1 //===- MatmulOptimizer.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "polly/MatmulOptimizer.h" 10 #include "polly/DependenceInfo.h" 11 #include "polly/Options.h" 12 #include "polly/ScheduleTreeTransform.h" 13 #include "polly/ScopInfo.h" 14 #include "polly/ScopPass.h" 15 #include "polly/Simplify.h" 16 #include "polly/Support/ISLTools.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/Sequence.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/TypeSize.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "isl/ctx.h" 32 #include "isl/schedule_node.h" 33 #include "isl/schedule_type.h" 34 #include "isl/union_map.h" 35 #include "isl/union_set.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cmath> 39 #include <cstdint> 40 #include <string> 41 #include <vector> 42 43 #define DEBUG_TYPE "polly-opt-isl" 44 45 using namespace llvm; 46 using namespace polly; 47 48 namespace llvm { 49 class Value; 50 } 51 52 static cl::opt<int> LatencyVectorFma( 53 "polly-target-latency-vector-fma", 54 cl::desc("The minimal number of cycles between issuing two " 55 "dependent consecutive vector fused multiply-add " 56 "instructions."), 57 cl::Hidden, cl::init(8), cl::cat(PollyCategory)); 58 59 static cl::opt<int> ThroughputVectorFma( 60 "polly-target-throughput-vector-fma", 61 cl::desc("A throughput of the processor floating-point arithmetic units " 62 "expressed in the number of vector fused multiply-add " 63 "instructions per clock cycle."), 64 cl::Hidden, cl::init(1), cl::cat(PollyCategory)); 65 66 static cl::opt<int> FirstCacheLevelSize( 67 "polly-target-1st-cache-level-size", 68 cl::desc("The size of the first cache level specified in bytes."), 69 cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); 70 71 static cl::opt<int> FirstCacheLevelDefaultSize( 72 "polly-target-1st-cache-level-default-size", 73 cl::desc("The default size of the first cache level specified in bytes" 74 " (if not enough were provided by the TargetTransformInfo)."), 75 cl::Hidden, cl::init(32768), cl::cat(PollyCategory)); 76 77 static cl::opt<int> SecondCacheLevelSize( 78 "polly-target-2nd-cache-level-size", 79 cl::desc("The size of the second level specified in bytes."), cl::Hidden, 80 cl::init(-1), cl::cat(PollyCategory)); 81 82 static cl::opt<int> SecondCacheLevelDefaultSize( 83 "polly-target-2nd-cache-level-default-size", 84 cl::desc("The default size of the second cache level specified in bytes" 85 " (if not enough were provided by the TargetTransformInfo)."), 86 cl::Hidden, cl::init(262144), cl::cat(PollyCategory)); 87 88 // This option, along with --polly-target-2nd-cache-level-associativity, 89 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size 90 // represent the parameters of the target cache, which do not have typical 91 // values that can be used by default. However, to apply the pattern matching 92 // optimizations, we use the values of the parameters of Intel Core i7-3820 93 // SandyBridge in case the parameters are not specified or not provided by the 94 // TargetTransformInfo. 95 static cl::opt<int> FirstCacheLevelAssociativity( 96 "polly-target-1st-cache-level-associativity", 97 cl::desc("The associativity of the first cache level."), cl::Hidden, 98 cl::init(-1), cl::cat(PollyCategory)); 99 100 static cl::opt<int> FirstCacheLevelDefaultAssociativity( 101 "polly-target-1st-cache-level-default-associativity", 102 cl::desc("The default associativity of the first cache level" 103 " (if not enough were provided by the TargetTransformInfo)."), 104 cl::Hidden, cl::init(8), cl::cat(PollyCategory)); 105 106 static cl::opt<int> SecondCacheLevelAssociativity( 107 "polly-target-2nd-cache-level-associativity", 108 cl::desc("The associativity of the second cache level."), cl::Hidden, 109 cl::init(-1), cl::cat(PollyCategory)); 110 111 static cl::opt<int> SecondCacheLevelDefaultAssociativity( 112 "polly-target-2nd-cache-level-default-associativity", 113 cl::desc("The default associativity of the second cache level" 114 " (if not enough were provided by the TargetTransformInfo)."), 115 cl::Hidden, cl::init(8), cl::cat(PollyCategory)); 116 117 static cl::opt<int> VectorRegisterBitwidth( 118 "polly-target-vector-register-bitwidth", 119 cl::desc("The size in bits of a vector register (if not set, this " 120 "information is taken from LLVM's target information."), 121 cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); 122 123 static cl::opt<int> PollyPatternMatchingNcQuotient( 124 "polly-pattern-matching-nc-quotient", 125 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the" 126 "macro-kernel, by Nr, the parameter of the micro-kernel"), 127 cl::Hidden, cl::init(256), cl::cat(PollyCategory)); 128 129 namespace { 130 /// Parameters of the micro kernel. 131 /// 132 /// Parameters, which determine sizes of rank-1 (i.e., outer product) update 133 /// used in the optimized matrix multiplication. 134 struct MicroKernelParamsTy { 135 int Mr; 136 int Nr; 137 }; 138 139 /// Parameters of the macro kernel. 140 /// 141 /// Parameters, which determine sizes of blocks of partitioned matrices 142 /// used in the optimized matrix multiplication. 143 struct MacroKernelParamsTy { 144 int Mc; 145 int Nc; 146 int Kc; 147 }; 148 149 /// Parameters of the matrix multiplication operands. 150 /// 151 /// Parameters, which describe access relations that represent operands of the 152 /// matrix multiplication. 153 struct MatMulInfoTy { 154 MemoryAccess *A = nullptr; 155 MemoryAccess *B = nullptr; 156 MemoryAccess *ReadFromC = nullptr; 157 MemoryAccess *WriteToC = nullptr; 158 int i = -1; 159 int j = -1; 160 int k = -1; 161 }; 162 163 /// Create an isl::union_set, which describes the option of the form 164 /// [isolate[] -> unroll[x]]. 165 /// 166 /// @param Ctx An isl::ctx, which is used to create the isl::union_set. 167 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) { 168 isl::space Space = isl::space(Ctx, 0, 0, 1); 169 isl::map UnrollIsolatedSetOption = isl::map::universe(Space); 170 isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr); 171 isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr); 172 UnrollIsolatedSetOption = 173 UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId); 174 UnrollIsolatedSetOption = 175 UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId); 176 return UnrollIsolatedSetOption.wrap(); 177 } 178 179 /// Permute the two dimensions of the isl map. 180 /// 181 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that 182 /// have type @p DimType. 183 /// 184 /// @param Map The isl map to be modified. 185 /// @param DimType The type of the dimensions. 186 /// @param DstPos The first dimension. 187 /// @param SrcPos The second dimension. 188 /// @return The modified map. 189 static isl::map permuteDimensions(isl::map Map, isl::dim DimType, 190 unsigned DstPos, unsigned SrcPos) { 191 assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) && 192 SrcPos < unsignedFromIslSize(Map.dim(DimType))); 193 if (DstPos == SrcPos) 194 return Map; 195 isl::id DimId; 196 if (Map.has_tuple_id(DimType)) 197 DimId = Map.get_tuple_id(DimType); 198 auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in; 199 isl::id FreeDimId; 200 if (Map.has_tuple_id(FreeDim)) 201 FreeDimId = Map.get_tuple_id(FreeDim); 202 auto MaxDim = std::max(DstPos, SrcPos); 203 auto MinDim = std::min(DstPos, SrcPos); 204 Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1); 205 Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1); 206 Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1); 207 Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1); 208 if (!DimId.is_null()) 209 Map = Map.set_tuple_id(DimType, DimId); 210 if (!FreeDimId.is_null()) 211 Map = Map.set_tuple_id(FreeDim, FreeDimId); 212 return Map; 213 } 214 215 /// Check the form of the access relation. 216 /// 217 /// Check that the access relation @p AccMap has the form M[i][j], where i 218 /// is a @p FirstPos and j is a @p SecondPos. 219 /// 220 /// @param AccMap The access relation to be checked. 221 /// @param FirstPos The index of the input dimension that is mapped to 222 /// the first output dimension. 223 /// @param SecondPos The index of the input dimension that is mapped to the 224 /// second output dimension. 225 /// @return True in case @p AccMap has the expected form and false, 226 /// otherwise. 227 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos, 228 int &SecondPos) { 229 isl::space Space = AccMap.get_space(); 230 isl::map Universe = isl::map::universe(Space); 231 232 if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2) 233 return false; 234 235 // MatMul has the form: 236 // for (i = 0; i < N; i++) 237 // for (j = 0; j < M; j++) 238 // for (k = 0; k < P; k++) 239 // C[i, j] += A[i, k] * B[k, j] 240 // 241 // Permutation of three outer loops: 3! = 6 possibilities. 242 int FirstDims[] = {0, 0, 1, 1, 2, 2}; 243 int SecondDims[] = {1, 2, 2, 0, 0, 1}; 244 for (int i = 0; i < 6; i += 1) { 245 auto PossibleMatMul = 246 Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0) 247 .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1); 248 249 AccMap = AccMap.intersect_domain(Domain); 250 PossibleMatMul = PossibleMatMul.intersect_domain(Domain); 251 252 // If AccMap spans entire domain (Non-partial write), 253 // compute FirstPos and SecondPos. 254 // If AccMap != PossibleMatMul here (the two maps have been gisted at 255 // this point), it means that the writes are not complete, or in other 256 // words, it is a Partial write and Partial writes must be rejected. 257 if (AccMap.is_equal(PossibleMatMul)) { 258 if (FirstPos != -1 && FirstPos != FirstDims[i]) 259 continue; 260 FirstPos = FirstDims[i]; 261 if (SecondPos != -1 && SecondPos != SecondDims[i]) 262 continue; 263 SecondPos = SecondDims[i]; 264 return true; 265 } 266 } 267 268 return false; 269 } 270 271 /// Does the memory access represent a non-scalar operand of the matrix 272 /// multiplication. 273 /// 274 /// Check that the memory access @p MemAccess is the read access to a non-scalar 275 /// operand of the matrix multiplication or its result. 276 /// 277 /// @param MemAccess The memory access to be checked. 278 /// @param MMI Parameters of the matrix multiplication operands. 279 /// @return True in case the memory access represents the read access 280 /// to a non-scalar operand of the matrix multiplication and 281 /// false, otherwise. 282 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess, 283 MatMulInfoTy &MMI) { 284 if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead()) 285 return false; 286 auto AccMap = MemAccess->getLatestAccessRelation(); 287 isl::set StmtDomain = MemAccess->getStatement()->getDomain(); 288 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) { 289 MMI.ReadFromC = MemAccess; 290 return true; 291 } 292 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) { 293 MMI.A = MemAccess; 294 return true; 295 } 296 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) { 297 MMI.B = MemAccess; 298 return true; 299 } 300 return false; 301 } 302 303 /// Check accesses to operands of the matrix multiplication. 304 /// 305 /// Check that accesses of the SCoP statement, which corresponds to 306 /// the partial schedule @p PartialSchedule, are scalar in terms of loops 307 /// containing the matrix multiplication, in case they do not represent 308 /// accesses to the non-scalar operands of the matrix multiplication or 309 /// its result. 310 /// 311 /// @param PartialSchedule The partial schedule of the SCoP statement. 312 /// @param MMI Parameters of the matrix multiplication operands. 313 /// @return True in case the corresponding SCoP statement 314 /// represents matrix multiplication and false, 315 /// otherwise. 316 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule, 317 MatMulInfoTy &MMI) { 318 auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in); 319 auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user()); 320 unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim()); 321 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest " 322 "and, consequently, the corresponding scheduling " 323 "functions have at least three dimensions."); 324 auto MapI = 325 permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1); 326 auto MapJ = 327 permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1); 328 auto MapK = 329 permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1); 330 331 auto Accesses = getAccessesInOrder(*Stmt); 332 for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) { 333 auto *MemAccessPtr = *MemA; 334 if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC && 335 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) && 336 !(MemAccessPtr->isStrideZero(MapI) && 337 MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))) 338 return false; 339 } 340 return true; 341 } 342 343 /// Check for dependencies corresponding to the matrix multiplication. 344 /// 345 /// Check that there is only true dependence of the form 346 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement 347 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds 348 /// to the dependency produced by the matrix multiplication. 349 /// 350 /// @param Schedule The schedule of the SCoP statement. 351 /// @param D The SCoP dependencies. 352 /// @param Pos The parameter to describe an acceptable true dependence. 353 /// In case it has a negative value, try to determine its 354 /// acceptable value. 355 /// @return True in case dependencies correspond to the matrix multiplication 356 /// and false, otherwise. 357 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D, 358 int &Pos) { 359 isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW); 360 isl::union_map Red = D->getDependences(Dependences::TYPE_RED); 361 if (!Red.is_null()) 362 Dep = Dep.unite(Red); 363 auto DomainSpace = Schedule.get_space().domain(); 364 auto Space = DomainSpace.map_from_domain_and_range(DomainSpace); 365 auto Deltas = Dep.extract_map(Space).deltas(); 366 int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set)); 367 for (int i = 0; i < DeltasDimNum; i++) { 368 auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i); 369 Pos = Pos < 0 && Val.is_one() ? i : Pos; 370 if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one()))) 371 return false; 372 } 373 if (DeltasDimNum == 0 || Pos < 0) 374 return false; 375 return true; 376 } 377 378 /// Check if the SCoP statement could probably be optimized with analytical 379 /// modeling. 380 /// 381 /// containsMatrMult tries to determine whether the following conditions 382 /// are true: 383 /// 1. The last memory access modeling an array, MA1, represents writing to 384 /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or 385 /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement 386 /// under consideration. 387 /// 2. There is only one loop-carried true dependency, and it has the 388 /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no 389 /// loop-carried or anti dependencies. 390 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent 391 /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3), 392 /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively, 393 /// and all memory accesses of the SCoP that are different from MA1, MA2, 394 /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any 395 /// of loops i1, i2 and i3. 396 /// 397 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement 398 /// to check. 399 /// @D The SCoP dependencies. 400 /// @MMI Parameters of the matrix multiplication operands. 401 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D, 402 MatMulInfoTy &MMI) { 403 auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in); 404 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user()); 405 if (Stmt->size() <= 1) 406 return false; 407 408 auto Accesses = getAccessesInOrder(*Stmt); 409 for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) { 410 auto *MemAccessPtr = *MemA; 411 if (!MemAccessPtr->isLatestArrayKind()) 412 continue; 413 if (!MemAccessPtr->isWrite()) 414 return false; 415 auto AccMap = MemAccessPtr->getLatestAccessRelation(); 416 if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j)) 417 return false; 418 MMI.WriteToC = MemAccessPtr; 419 break; 420 } 421 422 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k)) 423 return false; 424 425 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI)) 426 return false; 427 428 if (!MMI.A || !MMI.B || !MMI.ReadFromC) 429 return false; 430 return true; 431 } 432 433 /// Permute two dimensions of the band node. 434 /// 435 /// Permute FirstDim and SecondDim dimensions of the Node. 436 /// 437 /// @param Node The band node to be modified. 438 /// @param FirstDim The first dimension to be permuted. 439 /// @param SecondDim The second dimension to be permuted. 440 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node, 441 unsigned FirstDim, 442 unsigned SecondDim) { 443 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band && 444 (unsigned)isl_schedule_node_band_n_member(Node.get()) > 445 std::max(FirstDim, SecondDim)); 446 auto PartialSchedule = 447 isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get())); 448 auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim); 449 auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim); 450 PartialSchedule = 451 PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim); 452 PartialSchedule = 453 PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim); 454 Node = isl::manage(isl_schedule_node_delete(Node.release())); 455 return Node.insert_partial_schedule(PartialSchedule); 456 } 457 458 static isl::schedule_node 459 createMicroKernel(isl::schedule_node Node, 460 MicroKernelParamsTy MicroKernelParams) { 461 Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 462 1); 463 Node = Node.parent().parent(); 464 return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0); 465 } 466 467 /// Create the BLIS macro-kernel. 468 /// 469 /// We create the BLIS macro-kernel by applying a combination of tiling 470 /// of dimensions of the band node and interchanging of two innermost 471 /// modified dimensions. The values of of MacroKernelParams's fields are used 472 /// as tile sizes. 473 /// 474 /// @param Node The schedule node to be modified. 475 /// @param MacroKernelParams Parameters of the macro kernel 476 /// to be used as tile sizes. 477 static isl::schedule_node 478 createMacroKernel(isl::schedule_node Node, 479 MacroKernelParamsTy MacroKernelParams) { 480 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 481 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && 482 MacroKernelParams.Kc == 1) 483 return Node; 484 int DimOutNum = isl_schedule_node_band_n_member(Node.get()); 485 std::vector<int> TileSizes(DimOutNum, 1); 486 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc; 487 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc; 488 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc; 489 Node = tileNode(Node, "1st level tiling", TileSizes, 1); 490 Node = Node.parent().parent(); 491 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1); 492 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1); 493 494 return Node.child(0).child(0); 495 } 496 497 /// Get the size of the widest type of the matrix multiplication operands 498 /// in bytes, including alignment padding. 499 /// 500 /// @param MMI Parameters of the matrix multiplication operands. 501 /// @return The size of the widest type of the matrix multiplication operands 502 /// in bytes, including alignment padding. 503 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) { 504 auto *S = MMI.A->getStatement()->getParent(); 505 auto &DL = S->getFunction().getParent()->getDataLayout(); 506 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); 507 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); 508 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); 509 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 510 } 511 512 /// Get the size of the widest type of the matrix multiplication operands 513 /// in bits. 514 /// 515 /// @param MMI Parameters of the matrix multiplication operands. 516 /// @return The size of the widest type of the matrix multiplication operands 517 /// in bits. 518 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { 519 auto *S = MMI.A->getStatement()->getParent(); 520 auto &DL = S->getFunction().getParent()->getDataLayout(); 521 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType()); 522 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType()); 523 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType()); 524 return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); 525 } 526 527 /// Get parameters of the BLIS micro kernel. 528 /// 529 /// We choose the Mr and Nr parameters of the micro kernel to be large enough 530 /// such that no stalls caused by the combination of latencies and dependencies 531 /// are introduced during the updates of the resulting matrix of the matrix 532 /// multiplication. However, they should also be as small as possible to 533 /// release more registers for entries of multiplied matrices. 534 /// 535 /// @param TTI Target Transform Info. 536 /// @param MMI Parameters of the matrix multiplication operands. 537 /// @return The structure of type MicroKernelParamsTy. 538 /// @see MicroKernelParamsTy 539 static MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI, 540 MatMulInfoTy MMI) { 541 assert(TTI && "The target transform info should be provided."); 542 543 // Nvec - Number of double-precision floating-point numbers that can be hold 544 // by a vector register. Use 2 by default. 545 long RegisterBitwidth = VectorRegisterBitwidth; 546 547 if (RegisterBitwidth == -1) 548 RegisterBitwidth = 549 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 550 auto ElementSize = getMatMulTypeSize(MMI); 551 assert(ElementSize > 0 && "The element size of the matrix multiplication " 552 "operands should be greater than zero."); 553 auto Nvec = RegisterBitwidth / ElementSize; 554 if (Nvec == 0) 555 Nvec = 2; 556 int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) / 557 Nvec) * 558 Nvec; 559 int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr)); 560 return {Mr, Nr}; 561 } 562 563 /// Determine parameters of the target cache. 564 /// 565 /// @param TTI Target Transform Info. 566 static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) { 567 auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D; 568 auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D; 569 if (FirstCacheLevelSize == -1) { 570 if (TTI->getCacheSize(L1DCache)) 571 FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue(); 572 else 573 FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize); 574 } 575 if (SecondCacheLevelSize == -1) { 576 if (TTI->getCacheSize(L2DCache)) 577 SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue(); 578 else 579 SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize); 580 } 581 if (FirstCacheLevelAssociativity == -1) { 582 if (TTI->getCacheAssociativity(L1DCache)) 583 FirstCacheLevelAssociativity = 584 TTI->getCacheAssociativity(L1DCache).getValue(); 585 else 586 FirstCacheLevelAssociativity = 587 static_cast<int>(FirstCacheLevelDefaultAssociativity); 588 } 589 if (SecondCacheLevelAssociativity == -1) { 590 if (TTI->getCacheAssociativity(L2DCache)) 591 SecondCacheLevelAssociativity = 592 TTI->getCacheAssociativity(L2DCache).getValue(); 593 else 594 SecondCacheLevelAssociativity = 595 static_cast<int>(SecondCacheLevelDefaultAssociativity); 596 } 597 } 598 599 /// Get parameters of the BLIS macro kernel. 600 /// 601 /// During the computation of matrix multiplication, blocks of partitioned 602 /// matrices are mapped to different layers of the memory hierarchy. 603 /// To optimize data reuse, blocks should be ideally kept in cache between 604 /// iterations. Since parameters of the macro kernel determine sizes of these 605 /// blocks, there are upper and lower bounds on these parameters. 606 /// 607 /// @param TTI Target Transform Info. 608 /// @param MicroKernelParams Parameters of the micro-kernel 609 /// to be taken into account. 610 /// @param MMI Parameters of the matrix multiplication operands. 611 /// @return The structure of type MacroKernelParamsTy. 612 /// @see MacroKernelParamsTy 613 /// @see MicroKernelParamsTy 614 static MacroKernelParamsTy 615 getMacroKernelParams(const llvm::TargetTransformInfo *TTI, 616 const MicroKernelParamsTy &MicroKernelParams, 617 MatMulInfoTy MMI) { 618 getTargetCacheParameters(TTI); 619 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, 620 // it requires information about the first two levels of a cache to determine 621 // all the parameters of a macro-kernel. It also checks that an associativity 622 // degree of a cache level is greater than two. Otherwise, another algorithm 623 // for determination of the parameters should be used. 624 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && 625 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 && 626 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2)) 627 return {1, 1, 1}; 628 // The quotient should be greater than zero. 629 if (PollyPatternMatchingNcQuotient <= 0) 630 return {1, 1, 1}; 631 int Car = floor( 632 (FirstCacheLevelAssociativity - 1) / 633 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr)); 634 635 // Car can be computed to be zero since it is floor to int. 636 // On Mac OS, division by 0 does not raise a signal. This causes negative 637 // tile sizes to be computed. Prevent division by Cac==0 by early returning 638 // if this happens. 639 if (Car == 0) 640 return {1, 1, 1}; 641 642 auto ElementSize = getMatMulAlignTypeSize(MMI); 643 assert(ElementSize > 0 && "The element size of the matrix multiplication " 644 "operands should be greater than zero."); 645 int Kc = (Car * FirstCacheLevelSize) / 646 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); 647 double Cac = 648 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) / 649 SecondCacheLevelSize; 650 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); 651 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; 652 653 assert(Mc > 0 && Nc > 0 && Kc > 0 && 654 "Matrix block sizes should be greater than zero"); 655 return {Mc, Nc, Kc}; 656 } 657 658 /// Create an access relation that is specific to 659 /// the matrix multiplication pattern. 660 /// 661 /// Create an access relation of the following form: 662 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ] 663 /// where I is @p FirstDim, J is @p SecondDim. 664 /// 665 /// It can be used, for example, to create relations that helps to consequently 666 /// access elements of operands of a matrix multiplication after creation of 667 /// the BLIS micro and macro kernels. 668 /// 669 /// @see ScheduleTreeOptimizer::createMicroKernel 670 /// @see ScheduleTreeOptimizer::createMacroKernel 671 /// 672 /// Subsequently, the described access relation is applied to the range of 673 /// @p MapOldIndVar, that is used to map original induction variables to 674 /// the ones, which are produced by schedule transformations. It helps to 675 /// define relations using a new space and, at the same time, keep them 676 /// in the original one. 677 /// 678 /// @param MapOldIndVar The relation, which maps original induction variables 679 /// to the ones, which are produced by schedule 680 /// transformations. 681 /// @param FirstDim, SecondDim The input dimensions that are used to define 682 /// the specified access relation. 683 /// @return The specified access relation. 684 static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim, 685 unsigned SecondDim) { 686 auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3); 687 auto AccessRel = isl::map::universe(AccessRelSpace); 688 AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0); 689 AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1); 690 AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2); 691 return MapOldIndVar.apply_range(AccessRel); 692 } 693 694 static isl::schedule_node createExtensionNode(isl::schedule_node Node, 695 isl::map ExtensionMap) { 696 auto Extension = isl::union_map(ExtensionMap); 697 auto NewNode = isl::schedule_node::from_extension(Extension); 698 return Node.graft_before(NewNode); 699 } 700 701 static isl::schedule_node optimizePackedB(isl::schedule_node Node, 702 ScopStmt *Stmt, isl::map MapOldIndVar, 703 MicroKernelParamsTy MicroParams, 704 MacroKernelParamsTy MacroParams, 705 MatMulInfoTy &MMI) { 706 Scop *S = Stmt->getParent(); 707 isl::set Domain = Stmt->getDomain(); 708 709 // Create packed array. 710 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr; 711 unsigned SecondDimSize = MacroParams.Kc; 712 unsigned ThirdDimSize = MicroParams.Nr; 713 ScopArrayInfo *PackedB = 714 S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B", 715 {FirstDimSize, SecondDimSize, ThirdDimSize}); 716 717 // Compute the access relation for copying from B to PackedB. 718 isl::map AccRelB = MMI.B->getLatestAccessRelation(); 719 isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7); 720 AccRelPackedB = 721 AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId()); 722 723 // Create the copy statement and redirect access. 724 ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain); 725 MMI.B->setNewAccessRelation(AccRelPackedB); 726 727 unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim()); 728 assert(Dim >= 2); 729 // Insert into the schedule tree. 730 isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2); 731 ExtMap = ExtMap.reverse(); 732 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0); 733 ExtMap = ExtMap.intersect_range(Domain); 734 ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId()); 735 return createExtensionNode(Node, ExtMap); 736 } 737 738 static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *, 739 isl::map MapOldIndVar, 740 MicroKernelParamsTy MicroParams, 741 MacroKernelParamsTy MacroParams, 742 MatMulInfoTy &MMI) { 743 isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); 744 ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user()); 745 isl::set Domain = Stmt->getDomain(); 746 isl::id DomainId = Domain.get_tuple_id(); 747 748 // Create the packed array. 749 unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr; 750 unsigned SecondDimSize = MacroParams.Kc; 751 unsigned ThirdDimSize = MicroParams.Mr; 752 ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo( 753 MMI.A->getElementType(), "Packed_A", 754 {FirstDimSize, SecondDimSize, ThirdDimSize}); 755 756 // Compute the access relation for copying from A to PackedA. 757 isl::map AccRelA = MMI.A->getLatestAccessRelation(); 758 isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6); 759 AccRelPackedA = 760 AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId()); 761 // { MemrefA[] -> PackedA[] } 762 isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA); 763 764 // Compute the domain for the copy statement. 765 // Construct the copy statement domain out of the 3 outermost scatter 766 // dimensions (to match the 3 band nodes surrounding the extension node) and 767 // the array elements to copy (one statement instance per array element). 768 // { Scatter[] } 769 isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range(); 770 // { Scatter[] -> OutermostScatter[] } 771 isl::map OuterDomainMap = 772 makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6); 773 // { Scatter[] -> MemrefA[] } 774 isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA); 775 // { Scatter[] -> CopyStmt[] } 776 isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom); 777 // { CopyStmt[] } 778 isl::set CopyDomain = DomainTranslator.range(); 779 780 // Translate the access relations to the new domain. 781 // { CopyStmt[] -> MemrefA[] } 782 CopyFrom = CopyFrom.apply_domain(DomainTranslator); 783 // { CopyStmt[] -> PackedA[] } 784 isl::map CopyTo = CopyFrom.apply_range(PackedATranslator); 785 786 // Create the copy statement and redirect access. 787 ScopStmt *CopyStmt = 788 Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain); 789 MMI.A->setNewAccessRelation(AccRelPackedA); 790 791 // Insert into the schedule tree. 792 // { Scatter[] -> CopyStmt[] } 793 isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true); 794 ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2); 795 return createExtensionNode(Node, ExtScatterCopy); 796 } 797 798 /// Apply the packing transformation. 799 /// 800 /// The packing transformation can be described as a data-layout 801 /// transformation that requires to introduce a new array, copy data 802 /// to the array, and change memory access locations to reference the array. 803 /// It can be used to ensure that elements of the new array are read in-stride 804 /// access, aligned to cache lines boundaries, and preloaded into certain cache 805 /// levels. 806 /// 807 /// As an example let us consider the packing of the array A that would help 808 /// to read its elements with in-stride access. An access to the array A 809 /// is represented by an access relation that has the form 810 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has 811 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr), 812 /// k mod Kc, j mod Nr, i mod Mr]. 813 /// 814 /// To ensure that elements of the array A are read in-stride access, we add 815 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using 816 /// Scop::createScopArrayInfo, change the access relation 817 /// S[i, j, k] -> A[i, k] to 818 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using 819 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using 820 /// the copy statement created by Scop::addScopStmt. 821 /// 822 /// @param Node The schedule node to be optimized. 823 /// @param MapOldIndVar The relation, which maps original induction variables 824 /// to the ones, which are produced by schedule 825 /// transformations. 826 /// @param MicroParams, MacroParams Parameters of the BLIS kernel 827 /// to be taken into account. 828 /// @param MMI Parameters of the matrix multiplication operands. 829 /// @return The optimized schedule node. 830 static isl::schedule_node 831 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar, 832 MicroKernelParamsTy MicroParams, 833 MacroKernelParamsTy MacroParams, 834 MatMulInfoTy &MMI) { 835 isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); 836 ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user()); 837 838 Node = Node.parent().parent().parent().parent().parent().parent(); 839 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)); 840 841 Node = Node.child(0); 842 Node = 843 optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI); 844 845 Node = Node.child(0); 846 Node = 847 optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI); 848 849 return Node.child(0).child(0).child(0).child(0).child(0); 850 } 851 852 /// Get a relation mapping induction variables produced by schedule 853 /// transformations to the original ones. 854 /// 855 /// @param Node The schedule node produced as the result of creation 856 /// of the BLIS kernels. 857 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel 858 /// to be taken into account. 859 /// @return The relation mapping original induction variables to the ones 860 /// produced by schedule transformation. 861 /// @see ScheduleTreeOptimizer::createMicroKernel 862 /// @see ScheduleTreeOptimizer::createMacroKernel 863 /// @see getMacroKernelParams 864 static isl::map 865 getInductionVariablesSubstitution(isl::schedule_node Node, 866 MicroKernelParamsTy MicroKernelParams, 867 MacroKernelParamsTy MacroKernelParams) { 868 auto Child = Node.child(0); 869 auto UnMapOldIndVar = Child.get_prefix_schedule_union_map(); 870 auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar); 871 unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim()); 872 if (Dim > 9u) 873 return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9); 874 return MapOldIndVar; 875 } 876 877 /// Isolate a set of partial tile prefixes and unroll the isolated part. 878 /// 879 /// The set should ensure that it contains only partial tile prefixes that have 880 /// exactly Mr x Nr iterations of the two innermost loops produced by 881 /// the optimization of the matrix multiplication. Mr and Nr are parameters of 882 /// the micro-kernel. 883 /// 884 /// In case of parametric bounds, this helps to auto-vectorize the unrolled 885 /// innermost loops, using the SLP vectorizer. 886 /// 887 /// @param Node The schedule node to be modified. 888 /// @param MicroKernelParams Parameters of the micro-kernel 889 /// to be taken into account. 890 /// @return The modified isl_schedule_node. 891 static isl::schedule_node 892 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node, 893 MicroKernelParamsTy MicroKernelParams) { 894 isl::schedule_node Child = Node.child(0); 895 isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation(); 896 isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range(); 897 unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim()); 898 assert(Dims >= 1); 899 Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1); 900 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr); 901 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr); 902 903 isl::union_set IsolateOption = 904 getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3); 905 isl::ctx Ctx = Node.ctx(); 906 auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll")); 907 Options = Options.unite(getUnrollIsolatedSetOptions(Ctx)); 908 Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options); 909 Node = Node.parent().parent().parent(); 910 IsolateOption = getIsolateOptions(Prefix, 3); 911 Options = IsolateOption.unite(getDimOptions(Ctx, "separate")); 912 Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options); 913 Node = Node.child(0).child(0).child(0); 914 return Node; 915 } 916 917 /// Insert "Loop Vectorizer Disabled" mark node. 918 /// 919 /// @param Node The child of the mark node to be inserted. 920 /// @return The modified isl_schedule_node. 921 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) { 922 auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr); 923 return Node.insert_mark(Id).child(0); 924 } 925 926 /// Restore the initial ordering of dimensions of the band node 927 /// 928 /// In case the band node represents all the dimensions of the iteration 929 /// domain, recreate the band node to restore the initial ordering of the 930 /// dimensions. 931 /// 932 /// @param Node The band node to be modified. 933 /// @return The modified schedule node. 934 static isl::schedule_node 935 getBandNodeWithOriginDimOrder(isl::schedule_node Node) { 936 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); 937 if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf) 938 return Node; 939 auto Domain = Node.get_universe_domain(); 940 assert(isl_union_set_n_set(Domain.get()) == 1); 941 if (Node.get_schedule_depth().release() != 0 || 942 (unsignedFromIslSize(isl::set(Domain).tuple_dim()) != 943 unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member()))) 944 return Node; 945 Node = isl::manage(isl_schedule_node_delete(Node.copy())); 946 auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff(); 947 auto PartialScheduleMultiPwAff = 948 isl::multi_union_pw_aff(PartialSchedulePwAff); 949 PartialScheduleMultiPwAff = 950 PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set); 951 return Node.insert_partial_schedule(PartialScheduleMultiPwAff); 952 } 953 954 static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node, 955 const TargetTransformInfo *TTI, 956 MatMulInfoTy &MMI) { 957 assert(TTI && "The target transform info should be provided."); 958 int DimOutNum = isl_schedule_node_band_n_member(Node.get()); 959 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest " 960 "and, consequently, the corresponding scheduling " 961 "functions have at least three dimensions."); 962 Node = getBandNodeWithOriginDimOrder(Node); 963 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3); 964 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j; 965 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k; 966 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); 967 NewK = NewK == DimOutNum - 2 ? NewJ : NewK; 968 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); 969 auto MicroKernelParams = getMicroKernelParams(TTI, MMI); 970 auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI); 971 Node = createMacroKernel(Node, MacroKernelParams); 972 Node = createMicroKernel(Node, MicroKernelParams); 973 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || 974 MacroKernelParams.Kc == 1) 975 return Node; 976 auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams, 977 MacroKernelParams); 978 if (MapOldIndVar.is_null()) 979 return Node; 980 Node = markLoopVectorizerDisabled(Node.parent()).child(0); 981 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams); 982 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, 983 MacroKernelParams, MMI); 984 } 985 986 /// Check if this node contains a partial schedule that could 987 /// probably be optimized with analytical modeling. 988 /// 989 /// isMatrMultPattern tries to determine whether the following conditions 990 /// are true: 991 /// 1. the partial schedule contains only one statement. 992 /// 2. there are exactly three input dimensions. 993 /// 3. all memory accesses of the statement will have stride 0 or 1, if we 994 /// interchange loops (switch the variable used in the inner loop to 995 /// the outer loop). 996 /// 4. all memory accesses of the statement except from the last one, are 997 /// read memory access and the last one is write memory access. 998 /// 5. all subscripts of the last memory access of the statement don't 999 /// contain the variable used in the inner loop. 1000 /// If this is the case, we could try to use an approach that is similar to 1001 /// the one used to get close-to-peak performance of matrix multiplications. 1002 /// 1003 /// @param Node The node to check. 1004 /// @param D The SCoP dependencies. 1005 /// @param MMI Parameters of the matrix multiplication operands. 1006 static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D, 1007 MatMulInfoTy &MMI) { 1008 auto PartialSchedule = isl::manage( 1009 isl_schedule_node_band_get_partial_schedule_union_map(Node.get())); 1010 Node = Node.child(0); 1011 auto LeafType = isl_schedule_node_get_type(Node.get()); 1012 Node = Node.parent(); 1013 if (LeafType != isl_schedule_node_leaf || 1014 isl_schedule_node_band_n_member(Node.get()) < 3 || 1015 Node.get_schedule_depth().release() != 0 || 1016 isl_union_map_n_map(PartialSchedule.get()) != 1) 1017 return false; 1018 auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule); 1019 if (containsMatrMult(NewPartialSchedule, D, MMI)) 1020 return true; 1021 return false; 1022 } 1023 1024 } // namespace 1025 1026 isl::schedule_node 1027 polly::tryOptimizeMatMulPattern(isl::schedule_node Node, 1028 const llvm::TargetTransformInfo *TTI, 1029 const Dependences *D) { 1030 MatMulInfoTy MMI; 1031 if (isMatrMultPattern(Node, D, MMI)) { 1032 LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); 1033 return optimizeMatMulPattern(Node, TTI, MMI); 1034 } 1035 return {}; 1036 } 1037