1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass generates an entirely new schedule tree from the data dependences
10 // and iteration domains. The new schedule tree is computed in two steps:
11 //
12 // 1) The isl scheduling optimizer is run
13 //
14 // The isl scheduling optimizer creates a new schedule tree that maximizes
15 // parallelism and tileability and minimizes data-dependence distances. The
16 // algorithm used is a modified version of the ``Pluto'' algorithm:
17 //
18 //   U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
19 //   A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
20 //   In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
21 //   Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
22 //
23 // 2) A set of post-scheduling transformations is applied on the schedule tree.
24 //
25 // These optimizations include:
26 //
27 //  - Tiling of the innermost tilable bands
28 //  - Prevectorization - The choice of a possible outer loop that is strip-mined
29 //                       to the innermost level to enable inner-loop
30 //                       vectorization.
31 //  - Some optimizations for spatial locality are also planned.
32 //
33 // For a detailed description of the schedule tree itself please see section 6
34 // of:
35 //
36 // Polyhedral AST generation is more than scanning polyhedra
37 // Tobias Grosser, Sven Verdoolaege, Albert Cohen
38 // ACM Transactions on Programming Languages and Systems (TOPLAS),
39 // 37(4), July 2015
40 // http://www.grosser.es/#pub-polyhedral-AST-generation
41 //
42 // This publication also contains a detailed discussion of the different options
43 // for polyhedral loop unrolling, full/partial tile separation and other uses
44 // of the schedule tree.
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "polly/ScheduleOptimizer.h"
49 #include "polly/CodeGen/CodeGeneration.h"
50 #include "polly/DependenceInfo.h"
51 #include "polly/LinkAllPasses.h"
52 #include "polly/Options.h"
53 #include "polly/ScheduleTreeTransform.h"
54 #include "polly/ScopInfo.h"
55 #include "polly/ScopPass.h"
56 #include "polly/Simplify.h"
57 #include "polly/Support/ISLOStream.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "isl/ctx.h"
65 #include "isl/options.h"
66 #include "isl/printer.h"
67 #include "isl/schedule.h"
68 #include "isl/schedule_node.h"
69 #include "isl/union_map.h"
70 #include "isl/union_set.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cmath>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <string>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace polly;
81 
82 #define DEBUG_TYPE "polly-opt-isl"
83 
84 static cl::opt<std::string>
85     OptimizeDeps("polly-opt-optimize-only",
86                  cl::desc("Only a certain kind of dependences (all/raw)"),
87                  cl::Hidden, cl::init("all"), cl::ZeroOrMore,
88                  cl::cat(PollyCategory));
89 
90 static cl::opt<std::string>
91     SimplifyDeps("polly-opt-simplify-deps",
92                  cl::desc("Dependences should be simplified (yes/no)"),
93                  cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
94                  cl::cat(PollyCategory));
95 
96 static cl::opt<int> MaxConstantTerm(
97     "polly-opt-max-constant-term",
98     cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
99     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
100 
101 static cl::opt<int> MaxCoefficient(
102     "polly-opt-max-coefficient",
103     cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
104     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
105 
106 static cl::opt<std::string> FusionStrategy(
107     "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
108     cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
109 
110 static cl::opt<std::string>
111     MaximizeBandDepth("polly-opt-maximize-bands",
112                       cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
113                       cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
114 
115 static cl::opt<std::string> OuterCoincidence(
116     "polly-opt-outer-coincidence",
117     cl::desc("Try to construct schedules where the outer member of each band "
118              "satisfies the coincidence constraints (yes/no)"),
119     cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 
121 static cl::opt<int> PrevectorWidth(
122     "polly-prevect-width",
123     cl::desc(
124         "The number of loop iterations to strip-mine for pre-vectorization"),
125     cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
126 
127 static cl::opt<bool> FirstLevelTiling("polly-tiling",
128                                       cl::desc("Enable loop tiling"),
129                                       cl::init(true), cl::ZeroOrMore,
130                                       cl::cat(PollyCategory));
131 
132 static cl::opt<int> LatencyVectorFma(
133     "polly-target-latency-vector-fma",
134     cl::desc("The minimal number of cycles between issuing two "
135              "dependent consecutive vector fused multiply-add "
136              "instructions."),
137     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
138 
139 static cl::opt<int> ThroughputVectorFma(
140     "polly-target-throughput-vector-fma",
141     cl::desc("A throughput of the processor floating-point arithmetic units "
142              "expressed in the number of vector fused multiply-add "
143              "instructions per clock cycle."),
144     cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
145 
146 // This option, along with --polly-target-2nd-cache-level-associativity,
147 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
148 // represent the parameters of the target cache, which do not have typical
149 // values that can be used by default. However, to apply the pattern matching
150 // optimizations, we use the values of the parameters of Intel Core i7-3820
151 // SandyBridge in case the parameters are not specified or not provided by the
152 // TargetTransformInfo.
153 static cl::opt<int> FirstCacheLevelAssociativity(
154     "polly-target-1st-cache-level-associativity",
155     cl::desc("The associativity of the first cache level."), cl::Hidden,
156     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
157 
158 static cl::opt<int> FirstCacheLevelDefaultAssociativity(
159     "polly-target-1st-cache-level-default-associativity",
160     cl::desc("The default associativity of the first cache level"
161              " (if not enough were provided by the TargetTransformInfo)."),
162     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
163 
164 static cl::opt<int> SecondCacheLevelAssociativity(
165     "polly-target-2nd-cache-level-associativity",
166     cl::desc("The associativity of the second cache level."), cl::Hidden,
167     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
168 
169 static cl::opt<int> SecondCacheLevelDefaultAssociativity(
170     "polly-target-2nd-cache-level-default-associativity",
171     cl::desc("The default associativity of the second cache level"
172              " (if not enough were provided by the TargetTransformInfo)."),
173     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
174 
175 static cl::opt<int> FirstCacheLevelSize(
176     "polly-target-1st-cache-level-size",
177     cl::desc("The size of the first cache level specified in bytes."),
178     cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
179 
180 static cl::opt<int> FirstCacheLevelDefaultSize(
181     "polly-target-1st-cache-level-default-size",
182     cl::desc("The default size of the first cache level specified in bytes"
183              " (if not enough were provided by the TargetTransformInfo)."),
184     cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
185 
186 static cl::opt<int> SecondCacheLevelSize(
187     "polly-target-2nd-cache-level-size",
188     cl::desc("The size of the second level specified in bytes."), cl::Hidden,
189     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
190 
191 static cl::opt<int> SecondCacheLevelDefaultSize(
192     "polly-target-2nd-cache-level-default-size",
193     cl::desc("The default size of the second cache level specified in bytes"
194              " (if not enough were provided by the TargetTransformInfo)."),
195     cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
196 
197 static cl::opt<int> VectorRegisterBitwidth(
198     "polly-target-vector-register-bitwidth",
199     cl::desc("The size in bits of a vector register (if not set, this "
200              "information is taken from LLVM's target information."),
201     cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
202 
203 static cl::opt<int> FirstLevelDefaultTileSize(
204     "polly-default-tile-size",
205     cl::desc("The default tile size (if not enough were provided by"
206              " --polly-tile-sizes)"),
207     cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
208 
209 static cl::list<int>
210     FirstLevelTileSizes("polly-tile-sizes",
211                         cl::desc("A tile size for each loop dimension, filled "
212                                  "with --polly-default-tile-size"),
213                         cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
214                         cl::cat(PollyCategory));
215 
216 static cl::opt<bool>
217     SecondLevelTiling("polly-2nd-level-tiling",
218                       cl::desc("Enable a 2nd level loop of loop tiling"),
219                       cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
220 
221 static cl::opt<int> SecondLevelDefaultTileSize(
222     "polly-2nd-level-default-tile-size",
223     cl::desc("The default 2nd-level tile size (if not enough were provided by"
224              " --polly-2nd-level-tile-sizes)"),
225     cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
226 
227 static cl::list<int>
228     SecondLevelTileSizes("polly-2nd-level-tile-sizes",
229                          cl::desc("A tile size for each loop dimension, filled "
230                                   "with --polly-default-tile-size"),
231                          cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
232                          cl::cat(PollyCategory));
233 
234 static cl::opt<bool> RegisterTiling("polly-register-tiling",
235                                     cl::desc("Enable register tiling"),
236                                     cl::init(false), cl::ZeroOrMore,
237                                     cl::cat(PollyCategory));
238 
239 static cl::opt<int> RegisterDefaultTileSize(
240     "polly-register-tiling-default-tile-size",
241     cl::desc("The default register tile size (if not enough were provided by"
242              " --polly-register-tile-sizes)"),
243     cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
244 
245 static cl::opt<int> PollyPatternMatchingNcQuotient(
246     "polly-pattern-matching-nc-quotient",
247     cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
248              "macro-kernel, by Nr, the parameter of the micro-kernel"),
249     cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
250 
251 static cl::list<int>
252     RegisterTileSizes("polly-register-tile-sizes",
253                       cl::desc("A tile size for each loop dimension, filled "
254                                "with --polly-register-tile-size"),
255                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
256                       cl::cat(PollyCategory));
257 
258 static cl::opt<bool>
259     PMBasedOpts("polly-pattern-matching-based-opts",
260                 cl::desc("Perform optimizations based on pattern matching"),
261                 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
262 
263 static cl::opt<bool> OptimizedScops(
264     "polly-optimized-scops",
265     cl::desc("Polly - Dump polyhedral description of Scops optimized with "
266              "the isl scheduling optimizer and the set of post-scheduling "
267              "transformations is applied on the schedule tree"),
268     cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
269 
270 STATISTIC(ScopsProcessed, "Number of scops processed");
271 STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
272 STATISTIC(ScopsOptimized, "Number of scops optimized");
273 
274 STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
275 STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
276 
277 #define THREE_STATISTICS(VARNAME, DESC)                                        \
278   static Statistic VARNAME[3] = {                                              \
279       {DEBUG_TYPE, #VARNAME "0", DESC " (original)"},                          \
280       {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"},                   \
281       {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
282 
283 THREE_STATISTICS(NumBands, "Number of bands");
284 THREE_STATISTICS(NumBandMembers, "Number of band members");
285 THREE_STATISTICS(NumCoincident, "Number of coincident band members");
286 THREE_STATISTICS(NumPermutable, "Number of permutable bands");
287 THREE_STATISTICS(NumFilters, "Number of filter nodes");
288 THREE_STATISTICS(NumExtension, "Number of extension nodes");
289 
290 STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
291 STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
292 STATISTIC(RegisterTileOpts, "Number of register tiling applied");
293 STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
294 STATISTIC(MatMulOpts,
295           "Number of matrix multiplication patterns detected and optimized");
296 
297 /// Create an isl::union_set, which describes the isolate option based on
298 /// IsolateDomain.
299 ///
300 /// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
301 ///                      belong to the current band node.
302 /// @param OutDimsNum    A number of dimensions that should belong to
303 ///                      the current band node.
304 static isl::union_set getIsolateOptions(isl::set IsolateDomain,
305                                         unsigned OutDimsNum) {
306   unsigned Dims = IsolateDomain.dim(isl::dim::set);
307   assert(OutDimsNum <= Dims &&
308          "The isl::set IsolateDomain is used to describe the range of schedule "
309          "dimensions values, which should be isolated. Consequently, the "
310          "number of its dimensions should be greater than or equal to the "
311          "number of the schedule dimensions.");
312   isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
313   IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
314                                               Dims - OutDimsNum, OutDimsNum);
315   isl::set IsolateOption = IsolateRelation.wrap();
316   isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
317   IsolateOption = IsolateOption.set_tuple_id(Id);
318   return isl::union_set(IsolateOption);
319 }
320 
321 namespace {
322 /// Create an isl::union_set, which describes the specified option for the
323 /// dimension of the current node.
324 ///
325 /// @param Ctx    An isl::ctx, which is used to create the isl::union_set.
326 /// @param Option The name of the option.
327 isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
328   isl::space Space(Ctx, 0, 1);
329   auto DimOption = isl::set::universe(Space);
330   auto Id = isl::id::alloc(Ctx, Option, nullptr);
331   DimOption = DimOption.set_tuple_id(Id);
332   return isl::union_set(DimOption);
333 }
334 } // namespace
335 
336 /// Create an isl::union_set, which describes the option of the form
337 /// [isolate[] -> unroll[x]].
338 ///
339 /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
340 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
341   isl::space Space = isl::space(Ctx, 0, 0, 1);
342   isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
343   isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
344   isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
345   UnrollIsolatedSetOption =
346       UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
347   UnrollIsolatedSetOption =
348       UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
349   return UnrollIsolatedSetOption.wrap();
350 }
351 
352 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
353 ///
354 /// @param Set         A set, which should be modified.
355 /// @param VectorWidth A parameter, which determines the constraint.
356 static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
357   unsigned Dims = Set.dim(isl::dim::set);
358   isl::space Space = Set.get_space();
359   isl::local_space LocalSpace = isl::local_space(Space);
360   isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
361   ExtConstr = ExtConstr.set_constant_si(0);
362   ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
363   Set = Set.add_constraint(ExtConstr);
364   ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
365   ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
366   ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
367   return Set.add_constraint(ExtConstr);
368 }
369 
370 isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
371   unsigned Dims = ScheduleRange.dim(isl::dim::set);
372   isl::set LoopPrefixes =
373       ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
374   auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
375   isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
376   BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
377   LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
378   return LoopPrefixes.subtract(BadPrefixes);
379 }
380 
381 isl::schedule_node
382 ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
383                                                int VectorWidth) {
384   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
385   Node = Node.child(0).child(0);
386   isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
387   isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
388   isl::set ScheduleRange = ScheduleRelation.range();
389   isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
390   auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
391   isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
392   Node = Node.parent().parent();
393   isl::union_set Options = IsolateOption.unite(AtomicOption);
394   Node = Node.band_set_ast_build_options(Options);
395   return Node;
396 }
397 
398 isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
399     isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
400   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
401 
402   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
403   auto ScheduleDimensions = Space.dim(isl::dim::set);
404   assert(DimToVectorize < ScheduleDimensions);
405 
406   if (DimToVectorize > 0) {
407     Node = isl::manage(
408         isl_schedule_node_band_split(Node.release(), DimToVectorize));
409     Node = Node.child(0);
410   }
411   if (DimToVectorize < ScheduleDimensions - 1)
412     Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
413   Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
414   auto Sizes = isl::multi_val::zero(Space);
415   Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
416   Node =
417       isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
418   Node = isolateFullPartialTiles(Node, VectorWidth);
419   Node = Node.child(0);
420   // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
421   // we will have troubles to match it in the backend.
422   Node = Node.band_set_ast_build_options(
423       isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
424   Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
425   Node = Node.child(0);
426   if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
427     Node = Node.parent();
428   auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
429   PrevectOpts++;
430   return Node.insert_mark(LoopMarker);
431 }
432 
433 isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
434                                                    const char *Identifier,
435                                                    ArrayRef<int> TileSizes,
436                                                    int DefaultTileSize) {
437   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
438   auto Dims = Space.dim(isl::dim::set);
439   auto Sizes = isl::multi_val::zero(Space);
440   std::string IdentifierString(Identifier);
441   for (unsigned i = 0; i < Dims; i++) {
442     auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
443     Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
444   }
445   auto TileLoopMarkerStr = IdentifierString + " - Tiles";
446   auto TileLoopMarker =
447       isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
448   Node = Node.insert_mark(TileLoopMarker);
449   Node = Node.child(0);
450   Node =
451       isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
452   Node = Node.child(0);
453   auto PointLoopMarkerStr = IdentifierString + " - Points";
454   auto PointLoopMarker =
455       isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
456   Node = Node.insert_mark(PointLoopMarker);
457   return Node.child(0);
458 }
459 
460 isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
461     isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
462   Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
463   auto Ctx = Node.get_ctx();
464   return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
465 }
466 
467 static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
468   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
469   assert(isl_schedule_node_n_children(Node.get()) == 1);
470 
471   auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
472 
473   if (ChildType == isl_schedule_node_leaf)
474     return true;
475 
476   if (ChildType != isl_schedule_node_sequence)
477     return false;
478 
479   auto Sequence = Node.child(0);
480 
481   for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
482        ++c) {
483     auto Child = Sequence.child(c);
484     if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
485       return false;
486     if (isl_schedule_node_get_type(Child.child(0).get()) !=
487         isl_schedule_node_leaf)
488       return false;
489   }
490   return true;
491 }
492 
493 bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
494   if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
495     return false;
496 
497   if (isl_schedule_node_n_children(Node.get()) != 1)
498     return false;
499 
500   if (!isl_schedule_node_band_get_permutable(Node.get()))
501     return false;
502 
503   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
504   auto Dims = Space.dim(isl::dim::set);
505 
506   if (Dims <= 1)
507     return false;
508 
509   return isSimpleInnermostBand(Node);
510 }
511 
512 __isl_give isl::schedule_node
513 ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
514   if (FirstLevelTiling) {
515     Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
516                     FirstLevelDefaultTileSize);
517     FirstLevelTileOpts++;
518   }
519 
520   if (SecondLevelTiling) {
521     Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
522                     SecondLevelDefaultTileSize);
523     SecondLevelTileOpts++;
524   }
525 
526   if (RegisterTiling) {
527     Node =
528         applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
529     RegisterTileOpts++;
530   }
531 
532   if (PollyVectorizerChoice == VECTORIZER_NONE)
533     return Node;
534 
535   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
536   auto Dims = Space.dim(isl::dim::set);
537 
538   for (int i = Dims - 1; i >= 0; i--)
539     if (Node.band_member_get_coincident(i)) {
540       Node = prevectSchedBand(Node, i, PrevectorWidth);
541       break;
542     }
543 
544   return Node;
545 }
546 
547 /// Permute the two dimensions of the isl map.
548 ///
549 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
550 /// have type @p DimType.
551 ///
552 /// @param Map     The isl map to be modified.
553 /// @param DimType The type of the dimensions.
554 /// @param DstPos  The first dimension.
555 /// @param SrcPos  The second dimension.
556 /// @return        The modified map.
557 isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
558                            unsigned SrcPos) {
559   assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
560   if (DstPos == SrcPos)
561     return Map;
562   isl::id DimId;
563   if (Map.has_tuple_id(DimType))
564     DimId = Map.get_tuple_id(DimType);
565   auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
566   isl::id FreeDimId;
567   if (Map.has_tuple_id(FreeDim))
568     FreeDimId = Map.get_tuple_id(FreeDim);
569   auto MaxDim = std::max(DstPos, SrcPos);
570   auto MinDim = std::min(DstPos, SrcPos);
571   Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
572   Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
573   Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
574   Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
575   if (DimId)
576     Map = Map.set_tuple_id(DimType, DimId);
577   if (FreeDimId)
578     Map = Map.set_tuple_id(FreeDim, FreeDimId);
579   return Map;
580 }
581 
582 /// Check the form of the access relation.
583 ///
584 /// Check that the access relation @p AccMap has the form M[i][j], where i
585 /// is a @p FirstPos and j is a @p SecondPos.
586 ///
587 /// @param AccMap    The access relation to be checked.
588 /// @param FirstPos  The index of the input dimension that is mapped to
589 ///                  the first output dimension.
590 /// @param SecondPos The index of the input dimension that is mapped to the
591 ///                  second output dimension.
592 /// @return          True in case @p AccMap has the expected form and false,
593 ///                  otherwise.
594 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
595                                int &SecondPos) {
596   isl::space Space = AccMap.get_space();
597   isl::map Universe = isl::map::universe(Space);
598 
599   if (Space.dim(isl::dim::out) != 2)
600     return false;
601 
602   // MatMul has the form:
603   // for (i = 0; i < N; i++)
604   //   for (j = 0; j < M; j++)
605   //     for (k = 0; k < P; k++)
606   //       C[i, j] += A[i, k] * B[k, j]
607   //
608   // Permutation of three outer loops: 3! = 6 possibilities.
609   int FirstDims[] = {0, 0, 1, 1, 2, 2};
610   int SecondDims[] = {1, 2, 2, 0, 0, 1};
611   for (int i = 0; i < 6; i += 1) {
612     auto PossibleMatMul =
613         Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
614             .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
615 
616     AccMap = AccMap.intersect_domain(Domain);
617     PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
618 
619     // If AccMap spans entire domain (Non-partial write),
620     // compute FirstPos and SecondPos.
621     // If AccMap != PossibleMatMul here (the two maps have been gisted at
622     // this point), it means that the writes are not complete, or in other
623     // words, it is a Partial write and Partial writes must be rejected.
624     if (AccMap.is_equal(PossibleMatMul)) {
625       if (FirstPos != -1 && FirstPos != FirstDims[i])
626         continue;
627       FirstPos = FirstDims[i];
628       if (SecondPos != -1 && SecondPos != SecondDims[i])
629         continue;
630       SecondPos = SecondDims[i];
631       return true;
632     }
633   }
634 
635   return false;
636 }
637 
638 /// Does the memory access represent a non-scalar operand of the matrix
639 /// multiplication.
640 ///
641 /// Check that the memory access @p MemAccess is the read access to a non-scalar
642 /// operand of the matrix multiplication or its result.
643 ///
644 /// @param MemAccess The memory access to be checked.
645 /// @param MMI       Parameters of the matrix multiplication operands.
646 /// @return          True in case the memory access represents the read access
647 ///                  to a non-scalar operand of the matrix multiplication and
648 ///                  false, otherwise.
649 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
650                                         MatMulInfoTy &MMI) {
651   if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
652     return false;
653   auto AccMap = MemAccess->getLatestAccessRelation();
654   isl::set StmtDomain = MemAccess->getStatement()->getDomain();
655   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
656     MMI.ReadFromC = MemAccess;
657     return true;
658   }
659   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
660     MMI.A = MemAccess;
661     return true;
662   }
663   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
664     MMI.B = MemAccess;
665     return true;
666   }
667   return false;
668 }
669 
670 /// Check accesses to operands of the matrix multiplication.
671 ///
672 /// Check that accesses of the SCoP statement, which corresponds to
673 /// the partial schedule @p PartialSchedule, are scalar in terms of loops
674 /// containing the matrix multiplication, in case they do not represent
675 /// accesses to the non-scalar operands of the matrix multiplication or
676 /// its result.
677 ///
678 /// @param  PartialSchedule The partial schedule of the SCoP statement.
679 /// @param  MMI             Parameters of the matrix multiplication operands.
680 /// @return                 True in case the corresponding SCoP statement
681 ///                         represents matrix multiplication and false,
682 ///                         otherwise.
683 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
684                                     MatMulInfoTy &MMI) {
685   auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
686   auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
687   unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
688   assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
689                           "and, consequently, the corresponding scheduling "
690                           "functions have at least three dimensions.");
691   auto MapI =
692       permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
693   auto MapJ =
694       permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
695   auto MapK =
696       permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
697 
698   auto Accesses = getAccessesInOrder(*Stmt);
699   for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
700     auto *MemAccessPtr = *MemA;
701     if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
702         !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
703         !(MemAccessPtr->isStrideZero(MapI)) &&
704         MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
705       return false;
706   }
707   return true;
708 }
709 
710 /// Check for dependencies corresponding to the matrix multiplication.
711 ///
712 /// Check that there is only true dependence of the form
713 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
714 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
715 /// to the dependency produced by the matrix multiplication.
716 ///
717 /// @param  Schedule The schedule of the SCoP statement.
718 /// @param  D The SCoP dependencies.
719 /// @param  Pos The parameter to describe an acceptable true dependence.
720 ///             In case it has a negative value, try to determine its
721 ///             acceptable value.
722 /// @return True in case dependencies correspond to the matrix multiplication
723 ///         and false, otherwise.
724 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
725                                   int &Pos) {
726   isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
727   isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
728   if (Red)
729     Dep = Dep.unite(Red);
730   auto DomainSpace = Schedule.get_space().domain();
731   auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
732   auto Deltas = Dep.extract_map(Space).deltas();
733   int DeltasDimNum = Deltas.dim(isl::dim::set);
734   for (int i = 0; i < DeltasDimNum; i++) {
735     auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
736     Pos = Pos < 0 && Val.is_one() ? i : Pos;
737     if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
738       return false;
739   }
740   if (DeltasDimNum == 0 || Pos < 0)
741     return false;
742   return true;
743 }
744 
745 /// Check if the SCoP statement could probably be optimized with analytical
746 /// modeling.
747 ///
748 /// containsMatrMult tries to determine whether the following conditions
749 /// are true:
750 /// 1. The last memory access modeling an array, MA1, represents writing to
751 ///    memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
752 ///    S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
753 ///    under consideration.
754 /// 2. There is only one loop-carried true dependency, and it has the
755 ///    form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
756 ///    loop-carried or anti dependencies.
757 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
758 ///    reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
759 ///    S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
760 ///    and all memory accesses of the SCoP that are different from MA1, MA2,
761 ///    MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
762 ///    of loops i1, i2 and i3.
763 ///
764 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
765 ///        to check.
766 /// @D     The SCoP dependencies.
767 /// @MMI   Parameters of the matrix multiplication operands.
768 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
769                              MatMulInfoTy &MMI) {
770   auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
771   auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
772   if (Stmt->size() <= 1)
773     return false;
774 
775   auto Accesses = getAccessesInOrder(*Stmt);
776   for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
777     auto *MemAccessPtr = *MemA;
778     if (!MemAccessPtr->isLatestArrayKind())
779       continue;
780     if (!MemAccessPtr->isWrite())
781       return false;
782     auto AccMap = MemAccessPtr->getLatestAccessRelation();
783     if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
784       return false;
785     MMI.WriteToC = MemAccessPtr;
786     break;
787   }
788 
789   if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
790     return false;
791 
792   if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
793     return false;
794 
795   if (!MMI.A || !MMI.B || !MMI.ReadFromC)
796     return false;
797   return true;
798 }
799 
800 /// Permute two dimensions of the band node.
801 ///
802 /// Permute FirstDim and SecondDim dimensions of the Node.
803 ///
804 /// @param Node The band node to be modified.
805 /// @param FirstDim The first dimension to be permuted.
806 /// @param SecondDim The second dimension to be permuted.
807 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
808                                                     unsigned FirstDim,
809                                                     unsigned SecondDim) {
810   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
811          isl_schedule_node_band_n_member(Node.get()) >
812              std::max(FirstDim, SecondDim));
813   auto PartialSchedule =
814       isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
815   auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
816   auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
817   PartialSchedule =
818       PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
819   PartialSchedule =
820       PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
821   Node = isl::manage(isl_schedule_node_delete(Node.release()));
822   return Node.insert_partial_schedule(PartialSchedule);
823 }
824 
825 isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
826     isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
827   Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
828                              1);
829   Node = Node.parent().parent();
830   return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
831 }
832 
833 isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
834     isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
835   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
836   if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
837       MacroKernelParams.Kc == 1)
838     return Node;
839   int DimOutNum = isl_schedule_node_band_n_member(Node.get());
840   std::vector<int> TileSizes(DimOutNum, 1);
841   TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
842   TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
843   TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
844   Node = tileNode(Node, "1st level tiling", TileSizes, 1);
845   Node = Node.parent().parent();
846   Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
847   Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
848 
849   // Mark the outermost loop as parallelizable.
850   Node = Node.band_member_set_coincident(0, true);
851 
852   return Node.child(0).child(0);
853 }
854 
855 /// Get the size of the widest type of the matrix multiplication operands
856 /// in bytes, including alignment padding.
857 ///
858 /// @param MMI Parameters of the matrix multiplication operands.
859 /// @return The size of the widest type of the matrix multiplication operands
860 ///         in bytes, including alignment padding.
861 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
862   auto *S = MMI.A->getStatement()->getParent();
863   auto &DL = S->getFunction().getParent()->getDataLayout();
864   auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
865   auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
866   auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
867   return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
868 }
869 
870 /// Get the size of the widest type of the matrix multiplication operands
871 /// in bits.
872 ///
873 /// @param MMI Parameters of the matrix multiplication operands.
874 /// @return The size of the widest type of the matrix multiplication operands
875 ///         in bits.
876 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
877   auto *S = MMI.A->getStatement()->getParent();
878   auto &DL = S->getFunction().getParent()->getDataLayout();
879   auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
880   auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
881   auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
882   return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
883 }
884 
885 /// Get parameters of the BLIS micro kernel.
886 ///
887 /// We choose the Mr and Nr parameters of the micro kernel to be large enough
888 /// such that no stalls caused by the combination of latencies and dependencies
889 /// are introduced during the updates of the resulting matrix of the matrix
890 /// multiplication. However, they should also be as small as possible to
891 /// release more registers for entries of multiplied matrices.
892 ///
893 /// @param TTI Target Transform Info.
894 /// @param MMI Parameters of the matrix multiplication operands.
895 /// @return The structure of type MicroKernelParamsTy.
896 /// @see MicroKernelParamsTy
897 static struct MicroKernelParamsTy
898 getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
899   assert(TTI && "The target transform info should be provided.");
900 
901   // Nvec - Number of double-precision floating-point numbers that can be hold
902   // by a vector register. Use 2 by default.
903   long RegisterBitwidth = VectorRegisterBitwidth;
904 
905   if (RegisterBitwidth == -1)
906     RegisterBitwidth = TTI->getRegisterBitWidth(true);
907   auto ElementSize = getMatMulTypeSize(MMI);
908   assert(ElementSize > 0 && "The element size of the matrix multiplication "
909                             "operands should be greater than zero.");
910   auto Nvec = RegisterBitwidth / ElementSize;
911   if (Nvec == 0)
912     Nvec = 2;
913   int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
914                 Nvec) *
915            Nvec;
916   int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
917   return {Mr, Nr};
918 }
919 
920 namespace {
921 /// Determine parameters of the target cache.
922 ///
923 /// @param TTI Target Transform Info.
924 void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
925   auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
926   auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
927   if (FirstCacheLevelSize == -1) {
928     if (TTI->getCacheSize(L1DCache).hasValue())
929       FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
930     else
931       FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
932   }
933   if (SecondCacheLevelSize == -1) {
934     if (TTI->getCacheSize(L2DCache).hasValue())
935       SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
936     else
937       SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
938   }
939   if (FirstCacheLevelAssociativity == -1) {
940     if (TTI->getCacheAssociativity(L1DCache).hasValue())
941       FirstCacheLevelAssociativity =
942           TTI->getCacheAssociativity(L1DCache).getValue();
943     else
944       FirstCacheLevelAssociativity =
945           static_cast<int>(FirstCacheLevelDefaultAssociativity);
946   }
947   if (SecondCacheLevelAssociativity == -1) {
948     if (TTI->getCacheAssociativity(L2DCache).hasValue())
949       SecondCacheLevelAssociativity =
950           TTI->getCacheAssociativity(L2DCache).getValue();
951     else
952       SecondCacheLevelAssociativity =
953           static_cast<int>(SecondCacheLevelDefaultAssociativity);
954   }
955 }
956 } // namespace
957 
958 /// Get parameters of the BLIS macro kernel.
959 ///
960 /// During the computation of matrix multiplication, blocks of partitioned
961 /// matrices are mapped to different layers of the memory hierarchy.
962 /// To optimize data reuse, blocks should be ideally kept in cache between
963 /// iterations. Since parameters of the macro kernel determine sizes of these
964 /// blocks, there are upper and lower bounds on these parameters.
965 ///
966 /// @param TTI Target Transform Info.
967 /// @param MicroKernelParams Parameters of the micro-kernel
968 ///                          to be taken into account.
969 /// @param MMI Parameters of the matrix multiplication operands.
970 /// @return The structure of type MacroKernelParamsTy.
971 /// @see MacroKernelParamsTy
972 /// @see MicroKernelParamsTy
973 static struct MacroKernelParamsTy
974 getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
975                      const MicroKernelParamsTy &MicroKernelParams,
976                      MatMulInfoTy MMI) {
977   getTargetCacheParameters(TTI);
978   // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
979   // it requires information about the first two levels of a cache to determine
980   // all the parameters of a macro-kernel. It also checks that an associativity
981   // degree of a cache level is greater than two. Otherwise, another algorithm
982   // for determination of the parameters should be used.
983   if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
984         FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
985         FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
986     return {1, 1, 1};
987   // The quotient should be greater than zero.
988   if (PollyPatternMatchingNcQuotient <= 0)
989     return {1, 1, 1};
990   int Car = floor(
991       (FirstCacheLevelAssociativity - 1) /
992       (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
993 
994   // Car can be computed to be zero since it is floor to int.
995   // On Mac OS, division by 0 does not raise a signal. This causes negative
996   // tile sizes to be computed. Prevent division by Cac==0 by early returning
997   // if this happens.
998   if (Car == 0)
999     return {1, 1, 1};
1000 
1001   auto ElementSize = getMatMulAlignTypeSize(MMI);
1002   assert(ElementSize > 0 && "The element size of the matrix multiplication "
1003                             "operands should be greater than zero.");
1004   int Kc = (Car * FirstCacheLevelSize) /
1005            (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
1006   double Cac =
1007       static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
1008       SecondCacheLevelSize;
1009   int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
1010   int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
1011 
1012   assert(Mc > 0 && Nc > 0 && Kc > 0 &&
1013          "Matrix block sizes should be  greater than zero");
1014   return {Mc, Nc, Kc};
1015 }
1016 
1017 /// Create an access relation that is specific to
1018 ///        the matrix multiplication pattern.
1019 ///
1020 /// Create an access relation of the following form:
1021 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
1022 /// where I is @p FirstDim, J is @p SecondDim.
1023 ///
1024 /// It can be used, for example, to create relations that helps to consequently
1025 /// access elements of operands of a matrix multiplication after creation of
1026 /// the BLIS micro and macro kernels.
1027 ///
1028 /// @see ScheduleTreeOptimizer::createMicroKernel
1029 /// @see ScheduleTreeOptimizer::createMacroKernel
1030 ///
1031 /// Subsequently, the described access relation is applied to the range of
1032 /// @p MapOldIndVar, that is used to map original induction variables to
1033 /// the ones, which are produced by schedule transformations. It helps to
1034 /// define relations using a new space and, at the same time, keep them
1035 /// in the original one.
1036 ///
1037 /// @param MapOldIndVar The relation, which maps original induction variables
1038 ///                     to the ones, which are produced by schedule
1039 ///                     transformations.
1040 /// @param FirstDim, SecondDim The input dimensions that are used to define
1041 ///        the specified access relation.
1042 /// @return The specified access relation.
1043 isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
1044                          unsigned SecondDim) {
1045   auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
1046   auto AccessRel = isl::map::universe(AccessRelSpace);
1047   AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
1048   AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
1049   AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
1050   return MapOldIndVar.apply_range(AccessRel);
1051 }
1052 
1053 isl::schedule_node createExtensionNode(isl::schedule_node Node,
1054                                        isl::map ExtensionMap) {
1055   auto Extension = isl::union_map(ExtensionMap);
1056   auto NewNode = isl::schedule_node::from_extension(Extension);
1057   return Node.graft_before(NewNode);
1058 }
1059 
1060 /// Apply the packing transformation.
1061 ///
1062 /// The packing transformation can be described as a data-layout
1063 /// transformation that requires to introduce a new array, copy data
1064 /// to the array, and change memory access locations to reference the array.
1065 /// It can be used to ensure that elements of the new array are read in-stride
1066 /// access, aligned to cache lines boundaries, and preloaded into certain cache
1067 /// levels.
1068 ///
1069 /// As an example let us consider the packing of the array A that would help
1070 /// to read its elements with in-stride access. An access to the array A
1071 /// is represented by an access relation that has the form
1072 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
1073 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
1074 /// k mod Kc, j mod Nr, i mod Mr].
1075 ///
1076 /// To ensure that elements of the array A are read in-stride access, we add
1077 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
1078 /// Scop::createScopArrayInfo, change the access relation
1079 /// S[i, j, k] -> A[i, k] to
1080 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
1081 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
1082 /// the copy statement created by Scop::addScopStmt.
1083 ///
1084 /// @param Node The schedule node to be optimized.
1085 /// @param MapOldIndVar The relation, which maps original induction variables
1086 ///                     to the ones, which are produced by schedule
1087 ///                     transformations.
1088 /// @param MicroParams, MacroParams Parameters of the BLIS kernel
1089 ///                                 to be taken into account.
1090 /// @param MMI Parameters of the matrix multiplication operands.
1091 /// @return The optimized schedule node.
1092 static isl::schedule_node
1093 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
1094                                  MicroKernelParamsTy MicroParams,
1095                                  MacroKernelParamsTy MacroParams,
1096                                  MatMulInfoTy &MMI) {
1097   auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
1098   auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
1099 
1100   // Create a copy statement that corresponds to the memory access to the
1101   // matrix B, the second operand of the matrix multiplication.
1102   Node = Node.parent().parent().parent().parent().parent().parent();
1103   Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
1104   auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
1105   unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
1106   unsigned SecondDimSize = MacroParams.Kc;
1107   unsigned ThirdDimSize = MicroParams.Nr;
1108   auto *SAI = Stmt->getParent()->createScopArrayInfo(
1109       MMI.B->getElementType(), "Packed_B",
1110       {FirstDimSize, SecondDimSize, ThirdDimSize});
1111   AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1112   auto OldAcc = MMI.B->getLatestAccessRelation();
1113   MMI.B->setNewAccessRelation(AccRel);
1114   auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
1115                                          MapOldIndVar.dim(isl::dim::out) - 2);
1116   ExtMap = ExtMap.reverse();
1117   ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
1118   auto Domain = Stmt->getDomain();
1119 
1120   // Restrict the domains of the copy statements to only execute when also its
1121   // originating statement is executed.
1122   auto DomainId = Domain.get_tuple_id();
1123   auto *NewStmt = Stmt->getParent()->addScopStmt(
1124       OldAcc, MMI.B->getLatestAccessRelation(), Domain);
1125   ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1126   ExtMap = ExtMap.intersect_range(Domain);
1127   ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1128   Node = createExtensionNode(Node, ExtMap);
1129 
1130   // Create a copy statement that corresponds to the memory access
1131   // to the matrix A, the first operand of the matrix multiplication.
1132   Node = Node.child(0);
1133   AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
1134   FirstDimSize = MacroParams.Mc / MicroParams.Mr;
1135   ThirdDimSize = MicroParams.Mr;
1136   SAI = Stmt->getParent()->createScopArrayInfo(
1137       MMI.A->getElementType(), "Packed_A",
1138       {FirstDimSize, SecondDimSize, ThirdDimSize});
1139   AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1140   OldAcc = MMI.A->getLatestAccessRelation();
1141   MMI.A->setNewAccessRelation(AccRel);
1142   ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
1143                                     MapOldIndVar.dim(isl::dim::out) - 3);
1144   ExtMap = ExtMap.reverse();
1145   ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
1146   NewStmt = Stmt->getParent()->addScopStmt(
1147       OldAcc, MMI.A->getLatestAccessRelation(), Domain);
1148 
1149   // Restrict the domains of the copy statements to only execute when also its
1150   // originating statement is executed.
1151   ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1152   ExtMap = ExtMap.intersect_range(Domain);
1153   ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1154   Node = createExtensionNode(Node, ExtMap);
1155   return Node.child(0).child(0).child(0).child(0).child(0);
1156 }
1157 
1158 /// Get a relation mapping induction variables produced by schedule
1159 /// transformations to the original ones.
1160 ///
1161 /// @param Node The schedule node produced as the result of creation
1162 ///        of the BLIS kernels.
1163 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
1164 ///                                             to be taken into account.
1165 /// @return  The relation mapping original induction variables to the ones
1166 ///          produced by schedule transformation.
1167 /// @see ScheduleTreeOptimizer::createMicroKernel
1168 /// @see ScheduleTreeOptimizer::createMacroKernel
1169 /// @see getMacroKernelParams
1170 isl::map
1171 getInductionVariablesSubstitution(isl::schedule_node Node,
1172                                   MicroKernelParamsTy MicroKernelParams,
1173                                   MacroKernelParamsTy MacroKernelParams) {
1174   auto Child = Node.child(0);
1175   auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
1176   auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
1177   if (MapOldIndVar.dim(isl::dim::out) > 9)
1178     return MapOldIndVar.project_out(isl::dim::out, 0,
1179                                     MapOldIndVar.dim(isl::dim::out) - 9);
1180   return MapOldIndVar;
1181 }
1182 
1183 /// Isolate a set of partial tile prefixes and unroll the isolated part.
1184 ///
1185 /// The set should ensure that it contains only partial tile prefixes that have
1186 /// exactly Mr x Nr iterations of the two innermost loops produced by
1187 /// the optimization of the matrix multiplication. Mr and Nr are parameters of
1188 /// the micro-kernel.
1189 ///
1190 /// In case of parametric bounds, this helps to auto-vectorize the unrolled
1191 /// innermost loops, using the SLP vectorizer.
1192 ///
1193 /// @param Node              The schedule node to be modified.
1194 /// @param MicroKernelParams Parameters of the micro-kernel
1195 ///                          to be taken into account.
1196 /// @return The modified isl_schedule_node.
1197 static isl::schedule_node
1198 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
1199                                  struct MicroKernelParamsTy MicroKernelParams) {
1200   isl::schedule_node Child = Node.get_child(0);
1201   isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
1202   isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
1203   unsigned Dims = Prefix.dim(isl::dim::set);
1204   Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
1205   Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
1206   Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
1207 
1208   isl::union_set IsolateOption =
1209       getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
1210   isl::ctx Ctx = Node.get_ctx();
1211   auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
1212   Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
1213   Node = Node.band_set_ast_build_options(Options);
1214   Node = Node.parent().parent().parent();
1215   IsolateOption = getIsolateOptions(Prefix, 3);
1216   Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
1217   Node = Node.band_set_ast_build_options(Options);
1218   Node = Node.child(0).child(0).child(0);
1219   return Node;
1220 }
1221 
1222 /// Mark @p BasePtr with "Inter iteration alias-free" mark node.
1223 ///
1224 /// @param Node The child of the mark node to be inserted.
1225 /// @param BasePtr The pointer to be marked.
1226 /// @return The modified isl_schedule_node.
1227 static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
1228                                                       Value *BasePtr) {
1229   if (!BasePtr)
1230     return Node;
1231 
1232   auto Id =
1233       isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
1234   return Node.insert_mark(Id).child(0);
1235 }
1236 
1237 /// Insert "Loop Vectorizer Disabled" mark node.
1238 ///
1239 /// @param Node The child of the mark node to be inserted.
1240 /// @return The modified isl_schedule_node.
1241 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
1242   auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
1243   return Node.insert_mark(Id).child(0);
1244 }
1245 
1246 /// Restore the initial ordering of dimensions of the band node
1247 ///
1248 /// In case the band node represents all the dimensions of the iteration
1249 /// domain, recreate the band node to restore the initial ordering of the
1250 /// dimensions.
1251 ///
1252 /// @param Node The band node to be modified.
1253 /// @return The modified schedule node.
1254 static isl::schedule_node
1255 getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
1256   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
1257   if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
1258     return Node;
1259   auto Domain = Node.get_universe_domain();
1260   assert(isl_union_set_n_set(Domain.get()) == 1);
1261   if (Node.get_schedule_depth() != 0 ||
1262       (isl::set(Domain).dim(isl::dim::set) !=
1263        isl_schedule_node_band_n_member(Node.get())))
1264     return Node;
1265   Node = isl::manage(isl_schedule_node_delete(Node.copy()));
1266   auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
1267   auto PartialScheduleMultiPwAff =
1268       isl::multi_union_pw_aff(PartialSchedulePwAff);
1269   PartialScheduleMultiPwAff =
1270       PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
1271   return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
1272 }
1273 
1274 isl::schedule_node
1275 ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
1276                                              const TargetTransformInfo *TTI,
1277                                              MatMulInfoTy &MMI) {
1278   assert(TTI && "The target transform info should be provided.");
1279   Node = markInterIterationAliasFree(
1280       Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
1281   int DimOutNum = isl_schedule_node_band_n_member(Node.get());
1282   assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
1283                           "and, consequently, the corresponding scheduling "
1284                           "functions have at least three dimensions.");
1285   Node = getBandNodeWithOriginDimOrder(Node);
1286   Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
1287   int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
1288   int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
1289   Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
1290   NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
1291   Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
1292   auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
1293   auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
1294   Node = createMacroKernel(Node, MacroKernelParams);
1295   Node = createMicroKernel(Node, MicroKernelParams);
1296   if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
1297       MacroKernelParams.Kc == 1)
1298     return Node;
1299   auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
1300                                                         MacroKernelParams);
1301   if (!MapOldIndVar)
1302     return Node;
1303   Node = markLoopVectorizerDisabled(Node.parent()).child(0);
1304   Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
1305   return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
1306                                           MacroKernelParams, MMI);
1307 }
1308 
1309 bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
1310                                               const Dependences *D,
1311                                               MatMulInfoTy &MMI) {
1312   auto PartialSchedule = isl::manage(
1313       isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
1314   Node = Node.child(0);
1315   auto LeafType = isl_schedule_node_get_type(Node.get());
1316   Node = Node.parent();
1317   if (LeafType != isl_schedule_node_leaf ||
1318       isl_schedule_node_band_n_member(Node.get()) < 3 ||
1319       Node.get_schedule_depth() != 0 ||
1320       isl_union_map_n_map(PartialSchedule.get()) != 1)
1321     return false;
1322   auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
1323   if (containsMatrMult(NewPartialSchedule, D, MMI))
1324     return true;
1325   return false;
1326 }
1327 
1328 __isl_give isl_schedule_node *
1329 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
1330                                     void *User) {
1331   if (!isTileableBandNode(isl::manage_copy(Node)))
1332     return Node;
1333 
1334   const OptimizerAdditionalInfoTy *OAI =
1335       static_cast<const OptimizerAdditionalInfoTy *>(User);
1336 
1337   MatMulInfoTy MMI;
1338   if (PMBasedOpts && User &&
1339       isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
1340     LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
1341     MatMulOpts++;
1342     return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
1343   }
1344 
1345   return standardBandOpts(isl::manage(Node), User).release();
1346 }
1347 
1348 isl::schedule
1349 ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
1350                                         const OptimizerAdditionalInfoTy *OAI) {
1351   auto Root = Schedule.get_root();
1352   Root = optimizeScheduleNode(Root, OAI);
1353   return Root.get_schedule();
1354 }
1355 
1356 isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
1357     isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
1358   Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
1359       Node.release(), optimizeBand,
1360       const_cast<void *>(static_cast<const void *>(OAI))));
1361   return Node;
1362 }
1363 
1364 bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
1365                                                  isl::schedule NewSchedule) {
1366   // To understand if the schedule has been optimized we check if the schedule
1367   // has changed at all.
1368   // TODO: We can improve this by tracking if any necessarily beneficial
1369   // transformations have been performed. This can e.g. be tiling, loop
1370   // interchange, or ...) We can track this either at the place where the
1371   // transformation has been performed or, in case of automatic ILP based
1372   // optimizations, by comparing (yet to be defined) performance metrics
1373   // before/after the scheduling optimizer
1374   // (e.g., #stride-one accesses)
1375   auto NewScheduleMap = NewSchedule.get_map();
1376   auto OldSchedule = S.getSchedule();
1377   assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
1378                         "that make Scop::getSchedule() return nullptr.");
1379   bool changed = !OldSchedule.is_equal(NewScheduleMap);
1380   return changed;
1381 }
1382 
1383 namespace {
1384 
1385 class IslScheduleOptimizer : public ScopPass {
1386 public:
1387   static char ID;
1388 
1389   explicit IslScheduleOptimizer() : ScopPass(ID) {}
1390 
1391   ~IslScheduleOptimizer() override { isl_schedule_free(LastSchedule); }
1392 
1393   /// Optimize the schedule of the SCoP @p S.
1394   bool runOnScop(Scop &S) override;
1395 
1396   /// Print the new schedule for the SCoP @p S.
1397   void printScop(raw_ostream &OS, Scop &S) const override;
1398 
1399   /// Register all analyses and transformation required.
1400   void getAnalysisUsage(AnalysisUsage &AU) const override;
1401 
1402   /// Release the internal memory.
1403   void releaseMemory() override {
1404     isl_schedule_free(LastSchedule);
1405     LastSchedule = nullptr;
1406   }
1407 
1408 private:
1409   isl_schedule *LastSchedule = nullptr;
1410 };
1411 } // namespace
1412 
1413 char IslScheduleOptimizer::ID = 0;
1414 
1415 /// Collect statistics for the schedule tree.
1416 ///
1417 /// @param Schedule The schedule tree to analyze. If not a schedule tree it is
1418 /// ignored.
1419 /// @param Version  The version of the schedule tree that is analyzed.
1420 ///                 0 for the original schedule tree before any transformation.
1421 ///                 1 for the schedule tree after isl's rescheduling.
1422 ///                 2 for the schedule tree after optimizations are applied
1423 ///                 (tiling, pattern matching)
1424 static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
1425   auto Root = Schedule.get_root();
1426   if (!Root)
1427     return;
1428 
1429   isl_schedule_node_foreach_descendant_top_down(
1430       Root.get(),
1431       [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
1432         isl::schedule_node Node = isl::manage_copy(nodeptr);
1433         int Version = *static_cast<int *>(user);
1434 
1435         switch (isl_schedule_node_get_type(Node.get())) {
1436         case isl_schedule_node_band: {
1437           NumBands[Version]++;
1438           if (isl_schedule_node_band_get_permutable(Node.get()) ==
1439               isl_bool_true)
1440             NumPermutable[Version]++;
1441 
1442           int CountMembers = isl_schedule_node_band_n_member(Node.get());
1443           NumBandMembers[Version] += CountMembers;
1444           for (int i = 0; i < CountMembers; i += 1) {
1445             if (Node.band_member_get_coincident(i))
1446               NumCoincident[Version]++;
1447           }
1448           break;
1449         }
1450 
1451         case isl_schedule_node_filter:
1452           NumFilters[Version]++;
1453           break;
1454 
1455         case isl_schedule_node_extension:
1456           NumExtension[Version]++;
1457           break;
1458 
1459         default:
1460           break;
1461         }
1462 
1463         return isl_bool_true;
1464       },
1465       &Version);
1466 }
1467 
1468 bool IslScheduleOptimizer::runOnScop(Scop &S) {
1469   // Skip SCoPs in case they're already optimised by PPCGCodeGeneration
1470   if (S.isToBeSkipped())
1471     return false;
1472 
1473   // Skip empty SCoPs but still allow code generation as it will delete the
1474   // loops present but not needed.
1475   if (S.getSize() == 0) {
1476     S.markAsOptimized();
1477     return false;
1478   }
1479 
1480   const Dependences &D =
1481       getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
1482 
1483   if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
1484     LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
1485     return false;
1486   }
1487 
1488   if (!D.hasValidDependences())
1489     return false;
1490 
1491   isl_schedule_free(LastSchedule);
1492   LastSchedule = nullptr;
1493 
1494   // Build input data.
1495   int ValidityKinds =
1496       Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1497   int ProximityKinds;
1498 
1499   if (OptimizeDeps == "all")
1500     ProximityKinds =
1501         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1502   else if (OptimizeDeps == "raw")
1503     ProximityKinds = Dependences::TYPE_RAW;
1504   else {
1505     errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
1506            << " Falling back to optimizing all dependences.\n";
1507     ProximityKinds =
1508         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1509   }
1510 
1511   isl::union_set Domain = S.getDomains();
1512 
1513   if (!Domain)
1514     return false;
1515 
1516   ScopsProcessed++;
1517   walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
1518 
1519   isl::union_map Validity = D.getDependences(ValidityKinds);
1520   isl::union_map Proximity = D.getDependences(ProximityKinds);
1521 
1522   // Simplify the dependences by removing the constraints introduced by the
1523   // domains. This can speed up the scheduling time significantly, as large
1524   // constant coefficients will be removed from the dependences. The
1525   // introduction of some additional dependences reduces the possible
1526   // transformations, but in most cases, such transformation do not seem to be
1527   // interesting anyway. In some cases this option may stop the scheduler to
1528   // find any schedule.
1529   if (SimplifyDeps == "yes") {
1530     Validity = Validity.gist_domain(Domain);
1531     Validity = Validity.gist_range(Domain);
1532     Proximity = Proximity.gist_domain(Domain);
1533     Proximity = Proximity.gist_range(Domain);
1534   } else if (SimplifyDeps != "no") {
1535     errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
1536               "or 'no'. Falling back to default: 'yes'\n";
1537   }
1538 
1539   LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
1540   LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
1541   LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
1542   LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
1543 
1544   unsigned IslSerializeSCCs;
1545 
1546   if (FusionStrategy == "max") {
1547     IslSerializeSCCs = 0;
1548   } else if (FusionStrategy == "min") {
1549     IslSerializeSCCs = 1;
1550   } else {
1551     errs() << "warning: Unknown fusion strategy. Falling back to maximal "
1552               "fusion.\n";
1553     IslSerializeSCCs = 0;
1554   }
1555 
1556   int IslMaximizeBands;
1557 
1558   if (MaximizeBandDepth == "yes") {
1559     IslMaximizeBands = 1;
1560   } else if (MaximizeBandDepth == "no") {
1561     IslMaximizeBands = 0;
1562   } else {
1563     errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
1564               " or 'no'. Falling back to default: 'yes'\n";
1565     IslMaximizeBands = 1;
1566   }
1567 
1568   int IslOuterCoincidence;
1569 
1570   if (OuterCoincidence == "yes") {
1571     IslOuterCoincidence = 1;
1572   } else if (OuterCoincidence == "no") {
1573     IslOuterCoincidence = 0;
1574   } else {
1575     errs() << "warning: Option -polly-opt-outer-coincidence should either be "
1576               "'yes' or 'no'. Falling back to default: 'no'\n";
1577     IslOuterCoincidence = 0;
1578   }
1579 
1580   isl_ctx *Ctx = S.getIslCtx().get();
1581 
1582   isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
1583   isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
1584   isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
1585   isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
1586   isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
1587   isl_options_set_tile_scale_tile_loops(Ctx, 0);
1588 
1589   auto OnErrorStatus = isl_options_get_on_error(Ctx);
1590   isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
1591 
1592   auto SC = isl::schedule_constraints::on_domain(Domain);
1593   SC = SC.set_proximity(Proximity);
1594   SC = SC.set_validity(Validity);
1595   SC = SC.set_coincidence(Validity);
1596   auto Schedule = SC.compute_schedule();
1597   isl_options_set_on_error(Ctx, OnErrorStatus);
1598 
1599   walkScheduleTreeForStatistics(Schedule, 1);
1600 
1601   // In cases the scheduler is not able to optimize the code, we just do not
1602   // touch the schedule.
1603   if (!Schedule)
1604     return false;
1605 
1606   ScopsRescheduled++;
1607 
1608   LLVM_DEBUG({
1609     auto *P = isl_printer_to_str(Ctx);
1610     P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1611     P = isl_printer_print_schedule(P, Schedule.get());
1612     auto *str = isl_printer_get_str(P);
1613     dbgs() << "NewScheduleTree: \n" << str << "\n";
1614     free(str);
1615     isl_printer_free(P);
1616   });
1617 
1618   Function &F = S.getFunction();
1619   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1620   const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
1621   auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
1622   NewSchedule = hoistExtensionNodes(NewSchedule);
1623   walkScheduleTreeForStatistics(NewSchedule, 2);
1624 
1625   if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
1626     return false;
1627 
1628   auto ScopStats = S.getStatistics();
1629   ScopsOptimized++;
1630   NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
1631   NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
1632 
1633   S.setScheduleTree(NewSchedule);
1634   S.markAsOptimized();
1635 
1636   if (OptimizedScops)
1637     errs() << S;
1638 
1639   return false;
1640 }
1641 
1642 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
1643   isl_printer *p;
1644   char *ScheduleStr;
1645 
1646   OS << "Calculated schedule:\n";
1647 
1648   if (!LastSchedule) {
1649     OS << "n/a\n";
1650     return;
1651   }
1652 
1653   p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
1654   p = isl_printer_print_schedule(p, LastSchedule);
1655   ScheduleStr = isl_printer_get_str(p);
1656   isl_printer_free(p);
1657 
1658   OS << ScheduleStr << "\n";
1659 }
1660 
1661 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
1662   ScopPass::getAnalysisUsage(AU);
1663   AU.addRequired<DependenceInfo>();
1664   AU.addRequired<TargetTransformInfoWrapperPass>();
1665 
1666   AU.addPreserved<DependenceInfo>();
1667 }
1668 
1669 Pass *polly::createIslScheduleOptimizerPass() {
1670   return new IslScheduleOptimizer();
1671 }
1672 
1673 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
1674                       "Polly - Optimize schedule of SCoP", false, false);
1675 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
1676 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
1677 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
1678 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
1679                     "Polly - Optimize schedule of SCoP", false, false)
1680