1 //===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Tools, utilities, helpers and extensions useful in conjunction with the 10 // Integer Set Library (isl). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/Support/ISLTools.h" 15 #include "polly/Support/GICHelper.h" 16 #include "llvm/Support/raw_ostream.h" 17 #include <cassert> 18 #include <vector> 19 20 using namespace polly; 21 22 namespace { 23 /// Create a map that shifts one dimension by an offset. 24 /// 25 /// Example: 26 /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) 27 /// = { [i0, i1] -> [i0, i1 - 1] } 28 /// 29 /// @param Space The map space of the result. Must have equal number of in- and 30 /// out-dimensions. 31 /// @param Pos Position to shift. 32 /// @param Amount Value added to the shifted dimension. 33 /// 34 /// @return An isl_multi_aff for the map with this shifted dimension. 35 isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { 36 auto Identity = isl::multi_aff::identity(Space); 37 if (Amount == 0) 38 return Identity; 39 auto ShiftAff = Identity.at(Pos); 40 ShiftAff = ShiftAff.set_constant_si(Amount); 41 return Identity.set_aff(Pos, ShiftAff); 42 } 43 44 /// Construct a map that swaps two nested tuples. 45 /// 46 /// @param FromSpace1 { Space1[] } 47 /// @param FromSpace2 { Space2[] } 48 /// 49 /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } 50 isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, 51 isl::space FromSpace2) { 52 // Fast-path on out-of-quota. 53 if (FromSpace1.is_null() || FromSpace2.is_null()) 54 return {}; 55 56 assert(FromSpace1.is_set()); 57 assert(FromSpace2.is_set()); 58 59 unsigned Dims1 = FromSpace1.dim(isl::dim::set).release(); 60 unsigned Dims2 = FromSpace2.dim(isl::dim::set).release(); 61 62 isl::space FromSpace = 63 FromSpace1.map_from_domain_and_range(FromSpace2).wrap(); 64 isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap(); 65 isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace); 66 67 isl::basic_map Result = isl::basic_map::universe(MapSpace); 68 for (unsigned i = 0u; i < Dims1; i += 1) 69 Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i); 70 for (unsigned i = 0u; i < Dims2; i += 1) { 71 Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i); 72 } 73 74 return Result; 75 } 76 77 /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns 78 /// an isl_map. 79 isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { 80 isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2); 81 return isl::map(BMapResult); 82 } 83 } // anonymous namespace 84 85 isl::map polly::beforeScatter(isl::map Map, bool Strict) { 86 isl::space RangeSpace = Map.get_space().range(); 87 isl::map ScatterRel = 88 Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace); 89 return Map.apply_range(ScatterRel); 90 } 91 92 isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { 93 isl::union_map Result = isl::union_map::empty(UMap.ctx()); 94 95 for (isl::map Map : UMap.get_map_list()) { 96 isl::map After = beforeScatter(Map, Strict); 97 Result = Result.unite(After); 98 } 99 100 return Result; 101 } 102 103 isl::map polly::afterScatter(isl::map Map, bool Strict) { 104 isl::space RangeSpace = Map.get_space().range(); 105 isl::map ScatterRel = 106 Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace); 107 return Map.apply_range(ScatterRel); 108 } 109 110 isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { 111 isl::union_map Result = isl::union_map::empty(UMap.ctx()); 112 for (isl::map Map : UMap.get_map_list()) { 113 isl::map After = afterScatter(Map, Strict); 114 Result = Result.unite(After); 115 } 116 return Result; 117 } 118 119 isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, 120 bool InclTo) { 121 isl::map AfterFrom = afterScatter(From, !InclFrom); 122 isl::map BeforeTo = beforeScatter(To, !InclTo); 123 124 return AfterFrom.intersect(BeforeTo); 125 } 126 127 isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, 128 bool InclFrom, bool InclTo) { 129 isl::union_map AfterFrom = afterScatter(From, !InclFrom); 130 isl::union_map BeforeTo = beforeScatter(To, !InclTo); 131 132 return AfterFrom.intersect(BeforeTo); 133 } 134 135 isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { 136 if (UMap.is_null()) 137 return {}; 138 139 if (isl_union_map_n_map(UMap.get()) == 0) 140 return isl::map::empty(ExpectedSpace); 141 142 isl::map Result = isl::map::from_union_map(UMap); 143 assert(Result.is_null() || 144 Result.get_space().has_equal_tuples(ExpectedSpace)); 145 146 return Result; 147 } 148 149 isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { 150 if (USet.is_null()) 151 return {}; 152 153 if (isl_union_set_n_set(USet.get()) == 0) 154 return isl::set::empty(ExpectedSpace); 155 156 isl::set Result(USet); 157 assert(Result.is_null() || 158 Result.get_space().has_equal_tuples(ExpectedSpace)); 159 160 return Result; 161 } 162 163 isl_size polly::getNumScatterDims(const isl::union_map &Schedule) { 164 isl_size Dims = 0; 165 for (isl::map Map : Schedule.get_map_list()) { 166 if (Map.is_null()) 167 continue; 168 169 Dims = std::max(Dims, Map.range_tuple_dim().release()); 170 } 171 return Dims; 172 } 173 174 isl::space polly::getScatterSpace(const isl::union_map &Schedule) { 175 if (Schedule.is_null()) 176 return {}; 177 unsigned Dims = getNumScatterDims(Schedule); 178 isl::space ScatterSpace = Schedule.get_space().set_from_params(); 179 return ScatterSpace.add_dims(isl::dim::set, Dims); 180 } 181 182 isl::map polly::makeIdentityMap(const isl::set &Set, bool RestrictDomain) { 183 isl::map Result = isl::map::identity(Set.get_space().map_from_set()); 184 if (RestrictDomain) 185 Result = Result.intersect_domain(Set); 186 return Result; 187 } 188 189 isl::union_map polly::makeIdentityMap(const isl::union_set &USet, 190 bool RestrictDomain) { 191 isl::union_map Result = isl::union_map::empty(USet.ctx()); 192 for (isl::set Set : USet.get_set_list()) { 193 isl::map IdentityMap = makeIdentityMap(Set, RestrictDomain); 194 Result = Result.unite(IdentityMap); 195 } 196 return Result; 197 } 198 199 isl::map polly::reverseDomain(isl::map Map) { 200 isl::space DomSpace = Map.get_space().domain().unwrap(); 201 isl::space Space1 = DomSpace.domain(); 202 isl::space Space2 = DomSpace.range(); 203 isl::map Swap = makeTupleSwapMap(Space1, Space2); 204 return Map.apply_domain(Swap); 205 } 206 207 isl::union_map polly::reverseDomain(const isl::union_map &UMap) { 208 isl::union_map Result = isl::union_map::empty(UMap.ctx()); 209 for (isl::map Map : UMap.get_map_list()) { 210 auto Reversed = reverseDomain(std::move(Map)); 211 Result = Result.unite(Reversed); 212 } 213 return Result; 214 } 215 216 isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { 217 int NumDims = Set.tuple_dim().release(); 218 if (Pos < 0) 219 Pos = NumDims + Pos; 220 assert(Pos < NumDims && "Dimension index must be in range"); 221 isl::space Space = Set.get_space(); 222 Space = Space.map_from_domain_and_range(Space); 223 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 224 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 225 return Set.apply(TranslatorMap); 226 } 227 228 isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { 229 isl::union_set Result = isl::union_set::empty(USet.ctx()); 230 for (isl::set Set : USet.get_set_list()) { 231 isl::set Shifted = shiftDim(Set, Pos, Amount); 232 Result = Result.unite(Shifted); 233 } 234 return Result; 235 } 236 237 isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { 238 int NumDims = Map.dim(Dim).release(); 239 if (Pos < 0) 240 Pos = NumDims + Pos; 241 assert(Pos < NumDims && "Dimension index must be in range"); 242 isl::space Space = Map.get_space(); 243 switch (Dim) { 244 case isl::dim::in: 245 Space = Space.domain(); 246 break; 247 case isl::dim::out: 248 Space = Space.range(); 249 break; 250 default: 251 llvm_unreachable("Unsupported value for 'dim'"); 252 } 253 Space = Space.map_from_domain_and_range(Space); 254 isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); 255 isl::map TranslatorMap = isl::map::from_multi_aff(Translator); 256 switch (Dim) { 257 case isl::dim::in: 258 return Map.apply_domain(TranslatorMap); 259 case isl::dim::out: 260 return Map.apply_range(TranslatorMap); 261 default: 262 llvm_unreachable("Unsupported value for 'dim'"); 263 } 264 } 265 266 isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, 267 int Amount) { 268 isl::union_map Result = isl::union_map::empty(UMap.ctx()); 269 270 for (isl::map Map : UMap.get_map_list()) { 271 isl::map Shifted = shiftDim(Map, Dim, Pos, Amount); 272 Result = Result.unite(Shifted); 273 } 274 return Result; 275 } 276 277 void polly::simplify(isl::set &Set) { 278 Set = isl::manage(isl_set_compute_divs(Set.copy())); 279 Set = Set.detect_equalities(); 280 Set = Set.coalesce(); 281 } 282 283 void polly::simplify(isl::union_set &USet) { 284 USet = isl::manage(isl_union_set_compute_divs(USet.copy())); 285 USet = USet.detect_equalities(); 286 USet = USet.coalesce(); 287 } 288 289 void polly::simplify(isl::map &Map) { 290 Map = isl::manage(isl_map_compute_divs(Map.copy())); 291 Map = Map.detect_equalities(); 292 Map = Map.coalesce(); 293 } 294 295 void polly::simplify(isl::union_map &UMap) { 296 UMap = isl::manage(isl_union_map_compute_divs(UMap.copy())); 297 UMap = UMap.detect_equalities(); 298 UMap = UMap.coalesce(); 299 } 300 301 isl::union_map polly::computeReachingWrite(isl::union_map Schedule, 302 isl::union_map Writes, bool Reverse, 303 bool InclPrevDef, bool InclNextDef) { 304 305 // { Scatter[] } 306 isl::space ScatterSpace = getScatterSpace(Schedule); 307 308 // { ScatterRead[] -> ScatterWrite[] } 309 isl::map Relation; 310 if (Reverse) 311 Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) 312 : isl::map::lex_le(ScatterSpace); 313 else 314 Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) 315 : isl::map::lex_ge(ScatterSpace); 316 317 // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } 318 isl::map RelationMap = Relation.range_map().reverse(); 319 320 // { Element[] -> ScatterWrite[] } 321 isl::union_map WriteAction = Schedule.apply_domain(Writes); 322 323 // { ScatterWrite[] -> Element[] } 324 isl::union_map WriteActionRev = WriteAction.reverse(); 325 326 // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } 327 isl::union_map DefSchedRelation = 328 isl::union_map(RelationMap).apply_domain(WriteActionRev); 329 330 // For each element, at every point in time, map to the times of previous 331 // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } 332 isl::union_map ReachableWrites = DefSchedRelation.uncurry(); 333 if (Reverse) 334 ReachableWrites = ReachableWrites.lexmin(); 335 else 336 ReachableWrites = ReachableWrites.lexmax(); 337 338 // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } 339 isl::union_map SelfUse = WriteAction.range_map(); 340 341 if (InclPrevDef && InclNextDef) { 342 // Add the Def itself to the solution. 343 ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); 344 } else if (!InclPrevDef && !InclNextDef) { 345 // Remove Def itself from the solution. 346 ReachableWrites = ReachableWrites.subtract(SelfUse); 347 } 348 349 // { [Element[] -> ScatterRead[]] -> Domain[] } 350 return ReachableWrites.apply_range(Schedule.reverse()); 351 } 352 353 isl::union_map 354 polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, 355 isl::union_map Reads, bool ReadEltInSameInst, 356 bool IncludeLastRead, bool IncludeWrite) { 357 // { Element[] -> Scatter[] } 358 isl::union_map ReadActions = Schedule.apply_domain(Reads); 359 isl::union_map WriteActions = Schedule.apply_domain(Writes); 360 361 // { [Element[] -> DomainWrite[]] -> Scatter[] } 362 isl::union_map EltDomWrites = 363 Writes.reverse().range_map().apply_range(Schedule); 364 365 // { [Element[] -> Scatter[]] -> DomainWrite[] } 366 isl::union_map ReachingOverwrite = computeReachingWrite( 367 Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); 368 369 // { [Element[] -> Scatter[]] -> DomainWrite[] } 370 isl::union_map ReadsOverwritten = 371 ReachingOverwrite.intersect_domain(ReadActions.wrap()); 372 373 // { [Element[] -> DomainWrite[]] -> Scatter[] } 374 isl::union_map ReadsOverwrittenRotated = 375 reverseDomain(ReadsOverwritten).curry().reverse(); 376 isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax(); 377 378 // { [Element[] -> DomainWrite[]] -> Scatter[] } 379 isl::union_map BetweenLastReadOverwrite = betweenScatter( 380 LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); 381 382 // { [Element[] -> Scatter[]] -> DomainWrite[] } 383 isl::union_map ReachingOverwriteZone = computeReachingWrite( 384 Schedule, Writes, true, IncludeLastRead, IncludeWrite); 385 386 // { [Element[] -> DomainWrite[]] -> Scatter[] } 387 isl::union_map ReachingOverwriteRotated = 388 reverseDomain(ReachingOverwriteZone).curry().reverse(); 389 390 // { [Element[] -> DomainWrite[]] -> Scatter[] } 391 isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( 392 ReadsOverwrittenRotated.domain()); 393 394 return BetweenLastReadOverwrite.unite(WritesWithoutReads) 395 .domain_factor_domain(); 396 } 397 398 isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, 399 bool InclStart, bool InclEnd) { 400 if (!InclStart && InclEnd) 401 return Zone; 402 403 auto ShiftedZone = shiftDim(Zone, -1, -1); 404 if (InclStart && !InclEnd) 405 return ShiftedZone; 406 else if (!InclStart && !InclEnd) 407 return Zone.intersect(ShiftedZone); 408 409 assert(InclStart && InclEnd); 410 return Zone.unite(ShiftedZone); 411 } 412 413 isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, 414 bool InclStart, bool InclEnd) { 415 if (!InclStart && InclEnd) 416 return Zone; 417 418 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 419 if (InclStart && !InclEnd) 420 return ShiftedZone; 421 else if (!InclStart && !InclEnd) 422 return Zone.intersect(ShiftedZone); 423 424 assert(InclStart && InclEnd); 425 return Zone.unite(ShiftedZone); 426 } 427 428 isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, 429 bool InclStart, bool InclEnd) { 430 if (!InclStart && InclEnd) 431 return Zone; 432 433 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 434 if (InclStart && !InclEnd) 435 return ShiftedZone; 436 else if (!InclStart && !InclEnd) 437 return Zone.intersect(ShiftedZone); 438 439 assert(InclStart && InclEnd); 440 return Zone.unite(ShiftedZone); 441 } 442 443 isl::map polly::distributeDomain(isl::map Map) { 444 // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { 445 // Domain[] -> Range2[] } and combine again. We would loose any relation 446 // between Range1[] and Range2[] that is not also a constraint to Domain[]. 447 448 isl::space Space = Map.get_space(); 449 isl::space DomainSpace = Space.domain(); 450 if (DomainSpace.is_null()) 451 return {}; 452 unsigned DomainDims = DomainSpace.dim(isl::dim::set).release(); 453 isl::space RangeSpace = Space.range().unwrap(); 454 isl::space Range1Space = RangeSpace.domain(); 455 if (Range1Space.is_null()) 456 return {}; 457 unsigned Range1Dims = Range1Space.dim(isl::dim::set).release(); 458 isl::space Range2Space = RangeSpace.range(); 459 if (Range2Space.is_null()) 460 return {}; 461 unsigned Range2Dims = Range2Space.dim(isl::dim::set).release(); 462 463 isl::space OutputSpace = 464 DomainSpace.map_from_domain_and_range(Range1Space) 465 .wrap() 466 .map_from_domain_and_range( 467 DomainSpace.map_from_domain_and_range(Range2Space).wrap()); 468 469 isl::basic_map Translator = isl::basic_map::universe( 470 Space.wrap().map_from_domain_and_range(OutputSpace.wrap())); 471 472 for (unsigned i = 0; i < DomainDims; i += 1) { 473 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i); 474 Translator = Translator.equate(isl::dim::in, i, isl::dim::out, 475 DomainDims + Range1Dims + i); 476 } 477 for (unsigned i = 0; i < Range1Dims; i += 1) 478 Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out, 479 DomainDims + i); 480 for (unsigned i = 0; i < Range2Dims; i += 1) 481 Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i, 482 isl::dim::out, 483 DomainDims + Range1Dims + DomainDims + i); 484 485 return Map.wrap().apply(Translator).unwrap(); 486 } 487 488 isl::union_map polly::distributeDomain(isl::union_map UMap) { 489 isl::union_map Result = isl::union_map::empty(UMap.ctx()); 490 for (isl::map Map : UMap.get_map_list()) { 491 auto Distributed = distributeDomain(Map); 492 Result = Result.unite(Distributed); 493 } 494 return Result; 495 } 496 497 isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { 498 499 // { Factor[] -> Factor[] } 500 isl::union_map Factors = makeIdentityMap(Factor, true); 501 502 return Factors.product(UMap); 503 } 504 505 isl::union_map polly::applyDomainRange(isl::union_map UMap, 506 isl::union_map Func) { 507 // This implementation creates unnecessary cross products of the 508 // DomainDomain[] and Func. An alternative implementation could reverse 509 // domain+uncurry,apply Func to what now is the domain, then undo the 510 // preparing transformation. Another alternative implementation could create a 511 // translator map for each piece. 512 513 // { DomainDomain[] } 514 isl::union_set DomainDomain = UMap.domain().unwrap().domain(); 515 516 // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] 517 // } 518 isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain); 519 520 return UMap.apply_domain(LifetedFunc); 521 } 522 523 isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { 524 isl::set RangeSet = Range.extract_set(Map.get_space().range()); 525 return Map.intersect_range(RangeSet); 526 } 527 528 isl::map polly::subtractParams(isl::map Map, isl::set Params) { 529 auto MapSpace = Map.get_space(); 530 auto ParamsMap = isl::map::universe(MapSpace).intersect_params(Params); 531 return Map.subtract(ParamsMap); 532 } 533 534 isl::set polly::subtractParams(isl::set Set, isl::set Params) { 535 isl::space SetSpace = Set.get_space(); 536 isl::set ParamsSet = isl::set::universe(SetSpace).intersect_params(Params); 537 return Set.subtract(ParamsSet); 538 } 539 540 isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { 541 assert(!Max || !Min); // Cannot return min and max at the same time. 542 isl::val Result; 543 isl::stat Stat = PwAff.foreach_piece( 544 [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { 545 if (!Result.is_null() && Result.is_nan()) 546 return isl::stat::ok(); 547 548 // TODO: If Min/Max, we can also determine a minimum/maximum value if 549 // Set is constant-bounded. 550 if (!Aff.is_cst()) { 551 Result = isl::val::nan(Aff.ctx()); 552 return isl::stat::error(); 553 } 554 555 isl::val ThisVal = Aff.get_constant_val(); 556 if (Result.is_null()) { 557 Result = ThisVal; 558 return isl::stat::ok(); 559 } 560 561 if (Result.eq(ThisVal)) 562 return isl::stat::ok(); 563 564 if (Max && ThisVal.gt(Result)) { 565 Result = ThisVal; 566 return isl::stat::ok(); 567 } 568 569 if (Min && ThisVal.lt(Result)) { 570 Result = ThisVal; 571 return isl::stat::ok(); 572 } 573 574 // Not compatible 575 Result = isl::val::nan(Aff.ctx()); 576 return isl::stat::error(); 577 }); 578 579 if (Stat.is_error()) 580 return {}; 581 582 return Result; 583 } 584 585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 586 static void foreachPoint(const isl::set &Set, 587 const std::function<void(isl::point P)> &F) { 588 Set.foreach_point([&](isl::point P) -> isl::stat { 589 F(P); 590 return isl::stat::ok(); 591 }); 592 } 593 594 static void foreachPoint(isl::basic_set BSet, 595 const std::function<void(isl::point P)> &F) { 596 foreachPoint(isl::set(BSet), F); 597 } 598 599 /// Determine the sorting order of the sets @p A and @p B without considering 600 /// the space structure. 601 /// 602 /// Ordering is based on the lower bounds of the set's dimensions. First 603 /// dimensions are considered first. 604 static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { 605 // Quick bail-out on out-of-quota. 606 if (A.is_null() || B.is_null()) 607 return 0; 608 609 unsigned ALen = A.dim(isl::dim::set).release(); 610 unsigned BLen = B.dim(isl::dim::set).release(); 611 unsigned Len = std::min(ALen, BLen); 612 613 for (unsigned i = 0; i < Len; i += 1) { 614 isl::basic_set ADim = 615 A.project_out(isl::dim::param, 0, A.dim(isl::dim::param).release()) 616 .project_out(isl::dim::set, i + 1, ALen - i - 1) 617 .project_out(isl::dim::set, 0, i); 618 isl::basic_set BDim = 619 B.project_out(isl::dim::param, 0, B.dim(isl::dim::param).release()) 620 .project_out(isl::dim::set, i + 1, BLen - i - 1) 621 .project_out(isl::dim::set, 0, i); 622 623 isl::basic_set AHull = isl::set(ADim).convex_hull(); 624 isl::basic_set BHull = isl::set(BDim).convex_hull(); 625 626 bool ALowerBounded = 627 bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); 628 bool BLowerBounded = 629 bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); 630 631 int BoundedCompare = BLowerBounded - ALowerBounded; 632 if (BoundedCompare != 0) 633 return BoundedCompare; 634 635 if (!ALowerBounded || !BLowerBounded) 636 continue; 637 638 isl::pw_aff AMin = isl::set(ADim).dim_min(0); 639 isl::pw_aff BMin = isl::set(BDim).dim_min(0); 640 641 isl::val AMinVal = polly::getConstant(AMin, false, true); 642 isl::val BMinVal = polly::getConstant(BMin, false, true); 643 644 int MinCompare = AMinVal.sub(BMinVal).sgn(); 645 if (MinCompare != 0) 646 return MinCompare; 647 } 648 649 // If all the dimensions' lower bounds are equal or incomparable, sort based 650 // on the number of dimensions. 651 return ALen - BLen; 652 } 653 654 /// Compare the sets @p A and @p B according to their nested space structure. 655 /// Returns 0 if the structure is considered equal. 656 /// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are 657 /// ignored, i.e. a tuple with the same name but different number of dimensions 658 /// are considered equal. 659 static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, 660 bool ConsiderTupleLen) { 661 int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); 662 if (WrappingCompare != 0) 663 return WrappingCompare; 664 665 if (ASpace.is_wrapping() && BSpace.is_wrapping()) { 666 isl::space AMap = ASpace.unwrap(); 667 isl::space BMap = BSpace.unwrap(); 668 669 int FirstResult = 670 structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); 671 if (FirstResult != 0) 672 return FirstResult; 673 674 return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); 675 } 676 677 std::string AName; 678 if (!ASpace.is_params() && ASpace.has_tuple_name(isl::dim::set)) 679 AName = ASpace.get_tuple_name(isl::dim::set); 680 681 std::string BName; 682 if (!BSpace.is_params() && BSpace.has_tuple_name(isl::dim::set)) 683 BName = BSpace.get_tuple_name(isl::dim::set); 684 685 int NameCompare = AName.compare(BName); 686 if (NameCompare != 0) 687 return NameCompare; 688 689 if (ConsiderTupleLen) { 690 int LenCompare = BSpace.dim(isl::dim::set).release() - 691 ASpace.dim(isl::dim::set).release(); 692 if (LenCompare != 0) 693 return LenCompare; 694 } 695 696 return 0; 697 } 698 699 /// Compare the sets @p A and @p B according to their nested space structure. If 700 /// the structure is the same, sort using the dimension lower bounds. 701 /// Returns an std::sort compatible bool. 702 static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { 703 isl::space ASpace = A.get_space(); 704 isl::space BSpace = B.get_space(); 705 706 // Ignoring number of dimensions first ensures that structures with same tuple 707 // names, but different number of dimensions are still sorted close together. 708 int TupleNestingCompare = structureCompare(ASpace, BSpace, false); 709 if (TupleNestingCompare != 0) 710 return TupleNestingCompare < 0; 711 712 int TupleCompare = structureCompare(ASpace, BSpace, true); 713 if (TupleCompare != 0) 714 return TupleCompare < 0; 715 716 return flatCompare(A, B) < 0; 717 } 718 719 /// Print a string representation of @p USet to @p OS. 720 /// 721 /// The pieces of @p USet are printed in a sorted order. Spaces with equal or 722 /// similar nesting structure are printed together. Compared to isl's own 723 /// printing function the uses the structure itself as base of the sorting, not 724 /// a hash of it. It ensures that e.g. maps spaces with same domain structure 725 /// are printed together. Set pieces with same structure are printed in order of 726 /// their lower bounds. 727 /// 728 /// @param USet Polyhedra to print. 729 /// @param OS Target stream. 730 /// @param Simplify Whether to simplify the polyhedron before printing. 731 /// @param IsMap Whether @p USet is a wrapped map. If true, sets are 732 /// unwrapped before printing to again appear as a map. 733 static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, 734 bool Simplify, bool IsMap) { 735 if (USet.is_null()) { 736 OS << "<null>\n"; 737 return; 738 } 739 740 if (Simplify) 741 simplify(USet); 742 743 // Get all the polyhedra. 744 std::vector<isl::basic_set> BSets; 745 746 for (isl::set Set : USet.get_set_list()) { 747 for (isl::basic_set BSet : Set.get_basic_set_list()) { 748 BSets.push_back(BSet); 749 } 750 } 751 752 if (BSets.empty()) { 753 OS << "{\n}\n"; 754 return; 755 } 756 757 // Sort the polyhedra. 758 llvm::sort(BSets, orderComparer); 759 760 // Print the polyhedra. 761 bool First = true; 762 for (const isl::basic_set &BSet : BSets) { 763 std::string Str; 764 if (IsMap) 765 Str = stringFromIslObj(isl::map(BSet.unwrap())); 766 else 767 Str = stringFromIslObj(isl::set(BSet)); 768 size_t OpenPos = Str.find_first_of('{'); 769 assert(OpenPos != std::string::npos); 770 size_t ClosePos = Str.find_last_of('}'); 771 assert(ClosePos != std::string::npos); 772 773 if (First) 774 OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; 775 else 776 OS << ";\n "; 777 778 OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); 779 First = false; 780 } 781 assert(!First); 782 OS << "\n}\n"; 783 } 784 785 static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { 786 int Dims = BSet.dim(isl::dim::set).release(); 787 if (Dim >= Dims) { 788 Expanded = Expanded.unite(BSet); 789 return; 790 } 791 792 isl::basic_set DimOnly = 793 BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param).release()) 794 .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) 795 .project_out(isl::dim::set, 0, Dim); 796 if (!DimOnly.is_bounded()) { 797 recursiveExpand(BSet, Dim + 1, Expanded); 798 return; 799 } 800 801 foreachPoint(DimOnly, [&, Dim](isl::point P) { 802 isl::val Val = P.get_coordinate_val(isl::dim::set, 0); 803 isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); 804 recursiveExpand(FixBSet, Dim + 1, Expanded); 805 }); 806 } 807 808 /// Make each point of a set explicit. 809 /// 810 /// "Expanding" makes each point a set contains explicit. That is, the result is 811 /// a set of singleton polyhedra. Unbounded dimensions are not expanded. 812 /// 813 /// Example: 814 /// { [i] : 0 <= i < 2 } 815 /// is expanded to: 816 /// { [0]; [1] } 817 static isl::set expand(const isl::set &Set) { 818 isl::set Expanded = isl::set::empty(Set.get_space()); 819 for (isl::basic_set BSet : Set.get_basic_set_list()) 820 recursiveExpand(BSet, 0, Expanded); 821 return Expanded; 822 } 823 824 /// Expand all points of a union set explicit. 825 /// 826 /// @see expand(const isl::set) 827 static isl::union_set expand(const isl::union_set &USet) { 828 isl::union_set Expanded = isl::union_set::empty(USet.ctx()); 829 for (isl::set Set : USet.get_set_list()) { 830 isl::set SetExpanded = expand(Set); 831 Expanded = Expanded.unite(SetExpanded); 832 } 833 return Expanded; 834 } 835 836 LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { 837 printSortedPolyhedra(Set, llvm::errs(), true, false); 838 } 839 840 LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { 841 printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); 842 } 843 844 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { 845 printSortedPolyhedra(USet, llvm::errs(), true, false); 846 } 847 848 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { 849 printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); 850 } 851 852 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { 853 dumpPw(isl::manage_copy(Set)); 854 } 855 856 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { 857 dumpPw(isl::manage_copy(Map)); 858 } 859 860 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { 861 dumpPw(isl::manage_copy(USet)); 862 } 863 864 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { 865 dumpPw(isl::manage_copy(UMap)); 866 } 867 868 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { 869 printSortedPolyhedra(expand(Set), llvm::errs(), false, false); 870 } 871 872 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { 873 printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); 874 } 875 876 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { 877 printSortedPolyhedra(expand(USet), llvm::errs(), false, false); 878 } 879 880 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { 881 printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); 882 } 883 884 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { 885 dumpExpanded(isl::manage_copy(Set)); 886 } 887 888 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { 889 dumpExpanded(isl::manage_copy(Map)); 890 } 891 892 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { 893 dumpExpanded(isl::manage_copy(USet)); 894 } 895 896 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { 897 dumpExpanded(isl::manage_copy(UMap)); 898 } 899 #endif 900