1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass generates an entirely new schedule tree from the data dependences 11 // and iteration domains. The new schedule tree is computed in two steps: 12 // 13 // 1) The isl scheduling optimizer is run 14 // 15 // The isl scheduling optimizer creates a new schedule tree that maximizes 16 // parallelism and tileability and minimizes data-dependence distances. The 17 // algorithm used is a modified version of the ``Pluto'' algorithm: 18 // 19 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 20 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. 21 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language 22 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. 23 // 24 // 2) A set of post-scheduling transformations is applied on the schedule tree. 25 // 26 // These optimizations include: 27 // 28 // - Tiling of the innermost tilable bands 29 // - Prevectorization - The choice of a possible outer loop that is strip-mined 30 // to the innermost level to enable inner-loop 31 // vectorization. 32 // - Some optimizations for spatial locality are also planned. 33 // 34 // For a detailed description of the schedule tree itself please see section 6 35 // of: 36 // 37 // Polyhedral AST generation is more than scanning polyhedra 38 // Tobias Grosser, Sven Verdoolaege, Albert Cohen 39 // ACM Transactions on Programming Languages and Systems (TOPLAS), 40 // 37(4), July 2015 41 // http://www.grosser.es/#pub-polyhedral-AST-generation 42 // 43 // This publication also contains a detailed discussion of the different options 44 // for polyhedral loop unrolling, full/partial tile separation and other uses 45 // of the schedule tree. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "polly/ScheduleOptimizer.h" 50 #include "polly/CodeGen/CodeGeneration.h" 51 #include "polly/DependenceInfo.h" 52 #include "polly/LinkAllPasses.h" 53 #include "polly/Options.h" 54 #include "polly/ScopInfo.h" 55 #include "polly/Support/GICHelper.h" 56 #include "llvm/Analysis/TargetTransformInfo.h" 57 #include "llvm/Support/Debug.h" 58 #include "isl/aff.h" 59 #include "isl/band.h" 60 #include "isl/constraint.h" 61 #include "isl/map.h" 62 #include "isl/options.h" 63 #include "isl/printer.h" 64 #include "isl/schedule.h" 65 #include "isl/schedule_node.h" 66 #include "isl/space.h" 67 #include "isl/union_map.h" 68 #include "isl/union_set.h" 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-opt-isl" 74 75 static cl::opt<std::string> 76 OptimizeDeps("polly-opt-optimize-only", 77 cl::desc("Only a certain kind of dependences (all/raw)"), 78 cl::Hidden, cl::init("all"), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<std::string> 82 SimplifyDeps("polly-opt-simplify-deps", 83 cl::desc("Dependences should be simplified (yes/no)"), 84 cl::Hidden, cl::init("yes"), cl::ZeroOrMore, 85 cl::cat(PollyCategory)); 86 87 static cl::opt<int> MaxConstantTerm( 88 "polly-opt-max-constant-term", 89 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, 90 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 91 92 static cl::opt<int> MaxCoefficient( 93 "polly-opt-max-coefficient", 94 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, 95 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<std::string> FusionStrategy( 98 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), 99 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); 100 101 static cl::opt<std::string> 102 MaximizeBandDepth("polly-opt-maximize-bands", 103 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, 104 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); 105 106 static cl::opt<std::string> OuterCoincidence( 107 "polly-opt-outer-coincidence", 108 cl::desc("Try to construct schedules where the outer member of each band " 109 "satisfies the coincidence constraints (yes/no)"), 110 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<int> PrevectorWidth( 113 "polly-prevect-width", 114 cl::desc( 115 "The number of loop iterations to strip-mine for pre-vectorization"), 116 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); 117 118 static cl::opt<bool> FirstLevelTiling("polly-tiling", 119 cl::desc("Enable loop tiling"), 120 cl::init(true), cl::ZeroOrMore, 121 cl::cat(PollyCategory)); 122 123 static cl::opt<int> LatencyVectorFma( 124 "polly-target-latency-vector-fma", 125 cl::desc("The minimal number of cycles between issuing two " 126 "dependent consecutive vector fused multiply-add " 127 "instructions."), 128 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 129 130 static cl::opt<int> ThroughputVectorFma( 131 "polly-target-throughput-vector-fma", 132 cl::desc("A throughput of the processor floating-point arithmetic units " 133 "expressed in the number of vector fused multiply-add " 134 "instructions per clock cycle."), 135 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory)); 136 137 // This option, along with --polly-target-2nd-cache-level-associativity, 138 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size 139 // represent the parameters of the target cache, which do not have typical 140 // values that can be used by default. However, to apply the pattern matching 141 // optimizations, we use the values of the parameters of Intel Core i7-3820 142 // SandyBridge in case the parameters are not specified. Such an approach helps 143 // also to attain the high-performance on IBM POWER System S822 and IBM Power 144 // 730 Express server. 145 static cl::opt<int> FirstCacheLevelAssociativity( 146 "polly-target-1st-cache-level-associativity", 147 cl::desc("The associativity of the first cache level."), cl::Hidden, 148 cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 149 150 static cl::opt<int> SecondCacheLevelAssociativity( 151 "polly-target-2nd-cache-level-associativity", 152 cl::desc("The associativity of the second cache level."), cl::Hidden, 153 cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); 154 155 static cl::opt<int> FirstCacheLevelSize( 156 "polly-target-1st-cache-level-size", 157 cl::desc("The size of the first cache level specified in bytes."), 158 cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory)); 159 160 static cl::opt<int> SecondCacheLevelSize( 161 "polly-target-2nd-cache-level-size", 162 cl::desc("The size of the second level specified in bytes."), cl::Hidden, 163 cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory)); 164 165 static cl::opt<int> VectorRegisterBitwidth( 166 "polly-target-vector-register-bitwidth", 167 cl::desc("The size in bits of a vector register (if not set, this " 168 "information is taken from LLVM's target information."), 169 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); 170 171 static cl::opt<int> FirstLevelDefaultTileSize( 172 "polly-default-tile-size", 173 cl::desc("The default tile size (if not enough were provided by" 174 " --polly-tile-sizes)"), 175 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); 176 177 static cl::list<int> 178 FirstLevelTileSizes("polly-tile-sizes", 179 cl::desc("A tile size for each loop dimension, filled " 180 "with --polly-default-tile-size"), 181 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 182 cl::cat(PollyCategory)); 183 184 static cl::opt<bool> 185 SecondLevelTiling("polly-2nd-level-tiling", 186 cl::desc("Enable a 2nd level loop of loop tiling"), 187 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 188 189 static cl::opt<int> SecondLevelDefaultTileSize( 190 "polly-2nd-level-default-tile-size", 191 cl::desc("The default 2nd-level tile size (if not enough were provided by" 192 " --polly-2nd-level-tile-sizes)"), 193 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); 194 195 static cl::list<int> 196 SecondLevelTileSizes("polly-2nd-level-tile-sizes", 197 cl::desc("A tile size for each loop dimension, filled " 198 "with --polly-default-tile-size"), 199 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 200 cl::cat(PollyCategory)); 201 202 static cl::opt<bool> RegisterTiling("polly-register-tiling", 203 cl::desc("Enable register tiling"), 204 cl::init(false), cl::ZeroOrMore, 205 cl::cat(PollyCategory)); 206 207 static cl::opt<int> RegisterDefaultTileSize( 208 "polly-register-tiling-default-tile-size", 209 cl::desc("The default register tile size (if not enough were provided by" 210 " --polly-register-tile-sizes)"), 211 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); 212 213 static cl::opt<int> PollyPatternMatchingNcQuotient( 214 "polly-pattern-matching-nc-quotient", 215 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the" 216 "macro-kernel, by Nr, the parameter of the micro-kernel"), 217 cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory)); 218 219 static cl::list<int> 220 RegisterTileSizes("polly-register-tile-sizes", 221 cl::desc("A tile size for each loop dimension, filled " 222 "with --polly-register-tile-size"), 223 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, 224 cl::cat(PollyCategory)); 225 226 static cl::opt<bool> 227 PMBasedOpts("polly-pattern-matching-based-opts", 228 cl::desc("Perform optimizations based on pattern matching"), 229 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 230 231 static cl::opt<bool> OptimizedScops( 232 "polly-optimized-scops", 233 cl::desc("Polly - Dump polyhedral description of Scops optimized with " 234 "the isl scheduling optimizer and the set of post-scheduling " 235 "transformations is applied on the schedule tree"), 236 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 237 238 /// Create an isl_union_set, which describes the isolate option based on 239 /// IsoalteDomain. 240 /// 241 /// @param IsolateDomain An isl_set whose @p OutDimsNum last dimensions should 242 /// belong to the current band node. 243 /// @param OutDimsNum A number of dimensions that should belong to 244 /// the current band node. 245 static __isl_give isl_union_set * 246 getIsolateOptions(__isl_take isl_set *IsolateDomain, unsigned OutDimsNum) { 247 auto Dims = isl_set_dim(IsolateDomain, isl_dim_set); 248 assert(OutDimsNum <= Dims && 249 "The isl_set IsolateDomain is used to describe the range of schedule " 250 "dimensions values, which should be isolated. Consequently, the " 251 "number of its dimensions should be greater than or equal to the " 252 "number of the schedule dimensions."); 253 auto *IsolateRelation = isl_map_from_domain(IsolateDomain); 254 IsolateRelation = 255 isl_map_move_dims(IsolateRelation, isl_dim_out, 0, isl_dim_in, 256 Dims - OutDimsNum, OutDimsNum); 257 auto *IsolateOption = isl_map_wrap(IsolateRelation); 258 auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr); 259 return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id)); 260 } 261 262 /// Create an isl_union_set, which describes the atomic option for the dimension 263 /// of the current node. 264 /// 265 /// It may help to reduce the size of generated code. 266 /// 267 /// @param Ctx An isl_ctx, which is used to create the isl_union_set. 268 static __isl_give isl_union_set *getAtomicOptions(isl_ctx *Ctx) { 269 auto *Space = isl_space_set_alloc(Ctx, 0, 1); 270 auto *AtomicOption = isl_set_universe(Space); 271 auto *Id = isl_id_alloc(Ctx, "atomic", nullptr); 272 return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id)); 273 } 274 275 /// Create an isl_union_set, which describes the option of the form 276 /// [isolate[] -> unroll[x]]. 277 /// 278 /// @param Ctx An isl_ctx, which is used to create the isl_union_set. 279 static __isl_give isl_union_set *getUnrollIsolatedSetOptions(isl_ctx *Ctx) { 280 auto *Space = isl_space_alloc(Ctx, 0, 0, 1); 281 auto *UnrollIsolatedSetOption = isl_map_universe(Space); 282 auto *DimInId = isl_id_alloc(Ctx, "isolate", nullptr); 283 auto *DimOutId = isl_id_alloc(Ctx, "unroll", nullptr); 284 UnrollIsolatedSetOption = 285 isl_map_set_tuple_id(UnrollIsolatedSetOption, isl_dim_in, DimInId); 286 UnrollIsolatedSetOption = 287 isl_map_set_tuple_id(UnrollIsolatedSetOption, isl_dim_out, DimOutId); 288 return isl_union_set_from_set(isl_map_wrap(UnrollIsolatedSetOption)); 289 } 290 291 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1. 292 /// 293 /// @param Set A set, which should be modified. 294 /// @param VectorWidth A parameter, which determines the constraint. 295 static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set, 296 int VectorWidth) { 297 auto Dims = isl_set_dim(Set, isl_dim_set); 298 auto Space = isl_set_get_space(Set); 299 auto *LocalSpace = isl_local_space_from_space(Space); 300 auto *ExtConstr = 301 isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace)); 302 ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0); 303 ExtConstr = 304 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1); 305 Set = isl_set_add_constraint(Set, ExtConstr); 306 ExtConstr = isl_constraint_alloc_inequality(LocalSpace); 307 ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1); 308 ExtConstr = 309 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1); 310 return isl_set_add_constraint(Set, ExtConstr); 311 } 312 313 /// Build the desired set of partial tile prefixes. 314 /// 315 /// We build a set of partial tile prefixes, which are prefixes of the vector 316 /// loop that have exactly VectorWidth iterations. 317 /// 318 /// 1. Get all prefixes of the vector loop. 319 /// 2. Extend it to a set, which has exactly VectorWidth iterations for 320 /// any prefix from the set that was built on the previous step. 321 /// 3. Subtract loop domain from it, project out the vector loop dimension and 322 /// get a set of prefixes, which don't have exactly VectorWidth iterations. 323 /// 4. Subtract it from all prefixes of the vector loop and get the desired 324 /// set. 325 /// 326 /// @param ScheduleRange A range of a map, which describes a prefix schedule 327 /// relation. 328 static __isl_give isl_set * 329 getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) { 330 auto Dims = isl_set_dim(ScheduleRange, isl_dim_set); 331 auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange), 332 isl_dim_set, Dims - 1, 1); 333 auto *ExtentPrefixes = 334 isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1); 335 ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth); 336 auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange); 337 BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1); 338 return isl_set_subtract(LoopPrefixes, BadPrefixes); 339 } 340 341 __isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles( 342 __isl_take isl_schedule_node *Node, int VectorWidth) { 343 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 344 Node = isl_schedule_node_child(Node, 0); 345 Node = isl_schedule_node_child(Node, 0); 346 auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node); 347 auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap); 348 auto *ScheduleRange = isl_map_range(ScheduleRelation); 349 auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); 350 auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain)); 351 auto *IsolateOption = getIsolateOptions(IsolateDomain, 1); 352 Node = isl_schedule_node_parent(Node); 353 Node = isl_schedule_node_parent(Node); 354 auto *Options = isl_union_set_union(IsolateOption, AtomicOption); 355 Node = isl_schedule_node_band_set_ast_build_options(Node, Options); 356 return Node; 357 } 358 359 __isl_give isl_schedule_node * 360 ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node, 361 unsigned DimToVectorize, 362 int VectorWidth) { 363 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 364 365 auto Space = isl_schedule_node_band_get_space(Node); 366 auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set); 367 isl_space_free(Space); 368 assert(DimToVectorize < ScheduleDimensions); 369 370 if (DimToVectorize > 0) { 371 Node = isl_schedule_node_band_split(Node, DimToVectorize); 372 Node = isl_schedule_node_child(Node, 0); 373 } 374 if (DimToVectorize < ScheduleDimensions - 1) 375 Node = isl_schedule_node_band_split(Node, 1); 376 Space = isl_schedule_node_band_get_space(Node); 377 auto Sizes = isl_multi_val_zero(Space); 378 auto Ctx = isl_schedule_node_get_ctx(Node); 379 Sizes = 380 isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth)); 381 Node = isl_schedule_node_band_tile(Node, Sizes); 382 Node = isolateFullPartialTiles(Node, VectorWidth); 383 Node = isl_schedule_node_child(Node, 0); 384 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, 385 // we will have troubles to match it in the backend. 386 Node = isl_schedule_node_band_set_ast_build_options( 387 Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }")); 388 Node = isl_schedule_node_band_sink(Node); 389 Node = isl_schedule_node_child(Node, 0); 390 if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf) 391 Node = isl_schedule_node_parent(Node); 392 isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr); 393 Node = isl_schedule_node_insert_mark(Node, LoopMarker); 394 return Node; 395 } 396 397 __isl_give isl_schedule_node * 398 ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node, 399 const char *Identifier, ArrayRef<int> TileSizes, 400 int DefaultTileSize) { 401 auto Ctx = isl_schedule_node_get_ctx(Node); 402 auto Space = isl_schedule_node_band_get_space(Node); 403 auto Dims = isl_space_dim(Space, isl_dim_set); 404 auto Sizes = isl_multi_val_zero(Space); 405 std::string IdentifierString(Identifier); 406 for (unsigned i = 0; i < Dims; i++) { 407 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize; 408 Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize)); 409 } 410 auto TileLoopMarkerStr = IdentifierString + " - Tiles"; 411 isl_id *TileLoopMarker = 412 isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr); 413 Node = isl_schedule_node_insert_mark(Node, TileLoopMarker); 414 Node = isl_schedule_node_child(Node, 0); 415 Node = isl_schedule_node_band_tile(Node, Sizes); 416 Node = isl_schedule_node_child(Node, 0); 417 auto PointLoopMarkerStr = IdentifierString + " - Points"; 418 isl_id *PointLoopMarker = 419 isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr); 420 Node = isl_schedule_node_insert_mark(Node, PointLoopMarker); 421 Node = isl_schedule_node_child(Node, 0); 422 return Node; 423 } 424 425 __isl_give isl_schedule_node * 426 ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node, 427 llvm::ArrayRef<int> TileSizes, 428 int DefaultTileSize) { 429 auto *Ctx = isl_schedule_node_get_ctx(Node); 430 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize); 431 Node = isl_schedule_node_band_set_ast_build_options( 432 Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}")); 433 return Node; 434 } 435 436 namespace { 437 bool isSimpleInnermostBand(const isl::schedule_node &Node) { 438 assert(isl_schedule_node_get_type(Node.keep()) == isl_schedule_node_band); 439 assert(isl_schedule_node_n_children(Node.keep()) == 1); 440 441 auto ChildType = isl_schedule_node_get_type(Node.child(0).keep()); 442 443 if (ChildType == isl_schedule_node_leaf) 444 return true; 445 446 if (ChildType != isl_schedule_node_sequence) 447 return false; 448 449 auto Sequence = Node.child(0); 450 451 for (int c = 0, nc = isl_schedule_node_n_children(Sequence.keep()); c < nc; 452 ++c) { 453 auto Child = Sequence.child(c); 454 if (isl_schedule_node_get_type(Child.keep()) != isl_schedule_node_filter) 455 return false; 456 if (isl_schedule_node_get_type(Child.child(0).keep()) != 457 isl_schedule_node_leaf) 458 return false; 459 } 460 return true; 461 } 462 } // namespace 463 464 bool ScheduleTreeOptimizer::isTileableBandNode( 465 __isl_keep isl_schedule_node *Node) { 466 if (isl_schedule_node_get_type(Node) != isl_schedule_node_band) 467 return false; 468 469 if (isl_schedule_node_n_children(Node) != 1) 470 return false; 471 472 if (!isl_schedule_node_band_get_permutable(Node)) 473 return false; 474 475 auto Space = isl_schedule_node_band_get_space(Node); 476 auto Dims = isl_space_dim(Space, isl_dim_set); 477 isl_space_free(Space); 478 479 if (Dims <= 1) 480 return false; 481 482 auto ManagedNode = isl::manage(isl_schedule_node_copy(Node)); 483 return isSimpleInnermostBand(ManagedNode); 484 } 485 486 __isl_give isl_schedule_node * 487 ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node, 488 void *User) { 489 if (FirstLevelTiling) 490 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, 491 FirstLevelDefaultTileSize); 492 493 if (SecondLevelTiling) 494 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, 495 SecondLevelDefaultTileSize); 496 497 if (RegisterTiling) 498 Node = 499 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize); 500 501 if (PollyVectorizerChoice == VECTORIZER_NONE) 502 return Node; 503 504 auto Space = isl_schedule_node_band_get_space(Node); 505 auto Dims = isl_space_dim(Space, isl_dim_set); 506 isl_space_free(Space); 507 508 for (int i = Dims - 1; i >= 0; i--) 509 if (isl_schedule_node_band_member_get_coincident(Node, i)) { 510 Node = prevectSchedBand(Node, i, PrevectorWidth); 511 break; 512 } 513 514 return Node; 515 } 516 517 /// Get the position of a dimension with a non-zero coefficient. 518 /// 519 /// Check that isl constraint @p Constraint has only one non-zero 520 /// coefficient for dimensions that have type @p DimType. If this is true, 521 /// return the position of the dimension corresponding to the non-zero 522 /// coefficient and negative value, otherwise. 523 /// 524 /// @param Constraint The isl constraint to be checked. 525 /// @param DimType The type of the dimensions. 526 /// @return The position of the dimension in case the isl 527 /// constraint satisfies the requirements, a negative 528 /// value, otherwise. 529 static int getMatMulConstraintDim(__isl_keep isl_constraint *Constraint, 530 enum isl_dim_type DimType) { 531 int DimPos = -1; 532 auto *LocalSpace = isl_constraint_get_local_space(Constraint); 533 int LocalSpaceDimNum = isl_local_space_dim(LocalSpace, DimType); 534 for (int i = 0; i < LocalSpaceDimNum; i++) { 535 auto *Val = isl_constraint_get_coefficient_val(Constraint, DimType, i); 536 if (isl_val_is_zero(Val)) { 537 isl_val_free(Val); 538 continue; 539 } 540 if (DimPos >= 0 || (DimType == isl_dim_out && !isl_val_is_one(Val)) || 541 (DimType == isl_dim_in && !isl_val_is_negone(Val))) { 542 isl_val_free(Val); 543 isl_local_space_free(LocalSpace); 544 return -1; 545 } 546 DimPos = i; 547 isl_val_free(Val); 548 } 549 isl_local_space_free(LocalSpace); 550 return DimPos; 551 } 552 553 /// Check the form of the isl constraint. 554 /// 555 /// Check that the @p DimInPos input dimension of the isl constraint 556 /// @p Constraint has a coefficient that is equal to negative one, the @p 557 /// DimOutPos has a coefficient that is equal to one and others 558 /// have coefficients equal to zero. 559 /// 560 /// @param Constraint The isl constraint to be checked. 561 /// @param DimInPos The input dimension of the isl constraint. 562 /// @param DimOutPos The output dimension of the isl constraint. 563 /// @return isl_stat_ok in case the isl constraint satisfies 564 /// the requirements, isl_stat_error otherwise. 565 static isl_stat isMatMulOperandConstraint(__isl_keep isl_constraint *Constraint, 566 int &DimInPos, int &DimOutPos) { 567 auto *Val = isl_constraint_get_constant_val(Constraint); 568 if (!isl_constraint_is_equality(Constraint) || !isl_val_is_zero(Val)) { 569 isl_val_free(Val); 570 return isl_stat_error; 571 } 572 isl_val_free(Val); 573 DimInPos = getMatMulConstraintDim(Constraint, isl_dim_in); 574 if (DimInPos < 0) 575 return isl_stat_error; 576 DimOutPos = getMatMulConstraintDim(Constraint, isl_dim_out); 577 if (DimOutPos < 0) 578 return isl_stat_error; 579 return isl_stat_ok; 580 } 581 582 /// Check that the access relation corresponds to a non-constant operand 583 /// of the matrix multiplication. 584 /// 585 /// Access relations that correspond to non-constant operands of the matrix 586 /// multiplication depend only on two input dimensions and have two output 587 /// dimensions. The function checks that the isl basic map @p bmap satisfies 588 /// the requirements. The two input dimensions can be specified via @p user 589 /// array. 590 /// 591 /// @param bmap The isl basic map to be checked. 592 /// @param user The input dimensions of @p bmap. 593 /// @return isl_stat_ok in case isl basic map satisfies the requirements, 594 /// isl_stat_error otherwise. 595 static isl_stat isMatMulOperandBasicMap(__isl_take isl_basic_map *bmap, 596 void *user) { 597 auto *Constraints = isl_basic_map_get_constraint_list(bmap); 598 isl_basic_map_free(bmap); 599 if (isl_constraint_list_n_constraint(Constraints) != 2) { 600 isl_constraint_list_free(Constraints); 601 return isl_stat_error; 602 } 603 int InPosPair[] = {-1, -1}; 604 auto DimInPos = user ? static_cast<int *>(user) : InPosPair; 605 for (int i = 0; i < 2; i++) { 606 auto *Constraint = isl_constraint_list_get_constraint(Constraints, i); 607 int InPos, OutPos; 608 if (isMatMulOperandConstraint(Constraint, InPos, OutPos) == 609 isl_stat_error || 610 OutPos > 1 || (DimInPos[OutPos] >= 0 && DimInPos[OutPos] != InPos)) { 611 isl_constraint_free(Constraint); 612 isl_constraint_list_free(Constraints); 613 return isl_stat_error; 614 } 615 DimInPos[OutPos] = InPos; 616 isl_constraint_free(Constraint); 617 } 618 isl_constraint_list_free(Constraints); 619 return isl_stat_ok; 620 } 621 622 /// Permute the two dimensions of the isl map. 623 /// 624 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that 625 /// have type @p DimType. 626 /// 627 /// @param Map The isl map to be modified. 628 /// @param DimType The type of the dimensions. 629 /// @param DstPos The first dimension. 630 /// @param SrcPos The second dimension. 631 /// @return The modified map. 632 __isl_give isl_map *permuteDimensions(__isl_take isl_map *Map, 633 enum isl_dim_type DimType, 634 unsigned DstPos, unsigned SrcPos) { 635 assert(DstPos < isl_map_dim(Map, DimType) && 636 SrcPos < isl_map_dim(Map, DimType)); 637 if (DstPos == SrcPos) 638 return Map; 639 isl_id *DimId = nullptr; 640 if (isl_map_has_tuple_id(Map, DimType)) 641 DimId = isl_map_get_tuple_id(Map, DimType); 642 auto FreeDim = DimType == isl_dim_in ? isl_dim_out : isl_dim_in; 643 isl_id *FreeDimId = nullptr; 644 if (isl_map_has_tuple_id(Map, FreeDim)) 645 FreeDimId = isl_map_get_tuple_id(Map, FreeDim); 646 auto MaxDim = std::max(DstPos, SrcPos); 647 auto MinDim = std::min(DstPos, SrcPos); 648 Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MaxDim, 1); 649 Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MinDim, 1); 650 Map = isl_map_move_dims(Map, DimType, MinDim, FreeDim, 1, 1); 651 Map = isl_map_move_dims(Map, DimType, MaxDim, FreeDim, 0, 1); 652 if (DimId) 653 Map = isl_map_set_tuple_id(Map, DimType, DimId); 654 if (FreeDimId) 655 Map = isl_map_set_tuple_id(Map, FreeDim, FreeDimId); 656 return Map; 657 } 658 659 /// Check the form of the access relation. 660 /// 661 /// Check that the access relation @p AccMap has the form M[i][j], where i 662 /// is a @p FirstPos and j is a @p SecondPos. 663 /// 664 /// @param AccMap The access relation to be checked. 665 /// @param FirstPos The index of the input dimension that is mapped to 666 /// the first output dimension. 667 /// @param SecondPos The index of the input dimension that is mapped to the 668 /// second output dimension. 669 /// @return True in case @p AccMap has the expected form and false, 670 /// otherwise. 671 static bool isMatMulOperandAcc(__isl_keep isl_map *AccMap, int &FirstPos, 672 int &SecondPos) { 673 int DimInPos[] = {FirstPos, SecondPos}; 674 if (isl_map_foreach_basic_map(AccMap, isMatMulOperandBasicMap, 675 static_cast<void *>(DimInPos)) != isl_stat_ok || 676 DimInPos[0] < 0 || DimInPos[1] < 0) 677 return false; 678 FirstPos = DimInPos[0]; 679 SecondPos = DimInPos[1]; 680 return true; 681 } 682 683 /// Does the memory access represent a non-scalar operand of the matrix 684 /// multiplication. 685 /// 686 /// Check that the memory access @p MemAccess is the read access to a non-scalar 687 /// operand of the matrix multiplication or its result. 688 /// 689 /// @param MemAccess The memory access to be checked. 690 /// @param MMI Parameters of the matrix multiplication operands. 691 /// @return True in case the memory access represents the read access 692 /// to a non-scalar operand of the matrix multiplication and 693 /// false, otherwise. 694 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess, 695 MatMulInfoTy &MMI) { 696 if (!MemAccess->isArrayKind() || !MemAccess->isRead()) 697 return false; 698 isl_map *AccMap = MemAccess->getAccessRelation(); 699 if (isMatMulOperandAcc(AccMap, MMI.i, MMI.j) && !MMI.ReadFromC && 700 isl_map_n_basic_map(AccMap) == 1) { 701 MMI.ReadFromC = MemAccess; 702 isl_map_free(AccMap); 703 return true; 704 } 705 if (isMatMulOperandAcc(AccMap, MMI.i, MMI.k) && !MMI.A && 706 isl_map_n_basic_map(AccMap) == 1) { 707 MMI.A = MemAccess; 708 isl_map_free(AccMap); 709 return true; 710 } 711 if (isMatMulOperandAcc(AccMap, MMI.k, MMI.j) && !MMI.B && 712 isl_map_n_basic_map(AccMap) == 1) { 713 MMI.B = MemAccess; 714 isl_map_free(AccMap); 715 return true; 716 } 717 isl_map_free(AccMap); 718 return false; 719 } 720 721 /// Check accesses to operands of the matrix multiplication. 722 /// 723 /// Check that accesses of the SCoP statement, which corresponds to 724 /// the partial schedule @p PartialSchedule, are scalar in terms of loops 725 /// containing the matrix multiplication, in case they do not represent 726 /// accesses to the non-scalar operands of the matrix multiplication or 727 /// its result. 728 /// 729 /// @param PartialSchedule The partial schedule of the SCoP statement. 730 /// @param MMI Parameters of the matrix multiplication operands. 731 /// @return True in case the corresponding SCoP statement 732 /// represents matrix multiplication and false, 733 /// otherwise. 734 static bool containsOnlyMatrMultAcc(__isl_keep isl_map *PartialSchedule, 735 MatMulInfoTy &MMI) { 736 auto *InputDimId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in); 737 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimId)); 738 isl_id_free(InputDimId); 739 unsigned OutDimNum = isl_map_dim(PartialSchedule, isl_dim_out); 740 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest " 741 "and, consequently, the corresponding scheduling " 742 "functions have at least three dimensions."); 743 auto *MapI = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out, 744 MMI.i, OutDimNum - 1); 745 auto *MapJ = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out, 746 MMI.j, OutDimNum - 1); 747 auto *MapK = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out, 748 MMI.k, OutDimNum - 1); 749 for (auto *MemA = Stmt->begin(); MemA != Stmt->end() - 1; MemA++) { 750 auto *MemAccessPtr = *MemA; 751 if (MemAccessPtr->isArrayKind() && MemAccessPtr != MMI.WriteToC && 752 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) && 753 !(MemAccessPtr->isStrideZero(isl_map_copy(MapI)) && 754 MemAccessPtr->isStrideZero(isl_map_copy(MapJ)) && 755 MemAccessPtr->isStrideZero(isl_map_copy(MapK)))) { 756 isl_map_free(MapI); 757 isl_map_free(MapJ); 758 isl_map_free(MapK); 759 return false; 760 } 761 } 762 isl_map_free(MapI); 763 isl_map_free(MapJ); 764 isl_map_free(MapK); 765 return true; 766 } 767 768 /// Check for dependencies corresponding to the matrix multiplication. 769 /// 770 /// Check that there is only true dependence of the form 771 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement 772 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds 773 /// to the dependency produced by the matrix multiplication. 774 /// 775 /// @param Schedule The schedule of the SCoP statement. 776 /// @param D The SCoP dependencies. 777 /// @param Pos The parameter to desribe an acceptable true dependence. 778 /// In case it has a negative value, try to determine its 779 /// acceptable value. 780 /// @return True in case dependencies correspond to the matrix multiplication 781 /// and false, otherwise. 782 static bool containsOnlyMatMulDep(__isl_keep isl_map *Schedule, 783 const Dependences *D, int &Pos) { 784 auto *WAR = D->getDependences(Dependences::TYPE_WAR); 785 if (!isl_union_map_is_empty(WAR)) { 786 isl_union_map_free(WAR); 787 return false; 788 } 789 isl_union_map_free(WAR); 790 auto *Dep = D->getDependences(Dependences::TYPE_RAW); 791 auto *Red = D->getDependences(Dependences::TYPE_RED); 792 if (Red) 793 Dep = isl_union_map_union(Dep, Red); 794 auto *DomainSpace = isl_space_domain(isl_map_get_space(Schedule)); 795 auto *Space = isl_space_map_from_domain_and_range(isl_space_copy(DomainSpace), 796 DomainSpace); 797 auto *Deltas = isl_map_deltas(isl_union_map_extract_map(Dep, Space)); 798 isl_union_map_free(Dep); 799 int DeltasDimNum = isl_set_dim(Deltas, isl_dim_set); 800 for (int i = 0; i < DeltasDimNum; i++) { 801 auto *Val = isl_set_plain_get_val_if_fixed(Deltas, isl_dim_set, i); 802 Pos = Pos < 0 && isl_val_is_one(Val) ? i : Pos; 803 if (isl_val_is_nan(Val) || 804 !(isl_val_is_zero(Val) || (i == Pos && isl_val_is_one(Val)))) { 805 isl_val_free(Val); 806 isl_set_free(Deltas); 807 return false; 808 } 809 isl_val_free(Val); 810 } 811 isl_set_free(Deltas); 812 if (DeltasDimNum == 0 || Pos < 0) 813 return false; 814 return true; 815 } 816 817 /// Check if the SCoP statement could probably be optimized with analytical 818 /// modeling. 819 /// 820 /// containsMatrMult tries to determine whether the following conditions 821 /// are true: 822 /// 1. The last memory access modeling an array, MA1, represents writing to 823 /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or 824 /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement 825 /// under consideration. 826 /// 2. There is only one loop-carried true dependency, and it has the 827 /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no 828 /// loop-carried or anti dependencies. 829 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent 830 /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3), 831 /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively, 832 /// and all memory accesses of the SCoP that are different from MA1, MA2, 833 /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any 834 /// of loops i1, i2 and i3. 835 /// 836 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement 837 /// to check. 838 /// @D The SCoP dependencies. 839 /// @MMI Parameters of the matrix multiplication operands. 840 static bool containsMatrMult(__isl_keep isl_map *PartialSchedule, 841 const Dependences *D, MatMulInfoTy &MMI) { 842 auto *InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in); 843 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId)); 844 isl_id_free(InputDimsId); 845 if (Stmt->size() <= 1) 846 return false; 847 for (auto *MemA = Stmt->end() - 1; MemA != Stmt->begin(); MemA--) { 848 auto *MemAccessPtr = *MemA; 849 if (!MemAccessPtr->isArrayKind()) 850 continue; 851 if (!MemAccessPtr->isWrite()) 852 return false; 853 auto *AccMap = MemAccessPtr->getAccessRelation(); 854 if (isl_map_n_basic_map(AccMap) != 1 || 855 !isMatMulOperandAcc(AccMap, MMI.i, MMI.j)) { 856 isl_map_free(AccMap); 857 return false; 858 } 859 isl_map_free(AccMap); 860 MMI.WriteToC = MemAccessPtr; 861 break; 862 } 863 864 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k)) 865 return false; 866 867 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI)) 868 return false; 869 870 if (!MMI.A || !MMI.B || !MMI.ReadFromC) 871 return false; 872 return true; 873 } 874 875 /// Permute two dimensions of the band node. 876 /// 877 /// Permute FirstDim and SecondDim dimensions of the Node. 878 /// 879 /// @param Node The band node to be modified. 880 /// @param FirstDim The first dimension to be permuted. 881 /// @param SecondDim The second dimension to be permuted. 882 static __isl_give isl_schedule_node * 883 permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim, 884 unsigned SecondDim) { 885 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band && 886 isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim)); 887 auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node); 888 auto PartialScheduleFirstDim = 889 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim); 890 auto PartialScheduleSecondDim = 891 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim); 892 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff( 893 PartialSchedule, SecondDim, PartialScheduleFirstDim); 894 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff( 895 PartialSchedule, FirstDim, PartialScheduleSecondDim); 896 Node = isl_schedule_node_delete(Node); 897 Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule); 898 return Node; 899 } 900 901 __isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel( 902 __isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) { 903 applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1); 904 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 905 Node = permuteBandNodeDimensions(Node, 0, 1); 906 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 907 } 908 909 __isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel( 910 __isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) { 911 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); 912 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && 913 MacroKernelParams.Kc == 1) 914 return Node; 915 int DimOutNum = isl_schedule_node_band_n_member(Node); 916 std::vector<int> TileSizes(DimOutNum, 1); 917 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc; 918 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc; 919 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc; 920 Node = tileNode(Node, "1st level tiling", TileSizes, 1); 921 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 922 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1); 923 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1); 924 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 925 } 926 927 /// Get the size of the widest type of the matrix multiplication operands 928 /// in bytes, including alignment padding. 929 /// 930 /// @param MMI Parameters of the matrix multiplication operands. 931 /// @return The size of the widest type of the matrix multiplication operands 932 /// in bytes, including alignment padding. 933 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) { 934 auto *S = MMI.A->getStatement()->getParent(); 935 auto &DL = S->getFunction().getParent()->getDataLayout(); 936 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); 937 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); 938 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); 939 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 940 } 941 942 /// Get the size of the widest type of the matrix multiplication operands 943 /// in bits. 944 /// 945 /// @param MMI Parameters of the matrix multiplication operands. 946 /// @return The size of the widest type of the matrix multiplication operands 947 /// in bits. 948 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { 949 auto *S = MMI.A->getStatement()->getParent(); 950 auto &DL = S->getFunction().getParent()->getDataLayout(); 951 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType()); 952 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType()); 953 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType()); 954 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 955 } 956 957 /// Get parameters of the BLIS micro kernel. 958 /// 959 /// We choose the Mr and Nr parameters of the micro kernel to be large enough 960 /// such that no stalls caused by the combination of latencies and dependencies 961 /// are introduced during the updates of the resulting matrix of the matrix 962 /// multiplication. However, they should also be as small as possible to 963 /// release more registers for entries of multiplied matrices. 964 /// 965 /// @param TTI Target Transform Info. 966 /// @param MMI Parameters of the matrix multiplication operands. 967 /// @return The structure of type MicroKernelParamsTy. 968 /// @see MicroKernelParamsTy 969 static struct MicroKernelParamsTy 970 getMicroKernelParams(const llvm::TargetTransformInfo *TTI, MatMulInfoTy MMI) { 971 assert(TTI && "The target transform info should be provided."); 972 973 // Nvec - Number of double-precision floating-point numbers that can be hold 974 // by a vector register. Use 2 by default. 975 long RegisterBitwidth = VectorRegisterBitwidth; 976 977 if (RegisterBitwidth == -1) 978 RegisterBitwidth = TTI->getRegisterBitWidth(true); 979 auto ElementSize = getMatMulTypeSize(MMI); 980 assert(ElementSize > 0 && "The element size of the matrix multiplication " 981 "operands should be greater than zero."); 982 auto Nvec = RegisterBitwidth / ElementSize; 983 if (Nvec == 0) 984 Nvec = 2; 985 int Nr = 986 ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec; 987 int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr); 988 return {Mr, Nr}; 989 } 990 991 /// Get parameters of the BLIS macro kernel. 992 /// 993 /// During the computation of matrix multiplication, blocks of partitioned 994 /// matrices are mapped to different layers of the memory hierarchy. 995 /// To optimize data reuse, blocks should be ideally kept in cache between 996 /// iterations. Since parameters of the macro kernel determine sizes of these 997 /// blocks, there are upper and lower bounds on these parameters. 998 /// 999 /// @param MicroKernelParams Parameters of the micro-kernel 1000 /// to be taken into account. 1001 /// @param MMI Parameters of the matrix multiplication operands. 1002 /// @return The structure of type MacroKernelParamsTy. 1003 /// @see MacroKernelParamsTy 1004 /// @see MicroKernelParamsTy 1005 static struct MacroKernelParamsTy 1006 getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams, 1007 MatMulInfoTy MMI) { 1008 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, 1009 // it requires information about the first two levels of a cache to determine 1010 // all the parameters of a macro-kernel. It also checks that an associativity 1011 // degree of a cache level is greater than two. Otherwise, another algorithm 1012 // for determination of the parameters should be used. 1013 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && 1014 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 && 1015 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2)) 1016 return {1, 1, 1}; 1017 // The quotient should be greater than zero. 1018 if (PollyPatternMatchingNcQuotient <= 0) 1019 return {1, 1, 1}; 1020 int Car = floor( 1021 (FirstCacheLevelAssociativity - 1) / 1022 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr)); 1023 auto ElementSize = getMatMulAlignTypeSize(MMI); 1024 assert(ElementSize > 0 && "The element size of the matrix multiplication " 1025 "operands should be greater than zero."); 1026 int Kc = (Car * FirstCacheLevelSize) / 1027 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); 1028 double Cac = 1029 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) / 1030 SecondCacheLevelSize; 1031 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); 1032 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; 1033 return {Mc, Nc, Kc}; 1034 } 1035 1036 /// Create an access relation that is specific to 1037 /// the matrix multiplication pattern. 1038 /// 1039 /// Create an access relation of the following form: 1040 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ] 1041 /// where I is @p FirstDim, J is @p SecondDim. 1042 /// 1043 /// It can be used, for example, to create relations that helps to consequently 1044 /// access elements of operands of a matrix multiplication after creation of 1045 /// the BLIS micro and macro kernels. 1046 /// 1047 /// @see ScheduleTreeOptimizer::createMicroKernel 1048 /// @see ScheduleTreeOptimizer::createMacroKernel 1049 /// 1050 /// Subsequently, the described access relation is applied to the range of 1051 /// @p MapOldIndVar, that is used to map original induction variables to 1052 /// the ones, which are produced by schedule transformations. It helps to 1053 /// define relations using a new space and, at the same time, keep them 1054 /// in the original one. 1055 /// 1056 /// @param MapOldIndVar The relation, which maps original induction variables 1057 /// to the ones, which are produced by schedule 1058 /// transformations. 1059 /// @param FirstDim, SecondDim The input dimensions that are used to define 1060 /// the specified access relation. 1061 /// @return The specified access relation. 1062 __isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar, 1063 unsigned FirstDim, unsigned SecondDim) { 1064 auto *Ctx = isl_map_get_ctx(MapOldIndVar); 1065 auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3); 1066 auto *AccessRel = isl_map_universe(AccessRelSpace); 1067 AccessRel = isl_map_equate(AccessRel, isl_dim_in, FirstDim, isl_dim_out, 0); 1068 AccessRel = isl_map_equate(AccessRel, isl_dim_in, 5, isl_dim_out, 1); 1069 AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2); 1070 return isl_map_apply_range(MapOldIndVar, AccessRel); 1071 } 1072 1073 __isl_give isl_schedule_node * 1074 createExtensionNode(__isl_take isl_schedule_node *Node, 1075 __isl_take isl_map *ExtensionMap) { 1076 auto *Extension = isl_union_map_from_map(ExtensionMap); 1077 auto *NewNode = isl_schedule_node_from_extension(Extension); 1078 return isl_schedule_node_graft_before(Node, NewNode); 1079 } 1080 1081 /// Apply the packing transformation. 1082 /// 1083 /// The packing transformation can be described as a data-layout 1084 /// transformation that requires to introduce a new array, copy data 1085 /// to the array, and change memory access locations to reference the array. 1086 /// It can be used to ensure that elements of the new array are read in-stride 1087 /// access, aligned to cache lines boundaries, and preloaded into certain cache 1088 /// levels. 1089 /// 1090 /// As an example let us consider the packing of the array A that would help 1091 /// to read its elements with in-stride access. An access to the array A 1092 /// is represented by an access relation that has the form 1093 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has 1094 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr), 1095 /// k mod Kc, j mod Nr, i mod Mr]. 1096 /// 1097 /// To ensure that elements of the array A are read in-stride access, we add 1098 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using 1099 /// Scop::createScopArrayInfo, change the access relation 1100 /// S[i, j, k] -> A[i, k] to 1101 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using 1102 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using 1103 /// the copy statement created by Scop::addScopStmt. 1104 /// 1105 /// @param Node The schedule node to be optimized. 1106 /// @param MapOldIndVar The relation, which maps original induction variables 1107 /// to the ones, which are produced by schedule 1108 /// transformations. 1109 /// @param MicroParams, MacroParams Parameters of the BLIS kernel 1110 /// to be taken into account. 1111 /// @param MMI Parameters of the matrix multiplication operands. 1112 /// @return The optimized schedule node. 1113 static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern( 1114 __isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar, 1115 MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams, 1116 MatMulInfoTy &MMI) { 1117 auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in); 1118 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId)); 1119 isl_id_free(InputDimsId); 1120 1121 // Create a copy statement that corresponds to the memory access to the 1122 // matrix B, the second operand of the matrix multiplication. 1123 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 1124 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 1125 Node = isl_schedule_node_parent(Node); 1126 Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0); 1127 auto *AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 3, 7); 1128 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr; 1129 unsigned SecondDimSize = MacroParams.Kc; 1130 unsigned ThirdDimSize = MicroParams.Nr; 1131 auto *SAI = Stmt->getParent()->createScopArrayInfo( 1132 MMI.B->getElementType(), "Packed_B", 1133 {FirstDimSize, SecondDimSize, ThirdDimSize}); 1134 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId()); 1135 auto *OldAcc = MMI.B->getAccessRelation(); 1136 MMI.B->setNewAccessRelation(AccRel); 1137 auto *ExtMap = 1138 isl_map_project_out(isl_map_copy(MapOldIndVar), isl_dim_out, 2, 1139 isl_map_dim(MapOldIndVar, isl_dim_out) - 2); 1140 ExtMap = isl_map_reverse(ExtMap); 1141 ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.i, 0); 1142 auto *Domain = Stmt->getDomain(); 1143 1144 // Restrict the domains of the copy statements to only execute when also its 1145 // originating statement is executed. 1146 auto *DomainId = isl_set_get_tuple_id(Domain); 1147 auto *NewStmt = Stmt->getParent()->addScopStmt( 1148 OldAcc, MMI.B->getAccessRelation(), isl_set_copy(Domain)); 1149 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, isl_id_copy(DomainId)); 1150 ExtMap = isl_map_intersect_range(ExtMap, isl_set_copy(Domain)); 1151 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId()); 1152 Node = createExtensionNode(Node, ExtMap); 1153 1154 // Create a copy statement that corresponds to the memory access 1155 // to the matrix A, the first operand of the matrix multiplication. 1156 Node = isl_schedule_node_child(Node, 0); 1157 AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 4, 6); 1158 FirstDimSize = MacroParams.Mc / MicroParams.Mr; 1159 ThirdDimSize = MicroParams.Mr; 1160 SAI = Stmt->getParent()->createScopArrayInfo( 1161 MMI.A->getElementType(), "Packed_A", 1162 {FirstDimSize, SecondDimSize, ThirdDimSize}); 1163 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId()); 1164 OldAcc = MMI.A->getAccessRelation(); 1165 MMI.A->setNewAccessRelation(AccRel); 1166 ExtMap = isl_map_project_out(MapOldIndVar, isl_dim_out, 3, 1167 isl_map_dim(MapOldIndVar, isl_dim_out) - 3); 1168 ExtMap = isl_map_reverse(ExtMap); 1169 ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.j, 0); 1170 NewStmt = Stmt->getParent()->addScopStmt(OldAcc, MMI.A->getAccessRelation(), 1171 isl_set_copy(Domain)); 1172 1173 // Restrict the domains of the copy statements to only execute when also its 1174 // originating statement is executed. 1175 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, DomainId); 1176 ExtMap = isl_map_intersect_range(ExtMap, Domain); 1177 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId()); 1178 Node = createExtensionNode(Node, ExtMap); 1179 Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 1180 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 1181 } 1182 1183 /// Get a relation mapping induction variables produced by schedule 1184 /// transformations to the original ones. 1185 /// 1186 /// @param Node The schedule node produced as the result of creation 1187 /// of the BLIS kernels. 1188 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel 1189 /// to be taken into account. 1190 /// @return The relation mapping original induction variables to the ones 1191 /// produced by schedule transformation. 1192 /// @see ScheduleTreeOptimizer::createMicroKernel 1193 /// @see ScheduleTreeOptimizer::createMacroKernel 1194 /// @see getMacroKernelParams 1195 __isl_give isl_map * 1196 getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node, 1197 MicroKernelParamsTy MicroKernelParams, 1198 MacroKernelParamsTy MacroKernelParams) { 1199 auto *Child = isl_schedule_node_get_child(Node, 0); 1200 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child); 1201 isl_schedule_node_free(Child); 1202 auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar); 1203 if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9) 1204 MapOldIndVar = 1205 isl_map_project_out(MapOldIndVar, isl_dim_out, 0, 1206 isl_map_dim(MapOldIndVar, isl_dim_out) - 9); 1207 return MapOldIndVar; 1208 } 1209 1210 /// Isolate a set of partial tile prefixes and unroll the isolated part. 1211 /// 1212 /// The set should ensure that it contains only partial tile prefixes that have 1213 /// exactly Mr x Nr iterations of the two innermost loops produced by 1214 /// the optimization of the matrix multiplication. Mr and Nr are parameters of 1215 /// the micro-kernel. 1216 /// 1217 /// In case of parametric bounds, this helps to auto-vectorize the unrolled 1218 /// innermost loops, using the SLP vectorizer. 1219 /// 1220 /// @param Node The schedule node to be modified. 1221 /// @param MicroKernelParams Parameters of the micro-kernel 1222 /// to be taken into account. 1223 /// @return The modified isl_schedule_node. 1224 static __isl_give isl_schedule_node * 1225 isolateAndUnrollMatMulInnerLoops(__isl_take isl_schedule_node *Node, 1226 struct MicroKernelParamsTy MicroKernelParams) { 1227 auto *Child = isl_schedule_node_get_child(Node, 0); 1228 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_relation(Child); 1229 isl_schedule_node_free(Child); 1230 auto *Prefix = isl_map_range(isl_map_from_union_map(UnMapOldIndVar)); 1231 auto Dims = isl_set_dim(Prefix, isl_dim_set); 1232 Prefix = isl_set_project_out(Prefix, isl_dim_set, Dims - 1, 1); 1233 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr); 1234 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr); 1235 auto *IsolateOption = getIsolateOptions( 1236 isl_set_add_dims(isl_set_copy(Prefix), isl_dim_set, 3), 3); 1237 auto *Ctx = isl_schedule_node_get_ctx(Node); 1238 auto *AtomicOption = getAtomicOptions(Ctx); 1239 auto *Options = 1240 isl_union_set_union(IsolateOption, isl_union_set_copy(AtomicOption)); 1241 Options = isl_union_set_union(Options, getUnrollIsolatedSetOptions(Ctx)); 1242 Node = isl_schedule_node_band_set_ast_build_options(Node, Options); 1243 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node)); 1244 IsolateOption = getIsolateOptions(Prefix, 3); 1245 Options = isl_union_set_union(IsolateOption, AtomicOption); 1246 Node = isl_schedule_node_band_set_ast_build_options(Node, Options); 1247 Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); 1248 return Node; 1249 } 1250 1251 __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern( 1252 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI, 1253 MatMulInfoTy &MMI) { 1254 assert(TTI && "The target transform info should be provided."); 1255 int DimOutNum = isl_schedule_node_band_n_member(Node); 1256 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest " 1257 "and, consequently, the corresponding scheduling " 1258 "functions have at least three dimensions."); 1259 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3); 1260 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j; 1261 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k; 1262 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); 1263 NewK = MMI.k == DimOutNum - 2 ? MMI.j : MMI.k; 1264 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); 1265 auto MicroKernelParams = getMicroKernelParams(TTI, MMI); 1266 auto MacroKernelParams = getMacroKernelParams(MicroKernelParams, MMI); 1267 Node = createMacroKernel(Node, MacroKernelParams); 1268 Node = createMicroKernel(Node, MicroKernelParams); 1269 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || 1270 MacroKernelParams.Kc == 1) 1271 return Node; 1272 auto *MapOldIndVar = getInductionVariablesSubstitution( 1273 Node, MicroKernelParams, MacroKernelParams); 1274 if (!MapOldIndVar) 1275 return Node; 1276 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams); 1277 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, 1278 MacroKernelParams, MMI); 1279 } 1280 1281 bool ScheduleTreeOptimizer::isMatrMultPattern( 1282 __isl_keep isl_schedule_node *Node, const Dependences *D, 1283 MatMulInfoTy &MMI) { 1284 auto *PartialSchedule = 1285 isl_schedule_node_band_get_partial_schedule_union_map(Node); 1286 if (isl_schedule_node_band_n_member(Node) < 3 || 1287 isl_union_map_n_map(PartialSchedule) != 1) { 1288 isl_union_map_free(PartialSchedule); 1289 return false; 1290 } 1291 auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule); 1292 if (containsMatrMult(NewPartialSchedule, D, MMI)) { 1293 isl_map_free(NewPartialSchedule); 1294 return true; 1295 } 1296 isl_map_free(NewPartialSchedule); 1297 return false; 1298 } 1299 1300 __isl_give isl_schedule_node * 1301 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, 1302 void *User) { 1303 if (!isTileableBandNode(Node)) 1304 return Node; 1305 1306 const OptimizerAdditionalInfoTy *OAI = 1307 static_cast<const OptimizerAdditionalInfoTy *>(User); 1308 1309 MatMulInfoTy MMI; 1310 if (PMBasedOpts && User && isMatrMultPattern(Node, OAI->D, MMI)) { 1311 DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); 1312 return optimizeMatMulPattern(Node, OAI->TTI, MMI); 1313 } 1314 1315 return standardBandOpts(Node, User); 1316 } 1317 1318 __isl_give isl_schedule * 1319 ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule, 1320 const OptimizerAdditionalInfoTy *OAI) { 1321 isl_schedule_node *Root = isl_schedule_get_root(Schedule); 1322 Root = optimizeScheduleNode(Root, OAI); 1323 isl_schedule_free(Schedule); 1324 auto S = isl_schedule_node_get_schedule(Root); 1325 isl_schedule_node_free(Root); 1326 return S; 1327 } 1328 1329 __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode( 1330 __isl_take isl_schedule_node *Node, const OptimizerAdditionalInfoTy *OAI) { 1331 Node = isl_schedule_node_map_descendant_bottom_up( 1332 Node, optimizeBand, const_cast<void *>(static_cast<const void *>(OAI))); 1333 return Node; 1334 } 1335 1336 bool ScheduleTreeOptimizer::isProfitableSchedule( 1337 Scop &S, __isl_keep isl_schedule *NewSchedule) { 1338 // To understand if the schedule has been optimized we check if the schedule 1339 // has changed at all. 1340 // TODO: We can improve this by tracking if any necessarily beneficial 1341 // transformations have been performed. This can e.g. be tiling, loop 1342 // interchange, or ...) We can track this either at the place where the 1343 // transformation has been performed or, in case of automatic ILP based 1344 // optimizations, by comparing (yet to be defined) performance metrics 1345 // before/after the scheduling optimizer 1346 // (e.g., #stride-one accesses) 1347 if (S.containsExtensionNode(NewSchedule)) 1348 return true; 1349 auto *NewScheduleMap = isl_schedule_get_map(NewSchedule); 1350 isl_union_map *OldSchedule = S.getSchedule(); 1351 assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes " 1352 "that make Scop::getSchedule() return nullptr."); 1353 bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap); 1354 isl_union_map_free(OldSchedule); 1355 isl_union_map_free(NewScheduleMap); 1356 return changed; 1357 } 1358 1359 namespace { 1360 class IslScheduleOptimizer : public ScopPass { 1361 public: 1362 static char ID; 1363 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } 1364 1365 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } 1366 1367 /// Optimize the schedule of the SCoP @p S. 1368 bool runOnScop(Scop &S) override; 1369 1370 /// Print the new schedule for the SCoP @p S. 1371 void printScop(raw_ostream &OS, Scop &S) const override; 1372 1373 /// Register all analyses and transformation required. 1374 void getAnalysisUsage(AnalysisUsage &AU) const override; 1375 1376 /// Release the internal memory. 1377 void releaseMemory() override { 1378 isl_schedule_free(LastSchedule); 1379 LastSchedule = nullptr; 1380 } 1381 1382 private: 1383 isl_schedule *LastSchedule; 1384 }; 1385 } // namespace 1386 1387 char IslScheduleOptimizer::ID = 0; 1388 1389 bool IslScheduleOptimizer::runOnScop(Scop &S) { 1390 1391 // Skip empty SCoPs but still allow code generation as it will delete the 1392 // loops present but not needed. 1393 if (S.getSize() == 0) { 1394 S.markAsOptimized(); 1395 return false; 1396 } 1397 1398 const Dependences &D = 1399 getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement); 1400 1401 if (!D.hasValidDependences()) 1402 return false; 1403 1404 isl_schedule_free(LastSchedule); 1405 LastSchedule = nullptr; 1406 1407 // Build input data. 1408 int ValidityKinds = 1409 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1410 int ProximityKinds; 1411 1412 if (OptimizeDeps == "all") 1413 ProximityKinds = 1414 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1415 else if (OptimizeDeps == "raw") 1416 ProximityKinds = Dependences::TYPE_RAW; 1417 else { 1418 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" 1419 << " Falling back to optimizing all dependences.\n"; 1420 ProximityKinds = 1421 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; 1422 } 1423 1424 isl_union_set *Domain = S.getDomains(); 1425 1426 if (!Domain) 1427 return false; 1428 1429 isl_union_map *Validity = D.getDependences(ValidityKinds); 1430 isl_union_map *Proximity = D.getDependences(ProximityKinds); 1431 1432 // Simplify the dependences by removing the constraints introduced by the 1433 // domains. This can speed up the scheduling time significantly, as large 1434 // constant coefficients will be removed from the dependences. The 1435 // introduction of some additional dependences reduces the possible 1436 // transformations, but in most cases, such transformation do not seem to be 1437 // interesting anyway. In some cases this option may stop the scheduler to 1438 // find any schedule. 1439 if (SimplifyDeps == "yes") { 1440 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); 1441 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); 1442 Proximity = 1443 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); 1444 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); 1445 } else if (SimplifyDeps != "no") { 1446 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " 1447 "or 'no'. Falling back to default: 'yes'\n"; 1448 } 1449 1450 DEBUG(dbgs() << "\n\nCompute schedule from: "); 1451 DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n"); 1452 DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n"); 1453 DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n"); 1454 1455 unsigned IslSerializeSCCs; 1456 1457 if (FusionStrategy == "max") { 1458 IslSerializeSCCs = 0; 1459 } else if (FusionStrategy == "min") { 1460 IslSerializeSCCs = 1; 1461 } else { 1462 errs() << "warning: Unknown fusion strategy. Falling back to maximal " 1463 "fusion.\n"; 1464 IslSerializeSCCs = 0; 1465 } 1466 1467 int IslMaximizeBands; 1468 1469 if (MaximizeBandDepth == "yes") { 1470 IslMaximizeBands = 1; 1471 } else if (MaximizeBandDepth == "no") { 1472 IslMaximizeBands = 0; 1473 } else { 1474 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" 1475 " or 'no'. Falling back to default: 'yes'\n"; 1476 IslMaximizeBands = 1; 1477 } 1478 1479 int IslOuterCoincidence; 1480 1481 if (OuterCoincidence == "yes") { 1482 IslOuterCoincidence = 1; 1483 } else if (OuterCoincidence == "no") { 1484 IslOuterCoincidence = 0; 1485 } else { 1486 errs() << "warning: Option -polly-opt-outer-coincidence should either be " 1487 "'yes' or 'no'. Falling back to default: 'no'\n"; 1488 IslOuterCoincidence = 0; 1489 } 1490 1491 isl_ctx *Ctx = S.getIslCtx(); 1492 1493 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence); 1494 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs); 1495 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands); 1496 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm); 1497 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient); 1498 isl_options_set_tile_scale_tile_loops(Ctx, 0); 1499 1500 auto OnErrorStatus = isl_options_get_on_error(Ctx); 1501 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE); 1502 1503 isl_schedule_constraints *ScheduleConstraints; 1504 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); 1505 ScheduleConstraints = 1506 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); 1507 ScheduleConstraints = isl_schedule_constraints_set_validity( 1508 ScheduleConstraints, isl_union_map_copy(Validity)); 1509 ScheduleConstraints = 1510 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); 1511 isl_schedule *Schedule; 1512 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); 1513 isl_options_set_on_error(Ctx, OnErrorStatus); 1514 1515 // In cases the scheduler is not able to optimize the code, we just do not 1516 // touch the schedule. 1517 if (!Schedule) 1518 return false; 1519 1520 DEBUG({ 1521 auto *P = isl_printer_to_str(Ctx); 1522 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1523 P = isl_printer_print_schedule(P, Schedule); 1524 auto *str = isl_printer_get_str(P); 1525 dbgs() << "NewScheduleTree: \n" << str << "\n"; 1526 free(str); 1527 isl_printer_free(P); 1528 }); 1529 1530 Function &F = S.getFunction(); 1531 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1532 const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)}; 1533 isl_schedule *NewSchedule = 1534 ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI); 1535 1536 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) { 1537 isl_schedule_free(NewSchedule); 1538 return false; 1539 } 1540 1541 S.setScheduleTree(NewSchedule); 1542 S.markAsOptimized(); 1543 1544 if (OptimizedScops) 1545 S.dump(); 1546 1547 return false; 1548 } 1549 1550 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { 1551 isl_printer *p; 1552 char *ScheduleStr; 1553 1554 OS << "Calculated schedule:\n"; 1555 1556 if (!LastSchedule) { 1557 OS << "n/a\n"; 1558 return; 1559 } 1560 1561 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); 1562 p = isl_printer_print_schedule(p, LastSchedule); 1563 ScheduleStr = isl_printer_get_str(p); 1564 isl_printer_free(p); 1565 1566 OS << ScheduleStr << "\n"; 1567 } 1568 1569 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { 1570 ScopPass::getAnalysisUsage(AU); 1571 AU.addRequired<DependenceInfo>(); 1572 AU.addRequired<TargetTransformInfoWrapperPass>(); 1573 } 1574 1575 Pass *polly::createIslScheduleOptimizerPass() { 1576 return new IslScheduleOptimizer(); 1577 } 1578 1579 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", 1580 "Polly - Optimize schedule of SCoP", false, false); 1581 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1582 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); 1583 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); 1584 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", 1585 "Polly - Optimize schedule of SCoP", false, false) 1586