1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass the isl to calculate a schedule that is optimized for parallelism
11 // and tileablility. The algorithm used in isl is an optimized version of the
12 // algorithm described in following paper:
13 //
14 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
15 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
16 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
17 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
18 //===----------------------------------------------------------------------===//
19 
20 #include "polly/ScheduleOptimizer.h"
21 #include "isl/aff.h"
22 #include "isl/band.h"
23 #include "isl/constraint.h"
24 #include "isl/map.h"
25 #include "isl/options.h"
26 #include "isl/schedule.h"
27 #include "isl/space.h"
28 #include "polly/CodeGen/CodeGeneration.h"
29 #include "polly/Dependences.h"
30 #include "polly/LinkAllPasses.h"
31 #include "polly/Options.h"
32 #include "polly/ScopInfo.h"
33 #include "llvm/Support/Debug.h"
34 
35 using namespace llvm;
36 using namespace polly;
37 
38 #define DEBUG_TYPE "polly-opt-isl"
39 
40 namespace polly {
41 bool DisablePollyTiling;
42 }
43 static cl::opt<bool, true>
44     DisableTiling("polly-no-tiling",
45                   cl::desc("Disable tiling in the scheduler"),
46                   cl::location(polly::DisablePollyTiling), cl::init(false),
47                   cl::ZeroOrMore, cl::cat(PollyCategory));
48 
49 static cl::opt<std::string>
50     OptimizeDeps("polly-opt-optimize-only",
51                  cl::desc("Only a certain kind of dependences (all/raw)"),
52                  cl::Hidden, cl::init("all"), cl::ZeroOrMore,
53                  cl::cat(PollyCategory));
54 
55 static cl::opt<std::string>
56     SimplifyDeps("polly-opt-simplify-deps",
57                  cl::desc("Dependences should be simplified (yes/no)"),
58                  cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
59                  cl::cat(PollyCategory));
60 
61 static cl::opt<int> MaxConstantTerm(
62     "polly-opt-max-constant-term",
63     cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
64     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
65 
66 static cl::opt<int> MaxCoefficient(
67     "polly-opt-max-coefficient",
68     cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
69     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
70 
71 static cl::opt<std::string> FusionStrategy(
72     "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
73     cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
74 
75 static cl::opt<std::string>
76     MaximizeBandDepth("polly-opt-maximize-bands",
77                       cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
78                       cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
79 
80 static cl::opt<int> DefaultTileSize(
81     "polly-default-tile-size",
82     cl::desc("The default tile size (if not enough were provided by"
83              " --polly-tile-sizes)"),
84     cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
85 
86 static cl::list<int> TileSizes("polly-tile-sizes",
87                                cl::desc("A tile size"
88                                         " for each loop dimension, filled with"
89                                         " --polly-default-tile-size"),
90                                cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
91                                cl::cat(PollyCategory));
92 namespace {
93 
94 class IslScheduleOptimizer : public ScopPass {
95 public:
96   static char ID;
97   explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
98 
99   ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
100 
101   virtual bool runOnScop(Scop &S);
102   void printScop(llvm::raw_ostream &OS) const;
103   void getAnalysisUsage(AnalysisUsage &AU) const;
104 
105 private:
106   isl_schedule *LastSchedule;
107 
108   static void extendScattering(Scop &S, unsigned NewDimensions);
109 
110   /// @brief Create a map that describes a n-dimensonal tiling.
111   ///
112   /// getTileMap creates a map from a n-dimensional scattering space into an
113   /// 2*n-dimensional scattering space. The map describes a rectangular
114   /// tiling.
115   ///
116   /// Example:
117   ///   scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64>
118   ///
119   ///   tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
120   ///                        t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
121   ///                        t1 % 64 = 0 and t1 <= s1 < t1 + 64}
122   ///
123   ///  Before tiling:
124   ///
125   ///  for (i = 0; i < N; i++)
126   ///    for (j = 0; j < M; j++)
127   ///	S(i,j)
128   ///
129   ///  After tiling:
130   ///
131   ///  for (t_i = 0; t_i < N; i+=32)
132   ///    for (t_j = 0; t_j < M; j+=64)
133   ///	for (i = t_i; i < min(t_i + 32, N); i++)  | Unknown that N % 32 = 0
134   ///	  for (j = t_j; j < t_j + 64; j++)        |   Known that M % 64 = 0
135   ///	    S(i,j)
136   ///
137   static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
138                                    isl_space *SpaceModel);
139 
140   /// @brief Get the schedule for this band.
141   ///
142   /// Polly applies transformations like tiling on top of the isl calculated
143   /// value.  This can influence the number of scheduling dimension. The
144   /// number of schedule dimensions is returned in the parameter 'Dimension'.
145   static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
146 
147   /// @brief Create a map that pre-vectorizes one scheduling dimension.
148   ///
149   /// getPrevectorMap creates a map that maps each input dimension to the same
150   /// output dimension, except for the dimension DimToVectorize.
151   /// DimToVectorize is strip mined by 'VectorWidth' and the newly created
152   /// point loop of DimToVectorize is moved to the innermost level.
153   ///
154   /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
155   ///
156   /// | Before transformation
157   /// |
158   /// | A[i,j] -> [i,j]
159   /// |
160   /// | for (i = 0; i < 128; i++)
161   /// |    for (j = 0; j < 128; j++)
162   /// |      A(i,j);
163   ///
164   ///   Prevector map:
165   ///   [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
166   ///
167   /// | After transformation:
168   /// |
169   /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
170   /// |
171   /// | for (it = 0; it < 128; it+=4)
172   /// |    for (j = 0; j < 128; j++)
173   /// |      for (ip = max(0,it); ip < min(128, it + 3); ip++)
174   /// |        A(ip,j);
175   ///
176   /// The goal of this transformation is to create a trivially vectorizable
177   /// loop.  This means a parallel loop at the innermost level that has a
178   /// constant number of iterations corresponding to the target vector width.
179   ///
180   /// This transformation creates a loop at the innermost level. The loop has
181   /// a constant number of iterations, if the number of loop iterations at
182   /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
183   /// currently constant and not yet target specific. This function does not
184   /// reason about parallelism.
185   static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
186                                   int ScheduleDimensions, int VectorWidth = 4);
187 
188   /// @brief Get the scheduling map for a list of bands.
189   ///
190   /// Walk recursively the forest of bands to combine the schedules of the
191   /// individual bands to the overall schedule. In case tiling is requested,
192   /// the individual bands are tiled.
193   static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
194 
195   static isl_union_map *getScheduleMap(isl_schedule *Schedule);
196 
197   using llvm::Pass::doFinalization;
198 
199   virtual bool doFinalization() {
200     isl_schedule_free(LastSchedule);
201     LastSchedule = nullptr;
202     return true;
203   }
204 };
205 }
206 
207 char IslScheduleOptimizer::ID = 0;
208 
209 void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) {
210   for (ScopStmt *Stmt : S) {
211     unsigned OldDimensions = Stmt->getNumScattering();
212     isl_space *Space;
213     isl_map *Map, *New;
214 
215     Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
216     Map = isl_map_universe(Space);
217 
218     for (unsigned i = 0; i < OldDimensions; i++)
219       Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
220 
221     for (unsigned i = OldDimensions; i < NewDimensions; i++)
222       Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
223 
224     Map = isl_map_align_params(Map, S.getParamSpace());
225     New = isl_map_apply_range(Stmt->getScattering(), Map);
226     Stmt->setScattering(New);
227   }
228 }
229 
230 isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
231                                                 int scheduleDimensions,
232                                                 isl_space *SpaceModel) {
233   // We construct
234   //
235   // tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
236   //	                  s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and
237   //	                  s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64}
238   //
239   // and project out the auxilary dimensions a0 and a1.
240   isl_space *Space =
241       isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
242   isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
243 
244   isl_local_space *LocalSpace = isl_local_space_from_space(Space);
245 
246   for (int x = 0; x < scheduleDimensions; x++) {
247     int sX = x;
248     int tX = x;
249     int pX = scheduleDimensions + x;
250     int aX = 2 * scheduleDimensions + x;
251     int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize;
252     assert(tileSize > 0 && "Invalid tile size");
253 
254     isl_constraint *c;
255 
256     // sX = aX * tileSize;
257     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
258     isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
259     isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
260     tileMap = isl_basic_map_add_constraint(tileMap, c);
261 
262     // pX = sX;
263     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
264     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
265     isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
266     tileMap = isl_basic_map_add_constraint(tileMap, c);
267 
268     // tX <= pX
269     c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
270     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
271     isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
272     tileMap = isl_basic_map_add_constraint(tileMap, c);
273 
274     // pX <= tX + (tileSize - 1)
275     c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
276     isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
277     isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
278     isl_constraint_set_constant_si(c, tileSize - 1);
279     tileMap = isl_basic_map_add_constraint(tileMap, c);
280   }
281 
282   // Project out auxilary dimensions.
283   //
284   // The auxilary dimensions are transformed into existentially quantified ones.
285   // This reduces the number of visible scattering dimensions and allows Cloog
286   // to produces better code.
287   tileMap = isl_basic_map_project_out(
288       tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
289   isl_local_space_free(LocalSpace);
290   return tileMap;
291 }
292 
293 isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
294                                                         int *Dimensions) {
295   isl_union_map *PartialSchedule;
296   isl_ctx *ctx;
297   isl_space *Space;
298   isl_basic_map *TileMap;
299   isl_union_map *TileUMap;
300 
301   PartialSchedule = isl_band_get_partial_schedule(Band);
302   *Dimensions = isl_band_n_member(Band);
303 
304   if (DisableTiling)
305     return PartialSchedule;
306 
307   // It does not make any sense to tile a band with just one dimension.
308   if (*Dimensions == 1)
309     return PartialSchedule;
310 
311   ctx = isl_union_map_get_ctx(PartialSchedule);
312   Space = isl_union_map_get_space(PartialSchedule);
313 
314   TileMap = getTileMap(ctx, *Dimensions, Space);
315   TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
316   TileUMap = isl_union_map_align_params(TileUMap, Space);
317   *Dimensions = 2 * *Dimensions;
318 
319   return isl_union_map_apply_range(PartialSchedule, TileUMap);
320 }
321 
322 isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
323                                                int ScheduleDimensions,
324                                                int VectorWidth) {
325   isl_space *Space;
326   isl_local_space *LocalSpace, *LocalSpaceRange;
327   isl_set *Modulo;
328   isl_map *TilingMap;
329   isl_constraint *c;
330   isl_aff *Aff;
331   int PointDimension; /* ip */
332   int TileDimension;  /* it */
333   isl_val *VectorWidthMP;
334 
335   assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
336 
337   Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
338   TilingMap = isl_map_universe(isl_space_copy(Space));
339   LocalSpace = isl_local_space_from_space(Space);
340   PointDimension = ScheduleDimensions;
341   TileDimension = DimToVectorize;
342 
343   // Create an identity map for everything except DimToVectorize and map
344   // DimToVectorize to the point loop at the innermost dimension.
345   for (int i = 0; i < ScheduleDimensions; i++) {
346     c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
347     isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
348 
349     if (i == DimToVectorize)
350       isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
351     else
352       isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
353 
354     TilingMap = isl_map_add_constraint(TilingMap, c);
355   }
356 
357   // it % 'VectorWidth' = 0
358   LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
359   Aff = isl_aff_zero_on_domain(LocalSpaceRange);
360   Aff = isl_aff_set_constant_si(Aff, VectorWidth);
361   Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
362   VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
363   Aff = isl_aff_mod_val(Aff, VectorWidthMP);
364   Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
365   TilingMap = isl_map_intersect_range(TilingMap, Modulo);
366 
367   // it <= ip
368   c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
369   isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1);
370   isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
371   TilingMap = isl_map_add_constraint(TilingMap, c);
372 
373   // ip <= it + ('VectorWidth' - 1)
374   c = isl_inequality_alloc(LocalSpace);
375   isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
376   isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
377   isl_constraint_set_constant_si(c, VectorWidth - 1);
378   TilingMap = isl_map_add_constraint(TilingMap, c);
379 
380   return TilingMap;
381 }
382 
383 isl_union_map *
384 IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
385   int NumBands;
386   isl_union_map *Schedule;
387   isl_ctx *ctx;
388 
389   ctx = isl_band_list_get_ctx(BandList);
390   NumBands = isl_band_list_n_band(BandList);
391   Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
392 
393   for (int i = 0; i < NumBands; i++) {
394     isl_band *Band;
395     isl_union_map *PartialSchedule;
396     int ScheduleDimensions;
397     isl_space *Space;
398 
399     Band = isl_band_list_get_band(BandList, i);
400     PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions);
401     Space = isl_union_map_get_space(PartialSchedule);
402 
403     if (isl_band_has_children(Band)) {
404       isl_band_list *Children;
405       isl_union_map *SuffixSchedule;
406 
407       Children = isl_band_get_children(Band);
408       SuffixSchedule = getScheduleForBandList(Children);
409       PartialSchedule =
410           isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
411       isl_band_list_free(Children);
412     } else if (PollyVectorizerChoice != VECTORIZER_NONE) {
413       // In case we are at the innermost band, we try to prepare for
414       // vectorization. This means, we look for the innermost parallel loop
415       // and strip mine this loop to the innermost level using a strip-mine
416       // factor corresponding to the number of vector iterations.
417       int NumDims = isl_band_n_member(Band);
418       for (int j = NumDims - 1; j >= 0; j--) {
419         if (isl_band_member_is_coincident(Band, j)) {
420           isl_map *TileMap;
421           isl_union_map *TileUMap;
422 
423           TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j,
424                                     ScheduleDimensions);
425           TileUMap = isl_union_map_from_map(TileMap);
426           TileUMap =
427               isl_union_map_align_params(TileUMap, isl_space_copy(Space));
428           PartialSchedule =
429               isl_union_map_apply_range(PartialSchedule, TileUMap);
430           break;
431         }
432       }
433     }
434 
435     Schedule = isl_union_map_union(Schedule, PartialSchedule);
436 
437     isl_band_free(Band);
438     isl_space_free(Space);
439   }
440 
441   return Schedule;
442 }
443 
444 isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) {
445   isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
446   isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
447   isl_band_list_free(BandList);
448   return ScheduleMap;
449 }
450 
451 bool IslScheduleOptimizer::runOnScop(Scop &S) {
452   Dependences *D = &getAnalysis<Dependences>();
453 
454   if (!D->hasValidDependences())
455     return false;
456 
457   isl_schedule_free(LastSchedule);
458   LastSchedule = nullptr;
459 
460   // Build input data.
461   int ValidityKinds =
462       Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
463   int ProximityKinds;
464 
465   if (OptimizeDeps == "all")
466     ProximityKinds =
467         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
468   else if (OptimizeDeps == "raw")
469     ProximityKinds = Dependences::TYPE_RAW;
470   else {
471     errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
472            << " Falling back to optimizing all dependences.\n";
473     ProximityKinds =
474         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
475   }
476 
477   isl_union_set *Domain = S.getDomains();
478 
479   if (!Domain)
480     return false;
481 
482   isl_union_map *Validity = D->getDependences(ValidityKinds);
483   isl_union_map *Proximity = D->getDependences(ProximityKinds);
484 
485   // Simplify the dependences by removing the constraints introduced by the
486   // domains. This can speed up the scheduling time significantly, as large
487   // constant coefficients will be removed from the dependences. The
488   // introduction of some additional dependences reduces the possible
489   // transformations, but in most cases, such transformation do not seem to be
490   // interesting anyway. In some cases this option may stop the scheduler to
491   // find any schedule.
492   if (SimplifyDeps == "yes") {
493     Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
494     Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
495     Proximity =
496         isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
497     Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
498   } else if (SimplifyDeps != "no") {
499     errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
500               "or 'no'. Falling back to default: 'yes'\n";
501   }
502 
503   DEBUG(dbgs() << "\n\nCompute schedule from: ");
504   DEBUG(dbgs() << "Domain := "; isl_union_set_dump(Domain); dbgs() << ";\n");
505   DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(Proximity);
506         dbgs() << ";\n");
507   DEBUG(dbgs() << "Validity := "; isl_union_map_dump(Validity);
508         dbgs() << ";\n");
509 
510   int IslFusionStrategy;
511 
512   if (FusionStrategy == "max") {
513     IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
514   } else if (FusionStrategy == "min") {
515     IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
516   } else {
517     errs() << "warning: Unknown fusion strategy. Falling back to maximal "
518               "fusion.\n";
519     IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
520   }
521 
522   int IslMaximizeBands;
523 
524   if (MaximizeBandDepth == "yes") {
525     IslMaximizeBands = 1;
526   } else if (MaximizeBandDepth == "no") {
527     IslMaximizeBands = 0;
528   } else {
529     errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
530               " or 'no'. Falling back to default: 'yes'\n";
531     IslMaximizeBands = 1;
532   }
533 
534   isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
535   isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
536   isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
537   isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
538 
539   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
540 
541   isl_schedule_constraints *ScheduleConstraints;
542   ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
543   ScheduleConstraints =
544       isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
545   ScheduleConstraints = isl_schedule_constraints_set_validity(
546       ScheduleConstraints, isl_union_map_copy(Validity));
547   ScheduleConstraints =
548       isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
549   isl_schedule *Schedule;
550   Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
551   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
552 
553   // In cases the scheduler is not able to optimize the code, we just do not
554   // touch the schedule.
555   if (!Schedule)
556     return false;
557 
558   DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n");
559 
560   isl_union_map *ScheduleMap = getScheduleMap(Schedule);
561 
562   for (ScopStmt *Stmt : S) {
563     isl_map *StmtSchedule;
564     isl_set *Domain = Stmt->getDomain();
565     isl_union_map *StmtBand;
566     StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap),
567                                               isl_union_set_from_set(Domain));
568     if (isl_union_map_is_empty(StmtBand)) {
569       StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace()));
570       isl_union_map_free(StmtBand);
571     } else {
572       assert(isl_union_map_n_map(StmtBand) == 1);
573       StmtSchedule = isl_map_from_union_map(StmtBand);
574     }
575 
576     Stmt->setScattering(StmtSchedule);
577   }
578 
579   isl_union_map_free(ScheduleMap);
580   LastSchedule = Schedule;
581 
582   unsigned MaxScatDims = 0;
583 
584   for (ScopStmt *Stmt : S)
585     MaxScatDims = std::max(Stmt->getNumScattering(), MaxScatDims);
586 
587   extendScattering(S, MaxScatDims);
588   return false;
589 }
590 
591 void IslScheduleOptimizer::printScop(raw_ostream &OS) const {
592   isl_printer *p;
593   char *ScheduleStr;
594 
595   OS << "Calculated schedule:\n";
596 
597   if (!LastSchedule) {
598     OS << "n/a\n";
599     return;
600   }
601 
602   p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
603   p = isl_printer_print_schedule(p, LastSchedule);
604   ScheduleStr = isl_printer_get_str(p);
605   isl_printer_free(p);
606 
607   OS << ScheduleStr << "\n";
608 }
609 
610 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
611   ScopPass::getAnalysisUsage(AU);
612   AU.addRequired<Dependences>();
613 }
614 
615 Pass *polly::createIslScheduleOptimizerPass() {
616   return new IslScheduleOptimizer();
617 }
618 
619 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
620                       "Polly - Optimize schedule of SCoP", false, false);
621 INITIALIZE_PASS_DEPENDENCY(Dependences);
622 INITIALIZE_PASS_DEPENDENCY(ScopInfo);
623 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
624                     "Polly - Optimize schedule of SCoP", false, false)
625