1 //===- ForwardOpTree.h ------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Move instructions between statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/ForwardOpTree.h"
15 #include "polly/Options.h"
16 #include "polly/ScopBuilder.h"
17 #include "polly/ScopInfo.h"
18 #include "polly/ScopPass.h"
19 #include "polly/Support/GICHelper.h"
20 #include "polly/Support/ISLOStream.h"
21 #include "polly/Support/ISLTools.h"
22 #include "polly/Support/VirtualInstruction.h"
23 #include "polly/ZoneAlgo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "isl/ctx.h"
40 #include "isl/isl-noexceptions.h"
41 #include <cassert>
42 #include <memory>
43 
44 #define DEBUG_TYPE "polly-optree"
45 
46 using namespace llvm;
47 using namespace polly;
48 
49 static cl::opt<bool>
50     AnalyzeKnown("polly-optree-analyze-known",
51                  cl::desc("Analyze array contents for load forwarding"),
52                  cl::cat(PollyCategory), cl::init(true), cl::Hidden);
53 
54 static cl::opt<bool>
55     NormalizePHIs("polly-optree-normalize-phi",
56                   cl::desc("Replace PHIs by their incoming values"),
57                   cl::cat(PollyCategory), cl::init(false), cl::Hidden);
58 
59 static cl::opt<unsigned>
60     MaxOps("polly-optree-max-ops",
61            cl::desc("Maximum number of ISL operations to invest for known "
62                     "analysis; 0=no limit"),
63            cl::init(1000000), cl::cat(PollyCategory), cl::Hidden);
64 
65 STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs");
66 STATISTIC(KnownOutOfQuota,
67           "Analyses aborted because max_operations was reached");
68 
69 STATISTIC(TotalInstructionsCopied, "Number of copied instructions");
70 STATISTIC(TotalKnownLoadsForwarded,
71           "Number of forwarded loads because their value was known");
72 STATISTIC(TotalReloads, "Number of reloaded values");
73 STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses");
74 STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees");
75 STATISTIC(TotalModifiedStmts,
76           "Number of statements with at least one forwarded tree");
77 
78 STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree");
79 
80 STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree");
81 STATISTIC(NumValueWritesInLoops,
82           "Number of scalar value writes nested in affine loops after OpTree");
83 STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree");
84 STATISTIC(NumPHIWritesInLoops,
85           "Number of scalar phi writes nested in affine loops after OpTree");
86 STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree");
87 STATISTIC(NumSingletonWritesInLoops,
88           "Number of singleton writes nested in affine loops after OpTree");
89 
90 namespace {
91 
92 /// The state of whether an operand tree was/can be forwarded.
93 ///
94 /// The items apply to an instructions and its operand tree with the instruction
95 /// as the root element. If the value in question is not an instruction in the
96 /// SCoP, it can be a leaf of an instruction's operand tree.
97 enum ForwardingDecision {
98   /// The root instruction or value cannot be forwarded at all.
99   FD_CannotForward,
100 
101   /// The root instruction or value can be forwarded as a leaf of a larger
102   /// operand tree.
103   /// It does not make sense to move the value itself, it would just replace it
104   /// by a use of itself. For instance, a constant "5" used in a statement can
105   /// be forwarded, but it would just replace it by the same constant "5".
106   /// However, it makes sense to move as an operand of
107   ///
108   ///   %add = add 5, 5
109   ///
110   /// where "5" is moved as part of a larger operand tree. "5" would be placed
111   /// (disregarding for a moment that literal constants don't have a location
112   /// and can be used anywhere) into the same statement as %add would.
113   FD_CanForwardLeaf,
114 
115   /// The root instruction can be forwarded and doing so avoids a scalar
116   /// dependency.
117   ///
118   /// This can be either because the operand tree can be moved to the target
119   /// statement, or a memory access is redirected to read from a different
120   /// location.
121   FD_CanForwardProfitably,
122 
123   /// Used to indicate that a forwarding has be carried out successfully, and
124   /// the forwarded memory access can be deleted.
125   FD_DidForwardTree,
126 
127   /// Used to indicate that a forwarding has be carried out successfully, and
128   /// the forwarded memory access is being reused.
129   FD_DidForwardLeaf,
130 
131   /// A forwarding method cannot be applied to the operand tree.
132   /// The difference to FD_CannotForward is that there might be other methods
133   /// that can handle it.
134   /// The conditions that make an operand tree applicable must be checked even
135   /// with DoIt==true because a method following the one that returned
136   /// FD_NotApplicable might have returned FD_CanForwardTree.
137   FD_NotApplicable
138 };
139 
140 /// Implementation of operand tree forwarding for a specific SCoP.
141 ///
142 /// For a statement that requires a scalar value (through a value read
143 /// MemoryAccess), see if its operand can be moved into the statement. If so,
144 /// the MemoryAccess is removed and the all the operand tree instructions are
145 /// moved into the statement. All original instructions are left in the source
146 /// statements. The simplification pass can clean these up.
147 class ForwardOpTreeImpl : ZoneAlgorithm {
148 private:
149   /// Scope guard to limit the number of isl operations for this pass.
150   IslMaxOperationsGuard &MaxOpGuard;
151 
152   /// How many instructions have been copied to other statements.
153   int NumInstructionsCopied = 0;
154 
155   /// Number of loads forwarded because their value was known.
156   int NumKnownLoadsForwarded = 0;
157 
158   /// Number of values reloaded from known array elements.
159   int NumReloads = 0;
160 
161   /// How many read-only accesses have been copied.
162   int NumReadOnlyCopied = 0;
163 
164   /// How many operand trees have been forwarded.
165   int NumForwardedTrees = 0;
166 
167   /// Number of statements with at least one forwarded operand tree.
168   int NumModifiedStmts = 0;
169 
170   /// Whether we carried out at least one change to the SCoP.
171   bool Modified = false;
172 
173   /// Contains the zones where array elements are known to contain a specific
174   /// value.
175   /// { [Element[] -> Zone[]] -> ValInst[] }
176   /// @see computeKnown()
177   isl::union_map Known;
178 
179   /// Translator for newly introduced ValInsts to already existing ValInsts such
180   /// that new introduced load instructions can reuse the Known analysis of its
181   /// original load. { ValInst[] -> ValInst[] }
182   isl::union_map Translator;
183 
184   /// A cache for getDefToTarget().
185   DenseMap<std::pair<ScopStmt *, ScopStmt *>, isl::map> DefToTargetCache;
186 
187   /// Get list of array elements that do contain the same ValInst[] at Domain[].
188   ///
189   /// @param ValInst { Domain[] -> ValInst[] }
190   ///                The values for which we search for alternative locations,
191   ///                per statement instance.
192   ///
193   /// @return { Domain[] -> Element[] }
194   ///         For each statement instance, the array elements that contain the
195   ///         same ValInst.
196   isl::union_map findSameContentElements(isl::union_map ValInst) {
197     assert(!ValInst.is_single_valued().is_false());
198 
199     // { Domain[] }
200     isl::union_set Domain = ValInst.domain();
201 
202     // { Domain[] -> Scatter[] }
203     isl::union_map Schedule = getScatterFor(Domain);
204 
205     // { Element[] -> [Scatter[] -> ValInst[]] }
206     isl::union_map MustKnownCurried =
207         convertZoneToTimepoints(Known, isl::dim::in, false, true).curry();
208 
209     // { [Domain[] -> ValInst[]] -> Scatter[] }
210     isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule);
211 
212     // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] }
213     isl::union_map SchedValDomVal =
214         DomValSched.range_product(ValInst.range_map()).reverse();
215 
216     // { Element[] -> [Domain[] -> ValInst[]] }
217     isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal);
218 
219     // { Domain[] -> Element[] }
220     isl::union_map MustKnownMap =
221         MustKnownInst.uncurry().domain().unwrap().reverse();
222     simplify(MustKnownMap);
223 
224     return MustKnownMap;
225   }
226 
227   /// Find a single array element for each statement instance, within a single
228   /// array.
229   ///
230   /// @param MustKnown { Domain[] -> Element[] }
231   ///                  Set of candidate array elements.
232   /// @param Domain    { Domain[] }
233   ///                  The statement instance for which we need elements for.
234   ///
235   /// @return { Domain[] -> Element[] }
236   ///         For each statement instance, an array element out of @p MustKnown.
237   ///         All array elements must be in the same array (Polly does not yet
238   ///         support reading from different accesses using the same
239   ///         MemoryAccess). If no mapping for all of @p Domain exists, returns
240   ///         null.
241   isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) {
242     // { Domain[] -> Element[] }
243     isl::map Result;
244 
245     // MemoryAccesses can read only elements from a single array
246     // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }).
247     // Look through all spaces until we find one that contains at least the
248     // wanted statement instance.s
249     MustKnown.foreach_map([&](isl::map Map) -> isl::stat {
250       // Get the array this is accessing.
251       isl::id ArrayId = Map.get_tuple_id(isl::dim::out);
252       ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user());
253 
254       // No support for generation of indirect array accesses.
255       if (SAI->getBasePtrOriginSAI())
256         return isl::stat::ok; // continue
257 
258       // Determine whether this map contains all wanted values.
259       isl::set MapDom = Map.domain();
260       if (!Domain.is_subset(MapDom).is_true())
261         return isl::stat::ok; // continue
262 
263       // There might be multiple array elements that contain the same value, but
264       // choose only one of them. lexmin is used because it returns a one-value
265       // mapping, we do not care about which one.
266       // TODO: Get the simplest access function.
267       Result = Map.lexmin();
268       return isl::stat::error; // break
269     });
270 
271     return Result;
272   }
273 
274 public:
275   ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard)
276       : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {}
277 
278   /// Compute the zones of known array element contents.
279   ///
280   /// @return True if the computed #Known is usable.
281   bool computeKnownValues() {
282     isl::union_map MustKnown, KnownFromLoad, KnownFromInit;
283 
284     // Check that nothing strange occurs.
285     collectCompatibleElts();
286 
287     {
288       IslQuotaScope QuotaScope = MaxOpGuard.enter();
289 
290       computeCommon();
291       if (NormalizePHIs)
292         computeNormalizedPHIs();
293       Known = computeKnown(true, true);
294 
295       // Preexisting ValInsts use the known content analysis of themselves.
296       Translator = makeIdentityMap(Known.range(), false);
297     }
298 
299     if (!Known || !Translator || !NormalizeMap) {
300       assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota);
301       Known = nullptr;
302       Translator = nullptr;
303       NormalizeMap = nullptr;
304       LLVM_DEBUG(dbgs() << "Known analysis exceeded max_operations\n");
305       return false;
306     }
307 
308     KnownAnalyzed++;
309     LLVM_DEBUG(dbgs() << "All known: " << Known << "\n");
310 
311     return true;
312   }
313 
314   void printStatistics(raw_ostream &OS, int Indent = 0) {
315     OS.indent(Indent) << "Statistics {\n";
316     OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied
317                           << '\n';
318     OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded
319                           << '\n';
320     OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n';
321     OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied
322                           << '\n';
323     OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees
324                           << '\n';
325     OS.indent(Indent + 4) << "Statements with forwarded operand trees: "
326                           << NumModifiedStmts << '\n';
327     OS.indent(Indent) << "}\n";
328   }
329 
330   void printStatements(raw_ostream &OS, int Indent = 0) const {
331     OS.indent(Indent) << "After statements {\n";
332     for (auto &Stmt : *S) {
333       OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
334       for (auto *MA : Stmt)
335         MA->print(OS);
336 
337       OS.indent(Indent + 12);
338       Stmt.printInstructions(OS);
339     }
340     OS.indent(Indent) << "}\n";
341   }
342 
343   /// Create a new MemoryAccess of type read and MemoryKind::Array.
344   ///
345   /// @param Stmt           The statement in which the access occurs.
346   /// @param LI             The instruction that does the access.
347   /// @param AccessRelation The array element that each statement instance
348   ///                       accesses.
349   ///
350   /// @param The newly created access.
351   MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI,
352                                     isl::map AccessRelation) {
353     isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out);
354     ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user());
355 
356     // Create a dummy SCEV access, to be replaced anyway.
357     SmallVector<const SCEV *, 4> Sizes;
358     Sizes.reserve(SAI->getNumberOfDimensions());
359     SmallVector<const SCEV *, 4> Subscripts;
360     Subscripts.reserve(SAI->getNumberOfDimensions());
361     for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) {
362       Sizes.push_back(SAI->getDimensionSize(i));
363       Subscripts.push_back(nullptr);
364     }
365 
366     MemoryAccess *Access =
367         new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(),
368                          LI->getType(), true, {}, Sizes, LI, MemoryKind::Array);
369     S->addAccessFunction(Access);
370     Stmt->addAccess(Access, true);
371 
372     Access->setNewAccessRelation(AccessRelation);
373 
374     return Access;
375   }
376 
377   /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
378   /// use in every instance of @p UseStmt.
379   ///
380   /// @param UseStmt Statement a scalar is used in.
381   /// @param DefStmt Statement a scalar is defined in.
382   ///
383   /// @return { DomainUse[] -> DomainDef[] }
384   isl::map computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt) {
385     // { DomainUse[] -> Scatter[] }
386     isl::map UseScatter = getScatterFor(UseStmt);
387 
388     // { Zone[] -> DomainDef[] }
389     isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
390 
391     // { Scatter[] -> DomainDef[] }
392     isl::map ReachDefTimepoints =
393         convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
394 
395     // { DomainUse[] -> DomainDef[] }
396     return UseScatter.apply_range(ReachDefTimepoints);
397   }
398 
399   /// Get a domain translation map from a (scalar) definition to the statement
400   /// where the definition is being moved to.
401   ///
402   /// @p TargetStmt can also be seen an llvm::Use of an llvm::Value in
403   /// @p DefStmt. In addition, we allow transitive uses:
404   ///
405   /// DefStmt -> MiddleStmt -> TargetStmt
406   ///
407   /// where an operand tree of instructions in DefStmt and MiddleStmt are to be
408   /// moved to TargetStmt. To be generally correct, we also need to know all the
409   /// intermediate statements. However, we make use of the fact that we
410   /// currently do not support a move from a loop body across its header such
411   /// that only the first definition and the target statement are relevant.
412   ///
413   /// @param DefStmt    Statement from where a definition might be moved from.
414   /// @param TargetStmt Statement where the definition is potentially being
415   ///                   moved to (should contain a use of that definition).
416   ///
417   /// @return  { DomainDef[] -> DomainTarget[] }
418   isl::map getDefToTarget(ScopStmt *DefStmt, ScopStmt *TargetStmt) {
419     // No translation required if the definition is already at the target.
420     if (TargetStmt == DefStmt)
421       return isl::map::identity(
422           getDomainFor(TargetStmt).get_space().map_from_set());
423 
424     isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];
425     if (!Result) {
426       // { DomainDef[] -> DomainTarget[] }
427       Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
428       simplify(Result);
429     }
430 
431     return Result;
432   }
433 
434   /// Forward a load by reading from an array element that contains the same
435   /// value. Typically the location it was loaded from.
436   ///
437   /// @param TargetStmt  The statement the operand tree will be copied to.
438   /// @param Inst        The (possibly speculatable) instruction to forward.
439   /// @param UseStmt     The statement that uses @p Inst.
440   /// @param UseLoop     The loop @p Inst is used in.
441   /// @param DefStmt     The statement @p Inst is defined in.
442   /// @param DefLoop     The loop which contains @p Inst.
443   /// @param DoIt        If false, only determine whether an operand tree can be
444   ///                    forwarded. If true, carry out the forwarding. Do not
445   ///                    use DoIt==true if an operand tree is not known to be
446   ///                    forwardable.
447   ///
448   /// @return FD_NotApplicable  if @p Inst cannot be forwarded by creating a new
449   ///                           load.
450   ///         FD_CannotForward  if the pointer operand cannot be forwarded.
451   ///         FD_CanForwardProfitably if @p Inst is forwardable.
452   ///         FD_DidForwardTree if @p DoIt was true.
453   ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst,
454                                       ScopStmt *UseStmt, Loop *UseLoop,
455                                       ScopStmt *DefStmt, Loop *DefLoop,
456                                       bool DoIt) {
457     // Cannot do anything without successful known analysis.
458     if (Known.is_null() || Translator.is_null() ||
459         MaxOpGuard.hasQuotaExceeded())
460       return FD_NotApplicable;
461 
462     LoadInst *LI = dyn_cast<LoadInst>(Inst);
463     if (!LI)
464       return FD_NotApplicable;
465 
466     // If the load is already in the statement, no forwarding is necessary.
467     // However, it might happen that the LoadInst is already present in the
468     // statement's instruction list. In that case we do as follows:
469     // - For the evaluation (DoIt==false), we can trivially forward it as it is
470     //   benefit of forwarding an already present instruction.
471     // - For the execution (DoIt==true), prepend the instruction (to make it
472     //   available to all instructions following in the instruction list), but
473     //   do not add another MemoryAccess.
474     MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI);
475     if (Access && !DoIt)
476       return FD_CanForwardProfitably;
477 
478     ForwardingDecision OpDecision = forwardTree(
479         TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, DoIt);
480     switch (OpDecision) {
481     case FD_CannotForward:
482       assert(!DoIt);
483       return OpDecision;
484 
485     case FD_CanForwardLeaf:
486     case FD_CanForwardProfitably:
487       assert(!DoIt);
488       break;
489 
490     case FD_DidForwardLeaf:
491     case FD_DidForwardTree:
492       assert(DoIt);
493       break;
494 
495     default:
496       llvm_unreachable("Shouldn't return this");
497     }
498 
499     IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);
500 
501     // { DomainDef[] -> ValInst[] }
502     isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop);
503     assert(!isNormalized(ExpectedVal).is_false() &&
504            "LoadInsts are always normalized");
505 
506     // { DomainUse[] -> DomainTarget[] }
507     isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);
508 
509     // { DomainTarget[] -> ValInst[] }
510     isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
511     isl::union_map TranslatedExpectedVal =
512         isl::union_map(TargetExpectedVal).apply_range(Translator);
513 
514     // { DomainTarget[] -> Element[] }
515     isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);
516 
517     isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
518     if (!SameVal)
519       return FD_NotApplicable;
520 
521     if (DoIt)
522       TargetStmt->prependInstruction(LI);
523 
524     if (!DoIt)
525       return FD_CanForwardProfitably;
526 
527     if (Access) {
528       LLVM_DEBUG(
529           dbgs() << "    forwarded known load with preexisting MemoryAccess"
530                  << Access << "\n");
531     } else {
532       Access = makeReadArrayAccess(TargetStmt, LI, SameVal);
533       LLVM_DEBUG(dbgs() << "    forwarded known load with new MemoryAccess"
534                         << Access << "\n");
535 
536       // { ValInst[] }
537       isl::space ValInstSpace = ExpectedVal.get_space().range();
538 
539       // After adding a new load to the SCoP, also update the Known content
540       // about it. The new load will have a known ValInst of
541       // { [DomainTarget[] -> Value[]] }
542       // but which -- because it is a copy of it -- has same value as the
543       // { [DomainDef[] -> Value[]] }
544       // that it replicates. Instead of  cloning the known content of
545       // [DomainDef[] -> Value[]]
546       // for DomainTarget[], we add a 'translator' that maps
547       // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]]
548       // before comparing to the known content.
549       // TODO: 'Translator' could also be used to map PHINodes to their incoming
550       // ValInsts.
551       if (ValInstSpace.is_wrapping()) {
552         // { DefDomain[] -> Value[] }
553         isl::map ValInsts = ExpectedVal.range().unwrap();
554 
555         // { DefDomain[] }
556         isl::set DefDomain = ValInsts.domain();
557 
558         // { Value[] }
559         isl::space ValSpace = ValInstSpace.unwrap().range();
560 
561         // { Value[] -> Value[] }
562         isl::map ValToVal =
563             isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace));
564 
565         // { DomainDef[] -> DomainTarget[] }
566         isl::map DefToTarget = getDefToTarget(DefStmt, TargetStmt);
567 
568         // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] }
569         isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal);
570 
571         Translator = Translator.add_map(LocalTranslator);
572         LLVM_DEBUG(dbgs() << "      local translator is " << LocalTranslator
573                           << "\n");
574       }
575     }
576     LLVM_DEBUG(dbgs() << "      expected values where " << TargetExpectedVal
577                       << "\n");
578     LLVM_DEBUG(dbgs() << "      candidate elements where " << Candidates
579                       << "\n");
580     assert(Access);
581 
582     NumKnownLoadsForwarded++;
583     TotalKnownLoadsForwarded++;
584     return FD_DidForwardTree;
585   }
586 
587   /// Forward a scalar by redirecting the access to an array element that stores
588   /// the same value.
589   ///
590   /// @param TargetStmt  The statement the operand tree will be copied to.
591   /// @param Inst        The scalar to forward.
592   /// @param UseStmt     The statement that uses @p Inst.
593   /// @param UseLoop     The loop @p Inst is used in.
594   /// @param DefStmt     The statement @p Inst is defined in.
595   /// @param DefLoop     The loop which contains @p Inst.
596   /// @param DoIt        If false, only determine whether an operand tree can be
597   ///                    forwarded. If true, carry out the forwarding. Do not
598   ///                    use DoIt==true if an operand tree is not known to be
599   ///                    forwardable.
600   ///
601   /// @return FD_NotApplicable        if @p Inst cannot be reloaded.
602   ///         FD_CanForwardLeaf       if @p Inst can be reloaded.
603   ///         FD_CanForwardProfitably if @p Inst has been reloaded.
604   ///         FD_DidForwardLeaf       if @p DoIt was true.
605   ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst,
606                                         ScopStmt *UseStmt, Loop *UseLoop,
607                                         ScopStmt *DefStmt, Loop *DefLoop,
608                                         bool DoIt) {
609     // Cannot do anything without successful known analysis.
610     if (Known.is_null() || Translator.is_null() ||
611         MaxOpGuard.hasQuotaExceeded())
612       return FD_NotApplicable;
613 
614     MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst);
615     if (Access && Access->isLatestArrayKind()) {
616       if (DoIt)
617         return FD_DidForwardLeaf;
618       return FD_CanForwardLeaf;
619     }
620 
621     // Don't spend too much time analyzing whether it can be reloaded. When
622     // carrying-out the forwarding, we cannot bail-out in the middle of the
623     // transformation. It also shouldn't take as long because some results are
624     // cached.
625     IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);
626 
627     // { DomainDef[] -> ValInst[] }
628     isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop);
629 
630     // { DomainUse[] -> DomainTarget[] }
631     isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);
632 
633     // { DomainTarget[] -> ValInst[] }
634     isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
635     isl::union_map TranslatedExpectedVal =
636         TargetExpectedVal.apply_range(Translator);
637 
638     // { DomainTarget[] -> Element[] }
639     isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);
640 
641     isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
642     if (!SameVal)
643       return FD_NotApplicable;
644 
645     if (!DoIt)
646       return FD_CanForwardProfitably;
647 
648     if (!Access)
649       Access = TargetStmt->ensureValueRead(Inst);
650 
651     simplify(SameVal);
652     Access->setNewAccessRelation(SameVal);
653 
654     TotalReloads++;
655     NumReloads++;
656     return FD_DidForwardLeaf;
657   }
658 
659   /// Forwards a speculatively executable instruction.
660   ///
661   /// @param TargetStmt  The statement the operand tree will be copied to.
662   /// @param UseInst     The (possibly speculatable) instruction to forward.
663   /// @param DefStmt     The statement @p UseInst is defined in.
664   /// @param DefLoop     The loop which contains @p UseInst.
665   /// @param DoIt        If false, only determine whether an operand tree can be
666   ///                    forwarded. If true, carry out the forwarding. Do not
667   ///                    use DoIt==true if an operand tree is not known to be
668   ///                    forwardable.
669   ///
670   /// @return FD_NotApplicable  if @p UseInst is not speculatable.
671   ///         FD_CannotForward  if one of @p UseInst's operands is not
672   ///                           forwardable.
673   ///         FD_CanForwardTree if @p UseInst is forwardable.
674   ///         FD_DidForward     if @p DoIt was true.
675   ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt,
676                                          Instruction *UseInst,
677                                          ScopStmt *DefStmt, Loop *DefLoop,
678                                          bool DoIt) {
679     // PHIs, unless synthesizable, are not yet supported.
680     if (isa<PHINode>(UseInst))
681       return FD_NotApplicable;
682 
683     // Compatible instructions must satisfy the following conditions:
684     // 1. Idempotent (instruction will be copied, not moved; although its
685     //    original instance might be removed by simplification)
686     // 2. Not access memory (There might be memory writes between)
687     // 3. Not cause undefined behaviour (we might copy to a location when the
688     //    original instruction was no executed; this is currently not possible
689     //    because we do not forward PHINodes)
690     // 4. Not leak memory if executed multiple times (i.e. malloc)
691     //
692     // Instruction::mayHaveSideEffects is not sufficient because it considers
693     // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is
694     // not sufficient because it allows memory accesses.
695     if (mayBeMemoryDependent(*UseInst))
696       return FD_NotApplicable;
697 
698     if (DoIt) {
699       // To ensure the right order, prepend this instruction before its
700       // operands. This ensures that its operands are inserted before the
701       // instruction using them.
702       // TODO: The operand tree is not really a tree, but a DAG. We should be
703       // able to handle DAGs without duplication.
704       TargetStmt->prependInstruction(UseInst);
705       NumInstructionsCopied++;
706       TotalInstructionsCopied++;
707     }
708 
709     for (Value *OpVal : UseInst->operand_values()) {
710       ForwardingDecision OpDecision =
711           forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DoIt);
712       switch (OpDecision) {
713       case FD_CannotForward:
714         assert(!DoIt);
715         return FD_CannotForward;
716 
717       case FD_CanForwardLeaf:
718       case FD_CanForwardProfitably:
719         assert(!DoIt);
720         break;
721 
722       case FD_DidForwardLeaf:
723       case FD_DidForwardTree:
724         assert(DoIt);
725         break;
726 
727       case FD_NotApplicable:
728         llvm_unreachable("forwardTree should never return FD_NotApplicable");
729       }
730     }
731 
732     if (DoIt)
733       return FD_DidForwardTree;
734     return FD_CanForwardProfitably;
735   }
736 
737   /// Determines whether an operand tree can be forwarded or carries out a
738   /// forwarding, depending on the @p DoIt flag.
739   ///
740   /// @param TargetStmt  The statement the operand tree will be copied to.
741   /// @param UseVal      The value (usually an instruction) which is root of an
742   ///                    operand tree.
743   /// @param UseStmt     The statement that uses @p UseVal.
744   /// @param UseLoop     The loop @p UseVal is used in.
745   /// @param DoIt        If false, only determine whether an operand tree can be
746   ///                    forwarded. If true, carry out the forwarding. Do not
747   ///                    use DoIt==true if an operand tree is not known to be
748   ///                    forwardable.
749   ///
750   /// @return If DoIt==false, return whether the operand tree can be forwarded.
751   ///         If DoIt==true, return FD_DidForward.
752   ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal,
753                                  ScopStmt *UseStmt, Loop *UseLoop, bool DoIt) {
754     ScopStmt *DefStmt = nullptr;
755     Loop *DefLoop = nullptr;
756 
757     // { DefDomain[] -> TargetDomain[] }
758     isl::map DefToTarget;
759 
760     VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true);
761     switch (VUse.getKind()) {
762     case VirtualUse::Constant:
763     case VirtualUse::Block:
764     case VirtualUse::Hoisted:
765       // These can be used anywhere without special considerations.
766       if (DoIt)
767         return FD_DidForwardTree;
768       return FD_CanForwardLeaf;
769 
770     case VirtualUse::Synthesizable: {
771       // ScopExpander will take care for of generating the code at the new
772       // location.
773       if (DoIt)
774         return FD_DidForwardTree;
775 
776       // Check if the value is synthesizable at the new location as well. This
777       // might be possible when leaving a loop for which ScalarEvolution is
778       // unable to derive the exit value for.
779       // TODO: If there is a LCSSA PHI at the loop exit, use that one.
780       // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we
781       // do not forward past its loop header. This would require us to use a
782       // previous loop induction variable instead the current one. We currently
783       // do not allow forwarding PHI nodes, thus this should never occur (the
784       // only exception where no phi is necessary being an unreachable loop
785       // without edge from the outside).
786       VirtualUse TargetUse = VirtualUse::create(
787           S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true);
788       if (TargetUse.getKind() == VirtualUse::Synthesizable)
789         return FD_CanForwardLeaf;
790 
791       LLVM_DEBUG(
792           dbgs() << "    Synthesizable would not be synthesizable anymore: "
793                  << *UseVal << "\n");
794       return FD_CannotForward;
795     }
796 
797     case VirtualUse::ReadOnly:
798       // Note that we cannot return FD_CanForwardTree here. With a operand tree
799       // depth of 0, UseVal is the use in TargetStmt that we try to replace.
800       // With -polly-analyze-read-only-scalars=true we would ensure the
801       // existence of a MemoryAccess (which already exists for a leaf) and be
802       // removed again by tryForwardTree because it's goal is to remove this
803       // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission
804       // to do so.
805       if (!DoIt)
806         return FD_CanForwardLeaf;
807 
808       // If we model read-only scalars, we need to create a MemoryAccess for it.
809       if (ModelReadOnlyScalars)
810         TargetStmt->ensureValueRead(UseVal);
811 
812       NumReadOnlyCopied++;
813       TotalReadOnlyCopied++;
814       return FD_DidForwardLeaf;
815 
816     case VirtualUse::Intra:
817       // Knowing that UseStmt and DefStmt are the same statement instance, just
818       // reuse the information about UseStmt for DefStmt
819       DefStmt = UseStmt;
820 
821       LLVM_FALLTHROUGH;
822     case VirtualUse::Inter:
823       Instruction *Inst = cast<Instruction>(UseVal);
824 
825       if (!DefStmt) {
826         DefStmt = S->getStmtFor(Inst);
827         if (!DefStmt)
828           return FD_CannotForward;
829       }
830 
831       DefLoop = LI->getLoopFor(Inst->getParent());
832 
833       ForwardingDecision SpeculativeResult =
834           forwardSpeculatable(TargetStmt, Inst, DefStmt, DefLoop, DoIt);
835       if (SpeculativeResult != FD_NotApplicable)
836         return SpeculativeResult;
837 
838       ForwardingDecision KnownResult = forwardKnownLoad(
839           TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
840       if (KnownResult != FD_NotApplicable)
841         return KnownResult;
842 
843       ForwardingDecision ReloadResult = reloadKnownContent(
844           TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
845       if (ReloadResult != FD_NotApplicable)
846         return ReloadResult;
847 
848       // When no method is found to forward the operand tree, we effectively
849       // cannot handle it.
850       LLVM_DEBUG(dbgs() << "    Cannot forward instruction: " << *Inst << "\n");
851       return FD_CannotForward;
852     }
853 
854     llvm_unreachable("Case unhandled");
855   }
856 
857   /// Try to forward an operand tree rooted in @p RA.
858   bool tryForwardTree(MemoryAccess *RA) {
859     assert(RA->isLatestScalarKind());
860     LLVM_DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n");
861 
862     ScopStmt *Stmt = RA->getStatement();
863     Loop *InLoop = Stmt->getSurroundingLoop();
864 
865     isl::map TargetToUse;
866     if (!Known.is_null()) {
867       isl::space DomSpace = Stmt->getDomainSpace();
868       TargetToUse =
869           isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace));
870     }
871 
872     ForwardingDecision Assessment =
873         forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, false);
874     assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf);
875     if (Assessment != FD_CanForwardProfitably)
876       return false;
877 
878     ForwardingDecision Execution =
879         forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, true);
880     assert(((Execution == FD_DidForwardTree) ||
881             (Execution == FD_DidForwardLeaf)) &&
882            "A previous positive assessment must also be executable");
883 
884     if (Execution == FD_DidForwardTree)
885       Stmt->removeSingleMemoryAccess(RA);
886     return true;
887   }
888 
889   /// Return which SCoP this instance is processing.
890   Scop *getScop() const { return S; }
891 
892   /// Run the algorithm: Use value read accesses as operand tree roots and try
893   /// to forward them into the statement.
894   bool forwardOperandTrees() {
895     for (ScopStmt &Stmt : *S) {
896       bool StmtModified = false;
897 
898       // Because we are modifying the MemoryAccess list, collect them first to
899       // avoid iterator invalidation.
900       SmallVector<MemoryAccess *, 16> Accs;
901       for (MemoryAccess *RA : Stmt) {
902         if (!RA->isRead())
903           continue;
904         if (!RA->isLatestScalarKind())
905           continue;
906 
907         Accs.push_back(RA);
908       }
909 
910       for (MemoryAccess *RA : Accs) {
911         if (tryForwardTree(RA)) {
912           Modified = true;
913           StmtModified = true;
914           NumForwardedTrees++;
915           TotalForwardedTrees++;
916         }
917       }
918 
919       if (StmtModified) {
920         NumModifiedStmts++;
921         TotalModifiedStmts++;
922       }
923     }
924 
925     if (Modified)
926       ScopsModified++;
927     return Modified;
928   }
929 
930   /// Print the pass result, performed transformations and the SCoP after the
931   /// transformation.
932   void print(raw_ostream &OS, int Indent = 0) {
933     printStatistics(OS, Indent);
934 
935     if (!Modified) {
936       // This line can easily be checked in regression tests.
937       OS << "ForwardOpTree executed, but did not modify anything\n";
938       return;
939     }
940 
941     printStatements(OS, Indent);
942   }
943 };
944 
945 /// Pass that redirects scalar reads to array elements that are known to contain
946 /// the same value.
947 ///
948 /// This reduces the number of scalar accesses and therefore potentially
949 /// increases the freedom of the scheduler. In the ideal case, all reads of a
950 /// scalar definition are redirected (We currently do not care about removing
951 /// the write in this case).  This is also useful for the main DeLICM pass as
952 /// there are less scalars to be mapped.
953 class ForwardOpTree : public ScopPass {
954 private:
955   /// The pass implementation, also holding per-scop data.
956   std::unique_ptr<ForwardOpTreeImpl> Impl;
957 
958 public:
959   static char ID;
960 
961   explicit ForwardOpTree() : ScopPass(ID) {}
962   ForwardOpTree(const ForwardOpTree &) = delete;
963   ForwardOpTree &operator=(const ForwardOpTree &) = delete;
964 
965   void getAnalysisUsage(AnalysisUsage &AU) const override {
966     AU.addRequiredTransitive<ScopInfoRegionPass>();
967     AU.addRequired<LoopInfoWrapperPass>();
968     AU.setPreservesAll();
969   }
970 
971   bool runOnScop(Scop &S) override {
972     // Free resources for previous SCoP's computation, if not yet done.
973     releaseMemory();
974 
975     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
976 
977     {
978       IslMaxOperationsGuard MaxOpGuard(S.getIslCtx().get(), MaxOps, false);
979       Impl = llvm::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard);
980 
981       if (AnalyzeKnown) {
982         LLVM_DEBUG(dbgs() << "Prepare forwarders...\n");
983         Impl->computeKnownValues();
984       }
985 
986       LLVM_DEBUG(dbgs() << "Forwarding operand trees...\n");
987       Impl->forwardOperandTrees();
988 
989       if (MaxOpGuard.hasQuotaExceeded()) {
990         LLVM_DEBUG(dbgs() << "Not all operations completed because of "
991                              "max_operations exceeded\n");
992         KnownOutOfQuota++;
993       }
994     }
995 
996     LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
997     LLVM_DEBUG(dbgs() << S);
998 
999     // Update statistics
1000     auto ScopStats = S.getStatistics();
1001     NumValueWrites += ScopStats.NumValueWrites;
1002     NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
1003     NumPHIWrites += ScopStats.NumPHIWrites;
1004     NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
1005     NumSingletonWrites += ScopStats.NumSingletonWrites;
1006     NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
1007 
1008     return false;
1009   }
1010 
1011   void printScop(raw_ostream &OS, Scop &S) const override {
1012     if (!Impl)
1013       return;
1014 
1015     assert(Impl->getScop() == &S);
1016     Impl->print(OS);
1017   }
1018 
1019   void releaseMemory() override { Impl.reset(); }
1020 }; // class ForwardOpTree
1021 
1022 char ForwardOpTree::ID;
1023 } // namespace
1024 
1025 ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); }
1026 
1027 INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree",
1028                       "Polly - Forward operand tree", false, false)
1029 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1030 INITIALIZE_PASS_END(ForwardOpTree, "polly-optree",
1031                     "Polly - Forward operand tree", false, false)
1032