1 //===- ForwardOpTree.h ------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Move instructions between statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/ForwardOpTree.h" 15 #include "polly/Options.h" 16 #include "polly/ScopBuilder.h" 17 #include "polly/ScopInfo.h" 18 #include "polly/ScopPass.h" 19 #include "polly/Support/GICHelper.h" 20 #include "polly/Support/ISLOStream.h" 21 #include "polly/Support/ISLTools.h" 22 #include "polly/Support/VirtualInstruction.h" 23 #include "polly/ZoneAlgo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "isl/ctx.h" 40 #include "isl/isl-noexceptions.h" 41 #include <cassert> 42 #include <memory> 43 44 #define DEBUG_TYPE "polly-optree" 45 46 using namespace llvm; 47 using namespace polly; 48 49 static cl::opt<bool> 50 AnalyzeKnown("polly-optree-analyze-known", 51 cl::desc("Analyze array contents for load forwarding"), 52 cl::cat(PollyCategory), cl::init(true), cl::Hidden); 53 54 static cl::opt<bool> 55 NormalizePHIs("polly-optree-normalize-phi", 56 cl::desc("Replace PHIs by their incoming values"), 57 cl::cat(PollyCategory), cl::init(false), cl::Hidden); 58 59 static cl::opt<unsigned> 60 MaxOps("polly-optree-max-ops", 61 cl::desc("Maximum number of ISL operations to invest for known " 62 "analysis; 0=no limit"), 63 cl::init(1000000), cl::cat(PollyCategory), cl::Hidden); 64 65 STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs"); 66 STATISTIC(KnownOutOfQuota, 67 "Analyses aborted because max_operations was reached"); 68 69 STATISTIC(TotalInstructionsCopied, "Number of copied instructions"); 70 STATISTIC(TotalKnownLoadsForwarded, 71 "Number of forwarded loads because their value was known"); 72 STATISTIC(TotalReloads, "Number of reloaded values"); 73 STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses"); 74 STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees"); 75 STATISTIC(TotalModifiedStmts, 76 "Number of statements with at least one forwarded tree"); 77 78 STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree"); 79 80 STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree"); 81 STATISTIC(NumValueWritesInLoops, 82 "Number of scalar value writes nested in affine loops after OpTree"); 83 STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree"); 84 STATISTIC(NumPHIWritesInLoops, 85 "Number of scalar phi writes nested in affine loops after OpTree"); 86 STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree"); 87 STATISTIC(NumSingletonWritesInLoops, 88 "Number of singleton writes nested in affine loops after OpTree"); 89 90 namespace { 91 92 /// The state of whether an operand tree was/can be forwarded. 93 /// 94 /// The items apply to an instructions and its operand tree with the instruction 95 /// as the root element. If the value in question is not an instruction in the 96 /// SCoP, it can be a leaf of an instruction's operand tree. 97 enum ForwardingDecision { 98 /// The root instruction or value cannot be forwarded at all. 99 FD_CannotForward, 100 101 /// The root instruction or value can be forwarded as a leaf of a larger 102 /// operand tree. 103 /// It does not make sense to move the value itself, it would just replace it 104 /// by a use of itself. For instance, a constant "5" used in a statement can 105 /// be forwarded, but it would just replace it by the same constant "5". 106 /// However, it makes sense to move as an operand of 107 /// 108 /// %add = add 5, 5 109 /// 110 /// where "5" is moved as part of a larger operand tree. "5" would be placed 111 /// (disregarding for a moment that literal constants don't have a location 112 /// and can be used anywhere) into the same statement as %add would. 113 FD_CanForwardLeaf, 114 115 /// The root instruction can be forwarded and doing so avoids a scalar 116 /// dependency. 117 /// 118 /// This can be either because the operand tree can be moved to the target 119 /// statement, or a memory access is redirected to read from a different 120 /// location. 121 FD_CanForwardProfitably, 122 123 /// Used to indicate that a forwarding has be carried out successfully, and 124 /// the forwarded memory access can be deleted. 125 FD_DidForwardTree, 126 127 /// Used to indicate that a forwarding has be carried out successfully, and 128 /// the forwarded memory access is being reused. 129 FD_DidForwardLeaf, 130 131 /// A forwarding method cannot be applied to the operand tree. 132 /// The difference to FD_CannotForward is that there might be other methods 133 /// that can handle it. 134 /// The conditions that make an operand tree applicable must be checked even 135 /// with DoIt==true because a method following the one that returned 136 /// FD_NotApplicable might have returned FD_CanForwardTree. 137 FD_NotApplicable 138 }; 139 140 /// Implementation of operand tree forwarding for a specific SCoP. 141 /// 142 /// For a statement that requires a scalar value (through a value read 143 /// MemoryAccess), see if its operand can be moved into the statement. If so, 144 /// the MemoryAccess is removed and the all the operand tree instructions are 145 /// moved into the statement. All original instructions are left in the source 146 /// statements. The simplification pass can clean these up. 147 class ForwardOpTreeImpl : ZoneAlgorithm { 148 private: 149 /// Scope guard to limit the number of isl operations for this pass. 150 IslMaxOperationsGuard &MaxOpGuard; 151 152 /// How many instructions have been copied to other statements. 153 int NumInstructionsCopied = 0; 154 155 /// Number of loads forwarded because their value was known. 156 int NumKnownLoadsForwarded = 0; 157 158 /// Number of values reloaded from known array elements. 159 int NumReloads = 0; 160 161 /// How many read-only accesses have been copied. 162 int NumReadOnlyCopied = 0; 163 164 /// How many operand trees have been forwarded. 165 int NumForwardedTrees = 0; 166 167 /// Number of statements with at least one forwarded operand tree. 168 int NumModifiedStmts = 0; 169 170 /// Whether we carried out at least one change to the SCoP. 171 bool Modified = false; 172 173 /// Contains the zones where array elements are known to contain a specific 174 /// value. 175 /// { [Element[] -> Zone[]] -> ValInst[] } 176 /// @see computeKnown() 177 isl::union_map Known; 178 179 /// Translator for newly introduced ValInsts to already existing ValInsts such 180 /// that new introduced load instructions can reuse the Known analysis of its 181 /// original load. { ValInst[] -> ValInst[] } 182 isl::union_map Translator; 183 184 /// Get list of array elements that do contain the same ValInst[] at Domain[]. 185 /// 186 /// @param ValInst { Domain[] -> ValInst[] } 187 /// The values for which we search for alternative locations, 188 /// per statement instance. 189 /// 190 /// @return { Domain[] -> Element[] } 191 /// For each statement instance, the array elements that contain the 192 /// same ValInst. 193 isl::union_map findSameContentElements(isl::union_map ValInst) { 194 assert(!ValInst.is_single_valued().is_false()); 195 196 // { Domain[] } 197 isl::union_set Domain = ValInst.domain(); 198 199 // { Domain[] -> Scatter[] } 200 isl::union_map Schedule = getScatterFor(Domain); 201 202 // { Element[] -> [Scatter[] -> ValInst[]] } 203 isl::union_map MustKnownCurried = 204 convertZoneToTimepoints(Known, isl::dim::in, false, true).curry(); 205 206 // { [Domain[] -> ValInst[]] -> Scatter[] } 207 isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule); 208 209 // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] } 210 isl::union_map SchedValDomVal = 211 DomValSched.range_product(ValInst.range_map()).reverse(); 212 213 // { Element[] -> [Domain[] -> ValInst[]] } 214 isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal); 215 216 // { Domain[] -> Element[] } 217 isl::union_map MustKnownMap = 218 MustKnownInst.uncurry().domain().unwrap().reverse(); 219 simplify(MustKnownMap); 220 221 return MustKnownMap; 222 } 223 224 /// Find a single array element for each statement instance, within a single 225 /// array. 226 /// 227 /// @param MustKnown { Domain[] -> Element[] } 228 /// Set of candidate array elements. 229 /// @param Domain { Domain[] } 230 /// The statement instance for which we need elements for. 231 /// 232 /// @return { Domain[] -> Element[] } 233 /// For each statement instance, an array element out of @p MustKnown. 234 /// All array elements must be in the same array (Polly does not yet 235 /// support reading from different accesses using the same 236 /// MemoryAccess). If no mapping for all of @p Domain exists, returns 237 /// null. 238 isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) { 239 // { Domain[] -> Element[] } 240 isl::map Result; 241 242 // MemoryAccesses can read only elements from a single array 243 // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }). 244 // Look through all spaces until we find one that contains at least the 245 // wanted statement instance.s 246 for (isl::map Map : MustKnown.get_map_list()) { 247 // Get the array this is accessing. 248 isl::id ArrayId = Map.get_tuple_id(isl::dim::out); 249 ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user()); 250 251 // No support for generation of indirect array accesses. 252 if (SAI->getBasePtrOriginSAI()) 253 continue; 254 255 // Determine whether this map contains all wanted values. 256 isl::set MapDom = Map.domain(); 257 if (!Domain.is_subset(MapDom).is_true()) 258 continue; 259 260 // There might be multiple array elements that contain the same value, but 261 // choose only one of them. lexmin is used because it returns a one-value 262 // mapping, we do not care about which one. 263 // TODO: Get the simplest access function. 264 Result = Map.lexmin(); 265 break; 266 } 267 268 return Result; 269 } 270 271 public: 272 ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard) 273 : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {} 274 275 /// Compute the zones of known array element contents. 276 /// 277 /// @return True if the computed #Known is usable. 278 bool computeKnownValues() { 279 isl::union_map MustKnown, KnownFromLoad, KnownFromInit; 280 281 // Check that nothing strange occurs. 282 collectCompatibleElts(); 283 284 { 285 IslQuotaScope QuotaScope = MaxOpGuard.enter(); 286 287 computeCommon(); 288 if (NormalizePHIs) 289 computeNormalizedPHIs(); 290 Known = computeKnown(true, true); 291 292 // Preexisting ValInsts use the known content analysis of themselves. 293 Translator = makeIdentityMap(Known.range(), false); 294 } 295 296 if (!Known || !Translator || !NormalizeMap) { 297 assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota); 298 Known = nullptr; 299 Translator = nullptr; 300 NormalizeMap = nullptr; 301 LLVM_DEBUG(dbgs() << "Known analysis exceeded max_operations\n"); 302 return false; 303 } 304 305 KnownAnalyzed++; 306 LLVM_DEBUG(dbgs() << "All known: " << Known << "\n"); 307 308 return true; 309 } 310 311 void printStatistics(raw_ostream &OS, int Indent = 0) { 312 OS.indent(Indent) << "Statistics {\n"; 313 OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied 314 << '\n'; 315 OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded 316 << '\n'; 317 OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n'; 318 OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied 319 << '\n'; 320 OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees 321 << '\n'; 322 OS.indent(Indent + 4) << "Statements with forwarded operand trees: " 323 << NumModifiedStmts << '\n'; 324 OS.indent(Indent) << "}\n"; 325 } 326 327 void printStatements(raw_ostream &OS, int Indent = 0) const { 328 OS.indent(Indent) << "After statements {\n"; 329 for (auto &Stmt : *S) { 330 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; 331 for (auto *MA : Stmt) 332 MA->print(OS); 333 334 OS.indent(Indent + 12); 335 Stmt.printInstructions(OS); 336 } 337 OS.indent(Indent) << "}\n"; 338 } 339 340 /// Create a new MemoryAccess of type read and MemoryKind::Array. 341 /// 342 /// @param Stmt The statement in which the access occurs. 343 /// @param LI The instruction that does the access. 344 /// @param AccessRelation The array element that each statement instance 345 /// accesses. 346 /// 347 /// @param The newly created access. 348 MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI, 349 isl::map AccessRelation) { 350 isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out); 351 ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user()); 352 353 // Create a dummy SCEV access, to be replaced anyway. 354 SmallVector<const SCEV *, 4> Sizes; 355 Sizes.reserve(SAI->getNumberOfDimensions()); 356 SmallVector<const SCEV *, 4> Subscripts; 357 Subscripts.reserve(SAI->getNumberOfDimensions()); 358 for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) { 359 Sizes.push_back(SAI->getDimensionSize(i)); 360 Subscripts.push_back(nullptr); 361 } 362 363 MemoryAccess *Access = 364 new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(), 365 LI->getType(), true, {}, Sizes, LI, MemoryKind::Array); 366 S->addAccessFunction(Access); 367 Stmt->addAccess(Access, true); 368 369 Access->setNewAccessRelation(AccessRelation); 370 371 return Access; 372 } 373 374 /// Forward a load by reading from an array element that contains the same 375 /// value. Typically the location it was loaded from. 376 /// 377 /// @param TargetStmt The statement the operand tree will be copied to. 378 /// @param Inst The (possibly speculatable) instruction to forward. 379 /// @param UseStmt The statement that uses @p Inst. 380 /// @param UseLoop The loop @p Inst is used in. 381 /// @param DefStmt The statement @p Inst is defined in. 382 /// @param DefLoop The loop which contains @p Inst. 383 /// @param DoIt If false, only determine whether an operand tree can be 384 /// forwarded. If true, carry out the forwarding. Do not 385 /// use DoIt==true if an operand tree is not known to be 386 /// forwardable. 387 /// 388 /// @return FD_NotApplicable if @p Inst cannot be forwarded by creating a new 389 /// load. 390 /// FD_CannotForward if the pointer operand cannot be forwarded. 391 /// FD_CanForwardProfitably if @p Inst is forwardable. 392 /// FD_DidForwardTree if @p DoIt was true. 393 ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst, 394 ScopStmt *UseStmt, Loop *UseLoop, 395 ScopStmt *DefStmt, Loop *DefLoop, 396 bool DoIt) { 397 // Cannot do anything without successful known analysis. 398 if (Known.is_null() || Translator.is_null() || 399 MaxOpGuard.hasQuotaExceeded()) 400 return FD_NotApplicable; 401 402 LoadInst *LI = dyn_cast<LoadInst>(Inst); 403 if (!LI) 404 return FD_NotApplicable; 405 406 // If the load is already in the statement, no forwarding is necessary. 407 // However, it might happen that the LoadInst is already present in the 408 // statement's instruction list. In that case we do as follows: 409 // - For the evaluation (DoIt==false), we can trivially forward it as it is 410 // benefit of forwarding an already present instruction. 411 // - For the execution (DoIt==true), prepend the instruction (to make it 412 // available to all instructions following in the instruction list), but 413 // do not add another MemoryAccess. 414 MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI); 415 if (Access && !DoIt) 416 return FD_CanForwardProfitably; 417 418 ForwardingDecision OpDecision = forwardTree( 419 TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, DoIt); 420 switch (OpDecision) { 421 case FD_CannotForward: 422 assert(!DoIt); 423 return OpDecision; 424 425 case FD_CanForwardLeaf: 426 case FD_CanForwardProfitably: 427 assert(!DoIt); 428 break; 429 430 case FD_DidForwardLeaf: 431 case FD_DidForwardTree: 432 assert(DoIt); 433 break; 434 435 default: 436 llvm_unreachable("Shouldn't return this"); 437 } 438 439 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt); 440 441 // { DomainDef[] -> ValInst[] } 442 isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop); 443 assert(!isNormalized(ExpectedVal).is_false() && 444 "LoadInsts are always normalized"); 445 446 // { DomainUse[] -> DomainTarget[] } 447 isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt); 448 449 // { DomainTarget[] -> ValInst[] } 450 isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget); 451 isl::union_map TranslatedExpectedVal = 452 isl::union_map(TargetExpectedVal).apply_range(Translator); 453 454 // { DomainTarget[] -> Element[] } 455 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal); 456 457 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt)); 458 if (!SameVal) 459 return FD_NotApplicable; 460 461 if (DoIt) 462 TargetStmt->prependInstruction(LI); 463 464 if (!DoIt) 465 return FD_CanForwardProfitably; 466 467 if (Access) { 468 LLVM_DEBUG( 469 dbgs() << " forwarded known load with preexisting MemoryAccess" 470 << Access << "\n"); 471 } else { 472 Access = makeReadArrayAccess(TargetStmt, LI, SameVal); 473 LLVM_DEBUG(dbgs() << " forwarded known load with new MemoryAccess" 474 << Access << "\n"); 475 476 // { ValInst[] } 477 isl::space ValInstSpace = ExpectedVal.get_space().range(); 478 479 // After adding a new load to the SCoP, also update the Known content 480 // about it. The new load will have a known ValInst of 481 // { [DomainTarget[] -> Value[]] } 482 // but which -- because it is a copy of it -- has same value as the 483 // { [DomainDef[] -> Value[]] } 484 // that it replicates. Instead of cloning the known content of 485 // [DomainDef[] -> Value[]] 486 // for DomainTarget[], we add a 'translator' that maps 487 // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]] 488 // before comparing to the known content. 489 // TODO: 'Translator' could also be used to map PHINodes to their incoming 490 // ValInsts. 491 if (ValInstSpace.is_wrapping()) { 492 // { DefDomain[] -> Value[] } 493 isl::map ValInsts = ExpectedVal.range().unwrap(); 494 495 // { DefDomain[] } 496 isl::set DefDomain = ValInsts.domain(); 497 498 // { Value[] } 499 isl::space ValSpace = ValInstSpace.unwrap().range(); 500 501 // { Value[] -> Value[] } 502 isl::map ValToVal = 503 isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace)); 504 505 // { DomainDef[] -> DomainTarget[] } 506 isl::map DefToTarget = getDefToTarget(DefStmt, TargetStmt); 507 508 // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] } 509 isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal); 510 511 Translator = Translator.add_map(LocalTranslator); 512 LLVM_DEBUG(dbgs() << " local translator is " << LocalTranslator 513 << "\n"); 514 } 515 } 516 LLVM_DEBUG(dbgs() << " expected values where " << TargetExpectedVal 517 << "\n"); 518 LLVM_DEBUG(dbgs() << " candidate elements where " << Candidates 519 << "\n"); 520 assert(Access); 521 522 NumKnownLoadsForwarded++; 523 TotalKnownLoadsForwarded++; 524 return FD_DidForwardTree; 525 } 526 527 /// Forward a scalar by redirecting the access to an array element that stores 528 /// the same value. 529 /// 530 /// @param TargetStmt The statement the operand tree will be copied to. 531 /// @param Inst The scalar to forward. 532 /// @param UseStmt The statement that uses @p Inst. 533 /// @param UseLoop The loop @p Inst is used in. 534 /// @param DefStmt The statement @p Inst is defined in. 535 /// @param DefLoop The loop which contains @p Inst. 536 /// @param DoIt If false, only determine whether an operand tree can be 537 /// forwarded. If true, carry out the forwarding. Do not 538 /// use DoIt==true if an operand tree is not known to be 539 /// forwardable. 540 /// 541 /// @return FD_NotApplicable if @p Inst cannot be reloaded. 542 /// FD_CanForwardLeaf if @p Inst can be reloaded. 543 /// FD_CanForwardProfitably if @p Inst has been reloaded. 544 /// FD_DidForwardLeaf if @p DoIt was true. 545 ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst, 546 ScopStmt *UseStmt, Loop *UseLoop, 547 ScopStmt *DefStmt, Loop *DefLoop, 548 bool DoIt) { 549 // Cannot do anything without successful known analysis. 550 if (Known.is_null() || Translator.is_null() || 551 MaxOpGuard.hasQuotaExceeded()) 552 return FD_NotApplicable; 553 554 MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst); 555 if (Access && Access->isLatestArrayKind()) { 556 if (DoIt) 557 return FD_DidForwardLeaf; 558 return FD_CanForwardLeaf; 559 } 560 561 // Don't spend too much time analyzing whether it can be reloaded. When 562 // carrying-out the forwarding, we cannot bail-out in the middle of the 563 // transformation. It also shouldn't take as long because some results are 564 // cached. 565 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt); 566 567 // { DomainDef[] -> ValInst[] } 568 isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop); 569 570 // { DomainUse[] -> DomainTarget[] } 571 isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt); 572 573 // { DomainTarget[] -> ValInst[] } 574 isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget); 575 isl::union_map TranslatedExpectedVal = 576 TargetExpectedVal.apply_range(Translator); 577 578 // { DomainTarget[] -> Element[] } 579 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal); 580 581 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt)); 582 if (!SameVal) 583 return FD_NotApplicable; 584 585 if (!DoIt) 586 return FD_CanForwardProfitably; 587 588 if (!Access) 589 Access = TargetStmt->ensureValueRead(Inst); 590 591 simplify(SameVal); 592 Access->setNewAccessRelation(SameVal); 593 594 TotalReloads++; 595 NumReloads++; 596 return FD_DidForwardLeaf; 597 } 598 599 /// Forwards a speculatively executable instruction. 600 /// 601 /// @param TargetStmt The statement the operand tree will be copied to. 602 /// @param UseInst The (possibly speculatable) instruction to forward. 603 /// @param DefStmt The statement @p UseInst is defined in. 604 /// @param DefLoop The loop which contains @p UseInst. 605 /// @param DoIt If false, only determine whether an operand tree can be 606 /// forwarded. If true, carry out the forwarding. Do not 607 /// use DoIt==true if an operand tree is not known to be 608 /// forwardable. 609 /// 610 /// @return FD_NotApplicable if @p UseInst is not speculatable. 611 /// FD_CannotForward if one of @p UseInst's operands is not 612 /// forwardable. 613 /// FD_CanForwardTree if @p UseInst is forwardable. 614 /// FD_DidForward if @p DoIt was true. 615 ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt, 616 Instruction *UseInst, 617 ScopStmt *DefStmt, Loop *DefLoop, 618 bool DoIt) { 619 // PHIs, unless synthesizable, are not yet supported. 620 if (isa<PHINode>(UseInst)) 621 return FD_NotApplicable; 622 623 // Compatible instructions must satisfy the following conditions: 624 // 1. Idempotent (instruction will be copied, not moved; although its 625 // original instance might be removed by simplification) 626 // 2. Not access memory (There might be memory writes between) 627 // 3. Not cause undefined behaviour (we might copy to a location when the 628 // original instruction was no executed; this is currently not possible 629 // because we do not forward PHINodes) 630 // 4. Not leak memory if executed multiple times (i.e. malloc) 631 // 632 // Instruction::mayHaveSideEffects is not sufficient because it considers 633 // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is 634 // not sufficient because it allows memory accesses. 635 if (mayBeMemoryDependent(*UseInst)) 636 return FD_NotApplicable; 637 638 if (DoIt) { 639 // To ensure the right order, prepend this instruction before its 640 // operands. This ensures that its operands are inserted before the 641 // instruction using them. 642 // TODO: The operand tree is not really a tree, but a DAG. We should be 643 // able to handle DAGs without duplication. 644 TargetStmt->prependInstruction(UseInst); 645 NumInstructionsCopied++; 646 TotalInstructionsCopied++; 647 } 648 649 for (Value *OpVal : UseInst->operand_values()) { 650 ForwardingDecision OpDecision = 651 forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DoIt); 652 switch (OpDecision) { 653 case FD_CannotForward: 654 assert(!DoIt); 655 return FD_CannotForward; 656 657 case FD_CanForwardLeaf: 658 case FD_CanForwardProfitably: 659 assert(!DoIt); 660 break; 661 662 case FD_DidForwardLeaf: 663 case FD_DidForwardTree: 664 assert(DoIt); 665 break; 666 667 case FD_NotApplicable: 668 llvm_unreachable("forwardTree should never return FD_NotApplicable"); 669 } 670 } 671 672 if (DoIt) 673 return FD_DidForwardTree; 674 return FD_CanForwardProfitably; 675 } 676 677 /// Determines whether an operand tree can be forwarded or carries out a 678 /// forwarding, depending on the @p DoIt flag. 679 /// 680 /// @param TargetStmt The statement the operand tree will be copied to. 681 /// @param UseVal The value (usually an instruction) which is root of an 682 /// operand tree. 683 /// @param UseStmt The statement that uses @p UseVal. 684 /// @param UseLoop The loop @p UseVal is used in. 685 /// @param DoIt If false, only determine whether an operand tree can be 686 /// forwarded. If true, carry out the forwarding. Do not 687 /// use DoIt==true if an operand tree is not known to be 688 /// forwardable. 689 /// 690 /// @return If DoIt==false, return whether the operand tree can be forwarded. 691 /// If DoIt==true, return FD_DidForward. 692 ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal, 693 ScopStmt *UseStmt, Loop *UseLoop, bool DoIt) { 694 ScopStmt *DefStmt = nullptr; 695 Loop *DefLoop = nullptr; 696 697 // { DefDomain[] -> TargetDomain[] } 698 isl::map DefToTarget; 699 700 VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true); 701 switch (VUse.getKind()) { 702 case VirtualUse::Constant: 703 case VirtualUse::Block: 704 case VirtualUse::Hoisted: 705 // These can be used anywhere without special considerations. 706 if (DoIt) 707 return FD_DidForwardTree; 708 return FD_CanForwardLeaf; 709 710 case VirtualUse::Synthesizable: { 711 // ScopExpander will take care for of generating the code at the new 712 // location. 713 if (DoIt) 714 return FD_DidForwardTree; 715 716 // Check if the value is synthesizable at the new location as well. This 717 // might be possible when leaving a loop for which ScalarEvolution is 718 // unable to derive the exit value for. 719 // TODO: If there is a LCSSA PHI at the loop exit, use that one. 720 // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we 721 // do not forward past its loop header. This would require us to use a 722 // previous loop induction variable instead the current one. We currently 723 // do not allow forwarding PHI nodes, thus this should never occur (the 724 // only exception where no phi is necessary being an unreachable loop 725 // without edge from the outside). 726 VirtualUse TargetUse = VirtualUse::create( 727 S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true); 728 if (TargetUse.getKind() == VirtualUse::Synthesizable) 729 return FD_CanForwardLeaf; 730 731 LLVM_DEBUG( 732 dbgs() << " Synthesizable would not be synthesizable anymore: " 733 << *UseVal << "\n"); 734 return FD_CannotForward; 735 } 736 737 case VirtualUse::ReadOnly: 738 // Note that we cannot return FD_CanForwardTree here. With a operand tree 739 // depth of 0, UseVal is the use in TargetStmt that we try to replace. 740 // With -polly-analyze-read-only-scalars=true we would ensure the 741 // existence of a MemoryAccess (which already exists for a leaf) and be 742 // removed again by tryForwardTree because it's goal is to remove this 743 // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission 744 // to do so. 745 if (!DoIt) 746 return FD_CanForwardLeaf; 747 748 // If we model read-only scalars, we need to create a MemoryAccess for it. 749 if (ModelReadOnlyScalars) 750 TargetStmt->ensureValueRead(UseVal); 751 752 NumReadOnlyCopied++; 753 TotalReadOnlyCopied++; 754 return FD_DidForwardLeaf; 755 756 case VirtualUse::Intra: 757 // Knowing that UseStmt and DefStmt are the same statement instance, just 758 // reuse the information about UseStmt for DefStmt 759 DefStmt = UseStmt; 760 761 LLVM_FALLTHROUGH; 762 case VirtualUse::Inter: 763 Instruction *Inst = cast<Instruction>(UseVal); 764 765 if (!DefStmt) { 766 DefStmt = S->getStmtFor(Inst); 767 if (!DefStmt) 768 return FD_CannotForward; 769 } 770 771 DefLoop = LI->getLoopFor(Inst->getParent()); 772 773 ForwardingDecision SpeculativeResult = 774 forwardSpeculatable(TargetStmt, Inst, DefStmt, DefLoop, DoIt); 775 if (SpeculativeResult != FD_NotApplicable) 776 return SpeculativeResult; 777 778 ForwardingDecision KnownResult = forwardKnownLoad( 779 TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt); 780 if (KnownResult != FD_NotApplicable) 781 return KnownResult; 782 783 ForwardingDecision ReloadResult = reloadKnownContent( 784 TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt); 785 if (ReloadResult != FD_NotApplicable) 786 return ReloadResult; 787 788 // When no method is found to forward the operand tree, we effectively 789 // cannot handle it. 790 LLVM_DEBUG(dbgs() << " Cannot forward instruction: " << *Inst << "\n"); 791 return FD_CannotForward; 792 } 793 794 llvm_unreachable("Case unhandled"); 795 } 796 797 /// Try to forward an operand tree rooted in @p RA. 798 bool tryForwardTree(MemoryAccess *RA) { 799 assert(RA->isLatestScalarKind()); 800 LLVM_DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n"); 801 802 ScopStmt *Stmt = RA->getStatement(); 803 Loop *InLoop = Stmt->getSurroundingLoop(); 804 805 isl::map TargetToUse; 806 if (!Known.is_null()) { 807 isl::space DomSpace = Stmt->getDomainSpace(); 808 TargetToUse = 809 isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace)); 810 } 811 812 ForwardingDecision Assessment = 813 forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, false); 814 assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf); 815 if (Assessment != FD_CanForwardProfitably) 816 return false; 817 818 ForwardingDecision Execution = 819 forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, true); 820 assert(((Execution == FD_DidForwardTree) || 821 (Execution == FD_DidForwardLeaf)) && 822 "A previous positive assessment must also be executable"); 823 824 if (Execution == FD_DidForwardTree) 825 Stmt->removeSingleMemoryAccess(RA); 826 return true; 827 } 828 829 /// Return which SCoP this instance is processing. 830 Scop *getScop() const { return S; } 831 832 /// Run the algorithm: Use value read accesses as operand tree roots and try 833 /// to forward them into the statement. 834 bool forwardOperandTrees() { 835 for (ScopStmt &Stmt : *S) { 836 bool StmtModified = false; 837 838 // Because we are modifying the MemoryAccess list, collect them first to 839 // avoid iterator invalidation. 840 SmallVector<MemoryAccess *, 16> Accs; 841 for (MemoryAccess *RA : Stmt) { 842 if (!RA->isRead()) 843 continue; 844 if (!RA->isLatestScalarKind()) 845 continue; 846 847 Accs.push_back(RA); 848 } 849 850 for (MemoryAccess *RA : Accs) { 851 if (tryForwardTree(RA)) { 852 Modified = true; 853 StmtModified = true; 854 NumForwardedTrees++; 855 TotalForwardedTrees++; 856 } 857 } 858 859 if (StmtModified) { 860 NumModifiedStmts++; 861 TotalModifiedStmts++; 862 } 863 } 864 865 if (Modified) 866 ScopsModified++; 867 return Modified; 868 } 869 870 /// Print the pass result, performed transformations and the SCoP after the 871 /// transformation. 872 void print(raw_ostream &OS, int Indent = 0) { 873 printStatistics(OS, Indent); 874 875 if (!Modified) { 876 // This line can easily be checked in regression tests. 877 OS << "ForwardOpTree executed, but did not modify anything\n"; 878 return; 879 } 880 881 printStatements(OS, Indent); 882 } 883 }; 884 885 /// Pass that redirects scalar reads to array elements that are known to contain 886 /// the same value. 887 /// 888 /// This reduces the number of scalar accesses and therefore potentially 889 /// increases the freedom of the scheduler. In the ideal case, all reads of a 890 /// scalar definition are redirected (We currently do not care about removing 891 /// the write in this case). This is also useful for the main DeLICM pass as 892 /// there are less scalars to be mapped. 893 class ForwardOpTree : public ScopPass { 894 private: 895 /// The pass implementation, also holding per-scop data. 896 std::unique_ptr<ForwardOpTreeImpl> Impl; 897 898 public: 899 static char ID; 900 901 explicit ForwardOpTree() : ScopPass(ID) {} 902 ForwardOpTree(const ForwardOpTree &) = delete; 903 ForwardOpTree &operator=(const ForwardOpTree &) = delete; 904 905 void getAnalysisUsage(AnalysisUsage &AU) const override { 906 AU.addRequiredTransitive<ScopInfoRegionPass>(); 907 AU.addRequired<LoopInfoWrapperPass>(); 908 AU.setPreservesAll(); 909 } 910 911 bool runOnScop(Scop &S) override { 912 // Free resources for previous SCoP's computation, if not yet done. 913 releaseMemory(); 914 915 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 916 917 { 918 IslMaxOperationsGuard MaxOpGuard(S.getIslCtx().get(), MaxOps, false); 919 Impl = llvm::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard); 920 921 if (AnalyzeKnown) { 922 LLVM_DEBUG(dbgs() << "Prepare forwarders...\n"); 923 Impl->computeKnownValues(); 924 } 925 926 LLVM_DEBUG(dbgs() << "Forwarding operand trees...\n"); 927 Impl->forwardOperandTrees(); 928 929 if (MaxOpGuard.hasQuotaExceeded()) { 930 LLVM_DEBUG(dbgs() << "Not all operations completed because of " 931 "max_operations exceeded\n"); 932 KnownOutOfQuota++; 933 } 934 } 935 936 LLVM_DEBUG(dbgs() << "\nFinal Scop:\n"); 937 LLVM_DEBUG(dbgs() << S); 938 939 // Update statistics 940 auto ScopStats = S.getStatistics(); 941 NumValueWrites += ScopStats.NumValueWrites; 942 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; 943 NumPHIWrites += ScopStats.NumPHIWrites; 944 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; 945 NumSingletonWrites += ScopStats.NumSingletonWrites; 946 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; 947 948 return false; 949 } 950 951 void printScop(raw_ostream &OS, Scop &S) const override { 952 if (!Impl) 953 return; 954 955 assert(Impl->getScop() == &S); 956 Impl->print(OS); 957 } 958 959 void releaseMemory() override { Impl.reset(); } 960 }; // class ForwardOpTree 961 962 char ForwardOpTree::ID; 963 } // namespace 964 965 ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); } 966 967 INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree", 968 "Polly - Forward operand tree", false, false) 969 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 970 INITIALIZE_PASS_END(ForwardOpTree, "polly-optree", 971 "Polly - Forward operand tree", false, false) 972