1 
2 #include "polly/Support/SCEVValidator.h"
3 #include "polly/ScopInfo.h"
4 #include "llvm/Analysis/RegionInfo.h"
5 #include "llvm/Analysis/ScalarEvolution.h"
6 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
7 #include "llvm/Support/Debug.h"
8 
9 using namespace llvm;
10 using namespace polly;
11 
12 #define DEBUG_TYPE "polly-scev-validator"
13 
14 namespace SCEVType {
15 /// The type of a SCEV
16 ///
17 /// To check for the validity of a SCEV we assign to each SCEV a type. The
18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is
19 /// important. The subexpressions of SCEV with a type X can only have a type
20 /// that is smaller or equal than X.
21 enum TYPE {
22   // An integer value.
23   INT,
24 
25   // An expression that is constant during the execution of the Scop,
26   // but that may depend on parameters unknown at compile time.
27   PARAM,
28 
29   // An expression that may change during the execution of the SCoP.
30   IV,
31 
32   // An invalid expression.
33   INVALID
34 };
35 } // namespace SCEVType
36 
37 /// The result the validator returns for a SCEV expression.
38 class ValidatorResult {
39   /// The type of the expression
40   SCEVType::TYPE Type;
41 
42   /// The set of Parameters in the expression.
43   ParameterSetTy Parameters;
44 
45 public:
46   /// The copy constructor
47   ValidatorResult(const ValidatorResult &Source) {
48     Type = Source.Type;
49     Parameters = Source.Parameters;
50   }
51 
52   /// Construct a result with a certain type and no parameters.
53   ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
54     assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
55   }
56 
57   /// Construct a result with a certain type and a single parameter.
58   ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
59     Parameters.insert(Expr);
60   }
61 
62   /// Get the type of the ValidatorResult.
63   SCEVType::TYPE getType() { return Type; }
64 
65   /// Is the analyzed SCEV constant during the execution of the SCoP.
66   bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
67 
68   /// Is the analyzed SCEV valid.
69   bool isValid() { return Type != SCEVType::INVALID; }
70 
71   /// Is the analyzed SCEV of Type IV.
72   bool isIV() { return Type == SCEVType::IV; }
73 
74   /// Is the analyzed SCEV of Type INT.
75   bool isINT() { return Type == SCEVType::INT; }
76 
77   /// Is the analyzed SCEV of Type PARAM.
78   bool isPARAM() { return Type == SCEVType::PARAM; }
79 
80   /// Get the parameters of this validator result.
81   const ParameterSetTy &getParameters() { return Parameters; }
82 
83   /// Add the parameters of Source to this result.
84   void addParamsFrom(const ValidatorResult &Source) {
85     Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
86   }
87 
88   /// Merge a result.
89   ///
90   /// This means to merge the parameters and to set the Type to the most
91   /// specific Type that matches both.
92   void merge(const ValidatorResult &ToMerge) {
93     Type = std::max(Type, ToMerge.Type);
94     addParamsFrom(ToMerge);
95   }
96 
97   void print(raw_ostream &OS) {
98     switch (Type) {
99     case SCEVType::INT:
100       OS << "SCEVType::INT";
101       break;
102     case SCEVType::PARAM:
103       OS << "SCEVType::PARAM";
104       break;
105     case SCEVType::IV:
106       OS << "SCEVType::IV";
107       break;
108     case SCEVType::INVALID:
109       OS << "SCEVType::INVALID";
110       break;
111     }
112   }
113 };
114 
115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
116   VR.print(OS);
117   return OS;
118 }
119 
120 /// Check if a SCEV is valid in a SCoP.
121 struct SCEVValidator
122     : public SCEVVisitor<SCEVValidator, class ValidatorResult> {
123 private:
124   const Region *R;
125   Loop *Scope;
126   ScalarEvolution &SE;
127   InvariantLoadsSetTy *ILS;
128 
129 public:
130   SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
131                 InvariantLoadsSetTy *ILS)
132       : R(R), Scope(Scope), SE(SE), ILS(ILS) {}
133 
134   class ValidatorResult visitConstant(const SCEVConstant *Constant) {
135     return ValidatorResult(SCEVType::INT);
136   }
137 
138   class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
139     return visit(Expr->getOperand());
140   }
141 
142   class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
143     return visit(Expr->getOperand());
144   }
145 
146   class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
147     return visit(Expr->getOperand());
148   }
149 
150   class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
151     ValidatorResult Return(SCEVType::INT);
152 
153     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
154       ValidatorResult Op = visit(Expr->getOperand(i));
155       Return.merge(Op);
156 
157       // Early exit.
158       if (!Return.isValid())
159         break;
160     }
161 
162     return Return;
163   }
164 
165   class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
166     ValidatorResult Return(SCEVType::INT);
167 
168     bool HasMultipleParams = false;
169 
170     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
171       ValidatorResult Op = visit(Expr->getOperand(i));
172 
173       if (Op.isINT())
174         continue;
175 
176       if (Op.isPARAM() && Return.isPARAM()) {
177         HasMultipleParams = true;
178         continue;
179       }
180 
181       if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
182         DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
183                      << "\tExpr: " << *Expr << "\n"
184                      << "\tPrevious expression type: " << Return << "\n"
185                      << "\tNext operand (" << Op
186                      << "): " << *Expr->getOperand(i) << "\n");
187 
188         return ValidatorResult(SCEVType::INVALID);
189       }
190 
191       Return.merge(Op);
192     }
193 
194     if (HasMultipleParams && Return.isValid())
195       return ValidatorResult(SCEVType::PARAM, Expr);
196 
197     return Return;
198   }
199 
200   class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
201     if (!Expr->isAffine()) {
202       DEBUG(dbgs() << "INVALID: AddRec is not affine");
203       return ValidatorResult(SCEVType::INVALID);
204     }
205 
206     ValidatorResult Start = visit(Expr->getStart());
207     ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
208 
209     if (!Start.isValid())
210       return Start;
211 
212     if (!Recurrence.isValid())
213       return Recurrence;
214 
215     auto *L = Expr->getLoop();
216     if (R->contains(L) && (!Scope || !L->contains(Scope))) {
217       DEBUG(dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
218                       "non-affine subregion or has a non-synthesizable exit "
219                       "value.");
220       return ValidatorResult(SCEVType::INVALID);
221     }
222 
223     if (R->contains(L)) {
224       if (Recurrence.isINT()) {
225         ValidatorResult Result(SCEVType::IV);
226         Result.addParamsFrom(Start);
227         return Result;
228       }
229 
230       DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
231                       "recurrence part");
232       return ValidatorResult(SCEVType::INVALID);
233     }
234 
235     assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
236 
237     // Directly generate ValidatorResult for Expr if 'start' is zero.
238     if (Expr->getStart()->isZero())
239       return ValidatorResult(SCEVType::PARAM, Expr);
240 
241     // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
242     // if 'start' is not zero.
243     const SCEV *ZeroStartExpr = SE.getAddRecExpr(
244         SE.getConstant(Expr->getStart()->getType(), 0),
245         Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
246 
247     ValidatorResult ZeroStartResult =
248         ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
249     ZeroStartResult.addParamsFrom(Start);
250 
251     return ZeroStartResult;
252   }
253 
254   class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
255     ValidatorResult Return(SCEVType::INT);
256 
257     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
258       ValidatorResult Op = visit(Expr->getOperand(i));
259 
260       if (!Op.isValid())
261         return Op;
262 
263       Return.merge(Op);
264     }
265 
266     return Return;
267   }
268 
269   class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
270     // We do not support unsigned max operations. If 'Expr' is constant during
271     // Scop execution we treat this as a parameter, otherwise we bail out.
272     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
273       ValidatorResult Op = visit(Expr->getOperand(i));
274 
275       if (!Op.isConstant()) {
276         DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
277         return ValidatorResult(SCEVType::INVALID);
278       }
279     }
280 
281     return ValidatorResult(SCEVType::PARAM, Expr);
282   }
283 
284   ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
285     if (R->contains(I)) {
286       DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
287                       "within the region\n");
288       return ValidatorResult(SCEVType::INVALID);
289     }
290 
291     return ValidatorResult(SCEVType::PARAM, S);
292   }
293 
294   ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
295     if (R->contains(I) && ILS) {
296       ILS->insert(cast<LoadInst>(I));
297       return ValidatorResult(SCEVType::PARAM, S);
298     }
299 
300     return visitGenericInst(I, S);
301   }
302 
303   ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
304                                 const SCEV *DivExpr,
305                                 Instruction *SDiv = nullptr) {
306 
307     // First check if we might be able to model the division, thus if the
308     // divisor is constant. If so, check the dividend, otherwise check if
309     // the whole division can be seen as a parameter.
310     if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
311       return visit(Dividend);
312 
313     // For signed divisions use the SDiv instruction to check for a parameter
314     // division, for unsigned divisions check the operands.
315     if (SDiv)
316       return visitGenericInst(SDiv, DivExpr);
317 
318     ValidatorResult LHS = visit(Dividend);
319     ValidatorResult RHS = visit(Divisor);
320     if (LHS.isConstant() && RHS.isConstant())
321       return ValidatorResult(SCEVType::PARAM, DivExpr);
322 
323     DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions");
324     return ValidatorResult(SCEVType::INVALID);
325   }
326 
327   ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
328     auto *Dividend = Expr->getLHS();
329     auto *Divisor = Expr->getRHS();
330     return visitDivision(Dividend, Divisor, Expr);
331   }
332 
333   ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
334     assert(SDiv->getOpcode() == Instruction::SDiv &&
335            "Assumed SDiv instruction!");
336 
337     auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
338     auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
339     return visitDivision(Dividend, Divisor, Expr, SDiv);
340   }
341 
342   ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
343     assert(SRem->getOpcode() == Instruction::SRem &&
344            "Assumed SRem instruction!");
345 
346     auto *Divisor = SRem->getOperand(1);
347     auto *CI = dyn_cast<ConstantInt>(Divisor);
348     if (!CI || CI->isZeroValue())
349       return visitGenericInst(SRem, S);
350 
351     auto *Dividend = SRem->getOperand(0);
352     auto *DividendSCEV = SE.getSCEV(Dividend);
353     return visit(DividendSCEV);
354   }
355 
356   ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
357     Value *V = Expr->getValue();
358 
359     if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
360       DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
361       return ValidatorResult(SCEVType::INVALID);
362     }
363 
364     if (isa<UndefValue>(V)) {
365       DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
366       return ValidatorResult(SCEVType::INVALID);
367     }
368 
369     if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
370       switch (I->getOpcode()) {
371       case Instruction::IntToPtr:
372         return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
373       case Instruction::PtrToInt:
374         return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
375       case Instruction::Load:
376         return visitLoadInstruction(I, Expr);
377       case Instruction::SDiv:
378         return visitSDivInstruction(I, Expr);
379       case Instruction::SRem:
380         return visitSRemInstruction(I, Expr);
381       default:
382         return visitGenericInst(I, Expr);
383       }
384     }
385 
386     return ValidatorResult(SCEVType::PARAM, Expr);
387   }
388 };
389 
390 /// Check whether a SCEV refers to an SSA name defined inside a region.
391 class SCEVInRegionDependences {
392   const Region *R;
393   Loop *Scope;
394   bool AllowLoops;
395   bool HasInRegionDeps = false;
396 
397 public:
398   SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops)
399       : R(R), Scope(Scope), AllowLoops(AllowLoops) {}
400 
401   bool follow(const SCEV *S) {
402     if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
403       Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
404 
405       // Return true when Inst is defined inside the region R.
406       if (Inst && R->contains(Inst)) {
407         HasInRegionDeps = true;
408         return false;
409       }
410     } else if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
411       if (!AllowLoops) {
412         if (!Scope) {
413           HasInRegionDeps = true;
414           return false;
415         }
416         auto *L = AddRec->getLoop();
417         if (R->contains(L) && !L->contains(Scope)) {
418           HasInRegionDeps = true;
419           return false;
420         }
421       }
422     }
423     return true;
424   }
425   bool isDone() { return false; }
426   bool hasDependences() { return HasInRegionDeps; }
427 };
428 
429 namespace polly {
430 /// Find all loops referenced in SCEVAddRecExprs.
431 class SCEVFindLoops {
432   SetVector<const Loop *> &Loops;
433 
434 public:
435   SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
436 
437   bool follow(const SCEV *S) {
438     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
439       Loops.insert(AddRec->getLoop());
440     return true;
441   }
442   bool isDone() { return false; }
443 };
444 
445 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
446   SCEVFindLoops FindLoops(Loops);
447   SCEVTraversal<SCEVFindLoops> ST(FindLoops);
448   ST.visitAll(Expr);
449 }
450 
451 /// Find all values referenced in SCEVUnknowns.
452 class SCEVFindValues {
453   ScalarEvolution &SE;
454   SetVector<Value *> &Values;
455 
456 public:
457   SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
458       : SE(SE), Values(Values) {}
459 
460   bool follow(const SCEV *S) {
461     const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
462     if (!Unknown)
463       return true;
464 
465     Values.insert(Unknown->getValue());
466     Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
467     if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
468                   Inst->getOpcode() != Instruction::SDiv))
469       return false;
470 
471     auto *Dividend = SE.getSCEV(Inst->getOperand(1));
472     if (!isa<SCEVConstant>(Dividend))
473       return false;
474 
475     auto *Divisor = SE.getSCEV(Inst->getOperand(0));
476     SCEVFindValues FindValues(SE, Values);
477     SCEVTraversal<SCEVFindValues> ST(FindValues);
478     ST.visitAll(Dividend);
479     ST.visitAll(Divisor);
480 
481     return false;
482   }
483   bool isDone() { return false; }
484 };
485 
486 void findValues(const SCEV *Expr, ScalarEvolution &SE,
487                 SetVector<Value *> &Values) {
488   SCEVFindValues FindValues(SE, Values);
489   SCEVTraversal<SCEVFindValues> ST(FindValues);
490   ST.visitAll(Expr);
491 }
492 
493 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
494                                llvm::Loop *Scope, bool AllowLoops) {
495   SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops);
496   SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
497   ST.visitAll(Expr);
498   return InRegionDeps.hasDependences();
499 }
500 
501 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
502                   ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
503   if (isa<SCEVCouldNotCompute>(Expr))
504     return false;
505 
506   SCEVValidator Validator(R, Scope, SE, ILS);
507   DEBUG({
508     dbgs() << "\n";
509     dbgs() << "Expr: " << *Expr << "\n";
510     dbgs() << "Region: " << R->getNameStr() << "\n";
511     dbgs() << " -> ";
512   });
513 
514   ValidatorResult Result = Validator.visit(Expr);
515 
516   DEBUG({
517     if (Result.isValid())
518       dbgs() << "VALID\n";
519     dbgs() << "\n";
520   });
521 
522   return Result.isValid();
523 }
524 
525 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
526                          ScalarEvolution &SE, ParameterSetTy &Params) {
527   auto *E = SE.getSCEV(V);
528   if (isa<SCEVCouldNotCompute>(E))
529     return false;
530 
531   SCEVValidator Validator(R, Scope, SE, nullptr);
532   ValidatorResult Result = Validator.visit(E);
533   if (!Result.isValid())
534     return false;
535 
536   auto ResultParams = Result.getParameters();
537   Params.insert(ResultParams.begin(), ResultParams.end());
538 
539   return true;
540 }
541 
542 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
543                         ScalarEvolution &SE, ParameterSetTy &Params,
544                         bool OrExpr) {
545   if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
546     return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
547                               true) &&
548            isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
549   } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
550     auto Opcode = BinOp->getOpcode();
551     if (Opcode == Instruction::And || Opcode == Instruction::Or)
552       return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
553                                 false) &&
554              isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
555                                 false);
556     /* Fall through */
557   }
558 
559   if (!OrExpr)
560     return false;
561 
562   return isAffineExpr(V, R, Scope, SE, Params);
563 }
564 
565 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
566                                      const SCEV *Expr, ScalarEvolution &SE) {
567   if (isa<SCEVCouldNotCompute>(Expr))
568     return ParameterSetTy();
569 
570   InvariantLoadsSetTy ILS;
571   SCEVValidator Validator(R, Scope, SE, &ILS);
572   ValidatorResult Result = Validator.visit(Expr);
573   assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
574 
575   return Result.getParameters();
576 }
577 
578 std::pair<const SCEVConstant *, const SCEV *>
579 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
580   auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
581 
582   if (auto *Constant = dyn_cast<SCEVConstant>(S))
583     return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
584 
585   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
586   if (AddRec) {
587     auto *StartExpr = AddRec->getStart();
588     if (StartExpr->isZero()) {
589       auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
590       auto *LeftOverAddRec =
591           SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
592                            AddRec->getNoWrapFlags());
593       return std::make_pair(StepPair.first, LeftOverAddRec);
594     }
595     return std::make_pair(ConstPart, S);
596   }
597 
598   if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
599     SmallVector<const SCEV *, 4> LeftOvers;
600     auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
601     auto *Factor = Op0Pair.first;
602     if (SE.isKnownNegative(Factor)) {
603       Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
604       LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
605     } else {
606       LeftOvers.push_back(Op0Pair.second);
607     }
608 
609     for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
610       auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
611       // TODO: Use something smarter than equality here, e.g., gcd.
612       if (Factor == OpUPair.first)
613         LeftOvers.push_back(OpUPair.second);
614       else if (Factor == SE.getNegativeSCEV(OpUPair.first))
615         LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
616       else
617         return std::make_pair(ConstPart, S);
618     }
619 
620     auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
621     return std::make_pair(Factor, NewAdd);
622   }
623 
624   auto *Mul = dyn_cast<SCEVMulExpr>(S);
625   if (!Mul)
626     return std::make_pair(ConstPart, S);
627 
628   SmallVector<const SCEV *, 4> LeftOvers;
629   for (auto *Op : Mul->operands())
630     if (isa<SCEVConstant>(Op))
631       ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
632     else
633       LeftOvers.push_back(Op);
634 
635   return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
636 }
637 } // namespace polly
638