1 //===- ForwardOpTree.h ------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Move instructions between statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/ForwardOpTree.h" 15 #include "polly/Options.h" 16 #include "polly/ScopBuilder.h" 17 #include "polly/ScopInfo.h" 18 #include "polly/ScopPass.h" 19 #include "polly/Support/GICHelper.h" 20 #include "polly/Support/ISLOStream.h" 21 #include "polly/Support/ISLTools.h" 22 #include "polly/Support/VirtualInstruction.h" 23 #include "polly/ZoneAlgo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "isl/ctx.h" 40 #include "isl/isl-noexceptions.h" 41 #include <cassert> 42 #include <memory> 43 44 #define DEBUG_TYPE "polly-optree" 45 46 using namespace llvm; 47 using namespace polly; 48 49 static cl::opt<bool> 50 AnalyzeKnown("polly-optree-analyze-known", 51 cl::desc("Analyze array contents for load forwarding"), 52 cl::cat(PollyCategory), cl::init(true), cl::Hidden); 53 54 static cl::opt<bool> 55 NormalizePHIs("polly-optree-normalize-phi", 56 cl::desc("Replace PHIs by their incoming values"), 57 cl::cat(PollyCategory), cl::init(false), cl::Hidden); 58 59 static cl::opt<unsigned> 60 MaxOps("polly-optree-max-ops", 61 cl::desc("Maximum number of ISL operations to invest for known " 62 "analysis; 0=no limit"), 63 cl::init(1000000), cl::cat(PollyCategory), cl::Hidden); 64 65 STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs"); 66 STATISTIC(KnownOutOfQuota, 67 "Analyses aborted because max_operations was reached"); 68 69 STATISTIC(TotalInstructionsCopied, "Number of copied instructions"); 70 STATISTIC(TotalKnownLoadsForwarded, 71 "Number of forwarded loads because their value was known"); 72 STATISTIC(TotalReloads, "Number of reloaded values"); 73 STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses"); 74 STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees"); 75 STATISTIC(TotalModifiedStmts, 76 "Number of statements with at least one forwarded tree"); 77 78 STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree"); 79 80 STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree"); 81 STATISTIC(NumValueWritesInLoops, 82 "Number of scalar value writes nested in affine loops after OpTree"); 83 STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree"); 84 STATISTIC(NumPHIWritesInLoops, 85 "Number of scalar phi writes nested in affine loops after OpTree"); 86 STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree"); 87 STATISTIC(NumSingletonWritesInLoops, 88 "Number of singleton writes nested in affine loops after OpTree"); 89 90 namespace { 91 92 /// The state of whether an operand tree was/can be forwarded. 93 /// 94 /// The items apply to an instructions and its operand tree with the instruction 95 /// as the root element. If the value in question is not an instruction in the 96 /// SCoP, it can be a leaf of an instruction's operand tree. 97 enum ForwardingDecision { 98 /// The root instruction or value cannot be forwarded at all. 99 FD_CannotForward, 100 101 /// The root instruction or value can be forwarded as a leaf of a larger 102 /// operand tree. 103 /// It does not make sense to move the value itself, it would just replace it 104 /// by a use of itself. For instance, a constant "5" used in a statement can 105 /// be forwarded, but it would just replace it by the same constant "5". 106 /// However, it makes sense to move as an operand of 107 /// 108 /// %add = add 5, 5 109 /// 110 /// where "5" is moved as part of a larger operand tree. "5" would be placed 111 /// (disregarding for a moment that literal constants don't have a location 112 /// and can be used anywhere) into the same statement as %add would. 113 FD_CanForwardLeaf, 114 115 /// The root instruction can be forwarded and doing so avoids a scalar 116 /// dependency. 117 /// 118 /// This can be either because the operand tree can be moved to the target 119 /// statement, or a memory access is redirected to read from a different 120 /// location. 121 FD_CanForwardProfitably, 122 123 /// Used to indicate that a forwarding has be carried out successfully, and 124 /// the forwarded memory access can be deleted. 125 FD_DidForwardTree, 126 127 /// Used to indicate that a forwarding has be carried out successfully, and 128 /// the forwarded memory access is being reused. 129 FD_DidForwardLeaf, 130 131 /// A forwarding method cannot be applied to the operand tree. 132 /// The difference to FD_CannotForward is that there might be other methods 133 /// that can handle it. 134 /// The conditions that make an operand tree applicable must be checked even 135 /// with DoIt==true because a method following the one that returned 136 /// FD_NotApplicable might have returned FD_CanForwardTree. 137 FD_NotApplicable 138 }; 139 140 /// Implementation of operand tree forwarding for a specific SCoP. 141 /// 142 /// For a statement that requires a scalar value (through a value read 143 /// MemoryAccess), see if its operand can be moved into the statement. If so, 144 /// the MemoryAccess is removed and the all the operand tree instructions are 145 /// moved into the statement. All original instructions are left in the source 146 /// statements. The simplification pass can clean these up. 147 class ForwardOpTreeImpl : ZoneAlgorithm { 148 private: 149 /// Scope guard to limit the number of isl operations for this pass. 150 IslMaxOperationsGuard &MaxOpGuard; 151 152 /// How many instructions have been copied to other statements. 153 int NumInstructionsCopied = 0; 154 155 /// Number of loads forwarded because their value was known. 156 int NumKnownLoadsForwarded = 0; 157 158 /// Number of values reloaded from known array elements. 159 int NumReloads = 0; 160 161 /// How many read-only accesses have been copied. 162 int NumReadOnlyCopied = 0; 163 164 /// How many operand trees have been forwarded. 165 int NumForwardedTrees = 0; 166 167 /// Number of statements with at least one forwarded operand tree. 168 int NumModifiedStmts = 0; 169 170 /// Whether we carried out at least one change to the SCoP. 171 bool Modified = false; 172 173 /// Contains the zones where array elements are known to contain a specific 174 /// value. 175 /// { [Element[] -> Zone[]] -> ValInst[] } 176 /// @see computeKnown() 177 isl::union_map Known; 178 179 /// Translator for newly introduced ValInsts to already existing ValInsts such 180 /// that new introduced load instructions can reuse the Known analysis of its 181 /// original load. { ValInst[] -> ValInst[] } 182 isl::union_map Translator; 183 184 /// A cache for getDefToTarget(). 185 DenseMap<std::pair<ScopStmt *, ScopStmt *>, isl::map> DefToTargetCache; 186 187 /// Get list of array elements that do contain the same ValInst[] at Domain[]. 188 /// 189 /// @param ValInst { Domain[] -> ValInst[] } 190 /// The values for which we search for alternative locations, 191 /// per statement instance. 192 /// 193 /// @return { Domain[] -> Element[] } 194 /// For each statement instance, the array elements that contain the 195 /// same ValInst. 196 isl::union_map findSameContentElements(isl::union_map ValInst) { 197 assert(!ValInst.is_single_valued().is_false()); 198 199 // { Domain[] } 200 isl::union_set Domain = ValInst.domain(); 201 202 // { Domain[] -> Scatter[] } 203 isl::union_map Schedule = getScatterFor(Domain); 204 205 // { Element[] -> [Scatter[] -> ValInst[]] } 206 isl::union_map MustKnownCurried = 207 convertZoneToTimepoints(Known, isl::dim::in, false, true).curry(); 208 209 // { [Domain[] -> ValInst[]] -> Scatter[] } 210 isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule); 211 212 // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] } 213 isl::union_map SchedValDomVal = 214 DomValSched.range_product(ValInst.range_map()).reverse(); 215 216 // { Element[] -> [Domain[] -> ValInst[]] } 217 isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal); 218 219 // { Domain[] -> Element[] } 220 isl::union_map MustKnownMap = 221 MustKnownInst.uncurry().domain().unwrap().reverse(); 222 simplify(MustKnownMap); 223 224 return MustKnownMap; 225 } 226 227 /// Find a single array element for each statement instance, within a single 228 /// array. 229 /// 230 /// @param MustKnown { Domain[] -> Element[] } 231 /// Set of candidate array elements. 232 /// @param Domain { Domain[] } 233 /// The statement instance for which we need elements for. 234 /// 235 /// @return { Domain[] -> Element[] } 236 /// For each statement instance, an array element out of @p MustKnown. 237 /// All array elements must be in the same array (Polly does not yet 238 /// support reading from different accesses using the same 239 /// MemoryAccess). If no mapping for all of @p Domain exists, returns 240 /// null. 241 isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) { 242 // { Domain[] -> Element[] } 243 isl::map Result; 244 245 // MemoryAccesses can read only elements from a single array 246 // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }). 247 // Look through all spaces until we find one that contains at least the 248 // wanted statement instance.s 249 MustKnown.foreach_map([&](isl::map Map) -> isl::stat { 250 // Get the array this is accessing. 251 isl::id ArrayId = Map.get_tuple_id(isl::dim::out); 252 ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user()); 253 254 // No support for generation of indirect array accesses. 255 if (SAI->getBasePtrOriginSAI()) 256 return isl::stat::ok; // continue 257 258 // Determine whether this map contains all wanted values. 259 isl::set MapDom = Map.domain(); 260 if (!Domain.is_subset(MapDom).is_true()) 261 return isl::stat::ok; // continue 262 263 // There might be multiple array elements that contain the same value, but 264 // choose only one of them. lexmin is used because it returns a one-value 265 // mapping, we do not care about which one. 266 // TODO: Get the simplest access function. 267 Result = Map.lexmin(); 268 return isl::stat::error; // break 269 }); 270 271 return Result; 272 } 273 274 public: 275 ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard) 276 : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {} 277 278 /// Compute the zones of known array element contents. 279 /// 280 /// @return True if the computed #Known is usable. 281 bool computeKnownValues() { 282 isl::union_map MustKnown, KnownFromLoad, KnownFromInit; 283 284 // Check that nothing strange occurs. 285 collectCompatibleElts(); 286 287 { 288 IslQuotaScope QuotaScope = MaxOpGuard.enter(); 289 290 computeCommon(); 291 if (NormalizePHIs) 292 computeNormalizedPHIs(); 293 Known = computeKnown(true, true); 294 295 // Preexisting ValInsts use the known content analysis of themselves. 296 Translator = makeIdentityMap(Known.range(), false); 297 } 298 299 if (!Known || !Translator || !NormalizeMap) { 300 assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota); 301 Known = nullptr; 302 Translator = nullptr; 303 NormalizeMap = nullptr; 304 LLVM_DEBUG(dbgs() << "Known analysis exceeded max_operations\n"); 305 return false; 306 } 307 308 KnownAnalyzed++; 309 LLVM_DEBUG(dbgs() << "All known: " << Known << "\n"); 310 311 return true; 312 } 313 314 void printStatistics(raw_ostream &OS, int Indent = 0) { 315 OS.indent(Indent) << "Statistics {\n"; 316 OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied 317 << '\n'; 318 OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded 319 << '\n'; 320 OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n'; 321 OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied 322 << '\n'; 323 OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees 324 << '\n'; 325 OS.indent(Indent + 4) << "Statements with forwarded operand trees: " 326 << NumModifiedStmts << '\n'; 327 OS.indent(Indent) << "}\n"; 328 } 329 330 void printStatements(raw_ostream &OS, int Indent = 0) const { 331 OS.indent(Indent) << "After statements {\n"; 332 for (auto &Stmt : *S) { 333 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; 334 for (auto *MA : Stmt) 335 MA->print(OS); 336 337 OS.indent(Indent + 12); 338 Stmt.printInstructions(OS); 339 } 340 OS.indent(Indent) << "}\n"; 341 } 342 343 /// Create a new MemoryAccess of type read and MemoryKind::Array. 344 /// 345 /// @param Stmt The statement in which the access occurs. 346 /// @param LI The instruction that does the access. 347 /// @param AccessRelation The array element that each statement instance 348 /// accesses. 349 /// 350 /// @param The newly created access. 351 MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI, 352 isl::map AccessRelation) { 353 isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out); 354 ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user()); 355 356 // Create a dummy SCEV access, to be replaced anyway. 357 SmallVector<const SCEV *, 4> Sizes; 358 Sizes.reserve(SAI->getNumberOfDimensions()); 359 SmallVector<const SCEV *, 4> Subscripts; 360 Subscripts.reserve(SAI->getNumberOfDimensions()); 361 for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) { 362 Sizes.push_back(SAI->getDimensionSize(i)); 363 Subscripts.push_back(nullptr); 364 } 365 366 MemoryAccess *Access = 367 new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(), 368 LI->getType(), true, {}, Sizes, LI, MemoryKind::Array); 369 S->addAccessFunction(Access); 370 Stmt->addAccess(Access, true); 371 372 Access->setNewAccessRelation(AccessRelation); 373 374 return Access; 375 } 376 377 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a 378 /// use in every instance of @p UseStmt. 379 /// 380 /// @param UseStmt Statement a scalar is used in. 381 /// @param DefStmt Statement a scalar is defined in. 382 /// 383 /// @return { DomainUse[] -> DomainDef[] } 384 isl::map computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt) { 385 // { DomainUse[] -> Scatter[] } 386 isl::map UseScatter = getScatterFor(UseStmt); 387 388 // { Zone[] -> DomainDef[] } 389 isl::map ReachDefZone = getScalarReachingDefinition(DefStmt); 390 391 // { Scatter[] -> DomainDef[] } 392 isl::map ReachDefTimepoints = 393 convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true); 394 395 // { DomainUse[] -> DomainDef[] } 396 return UseScatter.apply_range(ReachDefTimepoints); 397 } 398 399 /// Get a domain translation map from a (scalar) definition to the statement 400 /// where the definition is being moved to. 401 /// 402 /// @p TargetStmt can also be seen an llvm::Use of an llvm::Value in 403 /// @p DefStmt. In addition, we allow transitive uses: 404 /// 405 /// DefStmt -> MiddleStmt -> TargetStmt 406 /// 407 /// where an operand tree of instructions in DefStmt and MiddleStmt are to be 408 /// moved to TargetStmt. To be generally correct, we also need to know all the 409 /// intermediate statements. However, we make use of the fact that we 410 /// currently do not support a move from a loop body across its header such 411 /// that only the first definition and the target statement are relevant. 412 /// 413 /// @param DefStmt Statement from where a definition might be moved from. 414 /// @param TargetStmt Statement where the definition is potentially being 415 /// moved to (should contain a use of that definition). 416 /// 417 /// @return { DomainDef[] -> DomainTarget[] } 418 isl::map getDefToTarget(ScopStmt *DefStmt, ScopStmt *TargetStmt) { 419 // No translation required if the definition is already at the target. 420 if (TargetStmt == DefStmt) 421 return isl::map::identity( 422 getDomainFor(TargetStmt).get_space().map_from_set()); 423 424 isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)]; 425 if (!Result) { 426 // { DomainDef[] -> DomainTarget[] } 427 Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse(); 428 simplify(Result); 429 } 430 431 return Result; 432 } 433 434 /// Forward a load by reading from an array element that contains the same 435 /// value. Typically the location it was loaded from. 436 /// 437 /// @param TargetStmt The statement the operand tree will be copied to. 438 /// @param Inst The (possibly speculatable) instruction to forward. 439 /// @param UseStmt The statement that uses @p Inst. 440 /// @param UseLoop The loop @p Inst is used in. 441 /// @param DefStmt The statement @p Inst is defined in. 442 /// @param DefLoop The loop which contains @p Inst. 443 /// @param DoIt If false, only determine whether an operand tree can be 444 /// forwarded. If true, carry out the forwarding. Do not 445 /// use DoIt==true if an operand tree is not known to be 446 /// forwardable. 447 /// 448 /// @return FD_NotApplicable if @p Inst cannot be forwarded by creating a new 449 /// load. 450 /// FD_CannotForward if the pointer operand cannot be forwarded. 451 /// FD_CanForwardProfitably if @p Inst is forwardable. 452 /// FD_DidForwardTree if @p DoIt was true. 453 ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst, 454 ScopStmt *UseStmt, Loop *UseLoop, 455 ScopStmt *DefStmt, Loop *DefLoop, 456 bool DoIt) { 457 // Cannot do anything without successful known analysis. 458 if (Known.is_null() || Translator.is_null() || 459 MaxOpGuard.hasQuotaExceeded()) 460 return FD_NotApplicable; 461 462 LoadInst *LI = dyn_cast<LoadInst>(Inst); 463 if (!LI) 464 return FD_NotApplicable; 465 466 // If the load is already in the statement, no forwarding is necessary. 467 // However, it might happen that the LoadInst is already present in the 468 // statement's instruction list. In that case we do as follows: 469 // - For the evaluation (DoIt==false), we can trivially forward it as it is 470 // benefit of forwarding an already present instruction. 471 // - For the execution (DoIt==true), prepend the instruction (to make it 472 // available to all instructions following in the instruction list), but 473 // do not add another MemoryAccess. 474 MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI); 475 if (Access && !DoIt) 476 return FD_CanForwardProfitably; 477 478 ForwardingDecision OpDecision = forwardTree( 479 TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, DoIt); 480 switch (OpDecision) { 481 case FD_CannotForward: 482 assert(!DoIt); 483 return OpDecision; 484 485 case FD_CanForwardLeaf: 486 case FD_CanForwardProfitably: 487 assert(!DoIt); 488 break; 489 490 case FD_DidForwardLeaf: 491 case FD_DidForwardTree: 492 assert(DoIt); 493 break; 494 495 default: 496 llvm_unreachable("Shouldn't return this"); 497 } 498 499 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt); 500 501 // { DomainDef[] -> ValInst[] } 502 isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop); 503 assert(!isNormalized(ExpectedVal).is_false() && 504 "LoadInsts are always normalized"); 505 506 // { DomainUse[] -> DomainTarget[] } 507 isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt); 508 509 // { DomainTarget[] -> ValInst[] } 510 isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget); 511 isl::union_map TranslatedExpectedVal = 512 isl::union_map(TargetExpectedVal).apply_range(Translator); 513 514 // { DomainTarget[] -> Element[] } 515 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal); 516 517 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt)); 518 if (!SameVal) 519 return FD_NotApplicable; 520 521 if (DoIt) 522 TargetStmt->prependInstruction(LI); 523 524 if (!DoIt) 525 return FD_CanForwardProfitably; 526 527 if (Access) { 528 LLVM_DEBUG( 529 dbgs() << " forwarded known load with preexisting MemoryAccess" 530 << Access << "\n"); 531 } else { 532 Access = makeReadArrayAccess(TargetStmt, LI, SameVal); 533 LLVM_DEBUG(dbgs() << " forwarded known load with new MemoryAccess" 534 << Access << "\n"); 535 536 // { ValInst[] } 537 isl::space ValInstSpace = ExpectedVal.get_space().range(); 538 539 // After adding a new load to the SCoP, also update the Known content 540 // about it. The new load will have a known ValInst of 541 // { [DomainTarget[] -> Value[]] } 542 // but which -- because it is a copy of it -- has same value as the 543 // { [DomainDef[] -> Value[]] } 544 // that it replicates. Instead of cloning the known content of 545 // [DomainDef[] -> Value[]] 546 // for DomainTarget[], we add a 'translator' that maps 547 // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]] 548 // before comparing to the known content. 549 // TODO: 'Translator' could also be used to map PHINodes to their incoming 550 // ValInsts. 551 if (ValInstSpace.is_wrapping()) { 552 // { DefDomain[] -> Value[] } 553 isl::map ValInsts = ExpectedVal.range().unwrap(); 554 555 // { DefDomain[] } 556 isl::set DefDomain = ValInsts.domain(); 557 558 // { Value[] } 559 isl::space ValSpace = ValInstSpace.unwrap().range(); 560 561 // { Value[] -> Value[] } 562 isl::map ValToVal = 563 isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace)); 564 565 // { DomainDef[] -> DomainTarget[] } 566 isl::map DefToTarget = getDefToTarget(DefStmt, TargetStmt); 567 568 // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] } 569 isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal); 570 571 Translator = Translator.add_map(LocalTranslator); 572 LLVM_DEBUG(dbgs() << " local translator is " << LocalTranslator 573 << "\n"); 574 } 575 } 576 LLVM_DEBUG(dbgs() << " expected values where " << TargetExpectedVal 577 << "\n"); 578 LLVM_DEBUG(dbgs() << " candidate elements where " << Candidates 579 << "\n"); 580 assert(Access); 581 582 NumKnownLoadsForwarded++; 583 TotalKnownLoadsForwarded++; 584 return FD_DidForwardTree; 585 } 586 587 /// Forward a scalar by redirecting the access to an array element that stores 588 /// the same value. 589 /// 590 /// @param TargetStmt The statement the operand tree will be copied to. 591 /// @param Inst The scalar to forward. 592 /// @param UseStmt The statement that uses @p Inst. 593 /// @param UseLoop The loop @p Inst is used in. 594 /// @param DefStmt The statement @p Inst is defined in. 595 /// @param DefLoop The loop which contains @p Inst. 596 /// @param DoIt If false, only determine whether an operand tree can be 597 /// forwarded. If true, carry out the forwarding. Do not 598 /// use DoIt==true if an operand tree is not known to be 599 /// forwardable. 600 /// 601 /// @return FD_NotApplicable if @p Inst cannot be reloaded. 602 /// FD_CanForwardLeaf if @p Inst can be reloaded. 603 /// FD_CanForwardProfitably if @p Inst has been reloaded. 604 /// FD_DidForwardLeaf if @p DoIt was true. 605 ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst, 606 ScopStmt *UseStmt, Loop *UseLoop, 607 ScopStmt *DefStmt, Loop *DefLoop, 608 bool DoIt) { 609 // Cannot do anything without successful known analysis. 610 if (Known.is_null() || Translator.is_null() || 611 MaxOpGuard.hasQuotaExceeded()) 612 return FD_NotApplicable; 613 614 MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst); 615 if (Access && Access->isLatestArrayKind()) { 616 if (DoIt) 617 return FD_DidForwardLeaf; 618 return FD_CanForwardLeaf; 619 } 620 621 // Don't spend too much time analyzing whether it can be reloaded. When 622 // carrying-out the forwarding, we cannot bail-out in the middle of the 623 // transformation. It also shouldn't take as long because some results are 624 // cached. 625 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt); 626 627 // { DomainDef[] -> ValInst[] } 628 isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop); 629 630 // { DomainUse[] -> DomainTarget[] } 631 isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt); 632 633 // { DomainTarget[] -> ValInst[] } 634 isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget); 635 isl::union_map TranslatedExpectedVal = 636 TargetExpectedVal.apply_range(Translator); 637 638 // { DomainTarget[] -> Element[] } 639 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal); 640 641 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt)); 642 if (!SameVal) 643 return FD_NotApplicable; 644 645 if (!DoIt) 646 return FD_CanForwardProfitably; 647 648 if (!Access) 649 Access = TargetStmt->ensureValueRead(Inst); 650 651 simplify(SameVal); 652 Access->setNewAccessRelation(SameVal); 653 654 TotalReloads++; 655 NumReloads++; 656 return FD_DidForwardLeaf; 657 } 658 659 /// Forwards a speculatively executable instruction. 660 /// 661 /// @param TargetStmt The statement the operand tree will be copied to. 662 /// @param UseInst The (possibly speculatable) instruction to forward. 663 /// @param DefStmt The statement @p UseInst is defined in. 664 /// @param DefLoop The loop which contains @p UseInst. 665 /// @param DoIt If false, only determine whether an operand tree can be 666 /// forwarded. If true, carry out the forwarding. Do not 667 /// use DoIt==true if an operand tree is not known to be 668 /// forwardable. 669 /// 670 /// @return FD_NotApplicable if @p UseInst is not speculatable. 671 /// FD_CannotForward if one of @p UseInst's operands is not 672 /// forwardable. 673 /// FD_CanForwardTree if @p UseInst is forwardable. 674 /// FD_DidForward if @p DoIt was true. 675 ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt, 676 Instruction *UseInst, 677 ScopStmt *DefStmt, Loop *DefLoop, 678 bool DoIt) { 679 // PHIs, unless synthesizable, are not yet supported. 680 if (isa<PHINode>(UseInst)) 681 return FD_NotApplicable; 682 683 // Compatible instructions must satisfy the following conditions: 684 // 1. Idempotent (instruction will be copied, not moved; although its 685 // original instance might be removed by simplification) 686 // 2. Not access memory (There might be memory writes between) 687 // 3. Not cause undefined behaviour (we might copy to a location when the 688 // original instruction was no executed; this is currently not possible 689 // because we do not forward PHINodes) 690 // 4. Not leak memory if executed multiple times (i.e. malloc) 691 // 692 // Instruction::mayHaveSideEffects is not sufficient because it considers 693 // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is 694 // not sufficient because it allows memory accesses. 695 if (mayBeMemoryDependent(*UseInst)) 696 return FD_NotApplicable; 697 698 if (DoIt) { 699 // To ensure the right order, prepend this instruction before its 700 // operands. This ensures that its operands are inserted before the 701 // instruction using them. 702 // TODO: The operand tree is not really a tree, but a DAG. We should be 703 // able to handle DAGs without duplication. 704 TargetStmt->prependInstruction(UseInst); 705 NumInstructionsCopied++; 706 TotalInstructionsCopied++; 707 } 708 709 for (Value *OpVal : UseInst->operand_values()) { 710 ForwardingDecision OpDecision = 711 forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DoIt); 712 switch (OpDecision) { 713 case FD_CannotForward: 714 assert(!DoIt); 715 return FD_CannotForward; 716 717 case FD_CanForwardLeaf: 718 case FD_CanForwardProfitably: 719 assert(!DoIt); 720 break; 721 722 case FD_DidForwardLeaf: 723 case FD_DidForwardTree: 724 assert(DoIt); 725 break; 726 727 case FD_NotApplicable: 728 llvm_unreachable("forwardTree should never return FD_NotApplicable"); 729 } 730 } 731 732 if (DoIt) 733 return FD_DidForwardTree; 734 return FD_CanForwardProfitably; 735 } 736 737 /// Determines whether an operand tree can be forwarded or carries out a 738 /// forwarding, depending on the @p DoIt flag. 739 /// 740 /// @param TargetStmt The statement the operand tree will be copied to. 741 /// @param UseVal The value (usually an instruction) which is root of an 742 /// operand tree. 743 /// @param UseStmt The statement that uses @p UseVal. 744 /// @param UseLoop The loop @p UseVal is used in. 745 /// @param DoIt If false, only determine whether an operand tree can be 746 /// forwarded. If true, carry out the forwarding. Do not 747 /// use DoIt==true if an operand tree is not known to be 748 /// forwardable. 749 /// 750 /// @return If DoIt==false, return whether the operand tree can be forwarded. 751 /// If DoIt==true, return FD_DidForward. 752 ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal, 753 ScopStmt *UseStmt, Loop *UseLoop, bool DoIt) { 754 ScopStmt *DefStmt = nullptr; 755 Loop *DefLoop = nullptr; 756 757 // { DefDomain[] -> TargetDomain[] } 758 isl::map DefToTarget; 759 760 VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true); 761 switch (VUse.getKind()) { 762 case VirtualUse::Constant: 763 case VirtualUse::Block: 764 case VirtualUse::Hoisted: 765 // These can be used anywhere without special considerations. 766 if (DoIt) 767 return FD_DidForwardTree; 768 return FD_CanForwardLeaf; 769 770 case VirtualUse::Synthesizable: { 771 // ScopExpander will take care for of generating the code at the new 772 // location. 773 if (DoIt) 774 return FD_DidForwardTree; 775 776 // Check if the value is synthesizable at the new location as well. This 777 // might be possible when leaving a loop for which ScalarEvolution is 778 // unable to derive the exit value for. 779 // TODO: If there is a LCSSA PHI at the loop exit, use that one. 780 // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we 781 // do not forward past its loop header. This would require us to use a 782 // previous loop induction variable instead the current one. We currently 783 // do not allow forwarding PHI nodes, thus this should never occur (the 784 // only exception where no phi is necessary being an unreachable loop 785 // without edge from the outside). 786 VirtualUse TargetUse = VirtualUse::create( 787 S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true); 788 if (TargetUse.getKind() == VirtualUse::Synthesizable) 789 return FD_CanForwardLeaf; 790 791 LLVM_DEBUG( 792 dbgs() << " Synthesizable would not be synthesizable anymore: " 793 << *UseVal << "\n"); 794 return FD_CannotForward; 795 } 796 797 case VirtualUse::ReadOnly: 798 // Note that we cannot return FD_CanForwardTree here. With a operand tree 799 // depth of 0, UseVal is the use in TargetStmt that we try to replace. 800 // With -polly-analyze-read-only-scalars=true we would ensure the 801 // existence of a MemoryAccess (which already exists for a leaf) and be 802 // removed again by tryForwardTree because it's goal is to remove this 803 // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission 804 // to do so. 805 if (!DoIt) 806 return FD_CanForwardLeaf; 807 808 // If we model read-only scalars, we need to create a MemoryAccess for it. 809 if (ModelReadOnlyScalars) 810 TargetStmt->ensureValueRead(UseVal); 811 812 NumReadOnlyCopied++; 813 TotalReadOnlyCopied++; 814 return FD_DidForwardLeaf; 815 816 case VirtualUse::Intra: 817 // Knowing that UseStmt and DefStmt are the same statement instance, just 818 // reuse the information about UseStmt for DefStmt 819 DefStmt = UseStmt; 820 821 LLVM_FALLTHROUGH; 822 case VirtualUse::Inter: 823 Instruction *Inst = cast<Instruction>(UseVal); 824 825 if (!DefStmt) { 826 DefStmt = S->getStmtFor(Inst); 827 if (!DefStmt) 828 return FD_CannotForward; 829 } 830 831 DefLoop = LI->getLoopFor(Inst->getParent()); 832 833 ForwardingDecision SpeculativeResult = 834 forwardSpeculatable(TargetStmt, Inst, DefStmt, DefLoop, DoIt); 835 if (SpeculativeResult != FD_NotApplicable) 836 return SpeculativeResult; 837 838 ForwardingDecision KnownResult = forwardKnownLoad( 839 TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt); 840 if (KnownResult != FD_NotApplicable) 841 return KnownResult; 842 843 ForwardingDecision ReloadResult = reloadKnownContent( 844 TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt); 845 if (ReloadResult != FD_NotApplicable) 846 return ReloadResult; 847 848 // When no method is found to forward the operand tree, we effectively 849 // cannot handle it. 850 LLVM_DEBUG(dbgs() << " Cannot forward instruction: " << *Inst << "\n"); 851 return FD_CannotForward; 852 } 853 854 llvm_unreachable("Case unhandled"); 855 } 856 857 /// Try to forward an operand tree rooted in @p RA. 858 bool tryForwardTree(MemoryAccess *RA) { 859 assert(RA->isLatestScalarKind()); 860 LLVM_DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n"); 861 862 ScopStmt *Stmt = RA->getStatement(); 863 Loop *InLoop = Stmt->getSurroundingLoop(); 864 865 isl::map TargetToUse; 866 if (!Known.is_null()) { 867 isl::space DomSpace = Stmt->getDomainSpace(); 868 TargetToUse = 869 isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace)); 870 } 871 872 ForwardingDecision Assessment = 873 forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, false); 874 assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf); 875 if (Assessment != FD_CanForwardProfitably) 876 return false; 877 878 ForwardingDecision Execution = 879 forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, true); 880 assert(((Execution == FD_DidForwardTree) || 881 (Execution == FD_DidForwardLeaf)) && 882 "A previous positive assessment must also be executable"); 883 884 if (Execution == FD_DidForwardTree) 885 Stmt->removeSingleMemoryAccess(RA); 886 return true; 887 } 888 889 /// Return which SCoP this instance is processing. 890 Scop *getScop() const { return S; } 891 892 /// Run the algorithm: Use value read accesses as operand tree roots and try 893 /// to forward them into the statement. 894 bool forwardOperandTrees() { 895 for (ScopStmt &Stmt : *S) { 896 bool StmtModified = false; 897 898 // Because we are modifying the MemoryAccess list, collect them first to 899 // avoid iterator invalidation. 900 SmallVector<MemoryAccess *, 16> Accs; 901 for (MemoryAccess *RA : Stmt) { 902 if (!RA->isRead()) 903 continue; 904 if (!RA->isLatestScalarKind()) 905 continue; 906 907 Accs.push_back(RA); 908 } 909 910 for (MemoryAccess *RA : Accs) { 911 if (tryForwardTree(RA)) { 912 Modified = true; 913 StmtModified = true; 914 NumForwardedTrees++; 915 TotalForwardedTrees++; 916 } 917 } 918 919 if (StmtModified) { 920 NumModifiedStmts++; 921 TotalModifiedStmts++; 922 } 923 } 924 925 if (Modified) 926 ScopsModified++; 927 return Modified; 928 } 929 930 /// Print the pass result, performed transformations and the SCoP after the 931 /// transformation. 932 void print(raw_ostream &OS, int Indent = 0) { 933 printStatistics(OS, Indent); 934 935 if (!Modified) { 936 // This line can easily be checked in regression tests. 937 OS << "ForwardOpTree executed, but did not modify anything\n"; 938 return; 939 } 940 941 printStatements(OS, Indent); 942 } 943 }; 944 945 /// Pass that redirects scalar reads to array elements that are known to contain 946 /// the same value. 947 /// 948 /// This reduces the number of scalar accesses and therefore potentially 949 /// increases the freedom of the scheduler. In the ideal case, all reads of a 950 /// scalar definition are redirected (We currently do not care about removing 951 /// the write in this case). This is also useful for the main DeLICM pass as 952 /// there are less scalars to be mapped. 953 class ForwardOpTree : public ScopPass { 954 private: 955 /// The pass implementation, also holding per-scop data. 956 std::unique_ptr<ForwardOpTreeImpl> Impl; 957 958 public: 959 static char ID; 960 961 explicit ForwardOpTree() : ScopPass(ID) {} 962 ForwardOpTree(const ForwardOpTree &) = delete; 963 ForwardOpTree &operator=(const ForwardOpTree &) = delete; 964 965 void getAnalysisUsage(AnalysisUsage &AU) const override { 966 AU.addRequiredTransitive<ScopInfoRegionPass>(); 967 AU.addRequired<LoopInfoWrapperPass>(); 968 AU.setPreservesAll(); 969 } 970 971 bool runOnScop(Scop &S) override { 972 // Free resources for previous SCoP's computation, if not yet done. 973 releaseMemory(); 974 975 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 976 977 { 978 IslMaxOperationsGuard MaxOpGuard(S.getIslCtx().get(), MaxOps, false); 979 Impl = llvm::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard); 980 981 if (AnalyzeKnown) { 982 LLVM_DEBUG(dbgs() << "Prepare forwarders...\n"); 983 Impl->computeKnownValues(); 984 } 985 986 LLVM_DEBUG(dbgs() << "Forwarding operand trees...\n"); 987 Impl->forwardOperandTrees(); 988 989 if (MaxOpGuard.hasQuotaExceeded()) { 990 LLVM_DEBUG(dbgs() << "Not all operations completed because of " 991 "max_operations exceeded\n"); 992 KnownOutOfQuota++; 993 } 994 } 995 996 LLVM_DEBUG(dbgs() << "\nFinal Scop:\n"); 997 LLVM_DEBUG(dbgs() << S); 998 999 // Update statistics 1000 auto ScopStats = S.getStatistics(); 1001 NumValueWrites += ScopStats.NumValueWrites; 1002 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; 1003 NumPHIWrites += ScopStats.NumPHIWrites; 1004 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; 1005 NumSingletonWrites += ScopStats.NumSingletonWrites; 1006 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; 1007 1008 return false; 1009 } 1010 1011 void printScop(raw_ostream &OS, Scop &S) const override { 1012 if (!Impl) 1013 return; 1014 1015 assert(Impl->getScop() == &S); 1016 Impl->print(OS); 1017 } 1018 1019 void releaseMemory() override { Impl.reset(); } 1020 }; // class ForwardOpTree 1021 1022 char ForwardOpTree::ID; 1023 } // namespace 1024 1025 ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); } 1026 1027 INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree", 1028 "Polly - Forward operand tree", false, false) 1029 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1030 INITIALIZE_PASS_END(ForwardOpTree, "polly-optree", 1031 "Polly - Forward operand tree", false, false) 1032