i = 0; i < Dims; i++) { 305 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize; 306 Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize)); 307 } 308 auto TileLoopMarkerStr = IdentifierString + " - Tiles"; 309 isl_id *TileLoopMarker = 310 isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr); 311 Node = isl_schedule_node_insert_mark(Node, TileLoopMarker); 312 Node = isl_schedule_node_child(Node, 0); 313 Node = isl_schedule_node_band_tile(Node, Sizes); 314 Node = isl_schedule_node_child(Node, 0); 315 auto PointLoopMarkerStr = IdentifierString + " - Points"; 316 isl_id *PointLoopMarker = 317 isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr); 318 Node = isl_schedule_node_insert_mark(Node, PointLoopMarker); 319 Node = isl_schedule_node_child(Node, 0); 320 return Node; 321 } 322 323 bool ScheduleTreeOptimizer::isTileableBandNode( 324 __isl_keep isl_schedule_node *Node) { 325 if (isl_schedule_node_get_type(Node) != isl_schedule_node_band) 326 return false; 327 328 if (isl_schedule_node_n_children(Node) != 1) 329 return false; 330 331 if (!isl_schedule_node_band_get_permutable(Node)) 332 return false; 333 334 auto Space = isl_schedule_node_band_get_space(Node); 335 auto Dims = isl_space_dim(Space, isl_dim_set); 336 isl_space_free(Space); 337 338 if (Dims <= 1) 339 return false; 340 341 auto Child = isl_schedule_node_get_child(Node, 0); 342 auto Type = isl_schedule_node_get_type(Child); 343 isl_schedule_node_free(Child); 344 345 if (Type != isl_schedule_node_leaf) 346 return false; 347 348 return true; 349 } 350 351 __isl_give isl_schedule_node * 352 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, 353 void *User) { 354 if (!isTileableBandNode(Node)) 355 return Node; 356 357 if (FirstLevelTiling) 358 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, 359 FirstLevelDefaultTileSize); 360 361 if (SecondLevelTiling) 362 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, 363 SecondLevelDefaultTileSize); 364 365 if (RegisterTiling) { 366 auto *Ctx = isl_schedule_node_get_ctx(Node); 367 Node = tileNode(Node, "Register tiling", RegisterTileSizes, 368 RegisterDefaultTileSize); 369 Node = isl_schedule_node_band_set_ast_build_options( 370 Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}")); 371 } 372 373 if (PollyVectorizerChoice == VECTORIZER_NONE) 374 return Node; 375 376 auto Space = isl_schedule_node_band_get_space(Node); 377 auto Dims = isl_space_dim(Space, isl_dim_set); 378 isl_space_free(Space); 379 380 for (int i = Dims - 1; i >= 0; i--) 381 if (isl_schedule_node_band_member_get_coincident(Node, i)) { 382 Node = prevectSchedBand(Node, i, PrevectorWidth); 383 break; 384 } 385 386 return Node; 387 } 388 389 __isl_give isl_schedule * 390 ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule) { 391 isl_schedule_node *Root = isl_schedule_get_root(Schedule); 392 Root = optimizeScheduleNode(Root); 393 isl_schedule_free(Schedule); 394 auto S = isl_schedule_node_get_schedule(Root); 395 isl_schedule_node_free(Root); 396 return S; 397 } 398 399 __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode( 400 __isl_take isl_schedule_node *Node) { 401 Node = isl_schedule_node_map_descendant_bottom_up(Node, optimizeBand, NULL); 402 return Node; 403 } 404 405 bool ScheduleTreeOptimizer::isProfitableSchedule( 406 Scop &S, __isl_keep isl_union_map *NewSchedule) { 407 // To understand if the schedule has been optimized we check if the schedule 408 // has changed at all. 409 // TODO: We can improve this by tracking if any necessarily beneficial 410 // transformations have been performed. This can e.g. be tiling, loop 411 // interchange, or ...) We can track this either at the place where the 412 // transformation has been performed or, in case of automatic ILP based 413 // optimizations, by comparing (yet to be defined) performance metrics 414 // before/after the scheduling optimizer 415 // (e.g., #stride-one accesses) 416 isl_union_map *OldSchedule = S.getSchedule(); 417 bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule); 418 isl_union_map_free(OldSchedule); 419 return changed; 420 } 421 422 namespace { 423 class IslScheduleOptimizer : public ScopPass { 424 public: 425 static char ID; 426 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } 427 428 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } 429 430 /// @brief Optimize the schedule of the SCoP @p S. 431 bool runOnScop(Scop &S) override; 432 433 /// @brief Print the new schedule for the SCoP @p S. 434 void printScop(raw_ostream &OS, Scop &S) const override; 435 436 /// @brief Register all analyses and transformation required. 437 void getAnalysisUsage(AnalysisUsage &AU) const override; 438 439 /// @brief Release the internal memory. 440 void releaseMemory() override { 441 isl_schedule_free(LastSchedule); 442 LastSchedule = nullptr; 443 } 444 445 private: 446 isl_schedule *LastSchedule; 447 }; 448 } 449 450 char IslScheduleOptimizer::ID = 0; 451 452 bool IslScheduleOptimizer::runOnScop(Scop &S) { 453 454 // Skip empty SCoPs but still allow code generation as it will delete the 455 // loops present but not needed. 456 if (S.getSize() == 0) { 457 S.markAsOptimized(); 458 return false; 459 } 460 461 const Dependences &D = getAnalysis<DependenceInfo>().getDependences(); 462 463 if (!D.hasValidDependences()) 464 return false; 465 466 isl_schedule_free(LastSchedule); 467 LastSchedule = nullptr; 468 469 // Build input data. 470 int ValidityKinds = 471 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 472 int ProximityKinds; 473 474 if (OptimizeDeps == "all") 475 ProximityKinds = 476 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 477 else if (OptimizeDeps == "raw") 478 ProximityKinds = Dependences::TYPE_RAW; 479 else { 480 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" 481 << " Falling back to optimizing all dependences.\n"; 482 ProximityKinds = 483 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 484 } 485 486 isl_union_set *Domain = S.getDomains(); 487 488 if (!Domain) 489 return false; 490 491 isl_union_map *Validity = D.getDependences(ValidityKinds); 492 isl_union_map *Proximity = D.getDependences(ProximityKinds); 493 494 // Simplify the dependences by removing the constraints introduced by the 495 // domains. This can speed up the scheduling time significantly, as large 496 // constant coefficients will be removed from the dependences. The 497 // introduction of some additional dependences reduces the possible 498 // transformations, but in most cases, such transformation do not seem to be 499 // interesting anyway. In some cases this option may stop the scheduler to 500 // find any schedule. 501 if (SimplifyDeps == "yes") { 502 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); 503 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); 504 Proximity = 505 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); 506 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); 507 } else if (SimplifyDeps != "no") { 508 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " 509 "or 'no'. Falling back to default: 'yes'\n"; 510 } 511 512 DEBUG(dbgs() << "\n\nCompute schedule from: "); 513 DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n"); 514 DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n"); 515 DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n"); 516 517 unsigned IslSerializeSCCs; 518 519 if (FusionStrategy == "max") { 520 IslSerializeSCCs = 0; 521 } else if (FusionStrategy == "min") { 522 IslSerializeSCCs = 1; 523 } else { 524 errs() << "warning: Unknown fusion strategy. Falling back to maximal " 525 "fusion.\n"; 526 IslSerializeSCCs = 0; 527 } 528 529 int IslMaximizeBands; 530 531 if (MaximizeBandDepth == "yes") { 532 IslMaximizeBands = 1; 533 } else if (MaximizeBandDepth == "no") { 534 IslMaximizeBands = 0; 535 } else { 536 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" 537 " or 'no'. Falling back to default: 'yes'\n"; 538 IslMaximizeBands = 1; 539 } 540 541 isl_options_set_schedule_serialize_sccs(S.getIslCtx(), IslSerializeSCCs); 542 isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands); 543 isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm); 544 isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient); 545 isl_options_set_tile_scale_tile_loops(S.getIslCtx(), 0); 546 547 isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE); 548 549 isl_schedule_constraints *ScheduleConstraints; 550 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); 551 ScheduleConstraints = 552 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); 553 ScheduleConstraints = isl_schedule_constraints_set_validity( 554 ScheduleConstraints, isl_union_map_copy(Validity)); 555 ScheduleConstraints = 556 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); 557 isl_schedule *Schedule; 558 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); 559 isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT); 560 561 // In cases the scheduler is not able to optimize the code, we just do not 562 // touch the schedule. 563 if (!Schedule) 564 return false; 565 566 DEBUG({ 567 auto *P = isl_printer_to_str(S.getIslCtx()); 568 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 569 P = isl_printer_print_schedule(P, Schedule); 570 dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n"; 571 isl_printer_free(P); 572 }); 573 574 isl_schedule *NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule); 575 isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule); 576 577 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewScheduleMap)) { 578 isl_union_map_free(NewScheduleMap); 579 isl_schedule_free(NewSchedule); 580 return false; 581 } 582 583 S.setScheduleTree(NewSchedule); 584 S.markAsOptimized(); 585 586 isl_union_map_free(NewScheduleMap); 587 return false; 588 } 589 590 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { 591 isl_printer *p; 592 char *ScheduleStr; 593 594 OS << "Calculated schedule:\n"; 595 596 if (!LastSchedule) { 597 OS << "n/a\n"; 598 return; 599 } 600 601 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); 602 p = isl_printer_print_schedule(p, LastSchedule); 603 ScheduleStr = isl_printer_get_str(p); 604 isl_printer_free(p); 605 606 OS << ScheduleStr << "\n"; 607 } 608 609 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { 610 ScopPass::getAnalysisUsage(AU); 611 AU.addRequired<DependenceInfo>(); 612 } 613 614 Pass *polly::createIslScheduleOptimizerPass() { 615 return new IslScheduleOptimizer(); 616 } 617 618 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", 619 "Polly - Optimize schedule of SCoP", false, false); 620 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 621 INITIALIZE_PASS_DEPENDENCY(ScopInfo); 622 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", 623 "Polly - Optimize schedule of SCoP", false, false) 624