1 //===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Tools, utilities, helpers and extensions useful in conjunction with the 11 // Integer Set Library (isl). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/Support/ISLTools.h" 16 #include "llvm/ADT/StringRef.h" 17 18 using namespace polly; 19 20 namespace { 21 /// Create a map that shifts one dimension by an offset. 22 /// 23 /// Example: 24 /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) 25 /// = { [i0, i1] -> [i0, i1 - 1] } 26 /// 27 /// @param Space The map space of the result. Must have equal number of in- and 28 /// out-dimensions. 29 /// @param Pos Position to shift. 30 /// @param Amount Value added to the shifted dimension. 31 /// 32 /// @return An isl_multi_aff for the map with this shifted dimension. 33 isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { 34 auto Identity = give(isl_multi_aff_identity(Space.take())); 35 if (Amount == 0) 36 return Identity; 37 auto ShiftAff = give(isl_multi_aff_get_aff(Identity.keep(), Pos)); 38 ShiftAff = give(isl_aff_set_constant_si(ShiftAff.take(), Amount)); 39 return give(isl_multi_aff_set_aff(Identity.take(), Pos, ShiftAff.take())); 40 } 41 42 /// Construct a map that swaps two nested tuples. 43 /// 44 /// @param FromSpace1 { Space1[] } 45 /// @param FromSpace2 { Space2[] } 46 /// 47 /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } 48 isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, 49 isl::space FromSpace2) { 50 assert(isl_space_is_set(FromSpace1.keep()) != isl_bool_false); 51 assert(isl_space_is_set(FromSpace2.keep()) != isl_bool_false); 52 53 auto Dims1 = isl_space_dim(FromSpace1.keep(), isl_dim_set); 54 auto Dims2 = isl_space_dim(FromSpace2.keep(), isl_dim_set); 55 auto FromSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range( 56 FromSpace1.copy(), FromSpace2.copy()))); 57 auto ToSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range( 58 FromSpace2.take(), FromSpace1.take()))); 59 auto MapSpace = give( 60 isl_space_map_from_domain_and_range(FromSpace.take(), ToSpace.take())); 61 62 auto Result = give(isl_basic_map_universe(MapSpace.take())); 63 for (auto i = Dims1 - Dims1; i < Dims1; i += 1) { 64 Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, i, 65 isl_dim_out, Dims2 + i)); 66 } 67 for (auto i = Dims2 - Dims2; i < Dims2; i += 1) { 68 Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, Dims1 + i, 69 isl_dim_out, i)); 70 } 71 72 return Result; 73 } 74 75 /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns 76 /// an isl_map. 77 isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { 78 auto BMapResult = 79 makeTupleSwapBasicMap(std::move(FromSpace1), std::move(FromSpace2)); 80 return give(isl_map_from_basic_map(BMapResult.take())); 81 } 82 } // anonymous namespace 83 84 isl::map polly::beforeScatter(isl::map Map, bool Strict) { 85 auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep()))); 86 auto ScatterRel = give(Strict ? isl_map_lex_gt(RangeSpace.take()) 87 : isl_map_lex_ge(RangeSpace.take())); 88 return give(isl_map_apply_range(Map.take(), ScatterRel.take())); 89 } 90 91 isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { 92 auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); 93 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 94 auto After = beforeScatter(Map, Strict); 95 Result = give(isl_union_map_add_map(Result.take(), After.take())); 96 return isl::stat::ok; 97 }); 98 return Result; 99 } 100 101 isl::map polly::afterScatter(isl::map Map, bool Strict) { 102 auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep()))); 103 auto ScatterRel = give(Strict ? isl_map_lex_lt(RangeSpace.take()) 104 : isl_map_lex_le(RangeSpace.take())); 105 return give(isl_map_apply_range(Map.take(), ScatterRel.take())); 106 } 107 108 isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { 109 auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); 110 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 111 auto After = afterScatter(Map, Strict); 112 Result = give(isl_union_map_add_map(Result.take(), After.take())); 113 return isl::stat::ok; 114 }); 115 return Result; 116 } 117 118 isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, 119 bool InclTo) { 120 auto AfterFrom = afterScatter(From, !InclFrom); 121 auto BeforeTo = beforeScatter(To, !InclTo); 122 123 return give(isl_map_intersect(AfterFrom.take(), BeforeTo.take())); 124 } 125 126 isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, 127 bool InclFrom, bool InclTo) { 128 auto AfterFrom = afterScatter(From, !InclFrom); 129 auto BeforeTo = beforeScatter(To, !InclTo); 130 131 return give(isl_union_map_intersect(AfterFrom.take(), BeforeTo.take())); 132 } 133 134 isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { 135 if (!UMap) 136 return nullptr; 137 138 if (isl_union_map_n_map(UMap.keep()) == 0) 139 return isl::map::empty(ExpectedSpace); 140 141 isl::map Result = isl::map::from_union_map(UMap); 142 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 143 144 return Result; 145 } 146 147 isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { 148 if (!USet) 149 return nullptr; 150 151 if (isl_union_set_n_set(USet.keep()) == 0) 152 return isl::set::empty(ExpectedSpace); 153 154 isl::set Result(USet); 155 assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); 156 157 return Result; 158 } 159 160 unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { 161 unsigned Dims = 0; 162 Schedule.foreach_map([&Dims](isl::map Map) -> isl::stat { 163 Dims = std::max(Dims, isl_map_dim(Map.keep(), isl_dim_out)); 164 return isl::stat::ok; 165 }); 166 return Dims; 167 } 168 169 isl::space polly::getScatterSpace(const isl::union_map &Schedule) { 170 if (!Schedule) 171 return nullptr; 172 auto Dims = getNumScatterDims(Schedule); 173 auto ScatterSpace = 174 give(isl_space_set_from_params(isl_union_map_get_space(Schedule.keep()))); 175 return give(isl_space_add_dims(ScatterSpace.take(), isl_dim_set, Dims)); 176 } 177 178 isl::union_map polly::makeIdentityMap(const isl::union_set &USet, 179 bool RestrictDomain) { 180 auto Result = give(isl_union_map_empty(isl_union_set_get_space(USet.keep()))); 181 USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { 182 auto IdentityMap = give(isl_map_identity( 183 isl_space_map_from_set(isl_set_get_space(Set.keep())))); 184 if (RestrictDomain) 185 IdentityMap = 186 give(isl_map_intersect_domain(IdentityMap.take(), Set.take())); 187 Result = give(isl_union_map_add_map(Result.take(), IdentityMap.take())); 188 return isl::stat::ok; 189 }); 190 return Result; 191 } 192 193 isl::map polly::reverseDomain(isl::map Map) { 194 auto DomSpace = 195 give(isl_space_unwrap(isl_space_domain(isl_map_get_space(Map.keep())))); 196 auto Space1 = give(isl_space_domain(DomSpace.copy())); 197 auto Space2 = give(isl_space_range(DomSpace.take())); 198 auto Swap = makeTupleSwapMap(std::move(Space1), std::move(Space2)); 199 return give(isl_map_apply_domain(Map.take(), Swap.take())); 200 } 201 202 isl::union_map polly::reverseDomain(const isl::union_map &UMap) { 203 auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); 204 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 205 auto Reversed = reverseDomain(std::move(Map)); 206 Result = give(isl_union_map_add_map(Result.take(), Reversed.take())); 207 return isl::stat::ok; 208 }); 209 return Result; 210 } 211 212 isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { 213 int NumDims = isl_set_dim(Set.keep(), isl_dim_set); 214 if (Pos < 0) 215 Pos = NumDims + Pos; 216 assert(Pos < NumDims && "Dimension index must be in range"); 217 auto Space = give(isl_set_get_space(Set.keep())); 218 Space = give(isl_space_map_from_domain_and_range(Space.copy(), Space.copy())); 219 auto Translator = makeShiftDimAff(std::move(Space), Pos, Amount); 220 auto TranslatorMap = give(isl_map_from_multi_aff(Translator.take())); 221 return give(isl_set_apply(Set.take(), TranslatorMap.take())); 222 } 223 224 isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { 225 auto Result = give(isl_union_set_empty(isl_union_set_get_space(USet.keep()))); 226 USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { 227 auto Shifted = shiftDim(Set, Pos, Amount); 228 Result = give(isl_union_set_add_set(Result.take(), Shifted.take())); 229 return isl::stat::ok; 230 }); 231 return Result; 232 } 233 234 isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { 235 int NumDims = Map.dim(Dim); 236 if (Pos < 0) 237 Pos = NumDims + Pos; 238 assert(Pos < NumDims && "Dimension index must be in range"); 239 auto Space = give(isl_map_get_space(Map.keep())); 240 switch (Dim) { 241 case isl::dim::in: 242 Space = std::move(Space).domain(); 243 break; 244 case isl::dim::out: 245 Space = give(isl_space_range(Space.take())); 246 break; 247 default: 248 llvm_unreachable("Unsupported value for 'dim'"); 249 } 250 Space = give(isl_space_map_from_domain_and_range(Space.copy(), Space.copy())); 251 auto Translator = makeShiftDimAff(std::move(Space), Pos, Amount); 252 auto TranslatorMap = give(isl_map_from_multi_aff(Translator.take())); 253 switch (Dim) { 254 case isl::dim::in: 255 return Map.apply_domain(TranslatorMap); 256 case isl::dim::out: 257 return Map.apply_range(TranslatorMap); 258 default: 259 llvm_unreachable("Unsupported value for 'dim'"); 260 } 261 } 262 263 isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, 264 int Amount) { 265 auto Result = isl::union_map::empty(UMap.get_space()); 266 267 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { 268 auto Shifted = shiftDim(Map, Dim, Pos, Amount); 269 Result = std::move(Result).add_map(Shifted); 270 return isl::stat::ok; 271 }); 272 return Result; 273 } 274 275 void polly::simplify(isl::set &Set) { 276 Set = give(isl_set_compute_divs(Set.take())); 277 Set = give(isl_set_detect_equalities(Set.take())); 278 Set = give(isl_set_coalesce(Set.take())); 279 } 280 281 void polly::simplify(isl::union_set &USet) { 282 USet = give(isl_union_set_compute_divs(USet.take())); 283 USet = give(isl_union_set_detect_equalities(USet.take())); 284 USet = give(isl_union_set_coalesce(USet.take())); 285 } 286 287 void polly::simplify(isl::map &Map) { 288 Map = give(isl_map_compute_divs(Map.take())); 289 Map = give(isl_map_detect_equalities(Map.take())); 290 Map = give(isl_map_coalesce(Map.take())); 291 } 292 293 void polly::simplify(isl::union_map &UMap) { 294 UMap = give(isl_union_map_compute_divs(UMap.take())); 295 UMap = give(isl_union_map_detect_equalities(UMap.take())); 296 UMap = give(isl_union_map_coalesce(UMap.take())); 297 } 298 299 isl::union_map polly::computeReachingWrite(isl::union_map Schedule, 300 isl::union_map Writes, bool Reverse, 301 bool InclPrevDef, bool InclNextDef) { 302 303 // { Scatter[] } 304 isl::space ScatterSpace = getScatterSpace(Schedule); 305 306 // { ScatterRead[] -> ScatterWrite[] } 307 isl::map Relation; 308 if (Reverse) 309 Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) 310 : isl::map::lex_le(ScatterSpace); 311 else 312 Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) 313 : isl::map::lex_ge(ScatterSpace); 314 315 // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } 316 isl::map RelationMap = Relation.range_map().reverse(); 317 318 // { Element[] -> ScatterWrite[] } 319 isl::union_map WriteAction = Schedule.apply_domain(Writes); 320 321 // { ScatterWrite[] -> Element[] } 322 isl::union_map WriteActionRev = WriteAction.reverse(); 323 324 // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } 325 isl::union_map DefSchedRelation = 326 isl::union_map(RelationMap).apply_domain(WriteActionRev); 327 328 // For each element, at every point in time, map to the times of previous 329 // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } 330 isl::union_map ReachableWrites = DefSchedRelation.uncurry(); 331 if (Reverse) 332 ReachableWrites = ReachableWrites.lexmin(); 333 else 334 ReachableWrites = ReachableWrites.lexmax(); 335 336 // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } 337 isl::union_map SelfUse = WriteAction.range_map(); 338 339 if (InclPrevDef && InclNextDef) { 340 // Add the Def itself to the solution. 341 ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); 342 } else if (!InclPrevDef && !InclNextDef) { 343 // Remove Def itself from the solution. 344 ReachableWrites = ReachableWrites.subtract(SelfUse); 345 } 346 347 // { [Element[] -> ScatterRead[]] -> Domain[] } 348 return ReachableWrites.apply_range(Schedule.reverse()); 349 } 350 351 isl::union_map 352 polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, 353 isl::union_map Reads, bool ReadEltInSameInst, 354 bool IncludeLastRead, bool IncludeWrite) { 355 // { Element[] -> Scatter[] } 356 auto ReadActions = 357 give(isl_union_map_apply_domain(Schedule.copy(), Reads.take())); 358 auto WriteActions = 359 give(isl_union_map_apply_domain(Schedule.copy(), Writes.copy())); 360 361 // { [Element[] -> DomainWrite[]] -> Scatter[] } 362 auto EltDomWrites = give(isl_union_map_apply_range( 363 isl_union_map_range_map(isl_union_map_reverse(Writes.copy())), 364 Schedule.copy())); 365 366 // { [Element[] -> Scatter[]] -> DomainWrite[] } 367 auto ReachingOverwrite = computeReachingWrite( 368 Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); 369 370 // { [Element[] -> Scatter[]] -> DomainWrite[] } 371 auto ReadsOverwritten = give(isl_union_map_intersect_domain( 372 ReachingOverwrite.take(), isl_union_map_wrap(ReadActions.take()))); 373 374 // { [Element[] -> DomainWrite[]] -> Scatter[] } 375 auto ReadsOverwrittenRotated = give(isl_union_map_reverse( 376 isl_union_map_curry(reverseDomain(ReadsOverwritten).take()))); 377 auto LastOverwrittenRead = 378 give(isl_union_map_lexmax(ReadsOverwrittenRotated.copy())); 379 380 // { [Element[] -> DomainWrite[]] -> Scatter[] } 381 auto BetweenLastReadOverwrite = betweenScatter( 382 LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); 383 384 // { [Element[] -> Scatter[]] -> DomainWrite[] } 385 isl::union_map ReachingOverwriteZone = computeReachingWrite( 386 Schedule, Writes, true, IncludeLastRead, IncludeWrite); 387 388 // { [Element[] -> DomainWrite[]] -> Scatter[] } 389 isl::union_map ReachingOverwriteRotated = 390 reverseDomain(ReachingOverwriteZone).curry().reverse(); 391 392 // { [Element[] -> DomainWrite[]] -> Scatter[] } 393 isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( 394 ReadsOverwrittenRotated.domain()); 395 396 return BetweenLastReadOverwrite.unite(WritesWithoutReads) 397 .domain_factor_domain(); 398 } 399 400 isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, 401 bool InclStart, bool InclEnd) { 402 if (!InclStart && InclEnd) 403 return Zone; 404 405 auto ShiftedZone = shiftDim(Zone, -1, -1); 406 if (InclStart && !InclEnd) 407 return ShiftedZone; 408 else if (!InclStart && !InclEnd) 409 return give(isl_union_set_intersect(Zone.take(), ShiftedZone.take())); 410 411 assert(InclStart && InclEnd); 412 return give(isl_union_set_union(Zone.take(), ShiftedZone.take())); 413 } 414 415 isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, 416 bool InclStart, bool InclEnd) { 417 if (!InclStart && InclEnd) 418 return Zone; 419 420 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 421 if (InclStart && !InclEnd) 422 return ShiftedZone; 423 else if (!InclStart && !InclEnd) 424 return give(isl_union_map_intersect(Zone.take(), ShiftedZone.take())); 425 426 assert(InclStart && InclEnd); 427 return give(isl_union_map_union(Zone.take(), ShiftedZone.take())); 428 } 429 430 isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, 431 bool InclStart, bool InclEnd) { 432 if (!InclStart && InclEnd) 433 return Zone; 434 435 auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); 436 if (InclStart && !InclEnd) 437 return ShiftedZone; 438 else if (!InclStart && !InclEnd) 439 return give(isl_map_intersect(Zone.take(), ShiftedZone.take())); 440 441 assert(InclStart && InclEnd); 442 return give(isl_map_union(Zone.take(), ShiftedZone.take())); 443 } 444 445 isl::map polly::distributeDomain(isl::map Map) { 446 // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { 447 // Domain[] -> Range2[] } and combine again. We would loose any relation 448 // between Range1[] and Range2[] that is not also a constraint to Domain[]. 449 450 auto Space = give(isl_map_get_space(Map.keep())); 451 auto DomainSpace = give(isl_space_domain(Space.copy())); 452 auto DomainDims = isl_space_dim(DomainSpace.keep(), isl_dim_set); 453 auto RangeSpace = give(isl_space_unwrap(isl_space_range(Space.copy()))); 454 auto Range1Space = give(isl_space_domain(RangeSpace.copy())); 455 auto Range1Dims = isl_space_dim(Range1Space.keep(), isl_dim_set); 456 auto Range2Space = give(isl_space_range(RangeSpace.copy())); 457 auto Range2Dims = isl_space_dim(Range2Space.keep(), isl_dim_set); 458 459 auto OutputSpace = give(isl_space_map_from_domain_and_range( 460 isl_space_wrap(isl_space_map_from_domain_and_range(DomainSpace.copy(), 461 Range1Space.copy())), 462 isl_space_wrap(isl_space_map_from_domain_and_range(DomainSpace.copy(), 463 Range2Space.copy())))); 464 465 auto Translator = 466 give(isl_basic_map_universe(isl_space_map_from_domain_and_range( 467 isl_space_wrap(Space.copy()), isl_space_wrap(OutputSpace.copy())))); 468 469 for (unsigned i = 0; i < DomainDims; i += 1) { 470 Translator = give( 471 isl_basic_map_equate(Translator.take(), isl_dim_in, i, isl_dim_out, i)); 472 Translator = 473 give(isl_basic_map_equate(Translator.take(), isl_dim_in, i, isl_dim_out, 474 DomainDims + Range1Dims + i)); 475 } 476 for (unsigned i = 0; i < Range1Dims; i += 1) { 477 Translator = 478 give(isl_basic_map_equate(Translator.take(), isl_dim_in, DomainDims + i, 479 isl_dim_out, DomainDims + i)); 480 } 481 for (unsigned i = 0; i < Range2Dims; i += 1) { 482 Translator = give(isl_basic_map_equate( 483 Translator.take(), isl_dim_in, DomainDims + Range1Dims + i, isl_dim_out, 484 DomainDims + Range1Dims + DomainDims + i)); 485 } 486 487 return give(isl_set_unwrap(isl_set_apply( 488 isl_map_wrap(Map.copy()), isl_map_from_basic_map(Translator.copy())))); 489 } 490 491 isl::union_map polly::distributeDomain(isl::union_map UMap) { 492 auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); 493 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) { 494 auto Distributed = distributeDomain(Map); 495 Result = give(isl_union_map_add_map(Result.take(), Distributed.copy())); 496 return isl::stat::ok; 497 }); 498 if (Success != isl::stat::ok) 499 return {}; 500 return Result; 501 } 502 503 isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { 504 505 // { Factor[] -> Factor[] } 506 auto Factors = makeIdentityMap(std::move(Factor), true); 507 508 return std::move(Factors).product(std::move(UMap)); 509 } 510 511 isl::union_map polly::applyDomainRange(isl::union_map UMap, 512 isl::union_map Func) { 513 // This implementation creates unnecessary cross products of the 514 // DomainDomain[] and Func. An alternative implementation could reverse 515 // domain+uncurry,apply Func to what now is the domain, then undo the 516 // preparing transformation. Another alternative implementation could create a 517 // translator map for each piece. 518 519 // { DomainDomain[] } 520 auto DomainDomain = UMap.domain().unwrap().domain(); 521 522 // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] 523 // } 524 auto LifetedFunc = liftDomains(std::move(Func), DomainDomain); 525 526 return std::move(UMap).apply_domain(std::move(LifetedFunc)); 527 } 528 529 isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { 530 isl::set RangeSet = Range.extract_set(Map.get_space().range()); 531 return Map.intersect_range(RangeSet); 532 } 533 534 isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { 535 assert(!Max || !Min); // Cannot return min and max at the same time. 536 isl::val Result; 537 PwAff.foreach_piece([=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { 538 if (Result && Result.is_nan()) 539 return isl::stat::ok; 540 541 // TODO: If Min/Max, we can also determine a minimum/maximum value if 542 // Set is constant-bounded. 543 if (!Aff.is_cst()) { 544 Result = isl::val::nan(Aff.get_ctx()); 545 return isl::stat::error; 546 } 547 548 isl::val ThisVal = Aff.get_constant_val(); 549 if (!Result) { 550 Result = ThisVal; 551 return isl::stat::ok; 552 } 553 554 if (Result.eq(ThisVal)) 555 return isl::stat::ok; 556 557 if (Max && ThisVal.gt(Result)) { 558 Result = ThisVal; 559 return isl::stat::ok; 560 } 561 562 if (Min && ThisVal.lt(Result)) { 563 Result = ThisVal; 564 return isl::stat::ok; 565 } 566 567 // Not compatible 568 Result = isl::val::nan(Aff.get_ctx()); 569 return isl::stat::error; 570 }); 571 return Result; 572 } 573 574 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 575 static void foreachPoint(const isl::set &Set, 576 const std::function<void(isl::point P)> &F) { 577 isl_set_foreach_point( 578 Set.keep(), 579 [](__isl_take isl_point *p, void *User) -> isl_stat { 580 auto &F = *static_cast<const std::function<void(isl::point)> *>(User); 581 F(give(p)); 582 return isl_stat_ok; 583 }, 584 const_cast<void *>(static_cast<const void *>(&F))); 585 } 586 587 static void foreachPoint(isl::basic_set BSet, 588 const std::function<void(isl::point P)> &F) { 589 foreachPoint(give(isl_set_from_basic_set(BSet.take())), F); 590 } 591 592 /// Determine the sorting order of the sets @p A and @p B without considering 593 /// the space structure. 594 /// 595 /// Ordering is based on the lower bounds of the set's dimensions. First 596 /// dimensions are considered first. 597 static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { 598 int ALen = A.dim(isl::dim::set); 599 int BLen = B.dim(isl::dim::set); 600 int Len = std::min(ALen, BLen); 601 602 for (int i = 0; i < Len; i += 1) { 603 isl::basic_set ADim = 604 A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) 605 .project_out(isl::dim::set, i + 1, ALen - i - 1) 606 .project_out(isl::dim::set, 0, i); 607 isl::basic_set BDim = 608 B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) 609 .project_out(isl::dim::set, i + 1, BLen - i - 1) 610 .project_out(isl::dim::set, 0, i); 611 612 isl::basic_set AHull = isl::set(ADim).convex_hull(); 613 isl::basic_set BHull = isl::set(BDim).convex_hull(); 614 615 bool ALowerBounded = 616 bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); 617 bool BLowerBounded = 618 bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); 619 620 int BoundedCompare = BLowerBounded - ALowerBounded; 621 if (BoundedCompare != 0) 622 return BoundedCompare; 623 624 if (!ALowerBounded || !BLowerBounded) 625 continue; 626 627 isl::pw_aff AMin = isl::set(ADim).dim_min(0); 628 isl::pw_aff BMin = isl::set(BDim).dim_min(0); 629 630 isl::val AMinVal = polly::getConstant(AMin, false, true); 631 isl::val BMinVal = polly::getConstant(BMin, false, true); 632 633 int MinCompare = AMinVal.sub(BMinVal).sgn(); 634 if (MinCompare != 0) 635 return MinCompare; 636 } 637 638 // If all the dimensions' lower bounds are equal or incomparable, sort based 639 // on the number of dimensions. 640 return ALen - BLen; 641 } 642 643 /// Compare the sets @p A and @p B according to their nested space structure. 644 /// Returns 0 if the structure is considered equal. 645 /// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are 646 /// ignored, i.e. a tuple with the same name but different number of dimensions 647 /// are considered equal. 648 static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, 649 bool ConsiderTupleLen) { 650 int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); 651 if (WrappingCompare != 0) 652 return WrappingCompare; 653 654 if (ASpace.is_wrapping() && BSpace.is_wrapping()) { 655 isl::space AMap = ASpace.unwrap(); 656 isl::space BMap = BSpace.unwrap(); 657 658 int FirstResult = 659 structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); 660 if (FirstResult != 0) 661 return FirstResult; 662 663 return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); 664 } 665 666 std::string AName; 667 if (ASpace.has_tuple_name(isl::dim::set)) 668 AName = ASpace.get_tuple_name(isl::dim::set); 669 670 std::string BName; 671 if (BSpace.has_tuple_name(isl::dim::set)) 672 BName = BSpace.get_tuple_name(isl::dim::set); 673 674 int NameCompare = AName.compare(BName); 675 if (NameCompare != 0) 676 return NameCompare; 677 678 if (ConsiderTupleLen) { 679 int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set); 680 if (LenCompare != 0) 681 return LenCompare; 682 } 683 684 return 0; 685 } 686 687 /// Compare the sets @p A and @p B according to their nested space structure. If 688 /// the structure is the same, sort using the dimension lower bounds. 689 /// Returns an std::sort compatible bool. 690 static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { 691 isl::space ASpace = A.get_space(); 692 isl::space BSpace = B.get_space(); 693 694 // Ignoring number of dimensions first ensures that structures with same tuple 695 // names, but different number of dimensions are still sorted close together. 696 int TupleNestingCompare = structureCompare(ASpace, BSpace, false); 697 if (TupleNestingCompare != 0) 698 return TupleNestingCompare < 0; 699 700 int TupleCompare = structureCompare(ASpace, BSpace, true); 701 if (TupleCompare != 0) 702 return TupleCompare < 0; 703 704 return flatCompare(A, B) < 0; 705 } 706 707 /// Print a string representation of @p USet to @p OS. 708 /// 709 /// The pieces of @p USet are printed in a sorted order. Spaces with equal or 710 /// similar nesting structure are printed together. Compared to isl's own 711 /// printing function the uses the structure itself as base of the sorting, not 712 /// a hash of it. It ensures that e.g. maps spaces with same domain structure 713 /// are printed together. Set pieces with same structure are printed in order of 714 /// their lower bounds. 715 /// 716 /// @param USet Polyhedra to print. 717 /// @param OS Target stream. 718 /// @param Simplify Whether to simplify the polyhedron before printing. 719 /// @param IsMap Whether @p USet is a wrapped map. If true, sets are 720 /// unwrapped before printing to again appear as a map. 721 static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, 722 bool Simplify, bool IsMap) { 723 if (!USet) { 724 OS << "<null>\n"; 725 return; 726 } 727 728 if (Simplify) 729 simplify(USet); 730 731 // Get all the polyhedra. 732 std::vector<isl::basic_set> BSets; 733 USet.foreach_set([&BSets](isl::set Set) -> isl::stat { 734 Set.foreach_basic_set([&BSets](isl::basic_set BSet) -> isl::stat { 735 BSets.push_back(BSet); 736 return isl::stat::ok; 737 }); 738 return isl::stat::ok; 739 }); 740 741 if (BSets.empty()) { 742 OS << "{\n}\n"; 743 return; 744 } 745 746 // Sort the polyhedra. 747 llvm::sort(BSets.begin(), BSets.end(), orderComparer); 748 749 // Print the polyhedra. 750 bool First = true; 751 for (const isl::basic_set &BSet : BSets) { 752 std::string Str; 753 if (IsMap) 754 Str = isl::map(BSet.unwrap()).to_str(); 755 else 756 Str = isl::set(BSet).to_str(); 757 size_t OpenPos = Str.find_first_of('{'); 758 assert(OpenPos != std::string::npos); 759 size_t ClosePos = Str.find_last_of('}'); 760 assert(ClosePos != std::string::npos); 761 762 if (First) 763 OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; 764 else 765 OS << ";\n "; 766 767 OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); 768 First = false; 769 } 770 assert(!First); 771 OS << "\n}\n"; 772 } 773 774 static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { 775 int Dims = BSet.dim(isl::dim::set); 776 if (Dim >= Dims) { 777 Expanded = Expanded.unite(BSet); 778 return; 779 } 780 781 isl::basic_set DimOnly = 782 BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) 783 .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) 784 .project_out(isl::dim::set, 0, Dim); 785 if (!DimOnly.is_bounded()) { 786 recursiveExpand(BSet, Dim + 1, Expanded); 787 return; 788 } 789 790 foreachPoint(DimOnly, [&, Dim](isl::point P) { 791 isl::val Val = P.get_coordinate_val(isl::dim::set, 0); 792 isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); 793 recursiveExpand(FixBSet, Dim + 1, Expanded); 794 }); 795 } 796 797 /// Make each point of a set explicit. 798 /// 799 /// "Expanding" makes each point a set contains explicit. That is, the result is 800 /// a set of singleton polyhedra. Unbounded dimensions are not expanded. 801 /// 802 /// Example: 803 /// { [i] : 0 <= i < 2 } 804 /// is expanded to: 805 /// { [0]; [1] } 806 static isl::set expand(const isl::set &Set) { 807 isl::set Expanded = isl::set::empty(Set.get_space()); 808 Set.foreach_basic_set([&](isl::basic_set BSet) -> isl::stat { 809 recursiveExpand(BSet, 0, Expanded); 810 return isl::stat::ok; 811 }); 812 return Expanded; 813 } 814 815 /// Expand all points of a union set explicit. 816 /// 817 /// @see expand(const isl::set) 818 static isl::union_set expand(const isl::union_set &USet) { 819 isl::union_set Expanded = 820 give(isl_union_set_empty(isl_union_set_get_space(USet.keep()))); 821 USet.foreach_set([&](isl::set Set) -> isl::stat { 822 isl::set SetExpanded = expand(Set); 823 Expanded = Expanded.add_set(SetExpanded); 824 return isl::stat::ok; 825 }); 826 return Expanded; 827 } 828 829 LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { 830 printSortedPolyhedra(Set, llvm::errs(), true, false); 831 } 832 833 LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { 834 printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); 835 } 836 837 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { 838 printSortedPolyhedra(USet, llvm::errs(), true, false); 839 } 840 841 LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { 842 printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); 843 } 844 845 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { 846 dumpPw(isl::manage_copy(Set)); 847 } 848 849 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { 850 dumpPw(isl::manage_copy(Map)); 851 } 852 853 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { 854 dumpPw(isl::manage_copy(USet)); 855 } 856 857 LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { 858 dumpPw(isl::manage_copy(UMap)); 859 } 860 861 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { 862 printSortedPolyhedra(expand(Set), llvm::errs(), false, false); 863 } 864 865 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { 866 printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); 867 } 868 869 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { 870 printSortedPolyhedra(expand(USet), llvm::errs(), false, false); 871 } 872 873 LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { 874 printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); 875 } 876 877 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { 878 dumpExpanded(isl::manage_copy(Set)); 879 } 880 881 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { 882 dumpExpanded(isl::manage_copy(Map)); 883 } 884 885 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { 886 dumpExpanded(isl::manage_copy(USet)); 887 } 888 889 LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { 890 dumpExpanded(isl::manage_copy(UMap)); 891 } 892 #endif 893