1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass generates an entirely new schedule tree from the data dependences 10 // and iteration domains. The new schedule tree is computed in two steps: 11 // 12 // 1) The isl scheduling optimizer is run 13 // 14 // The isl scheduling optimizer creates a new schedule tree that maximizes 15 // parallelism and tileability and minimizes data-dependence distances. The 16 // algorithm used is a modified version of the ``Pluto'' algorithm: 17 // 18 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 19 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. 20 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language 21 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. 22 // 23 // 2) A set of post-scheduling transformations is applied on the schedule tree. 24 // 25 // These optimizations include: 26 // 27 // - Tiling of the innermost tilable bands 28 // - Prevectorization - The choice of a possible outer loop that is strip-mined 29 // to the innermost level to enable inner-loop 30 // vectorization. 31 // - Some optimizations for spatial locality are also planned. 32 // 33 // For a detailed description of the schedule tree itself please see section 6 34 // of: 35 // 36 // Polyhedral AST generation is more than scanning polyhedra 37 // Tobias Grosser, Sven Verdoolaege, Albert Cohen 38 // ACM Transactions on Programming Languages and Systems (TOPLAS), 39 // 37(4), July 2015 40 // http://www.grosser.es/#pub-polyhedral-AST-generation 41 // 42 // This publication also contains a detailed discussion of the different options 43 // for polyhedral loop unrolling, full/partial tile separation and other uses 44 // of the schedule tree. 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "polly/ScheduleOptimizer.h" 49 #include "polly/CodeGen/CodeGeneration.h" 50 #include "polly/DependenceInfo.h" 51 #include "polly/LinkAllPasses.h" 52 #include "polly/Options.h" 53 #include "polly/ScheduleTreeTransform.h" 54 #include "polly/ScopInfo.h" 55 #include "polly/ScopPass.h" 56 #include "polly/Simplify.h" 57 #include "polly/Support/ISLOStream.h" 58 #include "llvm/ADT/Sequence.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/InitializePasses.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "isl/ctx.h" 67 #include "isl/options.h" 68 #include "isl/printer.h" 69 #include "isl/schedule.h" 70 #include "isl/schedule_node.h" 71 #include "isl/union_map.h" 72 #include "isl/union_set.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cmath> 76 #include <cstdint> 77 #include <cstdlib> 78 #include <string> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace polly; 83 84 #define DEBUG_TYPE "polly-opt-isl" 85 86 static cl::opt<std::string> 87 OptimizeDeps("polly-opt-optimize-only", 88 cl::desc("Only a certain kind of dependences (all/raw)"), 89 cl::Hidden, cl::init("all"), cl::ZeroOrMore, 90 cl::cat(PollyCategory)); 91 92 static cl::opt<std::string> 93 SimplifyDeps("polly-opt-simplify-deps", 94 cl::desc("Dependences should be simplified (yes/no)"), 95 cl::Hidden, cl::init("yes"), cl::ZeroOrMore, 96 cl::cat(PollyCategory)); 97 98 static cl::opt<int> MaxConstantTerm( 99 "polly-opt-max-constant-term", 100 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, 101 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 102 103 static cl::opt<int> MaxCoefficient( 104 "polly-opt-max-coefficient", 105 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, 106 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 107 108 static cl::opt<std::string> FusionStrategy( 109 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), 110 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<std::string> 113 MaximizeBandDepth("polly-opt-maximize-bands", 114 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, 115 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 116 117 static cl::opt<std::string> OuterCoincidence( 118 "polly-opt-outer-coincidence", 119 cl::desc("Try to construct schedules where the outer member of each band " 120 "satisfies the coincidence constraints (yes/no)"), 121 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory)); 122 123 static cl::opt<int> PrevectorWidth( 124 "polly-prevect-width", 125 cl::desc( 126 "The number of loop iterations to strip-mine for pre-vectorization"), 127 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); 128 129 static cl::opt<bool> FirstLevelTiling("polly-tiling", 130 cl::desc("Enable loop tiling"), 131 cl::init(true), cl::ZeroOrMore, 132 cl::cat(PollyCategory)); 133 134 static cl::opt<int> LatencyVectorFma( 135 "polly-target-latency-vector-fma", 136 cl::desc("The minimal number of cycles between issuing two " 137 "dependent consecutive vector fused multiply-add " 138 "instructions."), 139 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 140 141 static cl::opt<int> ThroughputVectorFma( 142 "polly-target-throughput-vector-fma", 143 cl::desc("A throughput of the processor floating-point arithmetic units " 144 "expressed in the number of vector fused multiply-add " 145 "instructions per clock cycle."), 146 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory)); 147 148 // This option, along with --polly-target-2nd-cache-level-associativity, 149 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size 150 // represent the parameters of the target cache, which do not have typical 151 // values that can be used by default. However, to apply the pattern matching 152 // optimizations, we use the values of the parameters of Intel Core i7-3820 153 // SandyBridge in case the parameters are not specified or not provided by the 154 // TargetTransformInfo. 155 static cl::opt<int> FirstCacheLevelAssociativity( 156 "polly-target-1st-cache-level-associativity", 157 cl::desc("The associativity of the first cache level."), cl::Hidden, 158 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 159 160 static cl::opt<int> FirstCacheLevelDefaultAssociativity( 161 "polly-target-1st-cache-level-default-associativity", 162 cl::desc("The default associativity of the first cache level" 163 " (if not enough were provided by the TargetTransformInfo)."), 164 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 165 166 static cl::opt<int> SecondCacheLevelAssociativity( 167 "polly-target-2nd-cache-level-associativity", 168 cl::desc("The associativity of the second cache level."), cl::Hidden, 169 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 170 171 static cl::opt<int> SecondCacheLevelDefaultAssociativity( 172 "polly-target-2nd-cache-level-default-associativity", 173 cl::desc("The default associativity of the second cache level" 174 " (if not enough were provided by the TargetTransformInfo)."), 175 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 176 177 static cl::opt<int> FirstCacheLevelSize( 178 "polly-target-1st-cache-level-size", 179 cl::desc("The size of the first cache level specified in bytes."), 180 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 181 182 static cl::opt<int> FirstCacheLevelDefaultSize( 183 "polly-target-1st-cache-level-default-size", 184 cl::desc("The default size of the first cache level specified in bytes" 185 " (if not enough were provided by the TargetTransformInfo)."), 186 cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory)); 187 188 static cl::opt<int> SecondCacheLevelSize( 189 "polly-target-2nd-cache-level-size", 190 cl::desc("The size of the second level specified in bytes."), cl::Hidden, 191 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 192 193 static cl::opt<int> SecondCacheLevelDefaultSize( 194 "polly-target-2nd-cache-level-default-size", 195 cl::desc("The default size of the second cache level specified in bytes" 196 " (if not enough were provided by the TargetTransformInfo)."), 197 cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory)); 198 199 static cl::opt<int> VectorRegisterBitwidth( 200 "polly-target-vector-register-bitwidth", 201 cl::desc("The size in bits of a vector register (if not set, this " 202 "information is taken from LLVM's target information."), 203 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 204 205 static cl::opt<int> FirstLevelDefaultTileSize( 206 "polly-default-tile-size", 207 cl::desc("The default tile size (if not enough were provided by" 208 " --polly-tile-sizes)"), 209 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); 210 211 static cl::list<int> 212 FirstLevelTileSizes("polly-tile-sizes", 213 cl::desc("A tile size for each loop dimension, filled " 214 "with --polly-default-tile-size"), 215 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 216 cl::cat(PollyCategory)); 217 218 static cl::opt<bool> 219 SecondLevelTiling("polly-2nd-level-tiling", 220 cl::desc("Enable a 2nd level loop of loop tiling"), 221 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 222 223 static cl::opt<int> SecondLevelDefaultTileSize( 224 "polly-2nd-level-default-tile-size", 225 cl::desc("The default 2nd-level tile size (if not enough were provided by" 226 " --polly-2nd-level-tile-sizes)"), 227 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); 228 229 static cl::list<int> 230 SecondLevelTileSizes("polly-2nd-level-tile-sizes", 231 cl::desc("A tile size for each loop dimension, filled " 232 "with --polly-default-tile-size"), 233 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 234 cl::cat(PollyCategory)); 235 236 static cl::opt<bool> RegisterTiling("polly-register-tiling", 237 cl::desc("Enable register tiling"), 238 cl::init(false), cl::ZeroOrMore, 239 cl::cat(PollyCategory)); 240 241 static cl::opt<int> RegisterDefaultTileSize( 242 "polly-register-tiling-default-tile-size", 243 cl::desc("The default register tile size (if not enough were provided by" 244 " --polly-register-tile-sizes)"), 245 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); 246 247 static cl::opt<int> PollyPatternMatchingNcQuotient( 248 "polly-pattern-matching-nc-quotient", 249 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the" 250 "macro-kernel, by Nr, the parameter of the micro-kernel"), 251 cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory)); 252 253 static cl::list<int> 254 RegisterTileSizes("polly-register-tile-sizes", 255 cl::desc("A tile size for each loop dimension, filled " 256 "with --polly-register-tile-size"), 257 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 258 cl::cat(PollyCategory)); 259 260 static cl::opt<bool> 261 PMBasedOpts("polly-pattern-matching-based-opts", 262 cl::desc("Perform optimizations based on pattern matching"), 263 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 264 265 static cl::opt<bool> OptimizedScops( 266 "polly-optimized-scops", 267 cl::desc("Polly - Dump polyhedral description of Scops optimized with " 268 "the isl scheduling optimizer and the set of post-scheduling " 269 "transformations is applied on the schedule tree"), 270 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 271 272 STATISTIC(ScopsProcessed, "Number of scops processed"); 273 STATISTIC(ScopsRescheduled, "Number of scops rescheduled"); 274 STATISTIC(ScopsOptimized, "Number of scops optimized"); 275 276 STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized"); 277 STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized"); 278 279 #define THREE_STATISTICS(VARNAME, DESC) \ 280 static Statistic VARNAME[3] = { \ 281 {DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \ 282 {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \ 283 {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}} 284 285 THREE_STATISTICS(NumBands, "Number of bands"); 286 THREE_STATISTICS(NumBandMembers, "Number of band members"); 287 THREE_STATISTICS(NumCoincident, "Number of coincident band members"); 288 THREE_STATISTICS(NumPermutable, "Number of permutable bands"); 289 THREE_STATISTICS(NumFilters, "Number of filter nodes"); 290 THREE_STATISTICS(NumExtension, "Number of extension nodes"); 291 292 STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied"); 293 STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied"); 294 STATISTIC(RegisterTileOpts, "Number of register tiling applied"); 295 STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied"); 296 STATISTIC(MatMulOpts, 297 "Number of matrix multiplication patterns detected and optimized"); 298 299 namespace { 300 /// Parameters of the micro kernel. 301 /// 302 /// Parameters, which determine sizes of rank-1 (i.e., outer product) update 303 /// used in the optimized matrix multiplication. 304 struct MicroKernelParamsTy { 305 int Mr; 306 int Nr; 307 }; 308 309 /// Parameters of the macro kernel. 310 /// 311 /// Parameters, which determine sizes of blocks of partitioned matrices 312 /// used in the optimized matrix multiplication. 313 struct MacroKernelParamsTy { 314 int Mc; 315 int Nc; 316 int Kc; 317 }; 318 319 /// Additional parameters of the schedule optimizer. 320 /// 321 /// Target Transform Info and the SCoP dependencies used by the schedule 322 /// optimizer. 323 struct OptimizerAdditionalInfoTy { 324 const llvm::TargetTransformInfo *TTI; 325 const Dependences *D; 326 }; 327 328 /// Parameters of the matrix multiplication operands. 329 /// 330 /// Parameters, which describe access relations that represent operands of the 331 /// matrix multiplication. 332 struct MatMulInfoTy { 333 MemoryAccess *A = nullptr; 334 MemoryAccess *B = nullptr; 335 MemoryAccess *ReadFromC = nullptr; 336 MemoryAccess *WriteToC = nullptr; 337 int i = -1; 338 int j = -1; 339 int k = -1; 340 }; 341 342 class ScheduleTreeOptimizer { 343 public: 344 /// Apply schedule tree transformations. 345 /// 346 /// This function takes an (possibly already optimized) schedule tree and 347 /// applies a set of additional optimizations on the schedule tree. The 348 /// transformations applied include: 349 /// 350 /// - Tiling 351 /// - Prevectorization 352 /// 353 /// @param Schedule The schedule object the transformations will be applied 354 /// to. 355 /// @param OAI Target Transform Info and the SCoP dependencies. 356 /// @returns The transformed schedule. 357 static isl::schedule 358 optimizeSchedule(isl::schedule Schedule, 359 const OptimizerAdditionalInfoTy *OAI = nullptr); 360 361 /// Apply schedule tree transformations. 362 /// 363 /// This function takes a node in an (possibly already optimized) schedule 364 /// tree and applies a set of additional optimizations on this schedule tree 365 /// node and its descendants. The transformations applied include: 366 /// 367 /// - Tiling 368 /// - Prevectorization 369 /// 370 /// @param Node The schedule object post-transformations will be applied to. 371 /// @param OAI Target Transform Info and the SCoP dependencies. 372 /// @returns The transformed schedule. 373 static isl::schedule_node 374 optimizeScheduleNode(isl::schedule_node Node, 375 const OptimizerAdditionalInfoTy *OAI = nullptr); 376 377 /// Decide if the @p NewSchedule is profitable for @p S. 378 /// 379 /// @param S The SCoP we optimize. 380 /// @param NewSchedule The new schedule we computed. 381 /// 382 /// @return True, if we believe @p NewSchedule is an improvement for @p S. 383 static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule); 384 385 /// Isolate a set of partial tile prefixes. 386 /// 387 /// This set should ensure that it contains only partial tile prefixes that 388 /// have exactly VectorWidth iterations. 389 /// 390 /// @param Node A schedule node band, which is a parent of a band node, 391 /// that contains a vector loop. 392 /// @return Modified isl_schedule_node. 393 static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node, 394 int VectorWidth); 395 396 private: 397 /// Tile a schedule node. 398 /// 399 /// @param Node The node to tile. 400 /// @param Identifier An name that identifies this kind of tiling and 401 /// that is used to mark the tiled loops in the 402 /// generated AST. 403 /// @param TileSizes A vector of tile sizes that should be used for 404 /// tiling. 405 /// @param DefaultTileSize A default tile size that is used for dimensions 406 /// that are not covered by the TileSizes vector. 407 static isl::schedule_node tileNode(isl::schedule_node Node, 408 const char *Identifier, 409 llvm::ArrayRef<int> TileSizes, 410 int DefaultTileSize); 411 412 /// Tile a schedule node and unroll point loops. 413 /// 414 /// @param Node The node to register tile. 415 /// @param TileSizes A vector of tile sizes that should be used for 416 /// tiling. 417 /// @param DefaultTileSize A default tile size that is used for dimensions 418 static isl::schedule_node applyRegisterTiling(isl::schedule_node Node, 419 llvm::ArrayRef<int> TileSizes, 420 int DefaultTileSize); 421 422 /// Apply the BLIS matmul optimization pattern. 423 /// 424 /// Make the loops containing the matrix multiplication be the innermost 425 /// loops and apply the BLIS matmul optimization pattern. BLIS implements 426 /// gemm as three nested loops around a macro-kernel, plus two packing 427 /// routines. The macro-kernel is implemented in terms of two additional 428 /// loops around a micro-kernel. The micro-kernel is a loop around a rank-1 429 /// (i.e., outer product) update. 430 /// 431 /// For a detailed description please see [1]. 432 /// 433 /// The order of the loops defines the data reused in the BLIS implementation 434 /// of gemm ([1]). In particular, elements of the matrix B, the second 435 /// operand of matrix multiplication, are reused between iterations of the 436 /// innermost loop. To keep the reused data in cache, only elements of matrix 437 /// A, the first operand of matrix multiplication, should be evicted during 438 /// an iteration of the innermost loop. To provide such a cache replacement 439 /// policy, elements of the matrix A can, in particular, be loaded first and, 440 /// consequently, be least-recently-used. 441 /// 442 /// In our case matrices are stored in row-major order instead of 443 /// column-major order used in the BLIS implementation ([1]). It affects only 444 /// on the form of the BLIS micro kernel and the computation of its 445 /// parameters. In particular, reused elements of the matrix B are 446 /// successively multiplied by specific elements of the matrix A. 447 /// 448 /// Refs.: 449 /// [1] - Analytical Modeling is Enough for High Performance BLIS 450 /// Tze Meng Low, Francisco D Igual, Tyler M Smith, Enrique S Quintana-Orti 451 /// Technical Report, 2014 452 /// http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf 453 /// 454 /// @see ScheduleTreeOptimizer::createMicroKernel 455 /// @see ScheduleTreeOptimizer::createMacroKernel 456 /// @see getMicroKernelParams 457 /// @see getMacroKernelParams 458 /// 459 /// TODO: Implement the packing transformation. 460 /// 461 /// @param Node The node that contains a band to be optimized. The node 462 /// is required to successfully pass 463 /// ScheduleTreeOptimizer::isMatrMultPattern. 464 /// @param TTI Target Transform Info. 465 /// @param MMI Parameters of the matrix multiplication operands. 466 /// @returns The transformed schedule. 467 static isl::schedule_node 468 optimizeMatMulPattern(isl::schedule_node Node, 469 const llvm::TargetTransformInfo *TTI, 470 MatMulInfoTy &MMI); 471 472 /// Check if this node is a band node we want to tile. 473 /// 474 /// We look for innermost band nodes where individual dimensions are marked as 475 /// permutable. 476 /// 477 /// @param Node The node to check. 478 static bool isTileableBandNode(isl::schedule_node Node); 479 480 /// Pre-vectorizes one scheduling dimension of a schedule band. 481 /// 482 /// prevectSchedBand splits out the dimension DimToVectorize, tiles it and 483 /// sinks the resulting point loop. 484 /// 485 /// Example (DimToVectorize=0, VectorWidth=4): 486 /// 487 /// | Before transformation: 488 /// | 489 /// | A[i,j] -> [i,j] 490 /// | 491 /// | for (i = 0; i < 128; i++) 492 /// | for (j = 0; j < 128; j++) 493 /// | A(i,j); 494 /// 495 /// | After transformation: 496 /// | 497 /// | for (it = 0; it < 32; it+=1) 498 /// | for (j = 0; j < 128; j++) 499 /// | for (ip = 0; ip <= 3; ip++) 500 /// | A(4 * it + ip,j); 501 /// 502 /// The goal of this transformation is to create a trivially vectorizable 503 /// loop. This means a parallel loop at the innermost level that has a 504 /// constant number of iterations corresponding to the target vector width. 505 /// 506 /// This transformation creates a loop at the innermost level. The loop has 507 /// a constant number of iterations, if the number of loop iterations at 508 /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is 509 /// currently constant and not yet target specific. This function does not 510 /// reason about parallelism. 511 static isl::schedule_node prevectSchedBand(isl::schedule_node Node, 512 unsigned DimToVectorize, 513 int VectorWidth); 514 515 /// Apply additional optimizations on the bands in the schedule tree. 516 /// 517 /// We are looking for an innermost band node and apply the following 518 /// transformations: 519 /// 520 /// - Tile the band 521 /// - if the band is tileable 522 /// - if the band has more than one loop dimension 523 /// 524 /// - Prevectorize the schedule of the band (or the point loop in case of 525 /// tiling). 526 /// - if vectorization is enabled 527 /// 528 /// @param Node The schedule node to (possibly) optimize. 529 /// @param User A pointer to forward some use information 530 /// (currently unused). 531 static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User); 532 533 /// Apply additional optimizations on the bands in the schedule tree. 534 /// 535 /// We apply the following 536 /// transformations: 537 /// 538 /// - Tile the band 539 /// - Prevectorize the schedule of the band (or the point loop in case of 540 /// tiling). 541 /// - if vectorization is enabled 542 /// 543 /// @param Node The schedule node to (possibly) optimize. 544 /// @param User A pointer to forward some use information 545 /// (currently unused). 546 static isl::schedule_node standardBandOpts(isl::schedule_node Node, 547 void *User); 548 549 /// Check if this node contains a partial schedule that could 550 /// probably be optimized with analytical modeling. 551 /// 552 /// isMatrMultPattern tries to determine whether the following conditions 553 /// are true: 554 /// 1. the partial schedule contains only one statement. 555 /// 2. there are exactly three input dimensions. 556 /// 3. all memory accesses of the statement will have stride 0 or 1, if we 557 /// interchange loops (switch the variable used in the inner loop to 558 /// the outer loop). 559 /// 4. all memory accesses of the statement except from the last one, are 560 /// read memory access and the last one is write memory access. 561 /// 5. all subscripts of the last memory access of the statement don't 562 /// contain the variable used in the inner loop. 563 /// If this is the case, we could try to use an approach that is similar to 564 /// the one used to get close-to-peak performance of matrix multiplications. 565 /// 566 /// @param Node The node to check. 567 /// @param D The SCoP dependencies. 568 /// @param MMI Parameters of the matrix multiplication operands. 569 static bool isMatrMultPattern(isl::schedule_node Node, 570 const polly::Dependences *D, MatMulInfoTy &MMI); 571 572 /// Create the BLIS macro-kernel. 573 /// 574 /// We create the BLIS macro-kernel by applying a combination of tiling 575 /// of dimensions of the band node and interchanging of two innermost 576 /// modified dimensions. The values of of MacroKernelParams's fields are used 577 /// as tile sizes. 578 /// 579 /// @param Node The schedule node to be modified. 580 /// @param MacroKernelParams Parameters of the macro kernel 581 /// to be used as tile sizes. 582 static isl::schedule_node 583 createMacroKernel(isl::schedule_node Node, 584 MacroKernelParamsTy MacroKernelParams); 585 586 /// Create the BLIS macro-kernel. 587 /// 588 /// We create the BLIS macro-kernel by applying a combination of tiling 589 /// of dimensions of the band node and interchanging of two innermost 590 /// modified dimensions. The values passed in MicroKernelParam are used 591 /// as tile sizes. 592 /// 593 /// @param Node The schedule node to be modified. 594 /// @param MicroKernelParams Parameters of the micro kernel 595 /// to be used as tile sizes. 596 /// @see MicroKernelParamsTy 597 static isl::schedule_node 598 createMicroKernel(isl::schedule_node Node, 599 MicroKernelParamsTy MicroKernelParams); 600 }; 601 602 /// Create an isl::union_set, which describes the isolate option based on 603 /// IsolateDomain. 604 /// 605 /// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should 606 /// belong to the current band node. 607 /// @param OutDimsNum A number of dimensions that should belong to 608 /// the current band node. 609 static isl::union_set getIsolateOptions(isl::set IsolateDomain, 610 isl_size OutDimsNum) { 611 isl_size Dims = IsolateDomain.dim(isl::dim::set); 612 assert(OutDimsNum <= Dims && 613 "The isl::set IsolateDomain is used to describe the range of schedule " 614 "dimensions values, which should be isolated. Consequently, the " 615 "number of its dimensions should be greater than or equal to the " 616 "number of the schedule dimensions."); 617 isl::map IsolateRelation = isl::map::from_domain(IsolateDomain); 618 IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in, 619 Dims - OutDimsNum, OutDimsNum); 620 isl::set IsolateOption = IsolateRelation.wrap(); 621 isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr); 622 IsolateOption = IsolateOption.set_tuple_id(Id); 623 return isl::union_set(IsolateOption); 624 } 625 626 /// Create an isl::union_set, which describes the specified option for the 627 /// dimension of the current node. 628 /// 629 /// @param Ctx An isl::ctx, which is used to create the isl::union_set. 630 /// @param Option The name of the option. 631 isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) { 632 isl::space Space(Ctx, 0, 1); 633 auto DimOption = isl::set::universe(Space); 634 auto Id = isl::id::alloc(Ctx, Option, nullptr); 635 DimOption = DimOption.set_tuple_id(Id); 636 return isl::union_set(DimOption); 637 } 638 639 /// Create an isl::union_set, which describes the option of the form 640 /// [isolate[] -> unroll[x]]. 641 /// 642 /// @param Ctx An isl::ctx, which is used to create the isl::union_set. 643 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) { 644 isl::space Space = isl::space(Ctx, 0, 0, 1); 645 isl::map UnrollIsolatedSetOption = isl::map::universe(Space); 646 isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr); 647 isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr); 648 UnrollIsolatedSetOption = 649 UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId); 650 UnrollIsolatedSetOption = 651 UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId); 652 return UnrollIsolatedSetOption.wrap(); 653 } 654 655 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1. 656 /// 657 /// @param Set A set, which should be modified. 658 /// @param VectorWidth A parameter, which determines the constraint. 659 static isl::set addExtentConstraints(isl::set Set, int VectorWidth) { 660 unsigned Dims = Set.dim(isl::dim::set); 661 isl::space Space = Set.get_space(); 662 isl::local_space LocalSpace = isl::local_space(Space); 663 isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace); 664 ExtConstr = ExtConstr.set_constant_si(0); 665 ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1); 666 Set = Set.add_constraint(ExtConstr); 667 ExtConstr = isl::constraint::alloc_inequality(LocalSpace); 668 ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1); 669 ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1); 670 return Set.add_constraint(ExtConstr); 671 } 672 } // namespace 673 674 isl::set polly::getPartialTilePrefixes(isl::set ScheduleRange, 675 int VectorWidth) { 676 isl_size Dims = ScheduleRange.dim(isl::dim::set); 677 isl::set LoopPrefixes = 678 ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1); 679 auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth); 680 isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange); 681 BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1); 682 LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1); 683 return LoopPrefixes.subtract(BadPrefixes); 684 } 685 686 namespace { 687 isl::schedule_node 688 ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node, 689 int VectorWidth) { 690 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 691 Node = Node.child(0).child(0); 692 isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation(); 693 isl::union_set ScheduleRangeUSet = SchedRelUMap.range(); 694 isl::set ScheduleRange{ScheduleRangeUSet}; 695 isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); 696 auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic"); 697 isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1); 698 Node = Node.parent().parent(); 699 isl::union_set Options = IsolateOption.unite(AtomicOption); 700 Node = Node.band_set_ast_build_options(Options); 701 return Node; 702 } 703 704 isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand( 705 isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) { 706 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 707 708 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); 709 isl_size ScheduleDimensions = Space.dim(isl::dim::set); 710 assert((isl_size)DimToVectorize < ScheduleDimensions); 711 712 if (DimToVectorize > 0) { 713 Node = isl::manage( 714 isl_schedule_node_band_split(Node.release(), DimToVectorize)); 715 Node = Node.child(0); 716 } 717 if ((isl_size)DimToVectorize < ScheduleDimensions - 1) 718 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1)); 719 Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); 720 auto Sizes = isl::multi_val::zero(Space); 721 Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth)); 722 Node = 723 isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release())); 724 Node = isolateFullPartialTiles(Node, VectorWidth); 725 Node = Node.child(0); 726 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, 727 // we will have troubles to match it in the backend. 728 Node = Node.band_set_ast_build_options( 729 isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }")); 730 Node = isl::manage(isl_schedule_node_band_sink(Node.release())); 731 Node = Node.child(0); 732 if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf) 733 Node = Node.parent(); 734 auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr); 735 PrevectOpts++; 736 return Node.insert_mark(LoopMarker); 737 } 738 739 isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node, 740 const char *Identifier, 741 ArrayRef<int> TileSizes, 742 int DefaultTileSize) { 743 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); 744 auto Dims = Space.dim(isl::dim::set); 745 auto Sizes = isl::multi_val::zero(Space); 746 std::string IdentifierString(Identifier); 747 for (auto i : seq<isl_size>(0, Dims)) { 748 auto tileSize = 749 i < (isl_size)TileSizes.size() ? TileSizes[i] : DefaultTileSize; 750 Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize)); 751 } 752 auto TileLoopMarkerStr = IdentifierString + " - Tiles"; 753 auto TileLoopMarker = 754 isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr); 755 Node = Node.insert_mark(TileLoopMarker); 756 Node = Node.child(0); 757 Node = 758 isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release())); 759 Node = Node.child(0); 760 auto PointLoopMarkerStr = IdentifierString + " - Points"; 761 auto PointLoopMarker = 762 isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr); 763 Node = Node.insert_mark(PointLoopMarker); 764 return Node.child(0); 765 } 766 767 isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling( 768 isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) { 769 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize); 770 auto Ctx = Node.get_ctx(); 771 return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}")); 772 } 773 774 static bool isSimpleInnermostBand(const isl::schedule_node &Node) { 775 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 776 assert(isl_schedule_node_n_children(Node.get()) == 1); 777 778 auto ChildType = isl_schedule_node_get_type(Node.child(0).get()); 779 780 if (ChildType == isl_schedule_node_leaf) 781 return true; 782 783 if (ChildType != isl_schedule_node_sequence) 784 return false; 785 786 auto Sequence = Node.child(0); 787 788 for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc; 789 ++c) { 790 auto Child = Sequence.child(c); 791 if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter) 792 return false; 793 if (isl_schedule_node_get_type(Child.child(0).get()) != 794 isl_schedule_node_leaf) 795 return false; 796 } 797 return true; 798 } 799 800 bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) { 801 if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band) 802 return false; 803 804 if (isl_schedule_node_n_children(Node.get()) != 1) 805 return false; 806 807 if (!isl_schedule_node_band_get_permutable(Node.get())) 808 return false; 809 810 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); 811 auto Dims = Space.dim(isl::dim::set); 812 813 if (Dims <= 1) 814 return false; 815 816 return isSimpleInnermostBand(Node); 817 } 818 819 __isl_give isl::schedule_node 820 ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) { 821 if (FirstLevelTiling) { 822 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, 823 FirstLevelDefaultTileSize); 824 FirstLevelTileOpts++; 825 } 826 827 if (SecondLevelTiling) { 828 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, 829 SecondLevelDefaultTileSize); 830 SecondLevelTileOpts++; 831 } 832 833 if (RegisterTiling) { 834 Node = 835 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize); 836 RegisterTileOpts++; 837 } 838 839 if (PollyVectorizerChoice == VECTORIZER_NONE) 840 return Node; 841 842 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); 843 auto Dims = Space.dim(isl::dim::set); 844 845 for (int i = Dims - 1; i >= 0; i--) 846 if (Node.band_member_get_coincident(i)) { 847 Node = prevectSchedBand(Node, i, PrevectorWidth); 848 break; 849 } 850 851 return Node; 852 } 853 854 /// Permute the two dimensions of the isl map. 855 /// 856 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that 857 /// have type @p DimType. 858 /// 859 /// @param Map The isl map to be modified. 860 /// @param DimType The type of the dimensions. 861 /// @param DstPos The first dimension. 862 /// @param SrcPos The second dimension. 863 /// @return The modified map. 864 isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos, 865 unsigned SrcPos) { 866 assert((isl_size)DstPos < Map.dim(DimType) && 867 (isl_size)SrcPos < Map.dim(DimType)); 868 if (DstPos == SrcPos) 869 return Map; 870 isl::id DimId; 871 if (Map.has_tuple_id(DimType)) 872 DimId = Map.get_tuple_id(DimType); 873 auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in; 874 isl::id FreeDimId; 875 if (Map.has_tuple_id(FreeDim)) 876 FreeDimId = Map.get_tuple_id(FreeDim); 877 auto MaxDim = std::max(DstPos, SrcPos); 878 auto MinDim = std::min(DstPos, SrcPos); 879 Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1); 880 Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1); 881 Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1); 882 Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1); 883 if (DimId) 884 Map = Map.set_tuple_id(DimType, DimId); 885 if (FreeDimId) 886 Map = Map.set_tuple_id(FreeDim, FreeDimId); 887 return Map; 888 } 889 890 /// Check the form of the access relation. 891 /// 892 /// Check that the access relation @p AccMap has the form M[i][j], where i 893 /// is a @p FirstPos and j is a @p SecondPos. 894 /// 895 /// @param AccMap The access relation to be checked. 896 /// @param FirstPos The index of the input dimension that is mapped to 897 /// the first output dimension. 898 /// @param SecondPos The index of the input dimension that is mapped to the 899 /// second output dimension. 900 /// @return True in case @p AccMap has the expected form and false, 901 /// otherwise. 902 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos, 903 int &SecondPos) { 904 isl::space Space = AccMap.get_space(); 905 isl::map Universe = isl::map::universe(Space); 906 907 if (Space.dim(isl::dim::out) != 2) 908 return false; 909 910 // MatMul has the form: 911 // for (i = 0; i < N; i++) 912 // for (j = 0; j < M; j++) 913 // for (k = 0; k < P; k++) 914 // C[i, j] += A[i, k] * B[k, j] 915 // 916 // Permutation of three outer loops: 3! = 6 possibilities. 917 int FirstDims[] = {0, 0, 1, 1, 2, 2}; 918 int SecondDims[] = {1, 2, 2, 0, 0, 1}; 919 for (int i = 0; i < 6; i += 1) { 920 auto PossibleMatMul = 921 Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0) 922 .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1); 923 924 AccMap = AccMap.intersect_domain(Domain); 925 PossibleMatMul = PossibleMatMul.intersect_domain(Domain); 926 927 // If AccMap spans entire domain (Non-partial write), 928 // compute FirstPos and SecondPos. 929 // If AccMap != PossibleMatMul here (the two maps have been gisted at 930 // this point), it means that the writes are not complete, or in other 931 // words, it is a Partial write and Partial writes must be rejected. 932 if (AccMap.is_equal(PossibleMatMul)) { 933 if (FirstPos != -1 && FirstPos != FirstDims[i]) 934 continue; 935 FirstPos = FirstDims[i]; 936 if (SecondPos != -1 && SecondPos != SecondDims[i]) 937 continue; 938 SecondPos = SecondDims[i]; 939 return true; 940 } 941 } 942 943 return false; 944 } 945 946 /// Does the memory access represent a non-scalar operand of the matrix 947 /// multiplication. 948 /// 949 /// Check that the memory access @p MemAccess is the read access to a non-scalar 950 /// operand of the matrix multiplication or its result. 951 /// 952 /// @param MemAccess The memory access to be checked. 953 /// @param MMI Parameters of the matrix multiplication operands. 954 /// @return True in case the memory access represents the read access 955 /// to a non-scalar operand of the matrix multiplication and 956 /// false, otherwise. 957 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess, 958 MatMulInfoTy &MMI) { 959 if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead()) 960 return false; 961 auto AccMap = MemAccess->getLatestAccessRelation(); 962 isl::set StmtDomain = MemAccess->getStatement()->getDomain(); 963 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) { 964 MMI.ReadFromC = MemAccess; 965 return true; 966 } 967 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) { 968 MMI.A = MemAccess; 969 return true; 970 } 971 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) { 972 MMI.B = MemAccess; 973 return true; 974 } 975 return false; 976 } 977 978 /// Check accesses to operands of the matrix multiplication. 979 /// 980 /// Check that accesses of the SCoP statement, which corresponds to 981 /// the partial schedule @p PartialSchedule, are scalar in terms of loops 982 /// containing the matrix multiplication, in case they do not represent 983 /// accesses to the non-scalar operands of the matrix multiplication or 984 /// its result. 985 /// 986 /// @param PartialSchedule The partial schedule of the SCoP statement. 987 /// @param MMI Parameters of the matrix multiplication operands. 988 /// @return True in case the corresponding SCoP statement 989 /// represents matrix multiplication and false, 990 /// otherwise. 991 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule, 992 MatMulInfoTy &MMI) { 993 auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in); 994 auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user()); 995 isl_size OutDimNum = PartialSchedule.dim(isl::dim::out); 996 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest " 997 "and, consequently, the corresponding scheduling " 998 "functions have at least three dimensions."); 999 auto MapI = 1000 permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1); 1001 auto MapJ = 1002 permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1); 1003 auto MapK = 1004 permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1); 1005 1006 auto Accesses = getAccessesInOrder(*Stmt); 1007 for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) { 1008 auto *MemAccessPtr = *MemA; 1009 if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC && 1010 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) && 1011 !(MemAccessPtr->isStrideZero(MapI)) && 1012 MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)) 1013 return false; 1014 } 1015 return true; 1016 } 1017 1018 /// Check for dependencies corresponding to the matrix multiplication. 1019 /// 1020 /// Check that there is only true dependence of the form 1021 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement 1022 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds 1023 /// to the dependency produced by the matrix multiplication. 1024 /// 1025 /// @param Schedule The schedule of the SCoP statement. 1026 /// @param D The SCoP dependencies. 1027 /// @param Pos The parameter to describe an acceptable true dependence. 1028 /// In case it has a negative value, try to determine its 1029 /// acceptable value. 1030 /// @return True in case dependencies correspond to the matrix multiplication 1031 /// and false, otherwise. 1032 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D, 1033 int &Pos) { 1034 isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW); 1035 isl::union_map Red = D->getDependences(Dependences::TYPE_RED); 1036 if (Red) 1037 Dep = Dep.unite(Red); 1038 auto DomainSpace = Schedule.get_space().domain(); 1039 auto Space = DomainSpace.map_from_domain_and_range(DomainSpace); 1040 auto Deltas = Dep.extract_map(Space).deltas(); 1041 isl_size DeltasDimNum = Deltas.dim(isl::dim::set); 1042 for (int i = 0; i < DeltasDimNum; i++) { 1043 auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i); 1044 Pos = Pos < 0 && Val.is_one() ? i : Pos; 1045 if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one()))) 1046 return false; 1047 } 1048 if (DeltasDimNum == 0 || Pos < 0) 1049 return false; 1050 return true; 1051 } 1052 1053 /// Check if the SCoP statement could probably be optimized with analytical 1054 /// modeling. 1055 /// 1056 /// containsMatrMult tries to determine whether the following conditions 1057 /// are true: 1058 /// 1. The last memory access modeling an array, MA1, represents writing to 1059 /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or 1060 /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement 1061 /// under consideration. 1062 /// 2. There is only one loop-carried true dependency, and it has the 1063 /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no 1064 /// loop-carried or anti dependencies. 1065 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent 1066 /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3), 1067 /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively, 1068 /// and all memory accesses of the SCoP that are different from MA1, MA2, 1069 /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any 1070 /// of loops i1, i2 and i3. 1071 /// 1072 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement 1073 /// to check. 1074 /// @D The SCoP dependencies. 1075 /// @MMI Parameters of the matrix multiplication operands. 1076 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D, 1077 MatMulInfoTy &MMI) { 1078 auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in); 1079 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user()); 1080 if (Stmt->size() <= 1) 1081 return false; 1082 1083 auto Accesses = getAccessesInOrder(*Stmt); 1084 for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) { 1085 auto *MemAccessPtr = *MemA; 1086 if (!MemAccessPtr->isLatestArrayKind()) 1087 continue; 1088 if (!MemAccessPtr->isWrite()) 1089 return false; 1090 auto AccMap = MemAccessPtr->getLatestAccessRelation(); 1091 if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j)) 1092 return false; 1093 MMI.WriteToC = MemAccessPtr; 1094 break; 1095 } 1096 1097 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k)) 1098 return false; 1099 1100 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI)) 1101 return false; 1102 1103 if (!MMI.A || !MMI.B || !MMI.ReadFromC) 1104 return false; 1105 return true; 1106 } 1107 1108 /// Permute two dimensions of the band node. 1109 /// 1110 /// Permute FirstDim and SecondDim dimensions of the Node. 1111 /// 1112 /// @param Node The band node to be modified. 1113 /// @param FirstDim The first dimension to be permuted. 1114 /// @param SecondDim The second dimension to be permuted. 1115 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node, 1116 unsigned FirstDim, 1117 unsigned SecondDim) { 1118 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band && 1119 (unsigned)isl_schedule_node_band_n_member(Node.get()) > 1120 std::max(FirstDim, SecondDim)); 1121 auto PartialSchedule = 1122 isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get())); 1123 auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim); 1124 auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim); 1125 PartialSchedule = 1126 PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim); 1127 PartialSchedule = 1128 PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim); 1129 Node = isl::manage(isl_schedule_node_delete(Node.release())); 1130 return Node.insert_partial_schedule(PartialSchedule); 1131 } 1132 1133 isl::schedule_node ScheduleTreeOptimizer::createMicroKernel( 1134 isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) { 1135 Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1136 1); 1137 Node = Node.parent().parent(); 1138 return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0); 1139 } 1140 1141 isl::schedule_node ScheduleTreeOptimizer::createMacroKernel( 1142 isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) { 1143 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 1144 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && 1145 MacroKernelParams.Kc == 1) 1146 return Node; 1147 int DimOutNum = isl_schedule_node_band_n_member(Node.get()); 1148 std::vector<int> TileSizes(DimOutNum, 1); 1149 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc; 1150 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc; 1151 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc; 1152 Node = tileNode(Node, "1st level tiling", TileSizes, 1); 1153 Node = Node.parent().parent(); 1154 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1); 1155 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1); 1156 1157 // Mark the outermost loop as parallelizable. 1158 Node = Node.band_member_set_coincident(0, true); 1159 1160 return Node.child(0).child(0); 1161 } 1162 1163 /// Get the size of the widest type of the matrix multiplication operands 1164 /// in bytes, including alignment padding. 1165 /// 1166 /// @param MMI Parameters of the matrix multiplication operands. 1167 /// @return The size of the widest type of the matrix multiplication operands 1168 /// in bytes, including alignment padding. 1169 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) { 1170 auto *S = MMI.A->getStatement()->getParent(); 1171 auto &DL = S->getFunction().getParent()->getDataLayout(); 1172 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); 1173 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); 1174 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); 1175 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 1176 } 1177 1178 /// Get the size of the widest type of the matrix multiplication operands 1179 /// in bits. 1180 /// 1181 /// @param MMI Parameters of the matrix multiplication operands. 1182 /// @return The size of the widest type of the matrix multiplication operands 1183 /// in bits. 1184 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { 1185 auto *S = MMI.A->getStatement()->getParent(); 1186 auto &DL = S->getFunction().getParent()->getDataLayout(); 1187 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType()); 1188 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType()); 1189 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType()); 1190 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 1191 } 1192 1193 /// Get parameters of the BLIS micro kernel. 1194 /// 1195 /// We choose the Mr and Nr parameters of the micro kernel to be large enough 1196 /// such that no stalls caused by the combination of latencies and dependencies 1197 /// are introduced during the updates of the resulting matrix of the matrix 1198 /// multiplication. However, they should also be as small as possible to 1199 /// release more registers for entries of multiplied matrices. 1200 /// 1201 /// @param TTI Target Transform Info. 1202 /// @param MMI Parameters of the matrix multiplication operands. 1203 /// @return The structure of type MicroKernelParamsTy. 1204 /// @see MicroKernelParamsTy 1205 static struct MicroKernelParamsTy 1206 getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) { 1207 assert(TTI && "The target transform info should be provided."); 1208 1209 // Nvec - Number of double-precision floating-point numbers that can be hold 1210 // by a vector register. Use 2 by default. 1211 long RegisterBitwidth = VectorRegisterBitwidth; 1212 1213 if (RegisterBitwidth == -1) 1214 RegisterBitwidth = TTI->getRegisterBitWidth(true); 1215 auto ElementSize = getMatMulTypeSize(MMI); 1216 assert(ElementSize > 0 && "The element size of the matrix multiplication " 1217 "operands should be greater than zero."); 1218 auto Nvec = RegisterBitwidth / ElementSize; 1219 if (Nvec == 0) 1220 Nvec = 2; 1221 int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) / 1222 Nvec) * 1223 Nvec; 1224 int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr)); 1225 return {Mr, Nr}; 1226 } 1227 1228 /// Determine parameters of the target cache. 1229 /// 1230 /// @param TTI Target Transform Info. 1231 void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) { 1232 auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D; 1233 auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D; 1234 if (FirstCacheLevelSize == -1) { 1235 if (TTI->getCacheSize(L1DCache).hasValue()) 1236 FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue(); 1237 else 1238 FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize); 1239 } 1240 if (SecondCacheLevelSize == -1) { 1241 if (TTI->getCacheSize(L2DCache).hasValue()) 1242 SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue(); 1243 else 1244 SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize); 1245 } 1246 if (FirstCacheLevelAssociativity == -1) { 1247 if (TTI->getCacheAssociativity(L1DCache).hasValue()) 1248 FirstCacheLevelAssociativity = 1249 TTI->getCacheAssociativity(L1DCache).getValue(); 1250 else 1251 FirstCacheLevelAssociativity = 1252 static_cast<int>(FirstCacheLevelDefaultAssociativity); 1253 } 1254 if (SecondCacheLevelAssociativity == -1) { 1255 if (TTI->getCacheAssociativity(L2DCache).hasValue()) 1256 SecondCacheLevelAssociativity = 1257 TTI->getCacheAssociativity(L2DCache).getValue(); 1258 else 1259 SecondCacheLevelAssociativity = 1260 static_cast<int>(SecondCacheLevelDefaultAssociativity); 1261 } 1262 } 1263 1264 /// Get parameters of the BLIS macro kernel. 1265 /// 1266 /// During the computation of matrix multiplication, blocks of partitioned 1267 /// matrices are mapped to different layers of the memory hierarchy. 1268 /// To optimize data reuse, blocks should be ideally kept in cache between 1269 /// iterations. Since parameters of the macro kernel determine sizes of these 1270 /// blocks, there are upper and lower bounds on these parameters. 1271 /// 1272 /// @param TTI Target Transform Info. 1273 /// @param MicroKernelParams Parameters of the micro-kernel 1274 /// to be taken into account. 1275 /// @param MMI Parameters of the matrix multiplication operands. 1276 /// @return The structure of type MacroKernelParamsTy. 1277 /// @see MacroKernelParamsTy 1278 /// @see MicroKernelParamsTy 1279 static struct MacroKernelParamsTy 1280 getMacroKernelParams(const llvm::TargetTransformInfo *TTI, 1281 const MicroKernelParamsTy &MicroKernelParams, 1282 MatMulInfoTy MMI) { 1283 getTargetCacheParameters(TTI); 1284 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, 1285 // it requires information about the first two levels of a cache to determine 1286 // all the parameters of a macro-kernel. It also checks that an associativity 1287 // degree of a cache level is greater than two. Otherwise, another algorithm 1288 // for determination of the parameters should be used. 1289 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && 1290 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 && 1291 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2)) 1292 return {1, 1, 1}; 1293 // The quotient should be greater than zero. 1294 if (PollyPatternMatchingNcQuotient <= 0) 1295 return {1, 1, 1}; 1296 int Car = floor( 1297 (FirstCacheLevelAssociativity - 1) / 1298 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr)); 1299 1300 // Car can be computed to be zero since it is floor to int. 1301 // On Mac OS, division by 0 does not raise a signal. This causes negative 1302 // tile sizes to be computed. Prevent division by Cac==0 by early returning 1303 // if this happens. 1304 if (Car == 0) 1305 return {1, 1, 1}; 1306 1307 auto ElementSize = getMatMulAlignTypeSize(MMI); 1308 assert(ElementSize > 0 && "The element size of the matrix multiplication " 1309 "operands should be greater than zero."); 1310 int Kc = (Car * FirstCacheLevelSize) / 1311 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); 1312 double Cac = 1313 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) / 1314 SecondCacheLevelSize; 1315 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); 1316 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; 1317 1318 assert(Mc > 0 && Nc > 0 && Kc > 0 && 1319 "Matrix block sizes should be greater than zero"); 1320 return {Mc, Nc, Kc}; 1321 } 1322 1323 /// Create an access relation that is specific to 1324 /// the matrix multiplication pattern. 1325 /// 1326 /// Create an access relation of the following form: 1327 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ] 1328 /// where I is @p FirstDim, J is @p SecondDim. 1329 /// 1330 /// It can be used, for example, to create relations that helps to consequently 1331 /// access elements of operands of a matrix multiplication after creation of 1332 /// the BLIS micro and macro kernels. 1333 /// 1334 /// @see ScheduleTreeOptimizer::createMicroKernel 1335 /// @see ScheduleTreeOptimizer::createMacroKernel 1336 /// 1337 /// Subsequently, the described access relation is applied to the range of 1338 /// @p MapOldIndVar, that is used to map original induction variables to 1339 /// the ones, which are produced by schedule transformations. It helps to 1340 /// define relations using a new space and, at the same time, keep them 1341 /// in the original one. 1342 /// 1343 /// @param MapOldIndVar The relation, which maps original induction variables 1344 /// to the ones, which are produced by schedule 1345 /// transformations. 1346 /// @param FirstDim, SecondDim The input dimensions that are used to define 1347 /// the specified access relation. 1348 /// @return The specified access relation. 1349 isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim, 1350 unsigned SecondDim) { 1351 auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3); 1352 auto AccessRel = isl::map::universe(AccessRelSpace); 1353 AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0); 1354 AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1); 1355 AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2); 1356 return MapOldIndVar.apply_range(AccessRel); 1357 } 1358 1359 isl::schedule_node createExtensionNode(isl::schedule_node Node, 1360 isl::map ExtensionMap) { 1361 auto Extension = isl::union_map(ExtensionMap); 1362 auto NewNode = isl::schedule_node::from_extension(Extension); 1363 return Node.graft_before(NewNode); 1364 } 1365 1366 /// Apply the packing transformation. 1367 /// 1368 /// The packing transformation can be described as a data-layout 1369 /// transformation that requires to introduce a new array, copy data 1370 /// to the array, and change memory access locations to reference the array. 1371 /// It can be used to ensure that elements of the new array are read in-stride 1372 /// access, aligned to cache lines boundaries, and preloaded into certain cache 1373 /// levels. 1374 /// 1375 /// As an example let us consider the packing of the array A that would help 1376 /// to read its elements with in-stride access. An access to the array A 1377 /// is represented by an access relation that has the form 1378 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has 1379 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr), 1380 /// k mod Kc, j mod Nr, i mod Mr]. 1381 /// 1382 /// To ensure that elements of the array A are read in-stride access, we add 1383 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using 1384 /// Scop::createScopArrayInfo, change the access relation 1385 /// S[i, j, k] -> A[i, k] to 1386 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using 1387 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using 1388 /// the copy statement created by Scop::addScopStmt. 1389 /// 1390 /// @param Node The schedule node to be optimized. 1391 /// @param MapOldIndVar The relation, which maps original induction variables 1392 /// to the ones, which are produced by schedule 1393 /// transformations. 1394 /// @param MicroParams, MacroParams Parameters of the BLIS kernel 1395 /// to be taken into account. 1396 /// @param MMI Parameters of the matrix multiplication operands. 1397 /// @return The optimized schedule node. 1398 static isl::schedule_node 1399 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar, 1400 MicroKernelParamsTy MicroParams, 1401 MacroKernelParamsTy MacroParams, 1402 MatMulInfoTy &MMI) { 1403 auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); 1404 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user()); 1405 1406 // Create a copy statement that corresponds to the memory access to the 1407 // matrix B, the second operand of the matrix multiplication. 1408 Node = Node.parent().parent().parent().parent().parent().parent(); 1409 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0); 1410 auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7); 1411 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr; 1412 unsigned SecondDimSize = MacroParams.Kc; 1413 unsigned ThirdDimSize = MicroParams.Nr; 1414 auto *SAI = Stmt->getParent()->createScopArrayInfo( 1415 MMI.B->getElementType(), "Packed_B", 1416 {FirstDimSize, SecondDimSize, ThirdDimSize}); 1417 AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId()); 1418 auto OldAcc = MMI.B->getLatestAccessRelation(); 1419 MMI.B->setNewAccessRelation(AccRel); 1420 auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, 1421 MapOldIndVar.dim(isl::dim::out) - 2); 1422 ExtMap = ExtMap.reverse(); 1423 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0); 1424 auto Domain = Stmt->getDomain(); 1425 1426 // Restrict the domains of the copy statements to only execute when also its 1427 // originating statement is executed. 1428 auto DomainId = Domain.get_tuple_id(); 1429 auto *NewStmt = Stmt->getParent()->addScopStmt( 1430 OldAcc, MMI.B->getLatestAccessRelation(), Domain); 1431 ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId); 1432 ExtMap = ExtMap.intersect_range(Domain); 1433 ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId()); 1434 Node = createExtensionNode(Node, ExtMap); 1435 1436 // Create a copy statement that corresponds to the memory access 1437 // to the matrix A, the first operand of the matrix multiplication. 1438 Node = Node.child(0); 1439 AccRel = getMatMulAccRel(MapOldIndVar, 4, 6); 1440 FirstDimSize = MacroParams.Mc / MicroParams.Mr; 1441 ThirdDimSize = MicroParams.Mr; 1442 SAI = Stmt->getParent()->createScopArrayInfo( 1443 MMI.A->getElementType(), "Packed_A", 1444 {FirstDimSize, SecondDimSize, ThirdDimSize}); 1445 AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId()); 1446 OldAcc = MMI.A->getLatestAccessRelation(); 1447 MMI.A->setNewAccessRelation(AccRel); 1448 ExtMap = MapOldIndVar.project_out(isl::dim::out, 3, 1449 MapOldIndVar.dim(isl::dim::out) - 3); 1450 ExtMap = ExtMap.reverse(); 1451 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0); 1452 NewStmt = Stmt->getParent()->addScopStmt( 1453 OldAcc, MMI.A->getLatestAccessRelation(), Domain); 1454 1455 // Restrict the domains of the copy statements to only execute when also its 1456 // originating statement is executed. 1457 ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId); 1458 ExtMap = ExtMap.intersect_range(Domain); 1459 ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId()); 1460 Node = createExtensionNode(Node, ExtMap); 1461 return Node.child(0).child(0).child(0).child(0).child(0); 1462 } 1463 1464 /// Get a relation mapping induction variables produced by schedule 1465 /// transformations to the original ones. 1466 /// 1467 /// @param Node The schedule node produced as the result of creation 1468 /// of the BLIS kernels. 1469 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel 1470 /// to be taken into account. 1471 /// @return The relation mapping original induction variables to the ones 1472 /// produced by schedule transformation. 1473 /// @see ScheduleTreeOptimizer::createMicroKernel 1474 /// @see ScheduleTreeOptimizer::createMacroKernel 1475 /// @see getMacroKernelParams 1476 isl::map 1477 getInductionVariablesSubstitution(isl::schedule_node Node, 1478 MicroKernelParamsTy MicroKernelParams, 1479 MacroKernelParamsTy MacroKernelParams) { 1480 auto Child = Node.child(0); 1481 auto UnMapOldIndVar = Child.get_prefix_schedule_union_map(); 1482 auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar); 1483 if (MapOldIndVar.dim(isl::dim::out) > 9) 1484 return MapOldIndVar.project_out(isl::dim::out, 0, 1485 MapOldIndVar.dim(isl::dim::out) - 9); 1486 return MapOldIndVar; 1487 } 1488 1489 /// Isolate a set of partial tile prefixes and unroll the isolated part. 1490 /// 1491 /// The set should ensure that it contains only partial tile prefixes that have 1492 /// exactly Mr x Nr iterations of the two innermost loops produced by 1493 /// the optimization of the matrix multiplication. Mr and Nr are parameters of 1494 /// the micro-kernel. 1495 /// 1496 /// In case of parametric bounds, this helps to auto-vectorize the unrolled 1497 /// innermost loops, using the SLP vectorizer. 1498 /// 1499 /// @param Node The schedule node to be modified. 1500 /// @param MicroKernelParams Parameters of the micro-kernel 1501 /// to be taken into account. 1502 /// @return The modified isl_schedule_node. 1503 static isl::schedule_node 1504 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node, 1505 struct MicroKernelParamsTy MicroKernelParams) { 1506 isl::schedule_node Child = Node.get_child(0); 1507 isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation(); 1508 isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range(); 1509 isl_size Dims = Prefix.dim(isl::dim::set); 1510 Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1); 1511 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr); 1512 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr); 1513 1514 isl::union_set IsolateOption = 1515 getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3); 1516 isl::ctx Ctx = Node.get_ctx(); 1517 auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll")); 1518 Options = Options.unite(getUnrollIsolatedSetOptions(Ctx)); 1519 Node = Node.band_set_ast_build_options(Options); 1520 Node = Node.parent().parent().parent(); 1521 IsolateOption = getIsolateOptions(Prefix, 3); 1522 Options = IsolateOption.unite(getDimOptions(Ctx, "separate")); 1523 Node = Node.band_set_ast_build_options(Options); 1524 Node = Node.child(0).child(0).child(0); 1525 return Node; 1526 } 1527 1528 /// Mark @p BasePtr with "Inter iteration alias-free" mark node. 1529 /// 1530 /// @param Node The child of the mark node to be inserted. 1531 /// @param BasePtr The pointer to be marked. 1532 /// @return The modified isl_schedule_node. 1533 static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node, 1534 Value *BasePtr) { 1535 if (!BasePtr) 1536 return Node; 1537 1538 auto Id = 1539 isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr); 1540 return Node.insert_mark(Id).child(0); 1541 } 1542 1543 /// Insert "Loop Vectorizer Disabled" mark node. 1544 /// 1545 /// @param Node The child of the mark node to be inserted. 1546 /// @return The modified isl_schedule_node. 1547 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) { 1548 auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr); 1549 return Node.insert_mark(Id).child(0); 1550 } 1551 1552 /// Restore the initial ordering of dimensions of the band node 1553 /// 1554 /// In case the band node represents all the dimensions of the iteration 1555 /// domain, recreate the band node to restore the initial ordering of the 1556 /// dimensions. 1557 /// 1558 /// @param Node The band node to be modified. 1559 /// @return The modified schedule node. 1560 static isl::schedule_node 1561 getBandNodeWithOriginDimOrder(isl::schedule_node Node) { 1562 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 1563 if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf) 1564 return Node; 1565 auto Domain = Node.get_universe_domain(); 1566 assert(isl_union_set_n_set(Domain.get()) == 1); 1567 if (Node.get_schedule_depth() != 0 || 1568 (isl::set(Domain).dim(isl::dim::set) != 1569 isl_schedule_node_band_n_member(Node.get()))) 1570 return Node; 1571 Node = isl::manage(isl_schedule_node_delete(Node.copy())); 1572 auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff(); 1573 auto PartialScheduleMultiPwAff = 1574 isl::multi_union_pw_aff(PartialSchedulePwAff); 1575 PartialScheduleMultiPwAff = 1576 PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set); 1577 return Node.insert_partial_schedule(PartialScheduleMultiPwAff); 1578 } 1579 1580 isl::schedule_node 1581 ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node, 1582 const TargetTransformInfo *TTI, 1583 MatMulInfoTy &MMI) { 1584 assert(TTI && "The target transform info should be provided."); 1585 Node = markInterIterationAliasFree( 1586 Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr()); 1587 int DimOutNum = isl_schedule_node_band_n_member(Node.get()); 1588 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest " 1589 "and, consequently, the corresponding scheduling " 1590 "functions have at least three dimensions."); 1591 Node = getBandNodeWithOriginDimOrder(Node); 1592 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3); 1593 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j; 1594 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k; 1595 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); 1596 NewK = NewK == DimOutNum - 2 ? NewJ : NewK; 1597 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); 1598 auto MicroKernelParams = getMicroKernelParams(TTI, MMI); 1599 auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI); 1600 Node = createMacroKernel(Node, MacroKernelParams); 1601 Node = createMicroKernel(Node, MicroKernelParams); 1602 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || 1603 MacroKernelParams.Kc == 1) 1604 return Node; 1605 auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams, 1606 MacroKernelParams); 1607 if (!MapOldIndVar) 1608 return Node; 1609 Node = markLoopVectorizerDisabled(Node.parent()).child(0); 1610 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams); 1611 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, 1612 MacroKernelParams, MMI); 1613 } 1614 1615 bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node, 1616 const Dependences *D, 1617 MatMulInfoTy &MMI) { 1618 auto PartialSchedule = isl::manage( 1619 isl_schedule_node_band_get_partial_schedule_union_map(Node.get())); 1620 Node = Node.child(0); 1621 auto LeafType = isl_schedule_node_get_type(Node.get()); 1622 Node = Node.parent(); 1623 if (LeafType != isl_schedule_node_leaf || 1624 isl_schedule_node_band_n_member(Node.get()) < 3 || 1625 Node.get_schedule_depth() != 0 || 1626 isl_union_map_n_map(PartialSchedule.get()) != 1) 1627 return false; 1628 auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule); 1629 if (containsMatrMult(NewPartialSchedule, D, MMI)) 1630 return true; 1631 return false; 1632 } 1633 1634 __isl_give isl_schedule_node * 1635 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, 1636 void *User) { 1637 if (!isTileableBandNode(isl::manage_copy(Node))) 1638 return Node; 1639 1640 const OptimizerAdditionalInfoTy *OAI = 1641 static_cast<const OptimizerAdditionalInfoTy *>(User); 1642 1643 MatMulInfoTy MMI; 1644 if (PMBasedOpts && User && 1645 isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) { 1646 LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); 1647 MatMulOpts++; 1648 return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release(); 1649 } 1650 1651 return standardBandOpts(isl::manage(Node), User).release(); 1652 } 1653 1654 isl::schedule 1655 ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule, 1656 const OptimizerAdditionalInfoTy *OAI) { 1657 auto Root = Schedule.get_root(); 1658 Root = optimizeScheduleNode(Root, OAI); 1659 return Root.get_schedule(); 1660 } 1661 1662 isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode( 1663 isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) { 1664 Node = isl::manage(isl_schedule_node_map_descendant_bottom_up( 1665 Node.release(), optimizeBand, 1666 const_cast<void *>(static_cast<const void *>(OAI)))); 1667 return Node; 1668 } 1669 1670 bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S, 1671 isl::schedule NewSchedule) { 1672 // To understand if the schedule has been optimized we check if the schedule 1673 // has changed at all. 1674 // TODO: We can improve this by tracking if any necessarily beneficial 1675 // transformations have been performed. This can e.g. be tiling, loop 1676 // interchange, or ...) We can track this either at the place where the 1677 // transformation has been performed or, in case of automatic ILP based 1678 // optimizations, by comparing (yet to be defined) performance metrics 1679 // before/after the scheduling optimizer 1680 // (e.g., #stride-one accesses) 1681 auto NewScheduleMap = NewSchedule.get_map(); 1682 auto OldSchedule = S.getSchedule(); 1683 assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes " 1684 "that make Scop::getSchedule() return nullptr."); 1685 bool changed = !OldSchedule.is_equal(NewScheduleMap); 1686 return changed; 1687 } 1688 1689 class IslScheduleOptimizerWrapperPass : public ScopPass { 1690 public: 1691 static char ID; 1692 1693 explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {} 1694 1695 ~IslScheduleOptimizerWrapperPass() override { releaseMemory(); } 1696 1697 /// Optimize the schedule of the SCoP @p S. 1698 bool runOnScop(Scop &S) override; 1699 1700 /// Print the new schedule for the SCoP @p S. 1701 void printScop(raw_ostream &OS, Scop &S) const override; 1702 1703 /// Register all analyses and transformation required. 1704 void getAnalysisUsage(AnalysisUsage &AU) const override; 1705 1706 /// Release the internal memory. 1707 void releaseMemory() override { 1708 LastSchedule = nullptr; 1709 IslCtx.reset(); 1710 } 1711 1712 private: 1713 std::shared_ptr<isl_ctx> IslCtx; 1714 isl::schedule LastSchedule; 1715 }; 1716 1717 char IslScheduleOptimizerWrapperPass::ID = 0; 1718 1719 /// Collect statistics for the schedule tree. 1720 /// 1721 /// @param Schedule The schedule tree to analyze. If not a schedule tree it is 1722 /// ignored. 1723 /// @param Version The version of the schedule tree that is analyzed. 1724 /// 0 for the original schedule tree before any transformation. 1725 /// 1 for the schedule tree after isl's rescheduling. 1726 /// 2 for the schedule tree after optimizations are applied 1727 /// (tiling, pattern matching) 1728 static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) { 1729 auto Root = Schedule.get_root(); 1730 if (!Root) 1731 return; 1732 1733 isl_schedule_node_foreach_descendant_top_down( 1734 Root.get(), 1735 [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool { 1736 isl::schedule_node Node = isl::manage_copy(nodeptr); 1737 int Version = *static_cast<int *>(user); 1738 1739 switch (isl_schedule_node_get_type(Node.get())) { 1740 case isl_schedule_node_band: { 1741 NumBands[Version]++; 1742 if (isl_schedule_node_band_get_permutable(Node.get()) == 1743 isl_bool_true) 1744 NumPermutable[Version]++; 1745 1746 int CountMembers = isl_schedule_node_band_n_member(Node.get()); 1747 NumBandMembers[Version] += CountMembers; 1748 for (int i = 0; i < CountMembers; i += 1) { 1749 if (Node.band_member_get_coincident(i)) 1750 NumCoincident[Version]++; 1751 } 1752 break; 1753 } 1754 1755 case isl_schedule_node_filter: 1756 NumFilters[Version]++; 1757 break; 1758 1759 case isl_schedule_node_extension: 1760 NumExtension[Version]++; 1761 break; 1762 1763 default: 1764 break; 1765 } 1766 1767 return isl_bool_true; 1768 }, 1769 &Version); 1770 } 1771 1772 static bool runIslScheduleOptimizer( 1773 Scop &S, 1774 function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps, 1775 TargetTransformInfo *TTI, isl::schedule &LastSchedule) { 1776 // Skip SCoPs in case they're already optimised by PPCGCodeGeneration 1777 if (S.isToBeSkipped()) 1778 return false; 1779 1780 // Skip empty SCoPs but still allow code generation as it will delete the 1781 // loops present but not needed. 1782 if (S.getSize() == 0) { 1783 S.markAsOptimized(); 1784 return false; 1785 } 1786 1787 const Dependences &D = GetDeps(Dependences::AL_Statement); 1788 1789 if (D.getSharedIslCtx() != S.getSharedIslCtx()) { 1790 LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n"); 1791 return false; 1792 } 1793 1794 if (!D.hasValidDependences()) 1795 return false; 1796 1797 // Build input data. 1798 int ValidityKinds = 1799 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1800 int ProximityKinds; 1801 1802 if (OptimizeDeps == "all") 1803 ProximityKinds = 1804 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1805 else if (OptimizeDeps == "raw") 1806 ProximityKinds = Dependences::TYPE_RAW; 1807 else { 1808 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" 1809 << " Falling back to optimizing all dependences.\n"; 1810 ProximityKinds = 1811 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1812 } 1813 1814 isl::union_set Domain = S.getDomains(); 1815 1816 if (!Domain) 1817 return false; 1818 1819 ScopsProcessed++; 1820 walkScheduleTreeForStatistics(S.getScheduleTree(), 0); 1821 1822 isl::union_map Validity = D.getDependences(ValidityKinds); 1823 isl::union_map Proximity = D.getDependences(ProximityKinds); 1824 1825 // Simplify the dependences by removing the constraints introduced by the 1826 // domains. This can speed up the scheduling time significantly, as large 1827 // constant coefficients will be removed from the dependences. The 1828 // introduction of some additional dependences reduces the possible 1829 // transformations, but in most cases, such transformation do not seem to be 1830 // interesting anyway. In some cases this option may stop the scheduler to 1831 // find any schedule. 1832 if (SimplifyDeps == "yes") { 1833 Validity = Validity.gist_domain(Domain); 1834 Validity = Validity.gist_range(Domain); 1835 Proximity = Proximity.gist_domain(Domain); 1836 Proximity = Proximity.gist_range(Domain); 1837 } else if (SimplifyDeps != "no") { 1838 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " 1839 "or 'no'. Falling back to default: 'yes'\n"; 1840 } 1841 1842 LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: "); 1843 LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n"); 1844 LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n"); 1845 LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n"); 1846 1847 unsigned IslSerializeSCCs; 1848 1849 if (FusionStrategy == "max") { 1850 IslSerializeSCCs = 0; 1851 } else if (FusionStrategy == "min") { 1852 IslSerializeSCCs = 1; 1853 } else { 1854 errs() << "warning: Unknown fusion strategy. Falling back to maximal " 1855 "fusion.\n"; 1856 IslSerializeSCCs = 0; 1857 } 1858 1859 int IslMaximizeBands; 1860 1861 if (MaximizeBandDepth == "yes") { 1862 IslMaximizeBands = 1; 1863 } else if (MaximizeBandDepth == "no") { 1864 IslMaximizeBands = 0; 1865 } else { 1866 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" 1867 " or 'no'. Falling back to default: 'yes'\n"; 1868 IslMaximizeBands = 1; 1869 } 1870 1871 int IslOuterCoincidence; 1872 1873 if (OuterCoincidence == "yes") { 1874 IslOuterCoincidence = 1; 1875 } else if (OuterCoincidence == "no") { 1876 IslOuterCoincidence = 0; 1877 } else { 1878 errs() << "warning: Option -polly-opt-outer-coincidence should either be " 1879 "'yes' or 'no'. Falling back to default: 'no'\n"; 1880 IslOuterCoincidence = 0; 1881 } 1882 1883 isl_ctx *Ctx = S.getIslCtx().get(); 1884 1885 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence); 1886 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs); 1887 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands); 1888 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm); 1889 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient); 1890 isl_options_set_tile_scale_tile_loops(Ctx, 0); 1891 1892 auto OnErrorStatus = isl_options_get_on_error(Ctx); 1893 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE); 1894 1895 auto SC = isl::schedule_constraints::on_domain(Domain); 1896 SC = SC.set_proximity(Proximity); 1897 SC = SC.set_validity(Validity); 1898 SC = SC.set_coincidence(Validity); 1899 auto Schedule = SC.compute_schedule(); 1900 isl_options_set_on_error(Ctx, OnErrorStatus); 1901 1902 walkScheduleTreeForStatistics(Schedule, 1); 1903 1904 // In cases the scheduler is not able to optimize the code, we just do not 1905 // touch the schedule. 1906 if (!Schedule) 1907 return false; 1908 1909 ScopsRescheduled++; 1910 1911 LLVM_DEBUG({ 1912 auto *P = isl_printer_to_str(Ctx); 1913 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1914 P = isl_printer_print_schedule(P, Schedule.get()); 1915 auto *str = isl_printer_get_str(P); 1916 dbgs() << "NewScheduleTree: \n" << str << "\n"; 1917 free(str); 1918 isl_printer_free(P); 1919 }); 1920 1921 const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)}; 1922 auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI); 1923 NewSchedule = hoistExtensionNodes(NewSchedule); 1924 walkScheduleTreeForStatistics(NewSchedule, 2); 1925 1926 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) 1927 return false; 1928 1929 auto ScopStats = S.getStatistics(); 1930 ScopsOptimized++; 1931 NumAffineLoopsOptimized += ScopStats.NumAffineLoops; 1932 NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops; 1933 LastSchedule = NewSchedule; 1934 1935 S.setScheduleTree(NewSchedule); 1936 S.markAsOptimized(); 1937 1938 if (OptimizedScops) 1939 errs() << S; 1940 1941 return false; 1942 } 1943 1944 bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) { 1945 releaseMemory(); 1946 1947 Function &F = S.getFunction(); 1948 IslCtx = S.getSharedIslCtx(); 1949 1950 auto getDependences = 1951 [this](Dependences::AnalysisLevel) -> const Dependences & { 1952 return getAnalysis<DependenceInfo>().getDependences( 1953 Dependences::AL_Statement); 1954 }; 1955 // auto &Deps = getAnalysis<DependenceInfo>(); 1956 TargetTransformInfo *TTI = 1957 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1958 return runIslScheduleOptimizer(S, getDependences, TTI, LastSchedule); 1959 } 1960 1961 static void runScheduleOptimizerPrinter(raw_ostream &OS, 1962 isl::schedule LastSchedule) { 1963 isl_printer *p; 1964 char *ScheduleStr; 1965 1966 OS << "Calculated schedule:\n"; 1967 1968 if (!LastSchedule) { 1969 OS << "n/a\n"; 1970 return; 1971 } 1972 1973 p = isl_printer_to_str(LastSchedule.get_ctx().get()); 1974 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK); 1975 p = isl_printer_print_schedule(p, LastSchedule.get()); 1976 ScheduleStr = isl_printer_get_str(p); 1977 isl_printer_free(p); 1978 1979 OS << ScheduleStr << "\n"; 1980 1981 free(ScheduleStr); 1982 } 1983 1984 void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const { 1985 runScheduleOptimizerPrinter(OS, LastSchedule); 1986 } 1987 1988 void IslScheduleOptimizerWrapperPass::getAnalysisUsage( 1989 AnalysisUsage &AU) const { 1990 ScopPass::getAnalysisUsage(AU); 1991 AU.addRequired<DependenceInfo>(); 1992 AU.addRequired<TargetTransformInfoWrapperPass>(); 1993 1994 AU.addPreserved<DependenceInfo>(); 1995 } 1996 1997 } // namespace 1998 1999 Pass *polly::createIslScheduleOptimizerWrapperPass() { 2000 return new IslScheduleOptimizerWrapperPass(); 2001 } 2002 2003 INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl", 2004 "Polly - Optimize schedule of SCoP", false, false); 2005 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2006 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); 2007 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); 2008 INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl", 2009 "Polly - Optimize schedule of SCoP", false, false) 2010 2011 static llvm::PreservedAnalyses 2012 runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM, 2013 ScopStandardAnalysisResults &SAR, SPMUpdater &U, 2014 raw_ostream *OS) { 2015 DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR); 2016 auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & { 2017 return Deps.getDependences(Dependences::AL_Statement); 2018 }; 2019 TargetTransformInfo *TTI = &SAR.TTI; 2020 isl::schedule LastSchedule; 2021 bool Modified = runIslScheduleOptimizer(S, GetDeps, TTI, LastSchedule); 2022 if (OS) { 2023 *OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '" 2024 << S.getName() << "' in function '" << S.getFunction().getName() 2025 << "':\n"; 2026 runScheduleOptimizerPrinter(*OS, LastSchedule); 2027 } 2028 2029 if (!Modified) 2030 return PreservedAnalyses::all(); 2031 2032 PreservedAnalyses PA; 2033 PA.preserveSet<AllAnalysesOn<Module>>(); 2034 PA.preserveSet<AllAnalysesOn<Function>>(); 2035 PA.preserveSet<AllAnalysesOn<Loop>>(); 2036 return PA; 2037 } 2038 2039 llvm::PreservedAnalyses 2040 IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM, 2041 ScopStandardAnalysisResults &SAR, SPMUpdater &U) { 2042 return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr); 2043 } 2044 2045 llvm::PreservedAnalyses 2046 IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM, 2047 ScopStandardAnalysisResults &SAR, 2048 SPMUpdater &U) { 2049 return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS); 2050 } 2051