1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass generates an entirely new schedule tree from the data dependences 11 // and iteration domains. The new schedule tree is computed in two steps: 12 // 13 // 1) The isl scheduling optimizer is run 14 // 15 // The isl scheduling optimizer creates a new schedule tree that maximizes 16 // parallelism and tileability and minimizes data-dependence distances. The 17 // algorithm used is a modified version of the ``Pluto'' algorithm: 18 // 19 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 20 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. 21 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language 22 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. 23 // 24 // 2) A set of post-scheduling transformations is applied on the schedule tree. 25 // 26 // These optimizations include: 27 // 28 // - Tiling of the innermost tilable bands 29 // - Prevectorization - The coice of a possible outer loop that is strip-mined 30 // to the innermost level to enable inner-loop 31 // vectorization. 32 // - Some optimizations for spatial locality are also planned. 33 // 34 // For a detailed description of the schedule tree itself please see section 6 35 // of: 36 // 37 // Polyhedral AST generation is more than scanning polyhedra 38 // Tobias Grosser, Sven Verdoolaege, Albert Cohen 39 // ACM Transations on Programming Languages and Systems (TOPLAS), 40 // 37(4), July 2015 41 // http://www.grosser.es/#pub-polyhedral-AST-generation 42 // 43 // This publication also contains a detailed discussion of the different options 44 // for polyhedral loop unrolling, full/partial tile separation and other uses 45 // of the schedule tree. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "polly/ScheduleOptimizer.h" 50 #include "polly/CodeGen/CodeGeneration.h" 51 #include "polly/DependenceInfo.h" 52 #include "polly/LinkAllPasses.h" 53 #include "polly/Options.h" 54 #include "polly/ScopInfo.h" 55 #include "polly/Support/GICHelper.h" 56 #include "llvm/Analysis/TargetTransformInfo.h" 57 #include "llvm/Support/Debug.h" 58 #include "isl/aff.h" 59 #include "isl/band.h" 60 #include "isl/constraint.h" 61 #include "isl/map.h" 62 #include "isl/options.h" 63 #include "isl/printer.h" 64 #include "isl/schedule.h" 65 #include "isl/schedule_node.h" 66 #include "isl/space.h" 67 #include "isl/union_map.h" 68 #include "isl/union_set.h" 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-opt-isl" 74 75 static cl::opt<std::string> 76 OptimizeDeps("polly-opt-optimize-only", 77 cl::desc("Only a certain kind of dependences (all/raw)"), 78 cl::Hidden, cl::init("all"), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<std::string> 82 SimplifyDeps("polly-opt-simplify-deps", 83 cl::desc("Dependences should be simplified (yes/no)"), 84 cl::Hidden, cl::init("yes"), cl::ZeroOrMore, 85 cl::cat(PollyCategory)); 86 87 static cl::opt<int> MaxConstantTerm( 88 "polly-opt-max-constant-term", 89 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, 90 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 91 92 static cl::opt<int> MaxCoefficient( 93 "polly-opt-max-coefficient", 94 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, 95 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<std::string> FusionStrategy( 98 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), 99 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); 100 101 static cl::opt<std::string> 102 MaximizeBandDepth("polly-opt-maximize-bands", 103 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, 104 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 105 106 static cl::opt<std::string> OuterCoincidence( 107 "polly-opt-outer-coincidence", 108 cl::desc("Try to construct schedules where the outer member of each band " 109 "satisfies the coincidence constraints (yes/no)"), 110 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<int> PrevectorWidth( 113 "polly-prevect-width", 114 cl::desc( 115 "The number of loop iterations to strip-mine for pre-vectorization"), 116 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); 117 118 static cl::opt<bool> FirstLevelTiling("polly-tiling", 119 cl::desc("Enable loop tiling"), 120 cl::init(true), cl::ZeroOrMore, 121 cl::cat(PollyCategory)); 122 123 static cl::opt<int> LatencyVectorFma( 124 "polly-target-latency-vector-fma", 125 cl::desc("The minimal number of cycles between issuing two " 126 "dependent consecutive vector fused multiply-add " 127 "instructions."), 128 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 129 130 static cl::opt<int> ThrougputVectorFma( 131 "polly-target-througput-vector-fma", 132 cl::desc("A throughput of the processor floating-point arithmetic units " 133 "expressed in the number of vector fused multiply-add " 134 "instructions per clock cycle."), 135 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory)); 136 137 static cl::list<int> 138 CacheLevelAssociativity("polly-target-cache-level-associativity", 139 cl::desc("The associativity of each cache level."), 140 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 141 cl::cat(PollyCategory)); 142 143 static cl::list<int> CacheLevelSizes( 144 "polly-target-cache-level-sizes", 145 cl::desc("The size of each cache level specified in bytes."), cl::Hidden, 146 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 147 148 static cl::opt<int> FirstLevelDefaultTileSize( 149 "polly-default-tile-size", 150 cl::desc("The default tile size (if not enough were provided by" 151 " --polly-tile-sizes)"), 152 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); 153 154 static cl::list<int> FirstLevelTileSizes( 155 "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled " 156 "with --polly-default-tile-size"), 157 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 158 159 static cl::opt<bool> 160 SecondLevelTiling("polly-2nd-level-tiling", 161 cl::desc("Enable a 2nd level loop of loop tiling"), 162 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 163 164 static cl::opt<int> SecondLevelDefaultTileSize( 165 "polly-2nd-level-default-tile-size", 166 cl::desc("The default 2nd-level tile size (if not enough were provided by" 167 " --polly-2nd-level-tile-sizes)"), 168 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); 169 170 static cl::list<int> 171 SecondLevelTileSizes("polly-2nd-level-tile-sizes", 172 cl::desc("A tile size for each loop dimension, filled " 173 "with --polly-default-tile-size"), 174 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 175 cl::cat(PollyCategory)); 176 177 static cl::opt<bool> RegisterTiling("polly-register-tiling", 178 cl::desc("Enable register tiling"), 179 cl::init(false), cl::ZeroOrMore, 180 cl::cat(PollyCategory)); 181 182 static cl::opt<int> RegisterDefaultTileSize( 183 "polly-register-tiling-default-tile-size", 184 cl::desc("The default register tile size (if not enough were provided by" 185 " --polly-register-tile-sizes)"), 186 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); 187 188 static cl::list<int> 189 RegisterTileSizes("polly-register-tile-sizes", 190 cl::desc("A tile size for each loop dimension, filled " 191 "with --polly-register-tile-size"), 192 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 193 cl::cat(PollyCategory)); 194 195 static cl::opt<bool> 196 PMBasedOpts("polly-pattern-matching-based-opts", 197 cl::desc("Perform optimizations based on pattern matching"), 198 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 199 200 static cl::opt<bool> OptimizedScops( 201 "polly-optimized-scops", 202 cl::desc("Polly - Dump polyhedral description of Scops optimized with " 203 "the isl scheduling optimizer and the set of post-scheduling " 204 "transformations is applied on the schedule tree"), 205 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 206 207 /// Create an isl_union_set, which describes the isolate option based on 208 /// IsoalteDomain. 209 /// 210 /// @param IsolateDomain An isl_set whose last dimension is the only one that 211 /// should belong to the current band node. 212 static __isl_give isl_union_set * 213 getIsolateOptions(__isl_take isl_set *IsolateDomain) { 214 auto Dims = isl_set_dim(IsolateDomain, isl_dim_set); 215 auto *IsolateRelation = isl_map_from_domain(IsolateDomain); 216 IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0, 217 isl_dim_in, Dims - 1, 1); 218 auto *IsolateOption = isl_map_wrap(IsolateRelation); 219 auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr); 220 return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id)); 221 } 222 223 /// Create an isl_union_set, which describes the atomic option for the dimension 224 /// of the current node. 225 /// 226 /// It may help to reduce the size of generated code. 227 /// 228 /// @param Ctx An isl_ctx, which is used to create the isl_union_set. 229 static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) { 230 auto *Space = isl_space_set_alloc(Ctx, 0, 1); 231 auto *AtomicOption = isl_set_universe(Space); 232 auto *Id = isl_id_alloc(Ctx, "atomic", nullptr); 233 return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id)); 234 } 235 236 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1. 237 /// 238 /// @param Set A set, which should be modified. 239 /// @param VectorWidth A parameter, which determines the constraint. 240 static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set, 241 int VectorWidth) { 242 auto Dims = isl_set_dim(Set, isl_dim_set); 243 auto Space = isl_set_get_space(Set); 244 auto *LocalSpace = isl_local_space_from_space(Space); 245 auto *ExtConstr = 246 isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace)); 247 ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0); 248 ExtConstr = 249 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1); 250 Set = isl_set_add_constraint(Set, ExtConstr); 251 ExtConstr = isl_constraint_alloc_inequality(LocalSpace); 252 ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1); 253 ExtConstr = 254 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1); 255 return isl_set_add_constraint(Set, ExtConstr); 256 } 257 258 /// Build the desired set of partial tile prefixes. 259 /// 260 /// We build a set of partial tile prefixes, which are prefixes of the vector 261 /// loop that have exactly VectorWidth iterations. 262 /// 263 /// 1. Get all prefixes of the vector loop. 264 /// 2. Extend it to a set, which has exactly VectorWidth iterations for 265 /// any prefix from the set that was built on the previous step. 266 /// 3. Subtract loop domain from it, project out the vector loop dimension and 267 /// get a set of prefixes, which don't have exactly VectorWidth iterations. 268 /// 4. Subtract it from all prefixes of the vector loop and get the desired 269 /// set. 270 /// 271 /// @param ScheduleRange A range of a map, which describes a prefix schedule 272 /// relation. 273 static __isl_give isl_set * 274 getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) { 275 auto Dims = isl_set_dim(ScheduleRange, isl_dim_set); 276 auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange), 277 isl_dim_set, Dims - 1, 1); 278 auto *ExtentPrefixes = 279 isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1); 280 ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth); 281 auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange); 282 BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1); 283 return isl_set_subtract(LoopPrefixes, BadPrefixes); 284 } 285 286 __isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles( 287 __isl_take isl_schedule_node *Node, int VectorWidth) { 288 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 289 Node = isl_schedule_node_child(Node, 0); 290 Node = isl_schedule_node_child(Node, 0); 291 auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node); 292 auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap); 293 auto *ScheduleRange = isl_map_range(ScheduleRelation); 294 auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); 295 auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain)); 296 auto *IsolateOption = getIsolateOptions(IsolateDomain); 297 Node = isl_schedule_node_parent(Node); 298 Node = isl_schedule_node_parent(Node); 299 auto *Options = isl_union_set_union(IsolateOption, AtomicOption); 300 Node = isl_schedule_node_band_set_ast_build_options(Node, Options); 301 return Node; 302 } 303 304 __isl_give isl_schedule_node * 305 ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node, 306 unsigned DimToVectorize, 307 int VectorWidth) { 308 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 309 310 auto Space = isl_schedule_node_band_get_space(Node); 311 auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set); 312 isl_space_free(Space); 313 assert(DimToVectorize < ScheduleDimensions); 314 315 if (DimToVectorize > 0) { 316 Node = isl_schedule_node_band_split(Node, DimToVectorize); 317 Node = isl_schedule_node_child(Node, 0); 318 } 319 if (DimToVectorize < ScheduleDimensions - 1) 320 Node = isl_schedule_node_band_split(Node, 1); 321 Space = isl_schedule_node_band_get_space(Node); 322 auto Sizes = isl_multi_val_zero(Space); 323 auto Ctx = isl_schedule_node_get_ctx(Node); 324 Sizes = 325 isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth)); 326 Node = isl_schedule_node_band_tile(Node, Sizes); 327 Node = isolateFullPartialTiles(Node, VectorWidth); 328 Node = isl_schedule_node_child(Node, 0); 329 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, 330 // we will have troubles to match it in the backend. 331 Node = isl_schedule_node_band_set_ast_build_options( 332 Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }")); 333 Node = isl_schedule_node_band_sink(Node); 334 Node = isl_schedule_node_child(Node, 0); 335 if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf) 336 Node = isl_schedule_node_parent(Node); 337 isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr); 338 Node = isl_schedule_node_insert_mark(Node, LoopMarker); 339 return Node; 340 } 341 342 __isl_give isl_schedule_node * 343 ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node, 344 const char *Identifier, ArrayRef<int> TileSizes, 345 int DefaultTileSize) { 346 auto Ctx = isl_schedule_node_get_ctx(Node); 347 auto Space = isl_schedule_node_band_get_space(Node); 348 auto Dims = isl_space_dim(Space, isl_dim_set); 349 auto Sizes = isl_multi_val_zero(Space); 350 std::string IdentifierString(Identifier); 351 for (unsigned i = 0; i < Dims; i++) { 352 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize; 353 Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize)); 354 } 355 auto TileLoopMarkerStr = IdentifierString + " - Tiles"; 356 isl_id *TileLoopMarker = 357 isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr); 358 Node = isl_schedule_node_insert_mark(Node, TileLoopMarker); 359 Node = isl_schedule_node_child(Node, 0); 360 Node = isl_schedule_node_band_tile(Node, Sizes); 361 Node = isl_schedule_node_child(Node, 0); 362 auto PointLoopMarkerStr = IdentifierString + " - Points"; 363 isl_id *PointLoopMarker = 364 isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr); 365 Node = isl_schedule_node_insert_mark(Node, PointLoopMarker); 366 Node = isl_schedule_node_child(Node, 0); 367 return Node; 368 } 369 370 __isl_give isl_schedule_node * 371 ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node, 372 llvm::ArrayRef<int> TileSizes, 373 int DefaultTileSize) { 374 auto *Ctx = isl_schedule_node_get_ctx(Node); 375 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize); 376 Node = isl_schedule_node_band_set_ast_build_options( 377 Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}")); 378 return Node; 379 } 380 381 bool ScheduleTreeOptimizer::isTileableBandNode( 382 __isl_keep isl_schedule_node *Node) { 383 if (isl_schedule_node_get_type(Node) != isl_schedule_node_band) 384 return false; 385 386 if (isl_schedule_node_n_children(Node) != 1) 387 return false; 388 389 if (!isl_schedule_node_band_get_permutable(Node)) 390 return false; 391 392 auto Space = isl_schedule_node_band_get_space(Node); 393 auto Dims = isl_space_dim(Space, isl_dim_set); 394 isl_space_free(Space); 395 396 if (Dims <= 1) 397 return false; 398 399 auto Child = isl_schedule_node_get_child(Node, 0); 400 auto Type = isl_schedule_node_get_type(Child); 401 isl_schedule_node_free(Child); 402 403 if (Type != isl_schedule_node_leaf) 404 return false; 405 406 return true; 407 } 408 409 __isl_give isl_schedule_node * 410 ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node, 411 void *User) { 412 if (FirstLevelTiling) 413 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, 414 FirstLevelDefaultTileSize); 415 416 if (SecondLevelTiling) 417 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, 418 SecondLevelDefaultTileSize); 419 420 if (RegisterTiling) 421 Node = 422 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize); 423 424 if (PollyVectorizerChoice == VECTORIZER_NONE) 425 return Node; 426 427 auto Space = isl_schedule_node_band_get_space(Node); 428 auto Dims = isl_space_dim(Space, isl_dim_set); 429 isl_space_free(Space); 430 431 for (int i = Dims - 1; i >= 0; i--) 432 if (isl_schedule_node_band_member_get_coincident(Node, i)) { 433 Node = prevectSchedBand(Node, i, PrevectorWidth); 434 break; 435 } 436 437 return Node; 438 } 439 440 /// Check whether output dimensions of the map rely on the specified input 441 /// dimension. 442 /// 443 /// @param IslMap The isl map to be considered. 444 /// @param DimNum The number of an input dimension to be checked. 445 static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) { 446 auto *CheckedAccessRelation = 447 isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1); 448 CheckedAccessRelation = 449 isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1); 450 auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in); 451 CheckedAccessRelation = 452 isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId); 453 InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out); 454 CheckedAccessRelation = 455 isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId); 456 auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap); 457 isl_map_free(CheckedAccessRelation); 458 isl_map_free(IslMap); 459 return res; 460 } 461 462 /// Check if the SCoP statement could probably be optimized with analytical 463 /// modeling. 464 /// 465 /// containsMatrMult tries to determine whether the following conditions 466 /// are true: 467 /// 1. all memory accesses of the statement will have stride 0 or 1, 468 /// if we interchange loops (switch the variable used in the inner 469 /// loop to the outer loop). 470 /// 2. all memory accesses of the statement except from the last one, are 471 /// read memory access and the last one is write memory access. 472 /// 3. all subscripts of the last memory access of the statement don't contain 473 /// the variable used in the inner loop. 474 /// 475 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement 476 /// to check. 477 static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) { 478 auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in); 479 auto *ScpStmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId)); 480 isl_id_free(InputDimsId); 481 if (ScpStmt->size() <= 1) 482 return false; 483 auto MemA = ScpStmt->begin(); 484 for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end(); 485 i++, MemA++) 486 if (!(*MemA)->isRead() || 487 ((*MemA)->isArrayKind() && 488 !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) || 489 (*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))) 490 return false; 491 MemA++; 492 if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() || 493 !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) || 494 (*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))) 495 return false; 496 auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in); 497 return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1); 498 } 499 500 /// Circular shift of output dimensions of the integer map. 501 /// 502 /// @param IslMap The isl map to be modified. 503 static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) { 504 auto DimNum = isl_map_dim(IslMap, isl_dim_out); 505 if (DimNum == 0) 506 return IslMap; 507 auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in); 508 IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1); 509 IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1); 510 return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId); 511 } 512 513 /// Permute two dimensions of the band node. 514 /// 515 /// Permute FirstDim and SecondDim dimensions of the Node. 516 /// 517 /// @param Node The band node to be modified. 518 /// @param FirstDim The first dimension to be permuted. 519 /// @param SecondDim The second dimension to be permuted. 520 static __isl_give isl_schedule_node * 521 permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim, 522 unsigned SecondDim) { 523 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band && 524 isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim)); 525 auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node); 526 auto PartialScheduleFirstDim = 527 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim); 528 auto PartialScheduleSecondDim = 529 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim); 530 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff( 531 PartialSchedule, SecondDim, PartialScheduleFirstDim); 532 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff( 533 PartialSchedule, FirstDim, PartialScheduleSecondDim); 534 Node = isl_schedule_node_delete(Node); 535 Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule); 536 return Node; 537 } 538 539 __isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel( 540 __isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) { 541 return applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 542 1); 543 } 544 545 __isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel( 546 __isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) { 547 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 548 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && 549 MacroKernelParams.Kc == 1) 550 return Node; 551 Node = tileNode( 552 Node, "1st level tiling", 553 {MacroKernelParams.Mc, MacroKernelParams.Nc, MacroKernelParams.Kc}, 1); 554 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 555 Node = permuteBandNodeDimensions(Node, 1, 2); 556 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 557 } 558 559 /// Get parameters of the BLIS micro kernel. 560 /// 561 /// We choose the Mr and Nr parameters of the micro kernel to be large enough 562 /// such that no stalls caused by the combination of latencies and dependencies 563 /// are introduced during the updates of the resulting matrix of the matrix 564 /// multiplication. However, they should also be as small as possible to 565 /// release more registers for entries of multiplied matrices. 566 /// 567 /// @param TTI Target Transform Info. 568 /// @return The structure of type MicroKernelParamsTy. 569 /// @see MicroKernelParamsTy 570 static struct MicroKernelParamsTy 571 getMicroKernelParams(const llvm::TargetTransformInfo *TTI) { 572 assert(TTI && "The target transform info should be provided."); 573 574 // Nvec - Number of double-precision floating-point numbers that can be hold 575 // by a vector register. Use 2 by default. 576 auto Nvec = TTI->getRegisterBitWidth(true) / 64; 577 if (Nvec == 0) 578 Nvec = 2; 579 int Nr = 580 ceil(sqrt(Nvec * LatencyVectorFma * ThrougputVectorFma) / Nvec) * Nvec; 581 int Mr = ceil(Nvec * LatencyVectorFma * ThrougputVectorFma / Nr); 582 return {Mr, Nr}; 583 } 584 585 /// Get parameters of the BLIS macro kernel. 586 /// 587 /// During the computation of matrix multiplication, blocks of partitioned 588 /// matrices are mapped to different layers of the memory hierarchy. 589 /// To optimize data reuse, blocks should be ideally kept in cache between 590 /// iterations. Since parameters of the macro kernel determine sizes of these 591 /// blocks, there are upper and lower bounds on these parameters. 592 /// 593 /// @param MicroKernelParams Parameters of the micro-kernel 594 /// to be taken into account. 595 /// @return The structure of type MacroKernelParamsTy. 596 /// @see MacroKernelParamsTy 597 /// @see MicroKernelParamsTy 598 static struct MacroKernelParamsTy 599 getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) { 600 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, 601 // it requires information about the first two levels of a cache to determine 602 // all the parameters of a macro-kernel. It also checks that an associativity 603 // degree of a cache level is greater than two. Otherwise, another algorithm 604 // for determination of the parameters should be used. 605 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && 606 CacheLevelSizes.size() >= 2 && CacheLevelAssociativity.size() >= 2 && 607 CacheLevelSizes[0] > 0 && CacheLevelSizes[1] > 0 && 608 CacheLevelAssociativity[0] > 2 && CacheLevelAssociativity[1] > 2)) 609 return {1, 1, 1}; 610 int Cbr = floor( 611 (CacheLevelAssociativity[0] - 1) / 612 (1 + static_cast<double>(MicroKernelParams.Mr) / MicroKernelParams.Nr)); 613 int Kc = (Cbr * CacheLevelSizes[0]) / 614 (MicroKernelParams.Nr * CacheLevelAssociativity[0] * 8); 615 double Cac = static_cast<double>(MicroKernelParams.Mr * Kc * 8 * 616 CacheLevelAssociativity[1]) / 617 CacheLevelSizes[1]; 618 double Cbc = static_cast<double>(MicroKernelParams.Nr * Kc * 8 * 619 CacheLevelAssociativity[1]) / 620 CacheLevelSizes[1]; 621 int Mc = floor(MicroKernelParams.Mr / Cac); 622 int Nc = 623 floor((MicroKernelParams.Nr * (CacheLevelAssociativity[1] - 2)) / Cbc); 624 return {Mc, Nc, Kc}; 625 } 626 627 /// Identify a memory access through the shape of its memory access relation. 628 /// 629 /// Identify the unique memory access in @p Stmt, that has an access relation 630 /// equal to @p ExpectedAccessRelation. 631 /// 632 /// @param Stmt The SCoP statement that contains the memory accesses under 633 /// consideration. 634 /// @param ExpectedAccessRelation The access relation that identifies 635 /// the memory access. 636 /// @return The memory access of @p Stmt whose memory access relation is equal 637 /// to @p ExpectedAccessRelation. nullptr in case there is no or more 638 /// than one such access. 639 MemoryAccess * 640 identifyAccessByAccessRelation(ScopStmt *Stmt, 641 __isl_take isl_map *ExpectedAccessRelation) { 642 if (isl_map_has_tuple_id(ExpectedAccessRelation, isl_dim_out)) 643 ExpectedAccessRelation = 644 isl_map_reset_tuple_id(ExpectedAccessRelation, isl_dim_out); 645 MemoryAccess *IdentifiedAccess = nullptr; 646 for (auto *Access : *Stmt) { 647 auto *AccessRelation = Access->getAccessRelation(); 648 AccessRelation = isl_map_reset_tuple_id(AccessRelation, isl_dim_out); 649 if (isl_map_is_equal(ExpectedAccessRelation, AccessRelation)) { 650 if (IdentifiedAccess) { 651 isl_map_free(AccessRelation); 652 isl_map_free(ExpectedAccessRelation); 653 return nullptr; 654 } 655 IdentifiedAccess = Access; 656 } 657 isl_map_free(AccessRelation); 658 } 659 isl_map_free(ExpectedAccessRelation); 660 return IdentifiedAccess; 661 } 662 663 /// Add constrains to @Dim dimension of @p ExtMap. 664 /// 665 /// If @ExtMap has the following form [O0, O1, O2]->[I1, I2, I3], 666 /// the following constraint will be added 667 /// Bound * OM <= IM <= Bound * (OM + 1) - 1, 668 /// where M is @p Dim and Bound is @p Bound. 669 /// 670 /// @param ExtMap The isl map to be modified. 671 /// @param Dim The output dimension to be modfied. 672 /// @param Bound The value that is used to specify the constraint. 673 /// @return The modified isl map 674 __isl_give isl_map * 675 addExtensionMapMatMulDimConstraint(__isl_take isl_map *ExtMap, unsigned Dim, 676 unsigned Bound) { 677 assert(Bound != 0); 678 auto *ExtMapSpace = isl_map_get_space(ExtMap); 679 auto *ConstrSpace = isl_local_space_from_space(ExtMapSpace); 680 auto *Constr = 681 isl_constraint_alloc_inequality(isl_local_space_copy(ConstrSpace)); 682 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, Dim, 1); 683 Constr = 684 isl_constraint_set_coefficient_si(Constr, isl_dim_in, Dim, Bound * (-1)); 685 ExtMap = isl_map_add_constraint(ExtMap, Constr); 686 Constr = isl_constraint_alloc_inequality(ConstrSpace); 687 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, Dim, -1); 688 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_in, Dim, Bound); 689 Constr = isl_constraint_set_constant_si(Constr, Bound - 1); 690 return isl_map_add_constraint(ExtMap, Constr); 691 } 692 693 /// Create an access relation that is specific for matrix multiplication 694 /// pattern. 695 /// 696 /// Create an access relation of the following form: 697 /// { [O0, O1, O2]->[I1, I2, I3] : 698 /// FirstOutputDimBound * O0 <= I1 <= FirstOutputDimBound * (O0 + 1) - 1 699 /// and SecondOutputDimBound * O1 <= I2 <= SecondOutputDimBound * (O1 + 1) - 1 700 /// and ThirdOutputDimBound * O2 <= I3 <= ThirdOutputDimBound * (O2 + 1) - 1} 701 /// where FirstOutputDimBound is @p FirstOutputDimBound, 702 /// SecondOutputDimBound is @p SecondOutputDimBound, 703 /// ThirdOutputDimBound is @p ThirdOutputDimBound 704 /// 705 /// @param Ctx The isl context. 706 /// @param FirstOutputDimBound, 707 /// SecondOutputDimBound, 708 /// ThirdOutputDimBound The parameters of the access relation. 709 /// @return The specified access relation. 710 __isl_give isl_map *getMatMulExt(isl_ctx *Ctx, unsigned FirstOutputDimBound, 711 unsigned SecondOutputDimBound, 712 unsigned ThirdOutputDimBound) { 713 auto *NewRelSpace = isl_space_alloc(Ctx, 0, 3, 3); 714 auto *extensionMap = isl_map_universe(NewRelSpace); 715 if (!FirstOutputDimBound) 716 extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 0, 0); 717 else 718 extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 0, 719 FirstOutputDimBound); 720 if (!SecondOutputDimBound) 721 extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 1, 0); 722 else 723 extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 1, 724 SecondOutputDimBound); 725 if (!ThirdOutputDimBound) 726 extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 2, 0); 727 else 728 extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 2, 729 ThirdOutputDimBound); 730 return extensionMap; 731 } 732 733 /// Create an access relation that is specific to the matrix 734 /// multiplication pattern. 735 /// 736 /// Create an access relation of the following form: 737 /// Stmt[O0, O1, O2]->[OI, OJ], 738 /// where I is @p I, J is @J 739 /// 740 /// @param Stmt The SCoP statement for which to generate the access relation. 741 /// @param I The index of the input dimension that is mapped to the first output 742 /// dimension. 743 /// @param J The index of the input dimension that is mapped to the second 744 /// output dimension. 745 /// @return The specified access relation. 746 __isl_give isl_map * 747 getMatMulPatternOriginalAccessRelation(ScopStmt *Stmt, unsigned I, unsigned J) { 748 auto *AccessRelSpace = isl_space_alloc(Stmt->getIslCtx(), 0, 3, 2); 749 auto *AccessRel = isl_map_universe(AccessRelSpace); 750 AccessRel = isl_map_equate(AccessRel, isl_dim_in, I, isl_dim_out, 0); 751 AccessRel = isl_map_equate(AccessRel, isl_dim_in, J, isl_dim_out, 1); 752 AccessRel = isl_map_set_tuple_id(AccessRel, isl_dim_in, Stmt->getDomainId()); 753 return AccessRel; 754 } 755 756 /// Identify the memory access that corresponds to the access to the second 757 /// operand of the matrix multiplication. 758 /// 759 /// Identify the memory access that corresponds to the access 760 /// to the matrix B of the matrix multiplication C = A x B. 761 /// 762 /// @param Stmt The SCoP statement that contains the memory accesses 763 /// under consideration. 764 /// @return The memory access of @p Stmt that corresponds to the access 765 /// to the second operand of the matrix multiplication. 766 MemoryAccess *identifyAccessA(ScopStmt *Stmt) { 767 auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 0, 2); 768 return identifyAccessByAccessRelation(Stmt, OriginalRel); 769 } 770 771 /// Identify the memory access that corresponds to the access to the first 772 /// operand of the matrix multiplication. 773 /// 774 /// Identify the memory access that corresponds to the access 775 /// to the matrix A of the matrix multiplication C = A x B. 776 /// 777 /// @param Stmt The SCoP statement that contains the memory accesses 778 /// under consideration. 779 /// @return The memory access of @p Stmt that corresponds to the access 780 /// to the first operand of the matrix multiplication. 781 MemoryAccess *identifyAccessB(ScopStmt *Stmt) { 782 auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 2, 1); 783 return identifyAccessByAccessRelation(Stmt, OriginalRel); 784 } 785 786 /// Create an access relation that is specific to 787 /// the matrix multiplication pattern. 788 /// 789 /// Create an access relation of the following form: 790 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [O5 + K * OI, OJ], 791 /// where K is @p Coeff, I is @p FirstDim, J is @p SecondDim. 792 /// 793 /// It can be used, for example, to create relations that helps to consequently 794 /// access elements of operands of a matrix multiplication after creation of 795 /// the BLIS micro and macro kernels. 796 /// 797 /// @see ScheduleTreeOptimizer::createMicroKernel 798 /// @see ScheduleTreeOptimizer::createMacroKernel 799 /// 800 /// Subsequently, the described access relation is applied to the range of 801 /// @p MapOldIndVar, that is used to map original induction variables to 802 /// the ones, which are produced by schedule transformations. It helps to 803 /// define relations using a new space and, at the same time, keep them 804 /// in the original one. 805 /// 806 /// @param MapOldIndVar The relation, which maps original induction variables 807 /// to the ones, which are produced by schedule 808 /// transformations. 809 /// @param Coeff The coefficient that is used to define the specified access 810 /// relation. 811 /// @param FirstDim, SecondDim The input dimensions that are used to define 812 /// the specified access relation. 813 /// @return The specified access relation. 814 __isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar, 815 unsigned Coeff, unsigned FirstDim, 816 unsigned SecondDim) { 817 auto *Ctx = isl_map_get_ctx(MapOldIndVar); 818 auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 2); 819 auto *AccessRel = isl_map_universe(isl_space_copy(AccessRelSpace)); 820 auto *ConstrSpace = isl_local_space_from_space(AccessRelSpace); 821 auto *Constr = isl_constraint_alloc_equality(ConstrSpace); 822 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, 0, -1); 823 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_in, 5, 1); 824 Constr = 825 isl_constraint_set_coefficient_si(Constr, isl_dim_in, FirstDim, Coeff); 826 AccessRel = isl_map_add_constraint(AccessRel, Constr); 827 AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 1); 828 return isl_map_apply_range(MapOldIndVar, AccessRel); 829 } 830 831 __isl_give isl_schedule_node * 832 createExtensionNode(__isl_take isl_schedule_node *Node, 833 __isl_take isl_map *ExtensionMap) { 834 auto *Extension = isl_union_map_from_map(ExtensionMap); 835 auto *NewNode = isl_schedule_node_from_extension(Extension); 836 return isl_schedule_node_graft_before(Node, NewNode); 837 } 838 839 /// Apply the packing transformation. 840 /// 841 /// The packing transformation can be described as a data-layout 842 /// transformation that requires to introduce a new array, copy data 843 /// to the array, and change memory access locations of the compute kernel 844 /// to reference the array. 845 /// 846 /// @param Node The schedule node to be optimized. 847 /// @param MapOldIndVar The relation, which maps original induction variables 848 /// to the ones, which are produced by schedule 849 /// transformations. 850 /// @param MicroParams, MacroParams Parameters of the BLIS kernel 851 /// to be taken into account. 852 /// @return The optimized schedule node. 853 static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern( 854 __isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar, 855 MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams) { 856 auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in); 857 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId)); 858 isl_id_free(InputDimsId); 859 MemoryAccess *MemAccessA = identifyAccessA(Stmt); 860 MemoryAccess *MemAccessB = identifyAccessB(Stmt); 861 if (!MemAccessA || !MemAccessB) { 862 isl_map_free(MapOldIndVar); 863 return Node; 864 } 865 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 866 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 867 Node = isl_schedule_node_parent(Node); 868 Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0); 869 auto *AccRel = 870 getMatMulAccRel(isl_map_copy(MapOldIndVar), MacroParams.Kc, 3, 6); 871 unsigned FirstDimSize = MacroParams.Mc * MacroParams.Kc / MicroParams.Mr; 872 unsigned SecondDimSize = MicroParams.Mr; 873 auto *SAI = Stmt->getParent()->createScopArrayInfo( 874 MemAccessA->getElementType(), "Packed_A", {FirstDimSize, SecondDimSize}); 875 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId()); 876 auto *OldAcc = MemAccessA->getAccessRelation(); 877 MemAccessA->setNewAccessRelation(AccRel); 878 auto *ExtMap = 879 getMatMulExt(Stmt->getIslCtx(), MacroParams.Mc, 0, MacroParams.Kc); 880 ExtMap = isl_map_project_out(ExtMap, isl_dim_in, 1, 1); 881 auto *Domain = Stmt->getDomain(); 882 auto *NewStmt = Stmt->getParent()->addScopStmt( 883 OldAcc, MemAccessA->getAccessRelation(), isl_set_copy(Domain)); 884 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId()); 885 Node = createExtensionNode(Node, ExtMap); 886 Node = isl_schedule_node_child(Node, 0); 887 AccRel = getMatMulAccRel(MapOldIndVar, MacroParams.Kc, 4, 7); 888 FirstDimSize = MacroParams.Nc * MacroParams.Kc / MicroParams.Nr; 889 SecondDimSize = MicroParams.Nr; 890 SAI = Stmt->getParent()->createScopArrayInfo( 891 MemAccessB->getElementType(), "Packed_B", {FirstDimSize, SecondDimSize}); 892 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId()); 893 OldAcc = MemAccessB->getAccessRelation(); 894 MemAccessB->setNewAccessRelation(AccRel); 895 ExtMap = getMatMulExt(Stmt->getIslCtx(), 0, MacroParams.Nc, MacroParams.Kc); 896 isl_map_move_dims(ExtMap, isl_dim_out, 0, isl_dim_in, 1, 1); 897 isl_map_move_dims(ExtMap, isl_dim_in, 2, isl_dim_out, 0, 1); 898 NewStmt = Stmt->getParent()->addScopStmt( 899 OldAcc, MemAccessB->getAccessRelation(), Domain); 900 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId()); 901 Node = createExtensionNode(Node, ExtMap); 902 Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 903 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 904 } 905 906 /// Get a relation mapping induction variables produced by schedule 907 /// transformations to the original ones. 908 /// 909 /// @param Node The schedule node produced as the result of creation 910 /// of the BLIS kernels. 911 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel 912 /// to be taken into account. 913 /// @return The relation mapping original induction variables to the ones 914 /// produced by schedule transformation. 915 /// @see ScheduleTreeOptimizer::createMicroKernel 916 /// @see ScheduleTreeOptimizer::createMacroKernel 917 /// @see getMacroKernelParams 918 __isl_give isl_map * 919 getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node, 920 MicroKernelParamsTy MicroKernelParams, 921 MacroKernelParamsTy MacroKernelParams) { 922 auto *Child = isl_schedule_node_get_child(Node, 0); 923 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child); 924 isl_schedule_node_free(Child); 925 auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar); 926 if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9) 927 MapOldIndVar = 928 isl_map_project_out(MapOldIndVar, isl_dim_out, 0, 929 isl_map_dim(MapOldIndVar, isl_dim_out) - 9); 930 return MapOldIndVar; 931 } 932 933 __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern( 934 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) { 935 assert(TTI && "The target transform info should be provided."); 936 auto MicroKernelParams = getMicroKernelParams(TTI); 937 auto MacroKernelParams = getMacroKernelParams(MicroKernelParams); 938 Node = createMacroKernel(Node, MacroKernelParams); 939 Node = createMicroKernel(Node, MicroKernelParams); 940 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || 941 MacroKernelParams.Kc == 1) 942 return Node; 943 auto *MapOldIndVar = getInductionVariablesSubstitution( 944 Node, MicroKernelParams, MacroKernelParams); 945 if (!MapOldIndVar) 946 return Node; 947 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, 948 MacroKernelParams); 949 } 950 951 bool ScheduleTreeOptimizer::isMatrMultPattern( 952 __isl_keep isl_schedule_node *Node) { 953 auto *PartialSchedule = 954 isl_schedule_node_band_get_partial_schedule_union_map(Node); 955 if (isl_schedule_node_band_n_member(Node) != 3 || 956 isl_union_map_n_map(PartialSchedule) != 1) { 957 isl_union_map_free(PartialSchedule); 958 return false; 959 } 960 auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule); 961 NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule); 962 if (containsMatrMult(NewPartialSchedule)) { 963 isl_map_free(NewPartialSchedule); 964 return true; 965 } 966 isl_map_free(NewPartialSchedule); 967 return false; 968 } 969 970 __isl_give isl_schedule_node * 971 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, 972 void *User) { 973 if (!isTileableBandNode(Node)) 974 return Node; 975 976 if (PMBasedOpts && User && isMatrMultPattern(Node)) { 977 DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); 978 const llvm::TargetTransformInfo *TTI; 979 TTI = static_cast<const llvm::TargetTransformInfo *>(User); 980 Node = optimizeMatMulPattern(Node, TTI); 981 } 982 983 return standardBandOpts(Node, User); 984 } 985 986 __isl_give isl_schedule * 987 ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule, 988 const llvm::TargetTransformInfo *TTI) { 989 isl_schedule_node *Root = isl_schedule_get_root(Schedule); 990 Root = optimizeScheduleNode(Root, TTI); 991 isl_schedule_free(Schedule); 992 auto S = isl_schedule_node_get_schedule(Root); 993 isl_schedule_node_free(Root); 994 return S; 995 } 996 997 __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode( 998 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) { 999 Node = isl_schedule_node_map_descendant_bottom_up( 1000 Node, optimizeBand, const_cast<void *>(static_cast<const void *>(TTI))); 1001 return Node; 1002 } 1003 1004 bool ScheduleTreeOptimizer::isProfitableSchedule( 1005 Scop &S, __isl_keep isl_schedule *NewSchedule) { 1006 // To understand if the schedule has been optimized we check if the schedule 1007 // has changed at all. 1008 // TODO: We can improve this by tracking if any necessarily beneficial 1009 // transformations have been performed. This can e.g. be tiling, loop 1010 // interchange, or ...) We can track this either at the place where the 1011 // transformation has been performed or, in case of automatic ILP based 1012 // optimizations, by comparing (yet to be defined) performance metrics 1013 // before/after the scheduling optimizer 1014 // (e.g., #stride-one accesses) 1015 if (S.containsExtensionNode(NewSchedule)) 1016 return true; 1017 auto *NewScheduleMap = isl_schedule_get_map(NewSchedule); 1018 isl_union_map *OldSchedule = S.getSchedule(); 1019 assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes " 1020 "that make Scop::getSchedule() return nullptr."); 1021 bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap); 1022 isl_union_map_free(OldSchedule); 1023 isl_union_map_free(NewScheduleMap); 1024 return changed; 1025 } 1026 1027 namespace { 1028 class IslScheduleOptimizer : public ScopPass { 1029 public: 1030 static char ID; 1031 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } 1032 1033 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } 1034 1035 /// Optimize the schedule of the SCoP @p S. 1036 bool runOnScop(Scop &S) override; 1037 1038 /// Print the new schedule for the SCoP @p S. 1039 void printScop(raw_ostream &OS, Scop &S) const override; 1040 1041 /// Register all analyses and transformation required. 1042 void getAnalysisUsage(AnalysisUsage &AU) const override; 1043 1044 /// Release the internal memory. 1045 void releaseMemory() override { 1046 isl_schedule_free(LastSchedule); 1047 LastSchedule = nullptr; 1048 } 1049 1050 private: 1051 isl_schedule *LastSchedule; 1052 }; 1053 } // namespace 1054 1055 char IslScheduleOptimizer::ID = 0; 1056 1057 bool IslScheduleOptimizer::runOnScop(Scop &S) { 1058 1059 // Skip empty SCoPs but still allow code generation as it will delete the 1060 // loops present but not needed. 1061 if (S.getSize() == 0) { 1062 S.markAsOptimized(); 1063 return false; 1064 } 1065 1066 const Dependences &D = 1067 getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement); 1068 1069 if (!D.hasValidDependences()) 1070 return false; 1071 1072 isl_schedule_free(LastSchedule); 1073 LastSchedule = nullptr; 1074 1075 // Build input data. 1076 int ValidityKinds = 1077 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1078 int ProximityKinds; 1079 1080 if (OptimizeDeps == "all") 1081 ProximityKinds = 1082 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1083 else if (OptimizeDeps == "raw") 1084 ProximityKinds = Dependences::TYPE_RAW; 1085 else { 1086 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" 1087 << " Falling back to optimizing all dependences.\n"; 1088 ProximityKinds = 1089 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1090 } 1091 1092 isl_union_set *Domain = S.getDomains(); 1093 1094 if (!Domain) 1095 return false; 1096 1097 isl_union_map *Validity = D.getDependences(ValidityKinds); 1098 isl_union_map *Proximity = D.getDependences(ProximityKinds); 1099 1100 // Simplify the dependences by removing the constraints introduced by the 1101 // domains. This can speed up the scheduling time significantly, as large 1102 // constant coefficients will be removed from the dependences. The 1103 // introduction of some additional dependences reduces the possible 1104 // transformations, but in most cases, such transformation do not seem to be 1105 // interesting anyway. In some cases this option may stop the scheduler to 1106 // find any schedule. 1107 if (SimplifyDeps == "yes") { 1108 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); 1109 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); 1110 Proximity = 1111 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); 1112 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); 1113 } else if (SimplifyDeps != "no") { 1114 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " 1115 "or 'no'. Falling back to default: 'yes'\n"; 1116 } 1117 1118 DEBUG(dbgs() << "\n\nCompute schedule from: "); 1119 DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n"); 1120 DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n"); 1121 DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n"); 1122 1123 unsigned IslSerializeSCCs; 1124 1125 if (FusionStrategy == "max") { 1126 IslSerializeSCCs = 0; 1127 } else if (FusionStrategy == "min") { 1128 IslSerializeSCCs = 1; 1129 } else { 1130 errs() << "warning: Unknown fusion strategy. Falling back to maximal " 1131 "fusion.\n"; 1132 IslSerializeSCCs = 0; 1133 } 1134 1135 int IslMaximizeBands; 1136 1137 if (MaximizeBandDepth == "yes") { 1138 IslMaximizeBands = 1; 1139 } else if (MaximizeBandDepth == "no") { 1140 IslMaximizeBands = 0; 1141 } else { 1142 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" 1143 " or 'no'. Falling back to default: 'yes'\n"; 1144 IslMaximizeBands = 1; 1145 } 1146 1147 int IslOuterCoincidence; 1148 1149 if (OuterCoincidence == "yes") { 1150 IslOuterCoincidence = 1; 1151 } else if (OuterCoincidence == "no") { 1152 IslOuterCoincidence = 0; 1153 } else { 1154 errs() << "warning: Option -polly-opt-outer-coincidence should either be " 1155 "'yes' or 'no'. Falling back to default: 'no'\n"; 1156 IslOuterCoincidence = 0; 1157 } 1158 1159 isl_ctx *Ctx = S.getIslCtx(); 1160 1161 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence); 1162 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs); 1163 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands); 1164 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm); 1165 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient); 1166 isl_options_set_tile_scale_tile_loops(Ctx, 0); 1167 1168 auto OnErrorStatus = isl_options_get_on_error(Ctx); 1169 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE); 1170 1171 isl_schedule_constraints *ScheduleConstraints; 1172 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); 1173 ScheduleConstraints = 1174 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); 1175 ScheduleConstraints = isl_schedule_constraints_set_validity( 1176 ScheduleConstraints, isl_union_map_copy(Validity)); 1177 ScheduleConstraints = 1178 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); 1179 isl_schedule *Schedule; 1180 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); 1181 isl_options_set_on_error(Ctx, OnErrorStatus); 1182 1183 // In cases the scheduler is not able to optimize the code, we just do not 1184 // touch the schedule. 1185 if (!Schedule) 1186 return false; 1187 1188 DEBUG({ 1189 auto *P = isl_printer_to_str(Ctx); 1190 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1191 P = isl_printer_print_schedule(P, Schedule); 1192 dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n"; 1193 isl_printer_free(P); 1194 }); 1195 1196 Function &F = S.getFunction(); 1197 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1198 isl_schedule *NewSchedule = 1199 ScheduleTreeOptimizer::optimizeSchedule(Schedule, TTI); 1200 1201 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) { 1202 isl_schedule_free(NewSchedule); 1203 return false; 1204 } 1205 1206 S.setScheduleTree(NewSchedule); 1207 S.markAsOptimized(); 1208 1209 if (OptimizedScops) 1210 S.dump(); 1211 1212 return false; 1213 } 1214 1215 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { 1216 isl_printer *p; 1217 char *ScheduleStr; 1218 1219 OS << "Calculated schedule:\n"; 1220 1221 if (!LastSchedule) { 1222 OS << "n/a\n"; 1223 return; 1224 } 1225 1226 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); 1227 p = isl_printer_print_schedule(p, LastSchedule); 1228 ScheduleStr = isl_printer_get_str(p); 1229 isl_printer_free(p); 1230 1231 OS << ScheduleStr << "\n"; 1232 } 1233 1234 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { 1235 ScopPass::getAnalysisUsage(AU); 1236 AU.addRequired<DependenceInfo>(); 1237 AU.addRequired<TargetTransformInfoWrapperPass>(); 1238 } 1239 1240 Pass *polly::createIslScheduleOptimizerPass() { 1241 return new IslScheduleOptimizer(); 1242 } 1243 1244 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", 1245 "Polly - Optimize schedule of SCoP", false, false); 1246 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1247 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); 1248 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); 1249 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", 1250 "Polly - Optimize schedule of SCoP", false, false) 1251