1 //===- ForwardOpTree.h ------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Move instructions between statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/ForwardOpTree.h" 15 #include "polly/Options.h" 16 #include "polly/ScopBuilder.h" 17 #include "polly/ScopInfo.h" 18 #include "polly/ScopPass.h" 19 #include "polly/Support/GICHelper.h" 20 #include "polly/Support/ISLOStream.h" 21 #include "polly/Support/ISLTools.h" 22 #include "polly/Support/VirtualInstruction.h" 23 #include "polly/ZoneAlgo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "isl/ctx.h" 40 #include "isl/isl-noexceptions.h" 41 #include <cassert> 42 #include <memory> 43 44 #define DEBUG_TYPE "polly-optree" 45 46 using namespace llvm; 47 using namespace polly; 48 49 static cl::opt<bool> 50 AnalyzeKnown("polly-optree-analyze-known", 51 cl::desc("Analyze array contents for load forwarding"), 52 cl::cat(PollyCategory), cl::init(true), cl::Hidden); 53 54 static cl::opt<unsigned long> 55 MaxOps("polly-optree-max-ops", 56 cl::desc("Maximum number of ISL operations to invest for known " 57 "analysis; 0=no limit"), 58 cl::init(1000000), cl::cat(PollyCategory), cl::Hidden); 59 60 STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs"); 61 STATISTIC(KnownOutOfQuota, 62 "Analyses aborted because max_operations was reached"); 63 64 STATISTIC(TotalInstructionsCopied, "Number of copied instructions"); 65 STATISTIC(TotalKnownLoadsForwarded, 66 "Number of forwarded loads because their value was known"); 67 STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses"); 68 STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees"); 69 STATISTIC(TotalModifiedStmts, 70 "Number of statements with at least one forwarded tree"); 71 72 STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree"); 73 74 STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree"); 75 STATISTIC(NumValueWritesInLoops, 76 "Number of scalar value writes nested in affine loops after OpTree"); 77 STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree"); 78 STATISTIC(NumPHIWritesInLoops, 79 "Number of scalar phi writes nested in affine loops after OpTree"); 80 STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree"); 81 STATISTIC(NumSingletonWritesInLoops, 82 "Number of singleton writes nested in affine loops after OpTree"); 83 84 namespace { 85 86 /// The state of whether an operand tree was/can be forwarded. 87 /// 88 /// The items apply to an instructions and its operand tree with the instruction 89 /// as the root element. If the value in question is not an instruction in the 90 /// SCoP, it can be a leaf of an instruction's operand tree. 91 enum ForwardingDecision { 92 /// The root instruction or value cannot be forwarded at all. 93 FD_CannotForward, 94 95 /// The root instruction or value can be forwarded as a leaf of a larger 96 /// operand tree. 97 /// It does not make sense to move the value itself, it would just replace it 98 /// by a use of itself. For instance, a constant "5" used in a statement can 99 /// be forwarded, but it would just replace it by the same constant "5". 100 /// However, it makes sense to move as an operand of 101 /// 102 /// %add = add 5, 5 103 /// 104 /// where "5" is moved as part of a larger operand tree. "5" would be placed 105 /// (disregarding for a moment that literal constants don't have a location 106 /// and can be used anywhere) into the same statement as %add would. 107 FD_CanForwardLeaf, 108 109 /// The root instruction can be forwarded in a non-trivial way. This requires 110 /// the operand tree root to be an instruction in some statement. 111 FD_CanForwardTree, 112 113 /// Used to indicate that a forwarding has be carried out successfully. 114 FD_DidForward, 115 116 /// A forwarding method cannot be applied to the operand tree. 117 /// The difference to FD_CannotForward is that there might be other methods 118 /// that can handle it. 119 /// The conditions that make an operand tree applicable must be checked even 120 /// with DoIt==true because a method following the one that returned 121 /// FD_NotApplicable might have returned FD_CanForwardTree. 122 FD_NotApplicable 123 }; 124 125 /// Implementation of operand tree forwarding for a specific SCoP. 126 /// 127 /// For a statement that requires a scalar value (through a value read 128 /// MemoryAccess), see if its operand can be moved into the statement. If so, 129 /// the MemoryAccess is removed and the all the operand tree instructions are 130 /// moved into the statement. All original instructions are left in the source 131 /// statements. The simplification pass can clean these up. 132 class ForwardOpTreeImpl : ZoneAlgorithm { 133 private: 134 /// How many instructions have been copied to other statements. 135 int NumInstructionsCopied = 0; 136 137 /// Number of loads forwarded because their value was known. 138 int NumKnownLoadsForwarded = 0; 139 140 /// How many read-only accesses have been copied. 141 int NumReadOnlyCopied = 0; 142 143 /// How many operand trees have been forwarded. 144 int NumForwardedTrees = 0; 145 146 /// Number of statements with at least one forwarded operand tree. 147 int NumModifiedStmts = 0; 148 149 /// Whether we carried out at least one change to the SCoP. 150 bool Modified = false; 151 152 /// Contains the zones where array elements are known to contain a specific 153 /// value. 154 /// { [Element[] -> Zone[]] -> ValInst[] } 155 /// @see computeKnown() 156 isl::union_map Known; 157 158 /// Translator for newly introduced ValInsts to already existing ValInsts such 159 /// that new introduced load instructions can reuse the Known analysis of its 160 /// original load. { ValInst[] -> ValInst[] } 161 isl::union_map Translator; 162 163 /// Get list of array elements that do contain the same ValInst[] at Domain[]. 164 /// 165 /// @param ValInst { Domain[] -> ValInst[] } 166 /// The values for which we search for alternative locations, 167 /// per statement instance. 168 /// 169 /// @return { Domain[] -> Element[] } 170 /// For each statement instance, the array elements that contain the 171 /// same ValInst. 172 isl::union_map findSameContentElements(isl::union_map ValInst) { 173 assert(ValInst.is_single_valued().is_true()); 174 175 // { Domain[] } 176 isl::union_set Domain = ValInst.domain(); 177 178 // { Domain[] -> Scatter[] } 179 isl::union_map Schedule = getScatterFor(Domain); 180 181 // { Element[] -> [Scatter[] -> ValInst[]] } 182 isl::union_map MustKnownCurried = 183 convertZoneToTimepoints(Known, isl::dim::in, false, true).curry(); 184 185 // { [Domain[] -> ValInst[]] -> Scatter[] } 186 isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule); 187 188 // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] } 189 isl::union_map SchedValDomVal = 190 DomValSched.range_product(ValInst.range_map()).reverse(); 191 192 // { Element[] -> [Domain[] -> ValInst[]] } 193 isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal); 194 195 // { Domain[] -> Element[] } 196 isl::union_map MustKnownMap = 197 MustKnownInst.uncurry().domain().unwrap().reverse(); 198 simplify(MustKnownMap); 199 200 return MustKnownMap; 201 } 202 203 /// Find a single array element for each statement instance, within a single 204 /// array. 205 /// 206 /// @param MustKnown { Domain[] -> Element[] } 207 /// Set of candidate array elements. 208 /// @param Domain { Domain[] } 209 /// The statement instance for which we need elements for. 210 /// 211 /// @return { Domain[] -> Element[] } 212 /// For each statement instance, an array element out of @p MustKnown. 213 /// All array elements must be in the same array (Polly does not yet 214 /// support reading from different accesses using the same 215 /// MemoryAccess). If no mapping for all of @p Domain exists, returns 216 /// null. 217 isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) { 218 // { Domain[] -> Element[] } 219 isl::map Result; 220 221 // MemoryAccesses can read only elements from a single array 222 // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }). 223 // Look through all spaces until we find one that contains at least the 224 // wanted statement instance.s 225 MustKnown.foreach_map([&](isl::map Map) -> isl::stat { 226 // Get the array this is accessing. 227 isl::id ArrayId = Map.get_tuple_id(isl::dim::out); 228 ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user()); 229 230 // No support for generation of indirect array accesses. 231 if (SAI->getBasePtrOriginSAI()) 232 return isl::stat::ok; // continue 233 234 // Determine whether this map contains all wanted values. 235 isl::set MapDom = Map.domain(); 236 if (!Domain.is_subset(MapDom).is_true()) 237 return isl::stat::ok; // continue 238 239 // There might be multiple array elements that contain the same value, but 240 // choose only one of them. lexmin is used because it returns a one-value 241 // mapping, we do not care about which one. 242 // TODO: Get the simplest access function. 243 Result = Map.lexmin(); 244 return isl::stat::error; // break 245 }); 246 247 return Result; 248 } 249 250 public: 251 ForwardOpTreeImpl(Scop *S, LoopInfo *LI) 252 : ZoneAlgorithm("polly-optree", S, LI) {} 253 254 /// Compute the zones of known array element contents. 255 /// 256 /// @return True if the computed #Known is usable. 257 bool computeKnownValues() { 258 isl::union_map MustKnown, KnownFromLoad, KnownFromInit; 259 260 // Check that nothing strange occurs. 261 collectCompatibleElts(); 262 263 isl_ctx_reset_error(IslCtx.get()); 264 { 265 IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), MaxOps); 266 267 computeCommon(); 268 Known = computeKnown(true, true); 269 simplify(Known); 270 271 // Preexisting ValInsts use the known content analysis of themselves. 272 Translator = makeIdentityMap(Known.range(), false); 273 } 274 275 if (!Known || !Translator) { 276 assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota); 277 KnownOutOfQuota++; 278 Known = nullptr; 279 Translator = nullptr; 280 DEBUG(dbgs() << "Known analysis exceeded max_operations\n"); 281 return false; 282 } 283 284 KnownAnalyzed++; 285 DEBUG(dbgs() << "All known: " << Known << "\n"); 286 287 return true; 288 } 289 290 void printStatistics(raw_ostream &OS, int Indent = 0) { 291 OS.indent(Indent) << "Statistics {\n"; 292 OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied 293 << '\n'; 294 OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded 295 << '\n'; 296 OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied 297 << '\n'; 298 OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees 299 << '\n'; 300 OS.indent(Indent + 4) << "Statements with forwarded operand trees: " 301 << NumModifiedStmts << '\n'; 302 OS.indent(Indent) << "}\n"; 303 } 304 305 void printStatements(raw_ostream &OS, int Indent = 0) const { 306 OS.indent(Indent) << "After statements {\n"; 307 for (auto &Stmt : *S) { 308 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; 309 for (auto *MA : Stmt) 310 MA->print(OS); 311 312 OS.indent(Indent + 12); 313 Stmt.printInstructions(OS); 314 } 315 OS.indent(Indent) << "}\n"; 316 } 317 318 /// Create a new MemoryAccess of type read and MemoryKind::Array. 319 /// 320 /// @param Stmt The statement in which the access occurs. 321 /// @param LI The instruction that does the access. 322 /// @param AccessRelation The array element that each statement instance 323 /// accesses. 324 /// 325 /// @param The newly created access. 326 MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI, 327 isl::map AccessRelation) { 328 isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out); 329 ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user()); 330 331 // Create a dummy SCEV access, to be replaced anyway. 332 SmallVector<const SCEV *, 4> Sizes; 333 Sizes.reserve(SAI->getNumberOfDimensions()); 334 SmallVector<const SCEV *, 4> Subscripts; 335 Subscripts.reserve(SAI->getNumberOfDimensions()); 336 for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) { 337 Sizes.push_back(SAI->getDimensionSize(i)); 338 Subscripts.push_back(nullptr); 339 } 340 341 MemoryAccess *Access = 342 new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(), 343 LI->getType(), true, {}, Sizes, LI, MemoryKind::Array); 344 S->addAccessFunction(Access); 345 Stmt->addAccess(Access, true); 346 347 Access->setNewAccessRelation(AccessRelation); 348 349 return Access; 350 } 351 352 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a 353 /// use in every instance of @p UseStmt. 354 /// 355 /// @param UseStmt Statement a scalar is used in. 356 /// @param DefStmt Statement a scalar is defined in. 357 /// 358 /// @return { DomainUse[] -> DomainDef[] } 359 isl::map computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt) { 360 // { DomainUse[] -> Scatter[] } 361 isl::map UseScatter = getScatterFor(UseStmt); 362 363 // { Zone[] -> DomainDef[] } 364 isl::map ReachDefZone = getScalarReachingDefinition(DefStmt); 365 366 // { Scatter[] -> DomainDef[] } 367 isl::map ReachDefTimepoints = 368 convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true); 369 370 // { DomainUse[] -> DomainDef[] } 371 return UseScatter.apply_range(ReachDefTimepoints); 372 } 373 374 /// Forward a load by reading from an array element that contains the same 375 /// value. Typically the location it was loaded from. 376 /// 377 /// @param TargetStmt The statement the operand tree will be copied to. 378 /// @param Inst The (possibly speculatable) instruction to forward. 379 /// @param UseStmt The statement that uses @p Inst. 380 /// @param UseLoop The loop @p Inst is used in. 381 /// @param UseToTarget { DomainUse[] -> DomainTarget[] } 382 /// A mapping from the statement instance @p Inst is used 383 /// to the statement instance it is forwarded to. 384 /// @param DefStmt The statement @p Inst is defined in. 385 /// @param DefLoop The loop which contains @p Inst. 386 /// @param DefToTarget { DomainDef[] -> DomainTarget[] } 387 /// A mapping from the statement instance @p Inst is 388 /// defined to the statement instance it is forwarded to. 389 /// @param DoIt If false, only determine whether an operand tree can be 390 /// forwarded. If true, carry out the forwarding. Do not 391 /// use DoIt==true if an operand tree is not known to be 392 /// forwardable. 393 /// 394 /// @return FD_NotApplicable if @p Inst is not a LoadInst. 395 /// FD_CannotForward if no array element to load from was found. 396 /// FD_CanForwardLeaf if the load is already in the target statement 397 /// instance. 398 /// FD_CanForwardTree if @p Inst is forwardable. 399 /// FD_DidForward if @p DoIt was true. 400 ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst, 401 ScopStmt *UseStmt, Loop *UseLoop, 402 isl::map UseToTarget, ScopStmt *DefStmt, 403 Loop *DefLoop, isl::map DefToTarget, 404 bool DoIt) { 405 // Cannot do anything without successful known analysis. 406 if (Known.is_null()) 407 return FD_NotApplicable; 408 409 LoadInst *LI = dyn_cast<LoadInst>(Inst); 410 if (!LI) 411 return FD_NotApplicable; 412 413 // If the load is already in the statement, no forwarding is necessary. 414 // However, it might happen that the LoadInst is already present in the 415 // statement's instruction list. In that case we do as follows: 416 // - For the evaluation (DoIt==false), we can trivially forward it as it is 417 // benefit of forwarding an already present instruction. 418 // - For the execution (DoIt==true), prepend the instruction (to make it 419 // available to all instructions following in the instruction list), but 420 // do not add another MemoryAccess. 421 MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI); 422 if (Access && !DoIt) 423 return FD_CanForwardTree; 424 425 if (DoIt) 426 TargetStmt->prependInstruction(LI); 427 428 ForwardingDecision OpDecision = 429 forwardTree(TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, 430 DefToTarget, DoIt); 431 switch (OpDecision) { 432 case FD_CannotForward: 433 assert(!DoIt); 434 return OpDecision; 435 436 case FD_CanForwardLeaf: 437 case FD_CanForwardTree: 438 assert(!DoIt); 439 break; 440 441 case FD_DidForward: 442 assert(DoIt); 443 break; 444 445 default: 446 llvm_unreachable("Shouldn't return this"); 447 } 448 449 // { DomainDef[] -> ValInst[] } 450 isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop); 451 452 // { DomainTarget[] -> ValInst[] } 453 isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget); 454 isl::union_map TranslatedExpectedVal = 455 isl::union_map(TargetExpectedVal).apply_range(Translator); 456 457 // { DomainTarget[] -> Element[] } 458 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal); 459 460 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt)); 461 if (!SameVal) 462 return FD_CannotForward; 463 464 if (!DoIt) 465 return FD_CanForwardTree; 466 467 if (Access) { 468 DEBUG(dbgs() << " forwarded known load with preexisting MemoryAccess" 469 << Access << "\n"); 470 } else { 471 Access = makeReadArrayAccess(TargetStmt, LI, SameVal); 472 DEBUG(dbgs() << " forwarded known load with new MemoryAccess" << Access 473 << "\n"); 474 475 // { ValInst[] } 476 isl::space ValInstSpace = ExpectedVal.get_space().range(); 477 478 // After adding a new load to the SCoP, also update the Known content 479 // about it. The new load will have a known ValInst of 480 // { [DomainTarget[] -> Value[]] } 481 // but which -- because it is a copy of it -- has same value as the 482 // { [DomainDef[] -> Value[]] } 483 // that it replicates. Instead of cloning the known content of 484 // [DomainDef[] -> Value[]] 485 // for DomainTarget[], we add a 'translator' that maps 486 // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]] 487 // before comparing to the known content. 488 // TODO: 'Translator' could also be used to map PHINodes to their incoming 489 // ValInsts. 490 if (ValInstSpace.is_wrapping()) { 491 // { DefDomain[] -> Value[] } 492 isl::map ValInsts = ExpectedVal.range().unwrap(); 493 494 // { DefDomain[] } 495 isl::set DefDomain = ValInsts.domain(); 496 497 // { Value[] } 498 isl::space ValSpace = ValInstSpace.unwrap().range(); 499 500 // { Value[] -> Value[] } 501 isl::map ValToVal = 502 isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace)); 503 504 // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] } 505 isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal); 506 507 Translator = Translator.add_map(LocalTranslator); 508 DEBUG(dbgs() << " local translator is " << LocalTranslator 509 << "\n"); 510 } 511 } 512 DEBUG(dbgs() << " expected values where " << TargetExpectedVal 513 << "\n"); 514 DEBUG(dbgs() << " candidate elements where " << Candidates << "\n"); 515 assert(Access); 516 517 NumKnownLoadsForwarded++; 518 TotalKnownLoadsForwarded++; 519 return FD_DidForward; 520 } 521 522 /// Forwards a speculatively executable instruction. 523 /// 524 /// @param TargetStmt The statement the operand tree will be copied to. 525 /// @param UseInst The (possibly speculatable) instruction to forward. 526 /// @param DefStmt The statement @p UseInst is defined in. 527 /// @param DefLoop The loop which contains @p UseInst. 528 /// @param DefToTarget { DomainDef[] -> DomainTarget[] } 529 /// A mapping from the statement instance @p UseInst is 530 /// defined to the statement instance it is forwarded to. 531 /// @param DoIt If false, only determine whether an operand tree can be 532 /// forwarded. If true, carry out the forwarding. Do not 533 /// use DoIt==true if an operand tree is not known to be 534 /// forwardable. 535 /// 536 /// @return FD_NotApplicable if @p UseInst is not speculatable. 537 /// FD_CannotForward if one of @p UseInst's operands is not 538 /// forwardable. 539 /// FD_CanForwardTree if @p UseInst is forwardable. 540 /// FD_DidForward if @p DoIt was true. 541 ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt, 542 Instruction *UseInst, 543 ScopStmt *DefStmt, Loop *DefLoop, 544 isl::map DefToTarget, bool DoIt) { 545 // PHIs, unless synthesizable, are not yet supported. 546 if (isa<PHINode>(UseInst)) 547 return FD_NotApplicable; 548 549 // Compatible instructions must satisfy the following conditions: 550 // 1. Idempotent (instruction will be copied, not moved; although its 551 // original instance might be removed by simplification) 552 // 2. Not access memory (There might be memory writes between) 553 // 3. Not cause undefined behaviour (we might copy to a location when the 554 // original instruction was no executed; this is currently not possible 555 // because we do not forward PHINodes) 556 // 4. Not leak memory if executed multiple times (i.e. malloc) 557 // 558 // Instruction::mayHaveSideEffects is not sufficient because it considers 559 // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is 560 // not sufficient because it allows memory accesses. 561 if (mayBeMemoryDependent(*UseInst)) 562 return FD_NotApplicable; 563 564 if (DoIt) { 565 // To ensure the right order, prepend this instruction before its 566 // operands. This ensures that its operands are inserted before the 567 // instruction using them. 568 // TODO: The operand tree is not really a tree, but a DAG. We should be 569 // able to handle DAGs without duplication. 570 TargetStmt->prependInstruction(UseInst); 571 NumInstructionsCopied++; 572 TotalInstructionsCopied++; 573 } 574 575 for (Value *OpVal : UseInst->operand_values()) { 576 ForwardingDecision OpDecision = 577 forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DefToTarget, DoIt); 578 switch (OpDecision) { 579 case FD_CannotForward: 580 assert(!DoIt); 581 return FD_CannotForward; 582 583 case FD_CanForwardLeaf: 584 case FD_CanForwardTree: 585 assert(!DoIt); 586 break; 587 588 case FD_DidForward: 589 assert(DoIt); 590 break; 591 592 case FD_NotApplicable: 593 llvm_unreachable("forwardTree should never return FD_NotApplicable"); 594 } 595 } 596 597 if (DoIt) 598 return FD_DidForward; 599 return FD_CanForwardTree; 600 } 601 602 /// Determines whether an operand tree can be forwarded or carries out a 603 /// forwarding, depending on the @p DoIt flag. 604 /// 605 /// @param TargetStmt The statement the operand tree will be copied to. 606 /// @param UseVal The value (usually an instruction) which is root of an 607 /// operand tree. 608 /// @param UseStmt The statement that uses @p UseVal. 609 /// @param UseLoop The loop @p UseVal is used in. 610 /// @param UseToTarget { DomainUse[] -> DomainTarget[] } 611 /// A mapping from the statement instance @p UseVal is used 612 /// to the statement instance it is forwarded to. 613 /// @param DoIt If false, only determine whether an operand tree can be 614 /// forwarded. If true, carry out the forwarding. Do not 615 /// use DoIt==true if an operand tree is not known to be 616 /// forwardable. 617 /// 618 /// @return If DoIt==false, return whether the operand tree can be forwarded. 619 /// If DoIt==true, return FD_DidForward. 620 ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal, 621 ScopStmt *UseStmt, Loop *UseLoop, 622 isl::map UseToTarget, bool DoIt) { 623 ScopStmt *DefStmt = nullptr; 624 Loop *DefLoop = nullptr; 625 626 // { DefDomain[] -> TargetDomain[] } 627 isl::map DefToTarget; 628 629 VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true); 630 switch (VUse.getKind()) { 631 case VirtualUse::Constant: 632 case VirtualUse::Block: 633 case VirtualUse::Hoisted: 634 // These can be used anywhere without special considerations. 635 if (DoIt) 636 return FD_DidForward; 637 return FD_CanForwardLeaf; 638 639 case VirtualUse::Synthesizable: { 640 // ScopExpander will take care for of generating the code at the new 641 // location. 642 if (DoIt) 643 return FD_DidForward; 644 645 // Check if the value is synthesizable at the new location as well. This 646 // might be possible when leaving a loop for which ScalarEvolution is 647 // unable to derive the exit value for. 648 // TODO: If there is a LCSSA PHI at the loop exit, use that one. 649 // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we 650 // do not forward past its loop header. This would require us to use a 651 // previous loop induction variable instead the current one. We currently 652 // do not allow forwarding PHI nodes, thus this should never occur (the 653 // only exception where no phi is necessary being an unreachable loop 654 // without edge from the outside). 655 VirtualUse TargetUse = VirtualUse::create( 656 S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true); 657 if (TargetUse.getKind() == VirtualUse::Synthesizable) 658 return FD_CanForwardLeaf; 659 660 DEBUG(dbgs() << " Synthesizable would not be synthesizable anymore: " 661 << *UseVal << "\n"); 662 return FD_CannotForward; 663 } 664 665 case VirtualUse::ReadOnly: 666 // Note that we cannot return FD_CanForwardTree here. With a operand tree 667 // depth of 0, UseVal is the use in TargetStmt that we try to replace. 668 // With -polly-analyze-read-only-scalars=true we would ensure the 669 // existence of a MemoryAccess (which already exists for a leaf) and be 670 // removed again by tryForwardTree because it's goal is to remove this 671 // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission 672 // to do so. 673 if (!DoIt) 674 return FD_CanForwardLeaf; 675 676 // If we model read-only scalars, we need to create a MemoryAccess for it. 677 if (ModelReadOnlyScalars) 678 TargetStmt->ensureValueRead(UseVal); 679 680 NumReadOnlyCopied++; 681 TotalReadOnlyCopied++; 682 return FD_DidForward; 683 684 case VirtualUse::Intra: 685 // Knowing that UseStmt and DefStmt are the same statement instance, just 686 // reuse the information about UseStmt for DefStmt 687 DefStmt = UseStmt; 688 DefToTarget = UseToTarget; 689 690 LLVM_FALLTHROUGH; 691 case VirtualUse::Inter: 692 Instruction *Inst = cast<Instruction>(UseVal); 693 694 if (!DefStmt) { 695 DefStmt = S->getStmtFor(Inst); 696 if (!DefStmt) 697 return FD_CannotForward; 698 } 699 700 DefLoop = LI->getLoopFor(Inst->getParent()); 701 702 if (DefToTarget.is_null() && !Known.is_null()) { 703 // { UseDomain[] -> DefDomain[] } 704 isl::map UseToDef = computeUseToDefFlowDependency(UseStmt, DefStmt); 705 706 // { DefDomain[] -> UseDomain[] -> TargetDomain[] } shortened to 707 // { DefDomain[] -> TargetDomain[] } 708 DefToTarget = UseToTarget.apply_domain(UseToDef); 709 simplify(DefToTarget); 710 } 711 712 ForwardingDecision SpeculativeResult = forwardSpeculatable( 713 TargetStmt, Inst, DefStmt, DefLoop, DefToTarget, DoIt); 714 if (SpeculativeResult != FD_NotApplicable) 715 return SpeculativeResult; 716 717 ForwardingDecision KnownResult = 718 forwardKnownLoad(TargetStmt, Inst, UseStmt, UseLoop, UseToTarget, 719 DefStmt, DefLoop, DefToTarget, DoIt); 720 if (KnownResult != FD_NotApplicable) 721 return KnownResult; 722 723 // When no method is found to forward the operand tree, we effectively 724 // cannot handle it. 725 DEBUG(dbgs() << " Cannot forward instruction: " << *Inst << "\n"); 726 return FD_CannotForward; 727 } 728 729 llvm_unreachable("Case unhandled"); 730 } 731 732 /// Try to forward an operand tree rooted in @p RA. 733 bool tryForwardTree(MemoryAccess *RA) { 734 assert(RA->isLatestScalarKind()); 735 DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n"); 736 737 ScopStmt *Stmt = RA->getStatement(); 738 Loop *InLoop = Stmt->getSurroundingLoop(); 739 740 isl::map TargetToUse; 741 if (!Known.is_null()) { 742 isl::space DomSpace = Stmt->getDomainSpace(); 743 TargetToUse = 744 isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace)); 745 } 746 747 ForwardingDecision Assessment = forwardTree( 748 Stmt, RA->getAccessValue(), Stmt, InLoop, TargetToUse, false); 749 assert(Assessment != FD_DidForward); 750 if (Assessment != FD_CanForwardTree) 751 return false; 752 753 ForwardingDecision Execution = forwardTree(Stmt, RA->getAccessValue(), Stmt, 754 InLoop, TargetToUse, true); 755 assert(Execution == FD_DidForward && 756 "A previous positive assessment must also be executable"); 757 (void)Execution; 758 759 Stmt->removeSingleMemoryAccess(RA); 760 return true; 761 } 762 763 /// Return which SCoP this instance is processing. 764 Scop *getScop() const { return S; } 765 766 /// Run the algorithm: Use value read accesses as operand tree roots and try 767 /// to forward them into the statement. 768 bool forwardOperandTrees() { 769 for (ScopStmt &Stmt : *S) { 770 bool StmtModified = false; 771 772 // Because we are modifying the MemoryAccess list, collect them first to 773 // avoid iterator invalidation. 774 SmallVector<MemoryAccess *, 16> Accs; 775 for (MemoryAccess *RA : Stmt) { 776 if (!RA->isRead()) 777 continue; 778 if (!RA->isLatestScalarKind()) 779 continue; 780 781 Accs.push_back(RA); 782 } 783 784 for (MemoryAccess *RA : Accs) { 785 if (tryForwardTree(RA)) { 786 Modified = true; 787 StmtModified = true; 788 NumForwardedTrees++; 789 TotalForwardedTrees++; 790 } 791 } 792 793 if (StmtModified) { 794 NumModifiedStmts++; 795 TotalModifiedStmts++; 796 } 797 } 798 799 if (Modified) 800 ScopsModified++; 801 return Modified; 802 } 803 804 /// Print the pass result, performed transformations and the SCoP after the 805 /// transformation. 806 void print(raw_ostream &OS, int Indent = 0) { 807 printStatistics(OS, Indent); 808 809 if (!Modified) { 810 // This line can easily be checked in regression tests. 811 OS << "ForwardOpTree executed, but did not modify anything\n"; 812 return; 813 } 814 815 printStatements(OS, Indent); 816 } 817 }; 818 819 /// Pass that redirects scalar reads to array elements that are known to contain 820 /// the same value. 821 /// 822 /// This reduces the number of scalar accesses and therefore potentially 823 /// increases the freedom of the scheduler. In the ideal case, all reads of a 824 /// scalar definition are redirected (We currently do not care about removing 825 /// the write in this case). This is also useful for the main DeLICM pass as 826 /// there are less scalars to be mapped. 827 class ForwardOpTree : public ScopPass { 828 private: 829 /// The pass implementation, also holding per-scop data. 830 std::unique_ptr<ForwardOpTreeImpl> Impl; 831 832 public: 833 static char ID; 834 835 explicit ForwardOpTree() : ScopPass(ID) {} 836 ForwardOpTree(const ForwardOpTree &) = delete; 837 ForwardOpTree &operator=(const ForwardOpTree &) = delete; 838 839 void getAnalysisUsage(AnalysisUsage &AU) const override { 840 AU.addRequiredTransitive<ScopInfoRegionPass>(); 841 AU.addRequired<LoopInfoWrapperPass>(); 842 AU.setPreservesAll(); 843 } 844 845 bool runOnScop(Scop &S) override { 846 // Free resources for previous SCoP's computation, if not yet done. 847 releaseMemory(); 848 849 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 850 Impl = llvm::make_unique<ForwardOpTreeImpl>(&S, &LI); 851 852 if (AnalyzeKnown) { 853 DEBUG(dbgs() << "Prepare forwarders...\n"); 854 Impl->computeKnownValues(); 855 } 856 857 DEBUG(dbgs() << "Forwarding operand trees...\n"); 858 Impl->forwardOperandTrees(); 859 860 DEBUG(dbgs() << "\nFinal Scop:\n"); 861 DEBUG(dbgs() << S); 862 863 // Update statistics 864 auto ScopStats = S.getStatistics(); 865 NumValueWrites += ScopStats.NumValueWrites; 866 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; 867 NumPHIWrites += ScopStats.NumPHIWrites; 868 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; 869 NumSingletonWrites += ScopStats.NumSingletonWrites; 870 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; 871 872 return false; 873 } 874 875 void printScop(raw_ostream &OS, Scop &S) const override { 876 if (!Impl) 877 return; 878 879 assert(Impl->getScop() == &S); 880 Impl->print(OS); 881 } 882 883 void releaseMemory() override { Impl.reset(); } 884 }; // class ForwardOpTree 885 886 char ForwardOpTree::ID; 887 888 } // namespace 889 890 ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); } 891 892 INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree", 893 "Polly - Forward operand tree", false, false) 894 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 895 INITIALIZE_PASS_END(ForwardOpTree, "polly-optree", 896 "Polly - Forward operand tree", false, false) 897