1 //===---- ManagedMemoryRewrite.cpp - Rewrite global & malloc'd memory -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a module and rewrite:
11 // 1. `malloc` -> `polly_mallocManaged`
12 // 2. `free` -> `polly_freeManaged`
13 // 3. global arrays with initializers -> global arrays that are initialized
14 //                                       with a constructor call to
15 //                                       `polly_mallocManaged`.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "polly/CodeGen/CodeGeneration.h"
20 #include "polly/CodeGen/IslAst.h"
21 #include "polly/CodeGen/IslNodeBuilder.h"
22 #include "polly/CodeGen/PPCGCodeGeneration.h"
23 #include "polly/CodeGen/Utils.h"
24 #include "polly/DependenceInfo.h"
25 #include "polly/LinkAllPasses.h"
26 #include "polly/Options.h"
27 #include "polly/ScopDetection.h"
28 #include "polly/ScopInfo.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/CaptureTracking.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/LegacyPassManager.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/IRReader/IRReader.h"
40 #include "llvm/Linker/Linker.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/TargetSelect.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 
48 static cl::opt<bool> RewriteAllocas(
49     "polly-acc-rewrite-allocas",
50     cl::desc(
51         "Ask the managed memory rewriter to also rewrite alloca instructions"),
52     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
53 
54 static cl::opt<bool> IgnoreLinkageForGlobals(
55     "polly-acc-rewrite-ignore-linkage-for-globals",
56     cl::desc(
57         "By default, we only rewrite globals with internal linkage. This flag "
58         "enables rewriting of globals regardless of linkage"),
59     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
60 
61 #define DEBUG_TYPE "polly-acc-rewrite-managed-memory"
62 namespace {
63 
64 static llvm::Function *getOrCreatePollyMallocManaged(Module &M) {
65   const char *Name = "polly_mallocManaged";
66   Function *F = M.getFunction(Name);
67 
68   // If F is not available, declare it.
69   if (!F) {
70     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
71     PollyIRBuilder Builder(M.getContext());
72     // TODO: How do I get `size_t`? I assume from DataLayout?
73     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(),
74                                          {Builder.getInt64Ty()}, false);
75     F = Function::Create(Ty, Linkage, Name, &M);
76   }
77 
78   return F;
79 }
80 
81 static llvm::Function *getOrCreatePollyFreeManaged(Module &M) {
82   const char *Name = "polly_freeManaged";
83   Function *F = M.getFunction(Name);
84 
85   // If F is not available, declare it.
86   if (!F) {
87     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
88     PollyIRBuilder Builder(M.getContext());
89     // TODO: How do I get `size_t`? I assume from DataLayout?
90     FunctionType *Ty =
91         FunctionType::get(Builder.getVoidTy(), {Builder.getInt8PtrTy()}, false);
92     F = Function::Create(Ty, Linkage, Name, &M);
93   }
94 
95   return F;
96 }
97 
98 // Expand a constant expression `Cur`, which is used at instruction `Parent`
99 // at index `index`.
100 // Since a constant expression can expand to multiple instructions, store all
101 // the expands into a set called `Expands`.
102 // Note that this goes inorder on the constant expression tree.
103 // A * ((B * D) + C)
104 // will be processed with first A, then B * D, then B, then D, and then C.
105 // Though ConstantExprs are not treated as "trees" but as DAGs, since you can
106 // have something like this:
107 //    *
108 //   /  \
109 //   \  /
110 //    (D)
111 //
112 // For the purposes of this expansion, we expand the two occurences of D
113 // separately. Therefore, we expand the DAG into the tree:
114 //  *
115 // / \
116 // D  D
117 // TODO: We don't _have_to do this, but this is the simplest solution.
118 // We can write a solution that keeps track of which constants have been
119 // already expanded.
120 static void expandConstantExpr(ConstantExpr *Cur, PollyIRBuilder &Builder,
121                                Instruction *Parent, int index,
122                                SmallPtrSet<Instruction *, 4> &Expands) {
123   assert(Cur && "invalid constant expression passed");
124   Instruction *I = Cur->getAsInstruction();
125   assert(I && "unable to convert ConstantExpr to Instruction");
126 
127   DEBUG(dbgs() << "Expanding ConstantExpression: " << *Cur
128                << " | in Instruction: " << *I << "\n";);
129 
130   // Invalidate `Cur` so that no one after this point uses `Cur`. Rather,
131   // they should mutate `I`.
132   Cur = nullptr;
133 
134   Expands.insert(I);
135   Parent->setOperand(index, I);
136 
137   // The things that `Parent` uses (its operands) should be created
138   // before `Parent`.
139   Builder.SetInsertPoint(Parent);
140   Builder.Insert(I);
141 
142   for (unsigned i = 0; i < I->getNumOperands(); i++) {
143     Value *Op = I->getOperand(i);
144     assert(isa<Constant>(Op) && "constant must have a constant operand");
145 
146     if (ConstantExpr *CExprOp = dyn_cast<ConstantExpr>(Op))
147       expandConstantExpr(CExprOp, Builder, I, i, Expands);
148   }
149 }
150 
151 // Edit all uses of `OldVal` to NewVal` in `Inst`. This will rewrite
152 // `ConstantExpr`s that are used in the `Inst`.
153 // Note that `replaceAllUsesWith` is insufficient for this purpose because it
154 // does not rewrite values in `ConstantExpr`s.
155 static void rewriteOldValToNew(Instruction *Inst, Value *OldVal, Value *NewVal,
156                                PollyIRBuilder &Builder) {
157 
158   // This contains a set of instructions in which OldVal must be replaced.
159   // We start with `Inst`, and we fill it up with the expanded `ConstantExpr`s
160   // from `Inst`s arguments.
161   // We need to go through this process because `replaceAllUsesWith` does not
162   // actually edit `ConstantExpr`s.
163   SmallPtrSet<Instruction *, 4> InstsToVisit = {Inst};
164 
165   // Expand all `ConstantExpr`s and place it in `InstsToVisit`.
166   for (unsigned i = 0; i < Inst->getNumOperands(); i++) {
167     Value *Operand = Inst->getOperand(i);
168     if (ConstantExpr *ValueConstExpr = dyn_cast<ConstantExpr>(Operand))
169       expandConstantExpr(ValueConstExpr, Builder, Inst, i, InstsToVisit);
170   }
171 
172   // Now visit each instruction and use `replaceUsesOfWith`. We know that
173   // will work because `I` cannot have any `ConstantExpr` within it.
174   for (Instruction *I : InstsToVisit)
175     I->replaceUsesOfWith(OldVal, NewVal);
176 }
177 
178 // Given a value `Current`, return all Instructions that may contain `Current`
179 // in an expression.
180 // We need this auxiliary function, because if we have a
181 // `Constant` that is a user of `V`, we need to recurse into the
182 // `Constant`s uses to gather the root instruciton.
183 static void getInstructionUsersOfValue(Value *V,
184                                        SmallVector<Instruction *, 4> &Owners) {
185   if (auto *I = dyn_cast<Instruction>(V)) {
186     Owners.push_back(I);
187   } else {
188     // Anything that is a `User` must be a constant or an instruction.
189     auto *C = cast<Constant>(V);
190     for (Use &CUse : C->uses())
191       getInstructionUsersOfValue(CUse.getUser(), Owners);
192   }
193 }
194 
195 static void
196 replaceGlobalArray(Module &M, const DataLayout &DL, GlobalVariable &Array,
197                    SmallPtrSet<GlobalVariable *, 4> &ReplacedGlobals) {
198   // We only want arrays.
199   ArrayType *ArrayTy = dyn_cast<ArrayType>(Array.getType()->getElementType());
200   if (!ArrayTy)
201     return;
202   Type *ElemTy = ArrayTy->getElementType();
203   PointerType *ElemPtrTy = ElemTy->getPointerTo();
204 
205   // We only wish to replace arrays that are visible in the module they
206   // inhabit. Otherwise, our type edit from [T] to T* would be illegal across
207   // modules.
208   const bool OnlyVisibleInsideModule = Array.hasPrivateLinkage() ||
209                                        Array.hasInternalLinkage() ||
210                                        IgnoreLinkageForGlobals;
211   if (!OnlyVisibleInsideModule)
212     return;
213 
214   if (!Array.hasInitializer() ||
215       !isa<ConstantAggregateZero>(Array.getInitializer()))
216     return;
217 
218   // At this point, we have committed to replacing this array.
219   ReplacedGlobals.insert(&Array);
220 
221   std::string NewName = (Array.getName() + Twine(".toptr")).str();
222   GlobalVariable *ReplacementToArr =
223       cast<GlobalVariable>(M.getOrInsertGlobal(NewName, ElemPtrTy));
224   ReplacementToArr->setInitializer(ConstantPointerNull::get(ElemPtrTy));
225 
226   Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
227   Twine FnName = Array.getName() + ".constructor";
228   PollyIRBuilder Builder(M.getContext());
229   FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
230   const GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
231   Function *F = Function::Create(Ty, Linkage, FnName, &M);
232   BasicBlock *Start = BasicBlock::Create(M.getContext(), "entry", F);
233   Builder.SetInsertPoint(Start);
234 
235   int ArraySizeInt = DL.getTypeAllocSizeInBits(ArrayTy) / 8;
236   Value *ArraySize = Builder.getInt64(ArraySizeInt);
237   ArraySize->setName("array.size");
238 
239   Value *AllocatedMemRaw =
240       Builder.CreateCall(PollyMallocManaged, {ArraySize}, "mem.raw");
241   Value *AllocatedMemTyped =
242       Builder.CreatePointerCast(AllocatedMemRaw, ElemPtrTy, "mem.typed");
243   Builder.CreateStore(AllocatedMemTyped, ReplacementToArr);
244   Builder.CreateRetVoid();
245 
246   const int Priority = 0;
247   appendToGlobalCtors(M, F, Priority, ReplacementToArr);
248 
249   SmallVector<Instruction *, 4> ArrayUserInstructions;
250   // Get all instructions that use array. We need to do this weird thing
251   // because `Constant`s that contain this array neeed to be expanded into
252   // instructions so that we can replace their parameters. `Constant`s cannot
253   // be edited easily, so we choose to convert all `Constant`s to
254   // `Instruction`s and handle all of the uses of `Array` uniformly.
255   for (Use &ArrayUse : Array.uses())
256     getInstructionUsersOfValue(ArrayUse.getUser(), ArrayUserInstructions);
257 
258   for (Instruction *UserOfArrayInst : ArrayUserInstructions) {
259 
260     Builder.SetInsertPoint(UserOfArrayInst);
261     // <ty>** -> <ty>*
262     Value *ArrPtrLoaded = Builder.CreateLoad(ReplacementToArr, "arrptr.load");
263     // <ty>* -> [ty]*
264     Value *ArrPtrLoadedBitcasted = Builder.CreateBitCast(
265         ArrPtrLoaded, ArrayTy->getPointerTo(), "arrptr.bitcast");
266     rewriteOldValToNew(UserOfArrayInst, &Array, ArrPtrLoadedBitcasted, Builder);
267   }
268 }
269 
270 // We return all `allocas` that may need to be converted to a call to
271 // cudaMallocManaged.
272 static void getAllocasToBeManaged(Function &F,
273                                   SmallSet<AllocaInst *, 4> &Allocas) {
274   for (BasicBlock &BB : F) {
275     for (Instruction &I : BB) {
276       auto *Alloca = dyn_cast<AllocaInst>(&I);
277       if (!Alloca)
278         continue;
279       dbgs() << "Checking if " << *Alloca << "may be captured: ";
280 
281       if (PointerMayBeCaptured(Alloca, /* ReturnCaptures */ false,
282                                /* StoreCaptures */ true)) {
283         Allocas.insert(Alloca);
284         DEBUG(dbgs() << "YES (captured)\n");
285       } else {
286         DEBUG(dbgs() << "NO (not captured)\n");
287       }
288     }
289   }
290 }
291 
292 static void rewriteAllocaAsManagedMemory(AllocaInst *Alloca,
293                                          const DataLayout &DL) {
294   DEBUG(dbgs() << "rewriting: " << *Alloca << " to managed mem.\n");
295   Module *M = Alloca->getModule();
296   assert(M && "Alloca does not have a module");
297 
298   PollyIRBuilder Builder(M->getContext());
299   Builder.SetInsertPoint(Alloca);
300 
301   Value *MallocManagedFn = getOrCreatePollyMallocManaged(*Alloca->getModule());
302   const int Size = DL.getTypeAllocSize(Alloca->getType()->getElementType());
303   Value *SizeVal = Builder.getInt64(Size);
304   Value *RawManagedMem = Builder.CreateCall(MallocManagedFn, {SizeVal});
305   Value *Bitcasted = Builder.CreateBitCast(RawManagedMem, Alloca->getType());
306 
307   Function *F = Alloca->getFunction();
308   assert(F && "Alloca has invalid function");
309 
310   Bitcasted->takeName(Alloca);
311   Alloca->replaceAllUsesWith(Bitcasted);
312   Alloca->eraseFromParent();
313 
314   for (BasicBlock &BB : *F) {
315     ReturnInst *Return = dyn_cast<ReturnInst>(BB.getTerminator());
316     if (!Return)
317       continue;
318     Builder.SetInsertPoint(Return);
319 
320     Value *FreeManagedFn = getOrCreatePollyFreeManaged(*M);
321     Builder.CreateCall(FreeManagedFn, {RawManagedMem});
322   }
323 }
324 
325 // Replace all uses of `Old` with `New`, even inside `ConstantExpr`.
326 //
327 // `replaceAllUsesWith` does replace values in `ConstantExpr`. This function
328 // actually does replace it in `ConstantExpr`. The caveat is that if there is
329 // a use that is *outside* a function (say, at global declarations), we fail.
330 // So, this is meant to be used on values which we know will only be used
331 // within functions.
332 //
333 // This process works by looking through the uses of `Old`. If it finds a
334 // `ConstantExpr`, it recursively looks for the owning instruction.
335 // Then, it expands all the `ConstantExpr` to instructions and replaces
336 // `Old` with `New` in the expanded instructions.
337 static void replaceAllUsesAndConstantUses(Value *Old, Value *New,
338                                           PollyIRBuilder &Builder) {
339   SmallVector<Instruction *, 4> UserInstructions;
340   // Get all instructions that use array. We need to do this weird thing
341   // because `Constant`s that contain this array neeed to be expanded into
342   // instructions so that we can replace their parameters. `Constant`s cannot
343   // be edited easily, so we choose to convert all `Constant`s to
344   // `Instruction`s and handle all of the uses of `Array` uniformly.
345   for (Use &ArrayUse : Old->uses())
346     getInstructionUsersOfValue(ArrayUse.getUser(), UserInstructions);
347 
348   for (Instruction *I : UserInstructions)
349     rewriteOldValToNew(I, Old, New, Builder);
350 }
351 
352 class ManagedMemoryRewritePass : public ModulePass {
353 public:
354   static char ID;
355   GPUArch Architecture;
356   GPURuntime Runtime;
357 
358   ManagedMemoryRewritePass() : ModulePass(ID) {}
359   virtual bool runOnModule(Module &M) {
360     const DataLayout &DL = M.getDataLayout();
361 
362     Function *Malloc = M.getFunction("malloc");
363 
364     if (Malloc) {
365       PollyIRBuilder Builder(M.getContext());
366       Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
367       assert(PollyMallocManaged && "unable to create polly_mallocManaged");
368 
369       replaceAllUsesAndConstantUses(Malloc, PollyMallocManaged, Builder);
370       Malloc->eraseFromParent();
371     }
372 
373     Function *Free = M.getFunction("free");
374 
375     if (Free) {
376       PollyIRBuilder Builder(M.getContext());
377       Function *PollyFreeManaged = getOrCreatePollyFreeManaged(M);
378       assert(PollyFreeManaged && "unable to create polly_freeManaged");
379 
380       replaceAllUsesAndConstantUses(Free, PollyFreeManaged, Builder);
381       Free->eraseFromParent();
382     }
383 
384     SmallPtrSet<GlobalVariable *, 4> GlobalsToErase;
385     for (GlobalVariable &Global : M.globals())
386       replaceGlobalArray(M, DL, Global, GlobalsToErase);
387     for (GlobalVariable *G : GlobalsToErase)
388       G->eraseFromParent();
389 
390     // Rewrite allocas to cudaMallocs if we are asked to do so.
391     if (RewriteAllocas) {
392       SmallSet<AllocaInst *, 4> AllocasToBeManaged;
393       for (Function &F : M.functions())
394         getAllocasToBeManaged(F, AllocasToBeManaged);
395 
396       for (AllocaInst *Alloca : AllocasToBeManaged)
397         rewriteAllocaAsManagedMemory(Alloca, DL);
398     }
399 
400     return true;
401   }
402 };
403 
404 } // namespace
405 char ManagedMemoryRewritePass::ID = 42;
406 
407 Pass *polly::createManagedMemoryRewritePassPass(GPUArch Arch,
408                                                 GPURuntime Runtime) {
409   ManagedMemoryRewritePass *pass = new ManagedMemoryRewritePass();
410   pass->Runtime = Runtime;
411   pass->Architecture = Arch;
412   return pass;
413 }
414 
415 INITIALIZE_PASS_BEGIN(
416     ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
417     "Polly - Rewrite all allocations in heap & data section to managed memory",
418     false, false)
419 INITIALIZE_PASS_DEPENDENCY(PPCGCodeGeneration);
420 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
421 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
422 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
423 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
424 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
425 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
426 INITIALIZE_PASS_END(
427     ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
428     "Polly - Rewrite all allocations in heap & data section to managed memory",
429     false, false)
430