1 //===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Tools, utilities, helpers and extensions useful in conjunction with the 10 // Integer Set Library (isl). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/Support/ISLTools.h" 15 #include "llvm/Support/raw_ostream.h" 16 #include <cassert> 17 #include <vector> 18 19 using namespace polly; 20 21 namespace { 22 /// Create a map that shifts one dimension by an offset. 23 /// 24 /// Example: 25 /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) 26 /// = { [i0, i1] -> [i0, i1 - 1] } 27 /// 28 /// @param Space The map space of the result. Must have equal number of in- and 29 /// out-dimensions. 30 /// @param Pos Position to shift. 31 /// @param Amount Value added to the shifted dimension. 32 /// 33 /// @return An isl_multi_aff for the map with this shifted dimension. 34 isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { 35 auto Identity = isl::multi_aff::identity(Space); 36 if (Amount == 0) 37 return Identity; 38 auto ShiftAff = Identity.get_aff(Pos); 39 ShiftAff = ShiftAff.set_constant_si(Amount); 40 return Identity.set_aff(Pos, ShiftAff); 41 } 42 43 /// Construct a map that swaps two nested tuples. 44 /// 45 /// @param FromSpace1 { Space1[] } 46 /// @param FromSpace2 { Space2[] } 47 /// 48 /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } 49 isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, 50 isl::space FromSpace2) { 51 // Fast-path on out-of-quota. 52 if (!FromSpace1 || !FromSpace2) 53 return {}; 54 55 assert(FromSpace1.is_set()); 56 assert(FromSpace2.is_set()); 57 58 unsigned Dims1 = FromSpace1.dim(isl::dim::set); 59 unsigned Dims2 = FromSpace2.dim(isl::dim::set); 60 61 isl::space FromSpace = 62 FromSpace1.map_from_domain_and_range(FromSpace2).wrap(); 63 isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap(); 64 isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace); 65 66 isl::basic_map Result = isl::basic_map::universe(MapSpace); 67 for (unsigned i = 0u; i < Dims1; i += 1) 68 Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i); 69 for (unsigned i = 0u; i < Dims2; i += 1) { 70 Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i); 71 } 72 73 return Result; 74 } 75 76 /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns 77 /// an isl_map. 78 isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { 79 isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2); 80 return isl::map(BMapResult); 81 } 82 } // anonymous namespace 83 84 isl::map polly::beforeScatter(isl::map Map, bool Strict) { 85 isl::space RangeSpace = Map.get_space().range(); 86 isl::map ScatterRel = 87 Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace); 88 return Map.apply_range(ScatterRel); 89 } 90 91 isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { 92 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 93 94 for (isl::map Map : UMap.get_map_list()) { 95 isl::map After = beforeScatter(Map, Strict); 96 Result = Result.add_map(After); 97 } 98 99 return Result; 100 } 101 102 isl::map polly::afterScatter(isl::map Map, bool Strict) { 103 isl::space RangeSpace = Map.get_space().range(); 104 isl::map ScatterRel = 105 Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace); 106 return Map.apply_range(ScatterRel); 107 } 108 109 isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { 110 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 111 for (isl::map Map : UMap.get_map_list()) { 112 isl::map After = afterScatter(Map, Strict); 113 Result = Result.add_map(After); 114 } 115 return Result; 116 } 117 118 isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, 119 bool InclTo) { 120 isl::map AfterFrom = afterScatter(From, !InclFrom); 121 isl::map BeforeTo = beforeScatter(To, !InclTo); 122 123 return AfterFrom.intersect(BeforeTo); 124 } 125 126 isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, 127 bool InclFrom, bool InclTo) { 128 isl::union_map AfterFrom = afterScatter(From, !InclFrom); 129 isl::union_map BeforeTo = beforeScatter(To, !InclTo); 130 131 return AfterFrom.intersect(BeforeTo); 132 } 133 134 isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { 135 if (!UMap) 136 return nullptr; 137 138 if (isl_union_map_n_map(UMap.get()) == 0) 139 return isl::map::empty(ExpectedSpace); 140 141 isl::map Result = isl::map::from_union_map(UMap); 142 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 143 144 return Result; 145 } 146 147 isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { 148 if (!USet) 149 return nullptr; 150 151 if (isl_union_set_n_set(USet.get()) == 0) 152 return isl::set::empty(ExpectedSpace); 153 154 isl::set Result(USet); 155 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 156 157 return Result; 158 } 159 160 unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { 161 unsigned Dims = 0; 162 for (isl::map Map : Schedule.get_map_list()) { 163 // Map.dim would return UINT_MAX. 164 if (!Map) 165 continue; 166 167 Dims = std::max(Dims, Map.dim(isl::dim::out)); 168 } 169 return Dims; 170 } 171 172 isl::space polly::getScatterSpace(const isl::union_map &Schedule) { 173 if (!Schedule) 174 return nullptr; 175 unsigned Dims = getNumScatterDims(Schedule); 176 isl::space ScatterSpace = Schedule.get_space().set_from_params(); 177 return ScatterSpace.add_dims(isl::dim::set, Dims); 178 } 179 180 isl::union_map polly::makeIdentityMap(const isl::union_set &USet, 181 bool RestrictDomain) { 182 isl::union_map Result = isl::union_map::empty(USet.get_space()); 183 for (isl::set Set : USet.get_set_list()) { 184 isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set()); 185 if (RestrictDomain) 186 IdentityMap = IdentityMap.intersect_domain(Set); 187 Result = Result.add_map(IdentityMap); 188 } 189 return Result; 190 } 191 192 isl::map polly::reverseDomain(isl::map Map) { 193 isl::space DomSpace = Map.get_space().domain().unwrap(); 194 isl::space Space1 = DomSpace.domain(); 195 isl::space Space2 = DomSpace.range(); 196 isl::map Swap = makeTupleSwapMap(Space1, Space2); 197 return Map.apply_domain(Swap); 198 } 199 200 isl::union_map polly::reverseDomain(const isl::union_map &UMap) { 201 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 202 for (isl::map Map : UMap.get_map_list()) { 203 auto Reversed = reverseDomain(std::move(Map)); 204 Result = Result.add_map(Reversed); 205 } 206 return Result; 207 } 208 209 isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { 210 int NumDims = Set.dim(isl::dim::set); 211 if (Pos < 0) 212 Pos = NumDims + Pos; 213 assert(Pos < NumDims && "Dimension index must be in range"); 214 isl::space Space = Set.get_space(); 215 Space = Space.map_from_domain_and_range(Space); 216 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 217 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 218 return Set.apply(TranslatorMap); 219 } 220 221 isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { 222 isl::union_set Result = isl::union_set::empty(USet.get_space()); 223 for (isl::set Set : USet.get_set_list()) { 224 isl::set Shifted = shiftDim(Set, Pos, Amount); 225 Result = Result.add_set(Shifted); 226 } 227 return Result; 228 } 229 230 isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { 231 int NumDims = Map.dim(Dim); 232 if (Pos < 0) 233 Pos = NumDims + Pos; 234 assert(Pos < NumDims && "Dimension index must be in range"); 235 isl::space Space = Map.get_space(); 236 switch (Dim) { 237 case isl::dim::in: 238 Space = Space.domain(); 239 break; 240 case isl::dim::out: 241 Space = Space.range(); 242 break; 243 default: 244 llvm_unreachable("Unsupported value for 'dim'"); 245 } 246 Space = Space.map_from_domain_and_range(Space); 247 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 248 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 249 switch (Dim) { 250 case isl::dim::in: 251 return Map.apply_domain(TranslatorMap); 252 case isl::dim::out: 253 return Map.apply_range(TranslatorMap); 254 default: 255 llvm_unreachable("Unsupported value for 'dim'"); 256 } 257 } 258 259 isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, 260 int Amount) { 261 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 262 263 for (isl::map Map : UMap.get_map_list()) { 264 isl::map Shifted = shiftDim(Map, Dim, Pos, Amount); 265 Result = Result.add_map(Shifted); 266 } 267 return Result; 268 } 269 270 void polly::simplify(isl::set &Set) { 271 Set = isl::manage(isl_set_compute_divs(Set.copy())); 272 Set = Set.detect_equalities(); 273 Set = Set.coalesce(); 274 } 275 276 void polly::simplify(isl::union_set &USet) { 277 USet = isl::manage(isl_union_set_compute_divs(USet.copy())); 278 USet = USet.detect_equalities(); 279 USet = USet.coalesce(); 280 } 281 282 void polly::simplify(isl::map &Map) { 283 Map = isl::manage(isl_map_compute_divs(Map.copy())); 284 Map = Map.detect_equalities(); 285 Map = Map.coalesce(); 286 } 287 288 void polly::simplify(isl::union_map &UMap) { 289 UMap = isl::manage(isl_union_map_compute_divs(UMap.copy())); 290 UMap = UMap.detect_equalities(); 291 UMap = UMap.coalesce(); 292 } 293 294 isl::union_map polly::computeReachingWrite(isl::union_map Schedule, 295 isl::union_map Writes, bool Reverse, 296 bool InclPrevDef, bool InclNextDef) { 297 298 // { Scatter[] } 299 isl::space ScatterSpace = getScatterSpace(Schedule); 300 301 // { ScatterRead[] -> ScatterWrite[] } 302 isl::map Relation; 303 if (Reverse) 304 Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) 305 : isl::map::lex_le(ScatterSpace); 306 else 307 Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) 308 : isl::map::lex_ge(ScatterSpace); 309 310 // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } 311 isl::map RelationMap = Relation.range_map().reverse(); 312 313 // { Element[] -> ScatterWrite[] } 314 isl::union_map WriteAction = Schedule.apply_domain(Writes); 315 316 // { ScatterWrite[] -> Element[] } 317 isl::union_map WriteActionRev = WriteAction.reverse(); 318 319 // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } 320 isl::union_map DefSchedRelation = 321 isl::union_map(RelationMap).apply_domain(WriteActionRev); 322 323 // For each element, at every point in time, map to the times of previous 324 // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } 325 isl::union_map ReachableWrites = DefSchedRelation.uncurry(); 326 if (Reverse) 327 ReachableWrites = ReachableWrites.lexmin(); 328 else 329 ReachableWrites = ReachableWrites.lexmax(); 330 331 // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } 332 isl::union_map SelfUse = WriteAction.range_map(); 333 334 if (InclPrevDef && InclNextDef) { 335 // Add the Def itself to the solution. 336 ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); 337 } else if (!InclPrevDef && !InclNextDef) { 338 // Remove Def itself from the solution. 339 ReachableWrites = ReachableWrites.subtract(SelfUse); 340 } 341 342 // { [Element[] -> ScatterRead[]] -> Domain[] } 343 return ReachableWrites.apply_range(Schedule.reverse()); 344 } 345 346 isl::union_map 347 polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, 348 isl::union_map Reads, bool ReadEltInSameInst, 349 bool IncludeLastRead, bool IncludeWrite) { 350 // { Element[] -> Scatter[] } 351 isl::union_map ReadActions = Schedule.apply_domain(Reads); 352 isl::union_map WriteActions = Schedule.apply_domain(Writes); 353 354 // { [Element[] -> DomainWrite[]] -> Scatter[] } 355 isl::union_map EltDomWrites = 356 Writes.reverse().range_map().apply_range(Schedule); 357 358 // { [Element[] -> Scatter[]] -> DomainWrite[] } 359 isl::union_map ReachingOverwrite = computeReachingWrite( 360 Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); 361 362 // { [Element[] -> Scatter[]] -> DomainWrite[] } 363 isl::union_map ReadsOverwritten = 364 ReachingOverwrite.intersect_domain(ReadActions.wrap()); 365 366 // { [Element[] -> DomainWrite[]] -> Scatter[] } 367 isl::union_map ReadsOverwrittenRotated = 368 reverseDomain(ReadsOverwritten).curry().reverse(); 369 isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax(); 370 371 // { [Element[] -> DomainWrite[]] -> Scatter[] } 372 isl::union_map BetweenLastReadOverwrite = betweenScatter( 373 LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); 374 375 // { [Element[] -> Scatter[]] -> DomainWrite[] } 376 isl::union_map ReachingOverwriteZone = computeReachingWrite( 377 Schedule, Writes, true, IncludeLastRead, IncludeWrite); 378 379 // { [Element[] -> DomainWrite[]] -> Scatter[] } 380 isl::union_map ReachingOverwriteRotated = 381 reverseDomain(ReachingOverwriteZone).curry().reverse(); 382 383 // { [Element[] -> DomainWrite[]] -> Scatter[] } 384 isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( 385 ReadsOverwrittenRotated.domain()); 386 387 return BetweenLastReadOverwrite.unite(WritesWithoutReads) 388 .domain_factor_domain(); 389 } 390 391 isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, 392 bool InclStart, bool InclEnd) { 393 if (!InclStart && InclEnd) 394 return Zone; 395 396 auto ShiftedZone = shiftDim(Zone, -1, -1); 397 if (InclStart && !InclEnd) 398 return ShiftedZone; 399 else if (!InclStart && !InclEnd) 400 return Zone.intersect(ShiftedZone); 401 402 assert(InclStart && InclEnd); 403 return Zone.unite(ShiftedZone); 404 } 405 406 isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, 407 bool InclStart, bool InclEnd) { 408 if (!InclStart && InclEnd) 409 return Zone; 410 411 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 412 if (InclStart && !InclEnd) 413 return ShiftedZone; 414 else if (!InclStart && !InclEnd) 415 return Zone.intersect(ShiftedZone); 416 417 assert(InclStart && InclEnd); 418 return Zone.unite(ShiftedZone); 419 } 420 421 isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, 422 bool InclStart, bool InclEnd) { 423 if (!InclStart && InclEnd) 424 return Zone; 425 426 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 427 if (InclStart && !InclEnd) 428 return ShiftedZone; 429 else if (!InclStart && !InclEnd) 430 return Zone.intersect(ShiftedZone); 431 432 assert(InclStart && InclEnd); 433 return Zone.unite(ShiftedZone); 434 } 435 436 isl::map polly::distributeDomain(isl::map Map) { 437 // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { 438 // Domain[] -> Range2[] } and combine again. We would loose any relation 439 // between Range1[] and Range2[] that is not also a constraint to Domain[]. 440 441 isl::space Space = Map.get_space(); 442 isl::space DomainSpace = Space.domain(); 443 if (!DomainSpace) 444 return {}; 445 unsigned DomainDims = DomainSpace.dim(isl::dim::set); 446 isl::space RangeSpace = Space.range().unwrap(); 447 isl::space Range1Space = RangeSpace.domain(); 448 if (!Range1Space) 449 return {}; 450 unsigned Range1Dims = Range1Space.dim(isl::dim::set); 451 isl::space Range2Space = RangeSpace.range(); 452 if (!Range2Space) 453 return {}; 454 unsigned Range2Dims = Range2Space.dim(isl::dim::set); 455 456 isl::space OutputSpace = 457 DomainSpace.map_from_domain_and_range(Range1Space) 458 .wrap() 459 .map_from_domain_and_range( 460 DomainSpace.map_from_domain_and_range(Range2Space).wrap()); 461 462 isl::basic_map Translator = isl::basic_map::universe( 463 Space.wrap().map_from_domain_and_range(OutputSpace.wrap())); 464 465 for (unsigned i = 0; i < DomainDims; i += 1) { 466 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i); 467 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, 468 DomainDims + Range1Dims + i); 469 } 470 for (unsigned i = 0; i < Range1Dims; i += 1) 471 Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out, 472 DomainDims + i); 473 for (unsigned i = 0; i < Range2Dims; i += 1) 474 Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i, 475 isl::dim::out, 476 DomainDims + Range1Dims + DomainDims + i); 477 478 return Map.wrap().apply(Translator).unwrap(); 479 } 480 481 isl::union_map polly::distributeDomain(isl::union_map UMap) { 482 isl::union_map Result = isl::union_map::empty(UMap.get_space()); 483 for (isl::map Map : UMap.get_map_list()) { 484 auto Distributed = distributeDomain(Map); 485 Result = Result.add_map(Distributed); 486 } 487 return Result; 488 } 489 490 isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { 491 492 // { Factor[] -> Factor[] } 493 isl::union_map Factors = makeIdentityMap(Factor, true); 494 495 return Factors.product(UMap); 496 } 497 498 isl::union_map polly::applyDomainRange(isl::union_map UMap, 499 isl::union_map Func) { 500 // This implementation creates unnecessary cross products of the 501 // DomainDomain[] and Func. An alternative implementation could reverse 502 // domain+uncurry,apply Func to what now is the domain, then undo the 503 // preparing transformation. Another alternative implementation could create a 504 // translator map for each piece. 505 506 // { DomainDomain[] } 507 isl::union_set DomainDomain = UMap.domain().unwrap().domain(); 508 509 // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] 510 // } 511 isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain); 512 513 return UMap.apply_domain(LifetedFunc); 514 } 515 516 isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { 517 isl::set RangeSet = Range.extract_set(Map.get_space().range()); 518 return Map.intersect_range(RangeSet); 519 } 520 521 isl::map polly::subtractParams(isl::map Map, isl::set Params) { 522 auto MapSpace = Map.get_space(); 523 auto ParamsMap = isl::map::universe(MapSpace).intersect_params(Params); 524 return Map.subtract(ParamsMap); 525 } 526 527 isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { 528 assert(!Max || !Min); // Cannot return min and max at the same time. 529 isl::val Result; 530 isl::stat Stat = PwAff.foreach_piece( 531 [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { 532 if (Result && Result.is_nan()) 533 return isl::stat::ok(); 534 535 // TODO: If Min/Max, we can also determine a minimum/maximum value if 536 // Set is constant-bounded. 537 if (!Aff.is_cst()) { 538 Result = isl::val::nan(Aff.get_ctx()); 539 return isl::stat::error(); 540 } 541 542 isl::val ThisVal = Aff.get_constant_val(); 543 if (!Result) { 544 Result = ThisVal; 545 return isl::stat::ok(); 546 } 547 548 if (Result.eq(ThisVal)) 549 return isl::stat::ok(); 550 551 if (Max && ThisVal.gt(Result)) { 552 Result = ThisVal; 553 return isl::stat::ok(); 554 } 555 556 if (Min && ThisVal.lt(Result)) { 557 Result = ThisVal; 558 return isl::stat::ok(); 559 } 560 561 // Not compatible 562 Result = isl::val::nan(Aff.get_ctx()); 563 return isl::stat::error(); 564 }); 565 566 if (Stat.is_error()) 567 return {}; 568 569 return Result; 570 } 571 572 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 573 static void foreachPoint(const isl::set &Set, 574 const std::function<void(isl::point P)> &F) { 575 Set.foreach_point([&](isl::point P) -> isl::stat { 576 F(P); 577 return isl::stat::ok(); 578 }); 579 } 580 581 static void foreachPoint(isl::basic_set BSet, 582 const std::function<void(isl::point P)> &F) { 583 foreachPoint(isl::set(BSet), F); 584 } 585 586 /// Determine the sorting order of the sets @p A and @p B without considering 587 /// the space structure. 588 /// 589 /// Ordering is based on the lower bounds of the set's dimensions. First 590 /// dimensions are considered first. 591 static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { 592 // Quick bail-out on out-of-quota. 593 if (!A || !B) 594 return 0; 595 596 unsigned ALen = A.dim(isl::dim::set); 597 unsigned BLen = B.dim(isl::dim::set); 598 unsigned Len = std::min(ALen, BLen); 599 600 for (unsigned i = 0; i < Len; i += 1) { 601 isl::basic_set ADim = 602 A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) 603 .project_out(isl::dim::set, i + 1, ALen - i - 1) 604 .project_out(isl::dim::set, 0, i); 605 isl::basic_set BDim = 606 B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) 607 .project_out(isl::dim::set, i + 1, BLen - i - 1) 608 .project_out(isl::dim::set, 0, i); 609 610 isl::basic_set AHull = isl::set(ADim).convex_hull(); 611 isl::basic_set BHull = isl::set(BDim).convex_hull(); 612 613 bool ALowerBounded = 614 bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); 615 bool BLowerBounded = 616 bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); 617 618 int BoundedCompare = BLowerBounded - ALowerBounded; 619 if (BoundedCompare != 0) 620 return BoundedCompare; 621 622 if (!ALowerBounded || !BLowerBounded) 623 continue; 624 625 isl::pw_aff AMin = isl::set(ADim).dim_min(0); 626 isl::pw_aff BMin = isl::set(BDim).dim_min(0); 627 628 isl::val AMinVal = polly::getConstant(AMin, false, true); 629 isl::val BMinVal = polly::getConstant(BMin, false, true); 630 631 int MinCompare = AMinVal.sub(BMinVal).sgn(); 632 if (MinCompare != 0) 633 return MinCompare; 634 } 635 636 // If all the dimensions' lower bounds are equal or incomparable, sort based 637 // on the number of dimensions. 638 return ALen - BLen; 639 } 640 641 /// Compare the sets @p A and @p B according to their nested space structure. 642 /// Returns 0 if the structure is considered equal. 643 /// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are 644 /// ignored, i.e. a tuple with the same name but different number of dimensions 645 /// are considered equal. 646 static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, 647 bool ConsiderTupleLen) { 648 int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); 649 if (WrappingCompare != 0) 650 return WrappingCompare; 651 652 if (ASpace.is_wrapping() && BSpace.is_wrapping()) { 653 isl::space AMap = ASpace.unwrap(); 654 isl::space BMap = BSpace.unwrap(); 655 656 int FirstResult = 657 structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); 658 if (FirstResult != 0) 659 return FirstResult; 660 661 return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); 662 } 663 664 std::string AName; 665 if (ASpace.has_tuple_name(isl::dim::set)) 666 AName = ASpace.get_tuple_name(isl::dim::set); 667 668 std::string BName; 669 if (BSpace.has_tuple_name(isl::dim::set)) 670 BName = BSpace.get_tuple_name(isl::dim::set); 671 672 int NameCompare = AName.compare(BName); 673 if (NameCompare != 0) 674 return NameCompare; 675 676 if (ConsiderTupleLen) { 677 int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set); 678 if (LenCompare != 0) 679 return LenCompare; 680 } 681 682 return 0; 683 } 684 685 /// Compare the sets @p A and @p B according to their nested space structure. If 686 /// the structure is the same, sort using the dimension lower bounds. 687 /// Returns an std::sort compatible bool. 688 static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { 689 isl::space ASpace = A.get_space(); 690 isl::space BSpace = B.get_space(); 691 692 // Ignoring number of dimensions first ensures that structures with same tuple 693 // names, but different number of dimensions are still sorted close together. 694 int TupleNestingCompare = structureCompare(ASpace, BSpace, false); 695 if (TupleNestingCompare != 0) 696 return TupleNestingCompare < 0; 697 698 int TupleCompare = structureCompare(ASpace, BSpace, true); 699 if (TupleCompare != 0) 700 return TupleCompare < 0; 701 702 return flatCompare(A, B) < 0; 703 } 704 705 /// Print a string representation of @p USet to @p OS. 706 /// 707 /// The pieces of @p USet are printed in a sorted order. Spaces with equal or 708 /// similar nesting structure are printed together. Compared to isl's own 709 /// printing function the uses the structure itself as base of the sorting, not 710 /// a hash of it. It ensures that e.g. maps spaces with same domain structure 711 /// are printed together. Set pieces with same structure are printed in order of 712 /// their lower bounds. 713 /// 714 /// @param USet Polyhedra to print. 715 /// @param OS Target stream. 716 /// @param Simplify Whether to simplify the polyhedron before printing. 717 /// @param IsMap Whether @p USet is a wrapped map. If true, sets are 718 /// unwrapped before printing to again appear as a map. 719 static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, 720 bool Simplify, bool IsMap) { 721 if (!USet) { 722 OS << "<null>\n"; 723 return; 724 } 725 726 if (Simplify) 727 simplify(USet); 728 729 // Get all the polyhedra. 730 std::vector<isl::basic_set> BSets; 731 732 for (isl::set Set : USet.get_set_list()) { 733 for (isl::basic_set BSet : Set.get_basic_set_list()) { 734 BSets.push_back(BSet); 735 } 736 } 737 738 if (BSets.empty()) { 739 OS << "{\n}\n"; 740 return; 741 } 742 743 // Sort the polyhedra. 744 llvm::sort(BSets, orderComparer); 745 746 // Print the polyhedra. 747 bool First = true; 748 for (const isl::basic_set &BSet : BSets) { 749 std::string Str; 750 if (IsMap) 751 Str = isl::map(BSet.unwrap()).to_str(); 752 else 753 Str = isl::set(BSet).to_str(); 754 size_t OpenPos = Str.find_first_of('{'); 755 assert(OpenPos != std::string::npos); 756 size_t ClosePos = Str.find_last_of('}'); 757 assert(ClosePos != std::string::npos); 758 759 if (First) 760 OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; 761 else 762 OS << ";\n "; 763 764 OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); 765 First = false; 766 } 767 assert(!First); 768 OS << "\n}\n"; 769 } 770 771 static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { 772 int Dims = BSet.dim(isl::dim::set); 773 if (Dim >= Dims) { 774 Expanded = Expanded.unite(BSet); 775 return; 776 } 777 778 isl::basic_set DimOnly = 779 BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) 780 .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) 781 .project_out(isl::dim::set, 0, Dim); 782 if (!DimOnly.is_bounded()) { 783 recursiveExpand(BSet, Dim + 1, Expanded); 784 return; 785 } 786 787 foreachPoint(DimOnly, [&, Dim](isl::point P) { 788 isl::val Val = P.get_coordinate_val(isl::dim::set, 0); 789 isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); 790 recursiveExpand(FixBSet, Dim + 1, Expanded); 791 }); 792 } 793 794 /// Make each point of a set explicit. 795 /// 796 /// "Expanding" makes each point a set contains explicit. That is, the result is 797 /// a set of singleton polyhedra. Unbounded dimensions are not expanded. 798 /// 799 /// Example: 800 /// { [i] : 0 <= i < 2 } 801 /// is expanded to: 802 /// { [0]; [1] } 803 static isl::set expand(const isl::set &Set) { 804 isl::set Expanded = isl::set::empty(Set.get_space()); 805 for (isl::basic_set BSet : Set.get_basic_set_list()) 806 recursiveExpand(BSet, 0, Expanded); 807 return Expanded; 808 } 809 810 /// Expand all points of a union set explicit. 811 /// 812 /// @see expand(const isl::set) 813 static isl::union_set expand(const isl::union_set &USet) { 814 isl::union_set Expanded = isl::union_set::empty(USet.get_space()); 815 for (isl::set Set : USet.get_set_list()) { 816 isl::set SetExpanded = expand(Set); 817 Expanded = Expanded.add_set(SetExpanded); 818 } 819 return Expanded; 820 } 821 822 LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { 823 printSortedPolyhedra(Set, llvm::errs(), true, false); 824 } 825 826 LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { 827 printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); 828 } 829 830 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { 831 printSortedPolyhedra(USet, llvm::errs(), true, false); 832 } 833 834 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { 835 printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); 836 } 837 838 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { 839 dumpPw(isl::manage_copy(Set)); 840 } 841 842 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { 843 dumpPw(isl::manage_copy(Map)); 844 } 845 846 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { 847 dumpPw(isl::manage_copy(USet)); 848 } 849 850 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { 851 dumpPw(isl::manage_copy(UMap)); 852 } 853 854 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { 855 printSortedPolyhedra(expand(Set), llvm::errs(), false, false); 856 } 857 858 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { 859 printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); 860 } 861 862 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { 863 printSortedPolyhedra(expand(USet), llvm::errs(), false, false); 864 } 865 866 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { 867 printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); 868 } 869 870 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { 871 dumpExpanded(isl::manage_copy(Set)); 872 } 873 874 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { 875 dumpExpanded(isl::manage_copy(Map)); 876 } 877 878 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { 879 dumpExpanded(isl::manage_copy(USet)); 880 } 881 882 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { 883 dumpExpanded(isl::manage_copy(UMap)); 884 } 885 #endif 886