1 //===---- ManagedMemoryRewrite.cpp - Rewrite global & malloc'd memory -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a module and rewrite:
11 // 1. `malloc` -> `polly_mallocManaged`
12 // 2. `free` -> `polly_freeManaged`
13 // 3. global arrays with initializers -> global arrays that are initialized
14 //                                       with a constructor call to
15 //                                       `polly_mallocManaged`.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "polly/CodeGen/CodeGeneration.h"
20 #include "polly/CodeGen/IslAst.h"
21 #include "polly/CodeGen/IslNodeBuilder.h"
22 #include "polly/CodeGen/PPCGCodeGeneration.h"
23 #include "polly/CodeGen/Utils.h"
24 #include "polly/DependenceInfo.h"
25 #include "polly/LinkAllPasses.h"
26 #include "polly/Options.h"
27 #include "polly/ScopDetection.h"
28 #include "polly/ScopInfo.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/CaptureTracking.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/LegacyPassManager.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/IRReader/IRReader.h"
40 #include "llvm/Linker/Linker.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/TargetSelect.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 
48 static cl::opt<bool> RewriteAllocas(
49     "polly-acc-rewrite-allocas",
50     cl::desc(
51         "Ask the managed memory rewriter to also rewrite alloca instructions"),
52     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
53 
54 static cl::opt<bool> IgnoreLinkageForGlobals(
55     "polly-acc-rewrite-ignore-linkage-for-globals",
56     cl::desc(
57         "By default, we only rewrite globals with internal linkage. This flag "
58         "enables rewriting of globals regardless of linkage"),
59     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
60 
61 #define DEBUG_TYPE "polly-acc-rewrite-managed-memory"
62 namespace {
63 
64 static llvm::Function *getOrCreatePollyMallocManaged(Module &M) {
65   const char *Name = "polly_mallocManaged";
66   Function *F = M.getFunction(Name);
67 
68   // If F is not available, declare it.
69   if (!F) {
70     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
71     PollyIRBuilder Builder(M.getContext());
72     // TODO: How do I get `size_t`? I assume from DataLayout?
73     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(),
74                                          {Builder.getInt64Ty()}, false);
75     F = Function::Create(Ty, Linkage, Name, &M);
76   }
77 
78   return F;
79 }
80 
81 static llvm::Function *getOrCreatePollyFreeManaged(Module &M) {
82   const char *Name = "polly_freeManaged";
83   Function *F = M.getFunction(Name);
84 
85   // If F is not available, declare it.
86   if (!F) {
87     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
88     PollyIRBuilder Builder(M.getContext());
89     // TODO: How do I get `size_t`? I assume from DataLayout?
90     FunctionType *Ty =
91         FunctionType::get(Builder.getVoidTy(), {Builder.getInt8PtrTy()}, false);
92     F = Function::Create(Ty, Linkage, Name, &M);
93   }
94 
95   return F;
96 }
97 
98 // Expand a constant expression `Cur`, which is used at instruction `Parent`
99 // at index `index`.
100 // Since a constant expression can expand to multiple instructions, store all
101 // the expands into a set called `Expands`.
102 // Note that this goes inorder on the constant expression tree.
103 // A * ((B * D) + C)
104 // will be processed with first A, then B * D, then B, then D, and then C.
105 // Though ConstantExprs are not treated as "trees" but as DAGs, since you can
106 // have something like this:
107 //    *
108 //   /  \
109 //   \  /
110 //    (D)
111 //
112 // For the purposes of this expansion, we expand the two occurences of D
113 // separately. Therefore, we expand the DAG into the tree:
114 //  *
115 // / \
116 // D  D
117 // TODO: We don't _have_to do this, but this is the simplest solution.
118 // We can write a solution that keeps track of which constants have been
119 // already expanded.
120 static void expandConstantExpr(ConstantExpr *Cur, PollyIRBuilder &Builder,
121                                Instruction *Parent, int index,
122                                SmallPtrSet<Instruction *, 4> &Expands) {
123   assert(Cur && "invalid constant expression passed");
124   Instruction *I = Cur->getAsInstruction();
125   assert(I && "unable to convert ConstantExpr to Instruction");
126 
127   DEBUG(dbgs() << "Expanding ConstantExpression: (" << *Cur
128                << ") in Instruction: (" << *I << ")\n";);
129 
130   // Invalidate `Cur` so that no one after this point uses `Cur`. Rather,
131   // they should mutate `I`.
132   Cur = nullptr;
133 
134   Expands.insert(I);
135   Parent->setOperand(index, I);
136 
137   // The things that `Parent` uses (its operands) should be created
138   // before `Parent`.
139   Builder.SetInsertPoint(Parent);
140   Builder.Insert(I);
141 
142   for (unsigned i = 0; i < I->getNumOperands(); i++) {
143     Value *Op = I->getOperand(i);
144     assert(isa<Constant>(Op) && "constant must have a constant operand");
145 
146     if (ConstantExpr *CExprOp = dyn_cast<ConstantExpr>(Op))
147       expandConstantExpr(CExprOp, Builder, I, i, Expands);
148   }
149 }
150 
151 // Edit all uses of `OldVal` to NewVal` in `Inst`. This will rewrite
152 // `ConstantExpr`s that are used in the `Inst`.
153 // Note that `replaceAllUsesWith` is insufficient for this purpose because it
154 // does not rewrite values in `ConstantExpr`s.
155 static void rewriteOldValToNew(Instruction *Inst, Value *OldVal, Value *NewVal,
156                                PollyIRBuilder &Builder) {
157 
158   // This contains a set of instructions in which OldVal must be replaced.
159   // We start with `Inst`, and we fill it up with the expanded `ConstantExpr`s
160   // from `Inst`s arguments.
161   // We need to go through this process because `replaceAllUsesWith` does not
162   // actually edit `ConstantExpr`s.
163   SmallPtrSet<Instruction *, 4> InstsToVisit = {Inst};
164 
165   // Expand all `ConstantExpr`s and place it in `InstsToVisit`.
166   for (unsigned i = 0; i < Inst->getNumOperands(); i++) {
167     Value *Operand = Inst->getOperand(i);
168     if (ConstantExpr *ValueConstExpr = dyn_cast<ConstantExpr>(Operand))
169       expandConstantExpr(ValueConstExpr, Builder, Inst, i, InstsToVisit);
170   }
171 
172   // Now visit each instruction and use `replaceUsesOfWith`. We know that
173   // will work because `I` cannot have any `ConstantExpr` within it.
174   for (Instruction *I : InstsToVisit)
175     I->replaceUsesOfWith(OldVal, NewVal);
176 }
177 
178 // Given a value `Current`, return all Instructions that may contain `Current`
179 // in an expression.
180 // We need this auxiliary function, because if we have a
181 // `Constant` that is a user of `V`, we need to recurse into the
182 // `Constant`s uses to gather the root instruciton.
183 static void getInstructionUsersOfValue(Value *V,
184                                        SmallVector<Instruction *, 4> &Owners) {
185   if (auto *I = dyn_cast<Instruction>(V)) {
186     Owners.push_back(I);
187   } else {
188     // Anything that is a `User` must be a constant or an instruction.
189     auto *C = cast<Constant>(V);
190     for (Use &CUse : C->uses())
191       getInstructionUsersOfValue(CUse.getUser(), Owners);
192   }
193 }
194 
195 static void
196 replaceGlobalArray(Module &M, const DataLayout &DL, GlobalVariable &Array,
197                    SmallPtrSet<GlobalVariable *, 4> &ReplacedGlobals) {
198   // We only want arrays.
199   ArrayType *ArrayTy = dyn_cast<ArrayType>(Array.getType()->getElementType());
200   if (!ArrayTy)
201     return;
202   Type *ElemTy = ArrayTy->getElementType();
203   PointerType *ElemPtrTy = ElemTy->getPointerTo();
204 
205   // We only wish to replace arrays that are visible in the module they
206   // inhabit. Otherwise, our type edit from [T] to T* would be illegal across
207   // modules.
208   const bool OnlyVisibleInsideModule = Array.hasPrivateLinkage() ||
209                                        Array.hasInternalLinkage() ||
210                                        IgnoreLinkageForGlobals;
211   if (!OnlyVisibleInsideModule) {
212     DEBUG(dbgs() << "Not rewriting (" << Array
213                  << ") to managed memory "
214                     "because it could be visible externally. To force rewrite, "
215                     "use -polly-acc-rewrite-ignore-linkage-for-globals.\n");
216     return;
217   }
218 
219   if (!Array.hasInitializer() ||
220       !isa<ConstantAggregateZero>(Array.getInitializer())) {
221     DEBUG(dbgs() << "Not rewriting (" << Array
222                  << ") to managed memory "
223                     "because it has an initializer which is "
224                     "not a zeroinitializer.\n");
225     return;
226   }
227 
228   // At this point, we have committed to replacing this array.
229   ReplacedGlobals.insert(&Array);
230 
231   std::string NewName = Array.getName();
232   NewName += ".toptr";
233   GlobalVariable *ReplacementToArr =
234       cast<GlobalVariable>(M.getOrInsertGlobal(NewName, ElemPtrTy));
235   ReplacementToArr->setInitializer(ConstantPointerNull::get(ElemPtrTy));
236 
237   Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
238   std::string FnName = Array.getName();
239   FnName += ".constructor";
240   PollyIRBuilder Builder(M.getContext());
241   FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
242   const GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
243   Function *F = Function::Create(Ty, Linkage, FnName, &M);
244   BasicBlock *Start = BasicBlock::Create(M.getContext(), "entry", F);
245   Builder.SetInsertPoint(Start);
246 
247   const uint64_t ArraySizeInt = DL.getTypeAllocSize(ArrayTy);
248   Value *ArraySize = Builder.getInt64(ArraySizeInt);
249   ArraySize->setName("array.size");
250 
251   Value *AllocatedMemRaw =
252       Builder.CreateCall(PollyMallocManaged, {ArraySize}, "mem.raw");
253   Value *AllocatedMemTyped =
254       Builder.CreatePointerCast(AllocatedMemRaw, ElemPtrTy, "mem.typed");
255   Builder.CreateStore(AllocatedMemTyped, ReplacementToArr);
256   Builder.CreateRetVoid();
257 
258   const int Priority = 0;
259   appendToGlobalCtors(M, F, Priority, ReplacementToArr);
260 
261   SmallVector<Instruction *, 4> ArrayUserInstructions;
262   // Get all instructions that use array. We need to do this weird thing
263   // because `Constant`s that contain this array neeed to be expanded into
264   // instructions so that we can replace their parameters. `Constant`s cannot
265   // be edited easily, so we choose to convert all `Constant`s to
266   // `Instruction`s and handle all of the uses of `Array` uniformly.
267   for (Use &ArrayUse : Array.uses())
268     getInstructionUsersOfValue(ArrayUse.getUser(), ArrayUserInstructions);
269 
270   for (Instruction *UserOfArrayInst : ArrayUserInstructions) {
271 
272     Builder.SetInsertPoint(UserOfArrayInst);
273     // <ty>** -> <ty>*
274     Value *ArrPtrLoaded = Builder.CreateLoad(ReplacementToArr, "arrptr.load");
275     // <ty>* -> [ty]*
276     Value *ArrPtrLoadedBitcasted = Builder.CreateBitCast(
277         ArrPtrLoaded, ArrayTy->getPointerTo(), "arrptr.bitcast");
278     rewriteOldValToNew(UserOfArrayInst, &Array, ArrPtrLoadedBitcasted, Builder);
279   }
280 }
281 
282 // We return all `allocas` that may need to be converted to a call to
283 // cudaMallocManaged.
284 static void getAllocasToBeManaged(Function &F,
285                                   SmallSet<AllocaInst *, 4> &Allocas) {
286   for (BasicBlock &BB : F) {
287     for (Instruction &I : BB) {
288       auto *Alloca = dyn_cast<AllocaInst>(&I);
289       if (!Alloca)
290         continue;
291       DEBUG(dbgs() << "Checking if (" << *Alloca << ") may be captured: ");
292 
293       if (PointerMayBeCaptured(Alloca, /* ReturnCaptures */ false,
294                                /* StoreCaptures */ true)) {
295         Allocas.insert(Alloca);
296         DEBUG(dbgs() << "YES (captured).\n");
297       } else {
298         DEBUG(dbgs() << "NO (not captured).\n");
299       }
300     }
301   }
302 }
303 
304 static void rewriteAllocaAsManagedMemory(AllocaInst *Alloca,
305                                          const DataLayout &DL) {
306   DEBUG(dbgs() << "rewriting: (" << *Alloca << ") to managed mem.\n");
307   Module *M = Alloca->getModule();
308   assert(M && "Alloca does not have a module");
309 
310   PollyIRBuilder Builder(M->getContext());
311   Builder.SetInsertPoint(Alloca);
312 
313   Value *MallocManagedFn = getOrCreatePollyMallocManaged(*Alloca->getModule());
314   const uint64_t Size =
315       DL.getTypeAllocSize(Alloca->getType()->getElementType());
316   Value *SizeVal = Builder.getInt64(Size);
317   Value *RawManagedMem = Builder.CreateCall(MallocManagedFn, {SizeVal});
318   Value *Bitcasted = Builder.CreateBitCast(RawManagedMem, Alloca->getType());
319 
320   Function *F = Alloca->getFunction();
321   assert(F && "Alloca has invalid function");
322 
323   Bitcasted->takeName(Alloca);
324   Alloca->replaceAllUsesWith(Bitcasted);
325   Alloca->eraseFromParent();
326 
327   for (BasicBlock &BB : *F) {
328     ReturnInst *Return = dyn_cast<ReturnInst>(BB.getTerminator());
329     if (!Return)
330       continue;
331     Builder.SetInsertPoint(Return);
332 
333     Value *FreeManagedFn = getOrCreatePollyFreeManaged(*M);
334     Builder.CreateCall(FreeManagedFn, {RawManagedMem});
335   }
336 }
337 
338 // Replace all uses of `Old` with `New`, even inside `ConstantExpr`.
339 //
340 // `replaceAllUsesWith` does replace values in `ConstantExpr`. This function
341 // actually does replace it in `ConstantExpr`. The caveat is that if there is
342 // a use that is *outside* a function (say, at global declarations), we fail.
343 // So, this is meant to be used on values which we know will only be used
344 // within functions.
345 //
346 // This process works by looking through the uses of `Old`. If it finds a
347 // `ConstantExpr`, it recursively looks for the owning instruction.
348 // Then, it expands all the `ConstantExpr` to instructions and replaces
349 // `Old` with `New` in the expanded instructions.
350 static void replaceAllUsesAndConstantUses(Value *Old, Value *New,
351                                           PollyIRBuilder &Builder) {
352   SmallVector<Instruction *, 4> UserInstructions;
353   // Get all instructions that use array. We need to do this weird thing
354   // because `Constant`s that contain this array neeed to be expanded into
355   // instructions so that we can replace their parameters. `Constant`s cannot
356   // be edited easily, so we choose to convert all `Constant`s to
357   // `Instruction`s and handle all of the uses of `Array` uniformly.
358   for (Use &ArrayUse : Old->uses())
359     getInstructionUsersOfValue(ArrayUse.getUser(), UserInstructions);
360 
361   for (Instruction *I : UserInstructions)
362     rewriteOldValToNew(I, Old, New, Builder);
363 }
364 
365 class ManagedMemoryRewritePass : public ModulePass {
366 public:
367   static char ID;
368   GPUArch Architecture;
369   GPURuntime Runtime;
370 
371   ManagedMemoryRewritePass() : ModulePass(ID) {}
372   virtual bool runOnModule(Module &M) {
373     const DataLayout &DL = M.getDataLayout();
374 
375     Function *Malloc = M.getFunction("malloc");
376 
377     if (Malloc) {
378       PollyIRBuilder Builder(M.getContext());
379       Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
380       assert(PollyMallocManaged && "unable to create polly_mallocManaged");
381 
382       replaceAllUsesAndConstantUses(Malloc, PollyMallocManaged, Builder);
383       Malloc->eraseFromParent();
384     }
385 
386     Function *Free = M.getFunction("free");
387 
388     if (Free) {
389       PollyIRBuilder Builder(M.getContext());
390       Function *PollyFreeManaged = getOrCreatePollyFreeManaged(M);
391       assert(PollyFreeManaged && "unable to create polly_freeManaged");
392 
393       replaceAllUsesAndConstantUses(Free, PollyFreeManaged, Builder);
394       Free->eraseFromParent();
395     }
396 
397     SmallPtrSet<GlobalVariable *, 4> GlobalsToErase;
398     for (GlobalVariable &Global : M.globals())
399       replaceGlobalArray(M, DL, Global, GlobalsToErase);
400     for (GlobalVariable *G : GlobalsToErase)
401       G->eraseFromParent();
402 
403     // Rewrite allocas to cudaMallocs if we are asked to do so.
404     if (RewriteAllocas) {
405       SmallSet<AllocaInst *, 4> AllocasToBeManaged;
406       for (Function &F : M.functions())
407         getAllocasToBeManaged(F, AllocasToBeManaged);
408 
409       for (AllocaInst *Alloca : AllocasToBeManaged)
410         rewriteAllocaAsManagedMemory(Alloca, DL);
411     }
412 
413     return true;
414   }
415 };
416 
417 } // namespace
418 char ManagedMemoryRewritePass::ID = 42;
419 
420 Pass *polly::createManagedMemoryRewritePassPass(GPUArch Arch,
421                                                 GPURuntime Runtime) {
422   ManagedMemoryRewritePass *pass = new ManagedMemoryRewritePass();
423   pass->Runtime = Runtime;
424   pass->Architecture = Arch;
425   return pass;
426 }
427 
428 INITIALIZE_PASS_BEGIN(
429     ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
430     "Polly - Rewrite all allocations in heap & data section to managed memory",
431     false, false)
432 INITIALIZE_PASS_DEPENDENCY(PPCGCodeGeneration);
433 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
434 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
435 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
436 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
437 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
438 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
439 INITIALIZE_PASS_END(
440     ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
441     "Polly - Rewrite all allocations in heap & data section to managed memory",
442     false, false)
443