1 //===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Tools, utilities, helpers and extensions useful in conjunction with the 11 // Integer Set Library (isl). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/Support/ISLTools.h" 16 #include "llvm/ADT/StringRef.h" 17 18 using namespace polly; 19 20 namespace { 21 /// Create a map that shifts one dimension by an offset. 22 /// 23 /// Example: 24 /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) 25 /// = { [i0, i1] -> [i0, i1 - 1] } 26 /// 27 /// @param Space The map space of the result. Must have equal number of in- and 28 /// out-dimensions. 29 /// @param Pos Position to shift. 30 /// @param Amount Value added to the shifted dimension. 31 /// 32 /// @return An isl_multi_aff for the map with this shifted dimension. 33 isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { 34 auto Identity = isl::multi_aff::identity(Space); 35 if (Amount == 0) 36 return Identity; 37 auto ShiftAff = Identity.get_aff(Pos); 38 ShiftAff = ShiftAff.set_constant_si(Amount); 39 return Identity.set_aff(Pos, ShiftAff); 40 } 41 42 /// Construct a map that swaps two nested tuples. 43 /// 44 /// @param FromSpace1 { Space1[] } 45 /// @param FromSpace2 { Space2[] } 46 /// 47 /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } 48 isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, 49 isl::space FromSpace2) { 50 assert(FromSpace1.is_set()); 51 assert(FromSpace2.is_set()); 52 53 unsigned Dims1 = FromSpace1.dim(isl::dim::set); 54 unsigned Dims2 = FromSpace2.dim(isl::dim::set); 55 56 isl::space FromSpace = 57 FromSpace1.map_from_domain_and_range(FromSpace2).wrap(); 58 isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap(); 59 isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace); 60 61 isl::basic_map Result = isl::basic_map::universe(MapSpace); 62 for (auto i = Dims1 - Dims1; i < Dims1; i += 1) 63 Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i); 64 for (auto i = Dims2 - Dims2; i < Dims2; i += 1) { 65 Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i); 66 } 67 68 return Result; 69 } 70 71 /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns 72 /// an isl_map. 73 isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { 74 isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2); 75 return isl::map(BMapResult); 76 } 77 } // anonymous namespace 78 79 isl::map polly::beforeScatter(isl::map Map, bool Strict) { 80 isl::space RangeSpace = Map.get_space().range(); 81 isl::map ScatterRel = 82 Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace); 83 return Map.apply_range(ScatterRel); 84 } 85 86 isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { 87 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 88 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 89 isl::map After = beforeScatter(Map, Strict); 90 Result = Result.add_map(After); 91 return isl::stat::ok; 92 }); 93 return Result; 94 } 95 96 isl::map polly::afterScatter(isl::map Map, bool Strict) { 97 isl::space RangeSpace = Map.get_space().range(); 98 isl::map ScatterRel = 99 Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace); 100 return Map.apply_range(ScatterRel); 101 } 102 103 isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { 104 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 105 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 106 isl::map After = afterScatter(Map, Strict); 107 Result = Result.add_map(After); 108 return isl::stat::ok; 109 }); 110 return Result; 111 } 112 113 isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, 114 bool InclTo) { 115 isl::map AfterFrom = afterScatter(From, !InclFrom); 116 isl::map BeforeTo = beforeScatter(To, !InclTo); 117 118 return AfterFrom.intersect(BeforeTo); 119 } 120 121 isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, 122 bool InclFrom, bool InclTo) { 123 isl::union_map AfterFrom = afterScatter(From, !InclFrom); 124 isl::union_map BeforeTo = beforeScatter(To, !InclTo); 125 126 return AfterFrom.intersect(BeforeTo); 127 } 128 129 isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { 130 if (!UMap) 131 return nullptr; 132 133 if (isl_union_map_n_map(UMap.get()) == 0) 134 return isl::map::empty(ExpectedSpace); 135 136 isl::map Result = isl::map::from_union_map(UMap); 137 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 138 139 return Result; 140 } 141 142 isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { 143 if (!USet) 144 return nullptr; 145 146 if (isl_union_set_n_set(USet.get()) == 0) 147 return isl::set::empty(ExpectedSpace); 148 149 isl::set Result(USet); 150 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 151 152 return Result; 153 } 154 155 unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { 156 unsigned Dims = 0; 157 Schedule.foreach_map([&Dims](isl::map Map) -> isl::stat { 158 Dims = std::max(Dims, Map.dim(isl::dim::out)); 159 return isl::stat::ok; 160 }); 161 return Dims; 162 } 163 164 isl::space polly::getScatterSpace(const isl::union_map &Schedule) { 165 if (!Schedule) 166 return nullptr; 167 unsigned Dims = getNumScatterDims(Schedule); 168 isl::space ScatterSpace = Schedule.get_space().set_from_params(); 169 return ScatterSpace.add_dims(isl::dim::set, Dims); 170 } 171 172 isl::union_map polly::makeIdentityMap(const isl::union_set &USet, 173 bool RestrictDomain) { 174 isl::union_map Result = isl::union_map::empty(USet.get_space()); 175 USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { 176 isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set()); 177 if (RestrictDomain) 178 IdentityMap = IdentityMap.intersect_domain(Set); 179 Result = Result.add_map(IdentityMap); 180 return isl::stat::ok; 181 }); 182 return Result; 183 } 184 185 isl::map polly::reverseDomain(isl::map Map) { 186 isl::space DomSpace = Map.get_space().domain().unwrap(); 187 isl::space Space1 = DomSpace.domain(); 188 isl::space Space2 = DomSpace.range(); 189 isl::map Swap = makeTupleSwapMap(Space1, Space2); 190 return Map.apply_domain(Swap); 191 } 192 193 isl::union_map polly::reverseDomain(const isl::union_map &UMap) { 194 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 195 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 196 auto Reversed = reverseDomain(std::move(Map)); 197 Result = Result.add_map(Reversed); 198 return isl::stat::ok; 199 }); 200 return Result; 201 } 202 203 isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { 204 int NumDims = Set.dim(isl::dim::set); 205 if (Pos < 0) 206 Pos = NumDims + Pos; 207 assert(Pos < NumDims && "Dimension index must be in range"); 208 isl::space Space = Set.get_space(); 209 Space = Space.map_from_domain_and_range(Space); 210 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 211 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 212 return Set.apply(TranslatorMap); 213 } 214 215 isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { 216 isl::union_set Result = isl::union_set::empty(USet.get_space()); 217 USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { 218 isl::set Shifted = shiftDim(Set, Pos, Amount); 219 Result = Result.add_set(Shifted); 220 return isl::stat::ok; 221 }); 222 return Result; 223 } 224 225 isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { 226 int NumDims = Map.dim(Dim); 227 if (Pos < 0) 228 Pos = NumDims + Pos; 229 assert(Pos < NumDims && "Dimension index must be in range"); 230 isl::space Space = Map.get_space(); 231 switch (Dim) { 232 case isl::dim::in: 233 Space = Space.domain(); 234 break; 235 case isl::dim::out: 236 Space = Space.range(); 237 break; 238 default: 239 llvm_unreachable("Unsupported value for 'dim'"); 240 } 241 Space = Space.map_from_domain_and_range(Space); 242 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 243 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 244 switch (Dim) { 245 case isl::dim::in: 246 return Map.apply_domain(TranslatorMap); 247 case isl::dim::out: 248 return Map.apply_range(TranslatorMap); 249 default: 250 llvm_unreachable("Unsupported value for 'dim'"); 251 } 252 } 253 254 isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, 255 int Amount) { 256 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 257 258 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 259 isl::map Shifted = shiftDim(Map, Dim, Pos, Amount); 260 Result = Result.add_map(Shifted); 261 return isl::stat::ok; 262 }); 263 return Result; 264 } 265 266 void polly::simplify(isl::set &Set) { 267 Set = isl::manage(isl_set_compute_divs(Set.copy())); 268 Set = Set.detect_equalities(); 269 Set = Set.coalesce(); 270 } 271 272 void polly::simplify(isl::union_set &USet) { 273 USet = isl::manage(isl_union_set_compute_divs(USet.copy())); 274 USet = USet.detect_equalities(); 275 USet = USet.coalesce(); 276 } 277 278 void polly::simplify(isl::map &Map) { 279 Map = isl::manage(isl_map_compute_divs(Map.copy())); 280 Map = Map.detect_equalities(); 281 Map = Map.coalesce(); 282 } 283 284 void polly::simplify(isl::union_map &UMap) { 285 UMap = isl::manage(isl_union_map_compute_divs(UMap.copy())); 286 UMap = UMap.detect_equalities(); 287 UMap = UMap.coalesce(); 288 } 289 290 isl::union_map polly::computeReachingWrite(isl::union_map Schedule, 291 isl::union_map Writes, bool Reverse, 292 bool InclPrevDef, bool InclNextDef) { 293 294 // { Scatter[] } 295 isl::space ScatterSpace = getScatterSpace(Schedule); 296 297 // { ScatterRead[] -> ScatterWrite[] } 298 isl::map Relation; 299 if (Reverse) 300 Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) 301 : isl::map::lex_le(ScatterSpace); 302 else 303 Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) 304 : isl::map::lex_ge(ScatterSpace); 305 306 // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } 307 isl::map RelationMap = Relation.range_map().reverse(); 308 309 // { Element[] -> ScatterWrite[] } 310 isl::union_map WriteAction = Schedule.apply_domain(Writes); 311 312 // { ScatterWrite[] -> Element[] } 313 isl::union_map WriteActionRev = WriteAction.reverse(); 314 315 // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } 316 isl::union_map DefSchedRelation = 317 isl::union_map(RelationMap).apply_domain(WriteActionRev); 318 319 // For each element, at every point in time, map to the times of previous 320 // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } 321 isl::union_map ReachableWrites = DefSchedRelation.uncurry(); 322 if (Reverse) 323 ReachableWrites = ReachableWrites.lexmin(); 324 else 325 ReachableWrites = ReachableWrites.lexmax(); 326 327 // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } 328 isl::union_map SelfUse = WriteAction.range_map(); 329 330 if (InclPrevDef && InclNextDef) { 331 // Add the Def itself to the solution. 332 ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); 333 } else if (!InclPrevDef && !InclNextDef) { 334 // Remove Def itself from the solution. 335 ReachableWrites = ReachableWrites.subtract(SelfUse); 336 } 337 338 // { [Element[] -> ScatterRead[]] -> Domain[] } 339 return ReachableWrites.apply_range(Schedule.reverse()); 340 } 341 342 isl::union_map 343 polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, 344 isl::union_map Reads, bool ReadEltInSameInst, 345 bool IncludeLastRead, bool IncludeWrite) { 346 // { Element[] -> Scatter[] } 347 isl::union_map ReadActions = Schedule.apply_domain(Reads); 348 isl::union_map WriteActions = Schedule.apply_domain(Writes); 349 350 // { [Element[] -> DomainWrite[]] -> Scatter[] } 351 isl::union_map EltDomWrites = 352 Writes.reverse().range_map().apply_range(Schedule); 353 354 // { [Element[] -> Scatter[]] -> DomainWrite[] } 355 isl::union_map ReachingOverwrite = computeReachingWrite( 356 Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); 357 358 // { [Element[] -> Scatter[]] -> DomainWrite[] } 359 isl::union_map ReadsOverwritten = 360 ReachingOverwrite.intersect_domain(ReadActions.wrap()); 361 362 // { [Element[] -> DomainWrite[]] -> Scatter[] } 363 isl::union_map ReadsOverwrittenRotated = 364 reverseDomain(ReadsOverwritten).curry().reverse(); 365 isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax(); 366 367 // { [Element[] -> DomainWrite[]] -> Scatter[] } 368 isl::union_map BetweenLastReadOverwrite = betweenScatter( 369 LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); 370 371 // { [Element[] -> Scatter[]] -> DomainWrite[] } 372 isl::union_map ReachingOverwriteZone = computeReachingWrite( 373 Schedule, Writes, true, IncludeLastRead, IncludeWrite); 374 375 // { [Element[] -> DomainWrite[]] -> Scatter[] } 376 isl::union_map ReachingOverwriteRotated = 377 reverseDomain(ReachingOverwriteZone).curry().reverse(); 378 379 // { [Element[] -> DomainWrite[]] -> Scatter[] } 380 isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( 381 ReadsOverwrittenRotated.domain()); 382 383 return BetweenLastReadOverwrite.unite(WritesWithoutReads) 384 .domain_factor_domain(); 385 } 386 387 isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, 388 bool InclStart, bool InclEnd) { 389 if (!InclStart && InclEnd) 390 return Zone; 391 392 auto ShiftedZone = shiftDim(Zone, -1, -1); 393 if (InclStart && !InclEnd) 394 return ShiftedZone; 395 else if (!InclStart && !InclEnd) 396 return Zone.intersect(ShiftedZone); 397 398 assert(InclStart && InclEnd); 399 return Zone.unite(ShiftedZone); 400 } 401 402 isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, 403 bool InclStart, bool InclEnd) { 404 if (!InclStart && InclEnd) 405 return Zone; 406 407 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 408 if (InclStart && !InclEnd) 409 return ShiftedZone; 410 else if (!InclStart && !InclEnd) 411 return Zone.intersect(ShiftedZone); 412 413 assert(InclStart && InclEnd); 414 return Zone.unite(ShiftedZone); 415 } 416 417 isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, 418 bool InclStart, bool InclEnd) { 419 if (!InclStart && InclEnd) 420 return Zone; 421 422 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 423 if (InclStart && !InclEnd) 424 return ShiftedZone; 425 else if (!InclStart && !InclEnd) 426 return Zone.intersect(ShiftedZone); 427 428 assert(InclStart && InclEnd); 429 return Zone.unite(ShiftedZone); 430 } 431 432 isl::map polly::distributeDomain(isl::map Map) { 433 // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { 434 // Domain[] -> Range2[] } and combine again. We would loose any relation 435 // between Range1[] and Range2[] that is not also a constraint to Domain[]. 436 437 isl::space Space = Map.get_space(); 438 isl::space DomainSpace = Space.domain(); 439 unsigned DomainDims = DomainSpace.dim(isl::dim::set); 440 isl::space RangeSpace = Space.range().unwrap(); 441 isl::space Range1Space = RangeSpace.domain(); 442 unsigned Range1Dims = Range1Space.dim(isl::dim::set); 443 isl::space Range2Space = RangeSpace.range(); 444 unsigned Range2Dims = Range2Space.dim(isl::dim::set); 445 446 isl::space OutputSpace = 447 DomainSpace.map_from_domain_and_range(Range1Space) 448 .wrap() 449 .map_from_domain_and_range( 450 DomainSpace.map_from_domain_and_range(Range2Space).wrap()); 451 452 isl::basic_map Translator = isl::basic_map::universe( 453 Space.wrap().map_from_domain_and_range(OutputSpace.wrap())); 454 455 for (unsigned i = 0; i < DomainDims; i += 1) { 456 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i); 457 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, 458 DomainDims + Range1Dims + i); 459 } 460 for (unsigned i = 0; i < Range1Dims; i += 1) 461 Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out, 462 DomainDims + i); 463 for (unsigned i = 0; i < Range2Dims; i += 1) 464 Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i, 465 isl::dim::out, 466 DomainDims + Range1Dims + DomainDims + i); 467 468 return Map.wrap().apply(Translator).unwrap(); 469 } 470 471 isl::union_map polly::distributeDomain(isl::union_map UMap) { 472 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 473 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) { 474 auto Distributed = distributeDomain(Map); 475 Result = Result.add_map(Distributed); 476 return isl::stat::ok; 477 }); 478 if (Success != isl::stat::ok) 479 return {}; 480 return Result; 481 } 482 483 isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { 484 485 // { Factor[] -> Factor[] } 486 isl::union_map Factors = makeIdentityMap(Factor, true); 487 488 return Factors.product(UMap); 489 } 490 491 isl::union_map polly::applyDomainRange(isl::union_map UMap, 492 isl::union_map Func) { 493 // This implementation creates unnecessary cross products of the 494 // DomainDomain[] and Func. An alternative implementation could reverse 495 // domain+uncurry,apply Func to what now is the domain, then undo the 496 // preparing transformation. Another alternative implementation could create a 497 // translator map for each piece. 498 499 // { DomainDomain[] } 500 isl::union_set DomainDomain = UMap.domain().unwrap().domain(); 501 502 // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] 503 // } 504 isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain); 505 506 return UMap.apply_domain(LifetedFunc); 507 } 508 509 isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { 510 isl::set RangeSet = Range.extract_set(Map.get_space().range()); 511 return Map.intersect_range(RangeSet); 512 } 513 514 isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { 515 assert(!Max || !Min); // Cannot return min and max at the same time. 516 isl::val Result; 517 PwAff.foreach_piece([=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { 518 if (Result && Result.is_nan()) 519 return isl::stat::ok; 520 521 // TODO: If Min/Max, we can also determine a minimum/maximum value if 522 // Set is constant-bounded. 523 if (!Aff.is_cst()) { 524 Result = isl::val::nan(Aff.get_ctx()); 525 return isl::stat::error; 526 } 527 528 isl::val ThisVal = Aff.get_constant_val(); 529 if (!Result) { 530 Result = ThisVal; 531 return isl::stat::ok; 532 } 533 534 if (Result.eq(ThisVal)) 535 return isl::stat::ok; 536 537 if (Max && ThisVal.gt(Result)) { 538 Result = ThisVal; 539 return isl::stat::ok; 540 } 541 542 if (Min && ThisVal.lt(Result)) { 543 Result = ThisVal; 544 return isl::stat::ok; 545 } 546 547 // Not compatible 548 Result = isl::val::nan(Aff.get_ctx()); 549 return isl::stat::error; 550 }); 551 return Result; 552 } 553 554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 555 static void foreachPoint(const isl::set &Set, 556 const std::function<void(isl::point P)> &F) { 557 Set.foreach_point([&](isl::point P) -> isl::stat { 558 F(P); 559 return isl::stat::ok; 560 }); 561 } 562 563 static void foreachPoint(isl::basic_set BSet, 564 const std::function<void(isl::point P)> &F) { 565 foreachPoint(isl::set(BSet), F); 566 } 567 568 /// Determine the sorting order of the sets @p A and @p B without considering 569 /// the space structure. 570 /// 571 /// Ordering is based on the lower bounds of the set's dimensions. First 572 /// dimensions are considered first. 573 static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { 574 unsigned ALen = A.dim(isl::dim::set); 575 unsigned BLen = B.dim(isl::dim::set); 576 unsigned Len = std::min(ALen, BLen); 577 578 for (unsigned i = 0; i < Len; i += 1) { 579 isl::basic_set ADim = 580 A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) 581 .project_out(isl::dim::set, i + 1, ALen - i - 1) 582 .project_out(isl::dim::set, 0, i); 583 isl::basic_set BDim = 584 B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) 585 .project_out(isl::dim::set, i + 1, BLen - i - 1) 586 .project_out(isl::dim::set, 0, i); 587 588 isl::basic_set AHull = isl::set(ADim).convex_hull(); 589 isl::basic_set BHull = isl::set(BDim).convex_hull(); 590 591 bool ALowerBounded = 592 bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); 593 bool BLowerBounded = 594 bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); 595 596 int BoundedCompare = BLowerBounded - ALowerBounded; 597 if (BoundedCompare != 0) 598 return BoundedCompare; 599 600 if (!ALowerBounded || !BLowerBounded) 601 continue; 602 603 isl::pw_aff AMin = isl::set(ADim).dim_min(0); 604 isl::pw_aff BMin = isl::set(BDim).dim_min(0); 605 606 isl::val AMinVal = polly::getConstant(AMin, false, true); 607 isl::val BMinVal = polly::getConstant(BMin, false, true); 608 609 int MinCompare = AMinVal.sub(BMinVal).sgn(); 610 if (MinCompare != 0) 611 return MinCompare; 612 } 613 614 // If all the dimensions' lower bounds are equal or incomparable, sort based 615 // on the number of dimensions. 616 return ALen - BLen; 617 } 618 619 /// Compare the sets @p A and @p B according to their nested space structure. 620 /// Returns 0 if the structure is considered equal. 621 /// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are 622 /// ignored, i.e. a tuple with the same name but different number of dimensions 623 /// are considered equal. 624 static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, 625 bool ConsiderTupleLen) { 626 int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); 627 if (WrappingCompare != 0) 628 return WrappingCompare; 629 630 if (ASpace.is_wrapping() && BSpace.is_wrapping()) { 631 isl::space AMap = ASpace.unwrap(); 632 isl::space BMap = BSpace.unwrap(); 633 634 int FirstResult = 635 structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); 636 if (FirstResult != 0) 637 return FirstResult; 638 639 return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); 640 } 641 642 std::string AName; 643 if (ASpace.has_tuple_name(isl::dim::set)) 644 AName = ASpace.get_tuple_name(isl::dim::set); 645 646 std::string BName; 647 if (BSpace.has_tuple_name(isl::dim::set)) 648 BName = BSpace.get_tuple_name(isl::dim::set); 649 650 int NameCompare = AName.compare(BName); 651 if (NameCompare != 0) 652 return NameCompare; 653 654 if (ConsiderTupleLen) { 655 int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set); 656 if (LenCompare != 0) 657 return LenCompare; 658 } 659 660 return 0; 661 } 662 663 /// Compare the sets @p A and @p B according to their nested space structure. If 664 /// the structure is the same, sort using the dimension lower bounds. 665 /// Returns an std::sort compatible bool. 666 static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { 667 isl::space ASpace = A.get_space(); 668 isl::space BSpace = B.get_space(); 669 670 // Ignoring number of dimensions first ensures that structures with same tuple 671 // names, but different number of dimensions are still sorted close together. 672 int TupleNestingCompare = structureCompare(ASpace, BSpace, false); 673 if (TupleNestingCompare != 0) 674 return TupleNestingCompare < 0; 675 676 int TupleCompare = structureCompare(ASpace, BSpace, true); 677 if (TupleCompare != 0) 678 return TupleCompare < 0; 679 680 return flatCompare(A, B) < 0; 681 } 682 683 /// Print a string representation of @p USet to @p OS. 684 /// 685 /// The pieces of @p USet are printed in a sorted order. Spaces with equal or 686 /// similar nesting structure are printed together. Compared to isl's own 687 /// printing function the uses the structure itself as base of the sorting, not 688 /// a hash of it. It ensures that e.g. maps spaces with same domain structure 689 /// are printed together. Set pieces with same structure are printed in order of 690 /// their lower bounds. 691 /// 692 /// @param USet Polyhedra to print. 693 /// @param OS Target stream. 694 /// @param Simplify Whether to simplify the polyhedron before printing. 695 /// @param IsMap Whether @p USet is a wrapped map. If true, sets are 696 /// unwrapped before printing to again appear as a map. 697 static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, 698 bool Simplify, bool IsMap) { 699 if (!USet) { 700 OS << "<null>\n"; 701 return; 702 } 703 704 if (Simplify) 705 simplify(USet); 706 707 // Get all the polyhedra. 708 std::vector<isl::basic_set> BSets; 709 USet.foreach_set([&BSets](isl::set Set) -> isl::stat { 710 Set.foreach_basic_set([&BSets](isl::basic_set BSet) -> isl::stat { 711 BSets.push_back(BSet); 712 return isl::stat::ok; 713 }); 714 return isl::stat::ok; 715 }); 716 717 if (BSets.empty()) { 718 OS << "{\n}\n"; 719 return; 720 } 721 722 // Sort the polyhedra. 723 llvm::sort(BSets.begin(), BSets.end(), orderComparer); 724 725 // Print the polyhedra. 726 bool First = true; 727 for (const isl::basic_set &BSet : BSets) { 728 std::string Str; 729 if (IsMap) 730 Str = isl::map(BSet.unwrap()).to_str(); 731 else 732 Str = isl::set(BSet).to_str(); 733 size_t OpenPos = Str.find_first_of('{'); 734 assert(OpenPos != std::string::npos); 735 size_t ClosePos = Str.find_last_of('}'); 736 assert(ClosePos != std::string::npos); 737 738 if (First) 739 OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; 740 else 741 OS << ";\n "; 742 743 OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); 744 First = false; 745 } 746 assert(!First); 747 OS << "\n}\n"; 748 } 749 750 static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { 751 int Dims = BSet.dim(isl::dim::set); 752 if (Dim >= Dims) { 753 Expanded = Expanded.unite(BSet); 754 return; 755 } 756 757 isl::basic_set DimOnly = 758 BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) 759 .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) 760 .project_out(isl::dim::set, 0, Dim); 761 if (!DimOnly.is_bounded()) { 762 recursiveExpand(BSet, Dim + 1, Expanded); 763 return; 764 } 765 766 foreachPoint(DimOnly, [&, Dim](isl::point P) { 767 isl::val Val = P.get_coordinate_val(isl::dim::set, 0); 768 isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); 769 recursiveExpand(FixBSet, Dim + 1, Expanded); 770 }); 771 } 772 773 /// Make each point of a set explicit. 774 /// 775 /// "Expanding" makes each point a set contains explicit. That is, the result is 776 /// a set of singleton polyhedra. Unbounded dimensions are not expanded. 777 /// 778 /// Example: 779 /// { [i] : 0 <= i < 2 } 780 /// is expanded to: 781 /// { [0]; [1] } 782 static isl::set expand(const isl::set &Set) { 783 isl::set Expanded = isl::set::empty(Set.get_space()); 784 Set.foreach_basic_set([&](isl::basic_set BSet) -> isl::stat { 785 recursiveExpand(BSet, 0, Expanded); 786 return isl::stat::ok; 787 }); 788 return Expanded; 789 } 790 791 /// Expand all points of a union set explicit. 792 /// 793 /// @see expand(const isl::set) 794 static isl::union_set expand(const isl::union_set &USet) { 795 isl::union_set Expanded = isl::union_set::empty(USet.get_space()); 796 USet.foreach_set([&](isl::set Set) -> isl::stat { 797 isl::set SetExpanded = expand(Set); 798 Expanded = Expanded.add_set(SetExpanded); 799 return isl::stat::ok; 800 }); 801 return Expanded; 802 } 803 804 LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { 805 printSortedPolyhedra(Set, llvm::errs(), true, false); 806 } 807 808 LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { 809 printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); 810 } 811 812 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { 813 printSortedPolyhedra(USet, llvm::errs(), true, false); 814 } 815 816 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { 817 printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); 818 } 819 820 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { 821 dumpPw(isl::manage_copy(Set)); 822 } 823 824 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { 825 dumpPw(isl::manage_copy(Map)); 826 } 827 828 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { 829 dumpPw(isl::manage_copy(USet)); 830 } 831 832 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { 833 dumpPw(isl::manage_copy(UMap)); 834 } 835 836 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { 837 printSortedPolyhedra(expand(Set), llvm::errs(), false, false); 838 } 839 840 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { 841 printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); 842 } 843 844 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { 845 printSortedPolyhedra(expand(USet), llvm::errs(), false, false); 846 } 847 848 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { 849 printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); 850 } 851 852 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { 853 dumpExpanded(isl::manage_copy(Set)); 854 } 855 856 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { 857 dumpExpanded(isl::manage_copy(Map)); 858 } 859 860 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { 861 dumpExpanded(isl::manage_copy(USet)); 862 } 863 864 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { 865 dumpExpanded(isl::manage_copy(UMap)); 866 } 867 #endif 868