1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Options.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/ISLTools.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "polly/Support/ScopHelper.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/RegionInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "isl/aff.h" 53 #include "isl/aff_type.h" 54 #include "isl/ast.h" 55 #include "isl/ast_build.h" 56 #include "isl/isl-noexceptions.h" 57 #include "isl/map.h" 58 #include "isl/set.h" 59 #include "isl/union_map.h" 60 #include "isl/union_set.h" 61 #include "isl/val.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-codegen" 74 75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 76 77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 79 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 80 STATISTIC(IfConditions, "Number of generated if-conditions"); 81 82 /// OpenMP backend options 83 enum class OpenMPBackend { GNU, LLVM }; 84 85 static cl::opt<bool> PollyGenerateRTCPrint( 86 "polly-codegen-emit-rtc-print", 87 cl::desc("Emit code that prints the runtime check result dynamically."), 88 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 89 90 // If this option is set we always use the isl AST generator to regenerate 91 // memory accesses. Without this option set we regenerate expressions using the 92 // original SCEV expressions and only generate new expressions in case the 93 // access relation has been changed and consequently must be regenerated. 94 static cl::opt<bool> PollyGenerateExpressions( 95 "polly-codegen-generate-expressions", 96 cl::desc("Generate AST expressions for unmodified and modified accesses"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 98 99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 100 "polly-target-first-level-cache-line-size", 101 cl::desc("The size of the first level cache line size specified in bytes."), 102 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 103 104 static cl::opt<OpenMPBackend> PollyOmpBackend( 105 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 106 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 107 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 108 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 109 110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For, 111 ICmpInst::Predicate &Predicate) { 112 isl::ast_expr Cond = For.cond(); 113 isl::ast_expr Iterator = For.iterator(); 114 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 115 "conditional expression is not an atomic upper bound"); 116 117 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 118 119 switch (OpType) { 120 case isl_ast_op_le: 121 Predicate = ICmpInst::ICMP_SLE; 122 break; 123 case isl_ast_op_lt: 124 Predicate = ICmpInst::ICMP_SLT; 125 break; 126 default: 127 llvm_unreachable("Unexpected comparison type in loop condition"); 128 } 129 130 isl::ast_expr Arg0 = Cond.get_op_arg(0); 131 132 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 133 "conditional expression is not an atomic upper bound"); 134 135 isl::id UBID = Arg0.get_id(); 136 137 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 138 "Could not get the iterator"); 139 140 isl::id IteratorID = Iterator.get_id(); 141 142 assert(UBID.get() == IteratorID.get() && 143 "conditional expression is not an atomic upper bound"); 144 145 return Cond.get_op_arg(1); 146 } 147 148 /// Return true if a return value of Predicate is true for the value represented 149 /// by passed isl_ast_expr_int. 150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 151 isl_bool (*Predicate)(__isl_keep isl_val *)) { 152 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 153 isl_ast_expr_free(Expr); 154 return false; 155 } 156 auto ExprVal = isl_ast_expr_get_val(Expr); 157 isl_ast_expr_free(Expr); 158 if (Predicate(ExprVal) != isl_bool_true) { 159 isl_val_free(ExprVal); 160 return false; 161 } 162 isl_val_free(ExprVal); 163 return true; 164 } 165 166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) { 167 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 168 isl::ast_node Body = For.body(); 169 170 // First, check if we can actually handle this code. 171 switch (isl_ast_node_get_type(Body.get())) { 172 case isl_ast_node_user: 173 break; 174 case isl_ast_node_block: { 175 isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>(); 176 isl::ast_node_list List = BodyBlock.children(); 177 for (isl::ast_node Node : List) { 178 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 179 if (NodeType != isl_ast_node_user) 180 return -1; 181 } 182 break; 183 } 184 default: 185 return -1; 186 } 187 188 isl::ast_expr Init = For.init(); 189 if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) 190 return -1; 191 isl::ast_expr Inc = For.inc(); 192 if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) 193 return -1; 194 CmpInst::Predicate Predicate; 195 isl::ast_expr UB = getUpperBound(For, Predicate); 196 if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) 197 return -1; 198 isl::val UpVal = UB.get_val(); 199 int NumberIterations = UpVal.get_num_si(); 200 if (NumberIterations < 0) 201 return -1; 202 if (Predicate == CmpInst::ICMP_SLT) 203 return NumberIterations; 204 else 205 return NumberIterations + 1; 206 } 207 208 /// Extract the values and SCEVs needed to generate code for a block. 209 static int findReferencesInBlock(struct SubtreeReferences &References, 210 const ScopStmt *Stmt, BasicBlock *BB) { 211 for (Instruction &Inst : *BB) { 212 // Include invariant loads 213 if (isa<LoadInst>(Inst)) 214 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 215 References.Values.insert(InvariantLoad); 216 217 for (Value *SrcVal : Inst.operands()) { 218 auto *Scope = References.LI.getLoopFor(BB); 219 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 220 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 221 continue; 222 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 223 References.Values.insert(NewVal); 224 } 225 } 226 return 0; 227 } 228 229 void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 230 bool CreateScalarRefs) { 231 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 232 233 if (Stmt->isBlockStmt()) 234 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 235 else if (Stmt->isRegionStmt()) { 236 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 237 findReferencesInBlock(References, Stmt, BB); 238 } else { 239 assert(Stmt->isCopyStmt()); 240 // Copy Stmts have no instructions that we need to consider. 241 } 242 243 for (auto &Access : *Stmt) { 244 if (References.ParamSpace) { 245 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 246 (*References.ParamSpace) = 247 References.ParamSpace->align_params(ParamSpace); 248 } 249 250 if (Access->isLatestArrayKind()) { 251 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 252 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 253 if (Stmt->getParent()->contains(OpInst)) 254 continue; 255 256 References.Values.insert(BasePtr); 257 continue; 258 } 259 260 if (CreateScalarRefs) 261 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 262 } 263 } 264 265 /// Extract the out-of-scop values and SCEVs referenced from a set describing 266 /// a ScopStmt. 267 /// 268 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 269 /// statement and the base pointers of the memory accesses. For scalar 270 /// statements we force the generation of alloca memory locations and list 271 /// these locations in the set of out-of-scop values as well. 272 /// 273 /// @param Set A set which references the ScopStmt we are interested in. 274 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 275 /// structure. 276 static void addReferencesFromStmtSet(isl::set Set, 277 struct SubtreeReferences *UserPtr) { 278 isl::id Id = Set.get_tuple_id(); 279 auto *Stmt = static_cast<const ScopStmt *>(Id.get_user()); 280 return addReferencesFromStmt(Stmt, UserPtr); 281 } 282 283 /// Extract the out-of-scop values and SCEVs referenced from a union set 284 /// referencing multiple ScopStmts. 285 /// 286 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 287 /// statement and the base pointers of the memory accesses. For scalar 288 /// statements we force the generation of alloca memory locations and list 289 /// these locations in the set of out-of-scop values as well. 290 /// 291 /// @param USet A union set referencing the ScopStmts we are interested 292 /// in. 293 /// @param References The SubtreeReferences data structure through which 294 /// results are returned and further information is 295 /// provided. 296 static void 297 addReferencesFromStmtUnionSet(isl::union_set USet, 298 struct SubtreeReferences &References) { 299 300 for (isl::set Set : USet.get_set_list()) 301 addReferencesFromStmtSet(Set, &References); 302 } 303 304 isl::union_map 305 IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { 306 return IslAstInfo::getSchedule(Node); 307 } 308 309 void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, 310 SetVector<Value *> &Values, 311 SetVector<const Loop *> &Loops) { 312 SetVector<const SCEV *> SCEVs; 313 struct SubtreeReferences References = { 314 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 315 316 for (const auto &I : IDToValue) 317 Values.insert(I.second); 318 319 // NOTE: this is populated in IslNodeBuilder::addParameters 320 for (const auto &I : OutsideLoopIterations) 321 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 322 323 isl::union_set Schedule = getScheduleForAstNode(For).domain(); 324 addReferencesFromStmtUnionSet(Schedule, References); 325 326 for (const SCEV *Expr : SCEVs) { 327 findValues(Expr, SE, Values); 328 findLoops(Expr, Loops); 329 } 330 331 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 332 333 /// Note: Code generation of induction variables of loops outside Scops 334 /// 335 /// Remove loops that contain the scop or that are part of the scop, as they 336 /// are considered local. This leaves only loops that are before the scop, but 337 /// do not contain the scop itself. 338 /// We ignore loops perfectly contained in the Scop because these are already 339 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 340 /// whose induction variables are referred to by the Scop, but the Scop is not 341 /// fully contained in these Loops. Since there can be many of these, 342 /// we choose to codegen these on-demand. 343 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 344 Loops.remove_if([this](const Loop *L) { 345 return S.contains(L) || L->contains(S.getEntry()); 346 }); 347 348 // Contains Values that may need to be replaced with other values 349 // due to replacements from the ValueMap. We should make sure 350 // that we return correctly remapped values. 351 // NOTE: this code path is tested by: 352 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 353 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 354 SetVector<Value *> ReplacedValues; 355 for (Value *V : Values) { 356 ReplacedValues.insert(getLatestValue(V)); 357 } 358 Values = ReplacedValues; 359 } 360 361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 362 SmallPtrSet<Value *, 5> Inserted; 363 364 for (const auto &I : IDToValue) { 365 IDToValue[I.first] = NewValues[I.second]; 366 Inserted.insert(I.second); 367 } 368 369 for (const auto &I : NewValues) { 370 if (Inserted.count(I.first)) 371 continue; 372 373 ValueMap[I.first] = I.second; 374 } 375 } 376 377 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 378 auto It = ValueMap.find(Original); 379 if (It == ValueMap.end()) 380 return Original; 381 return It->second; 382 } 383 384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 385 std::vector<Value *> &IVS, 386 __isl_take isl_id *IteratorID, 387 __isl_take isl_union_map *Schedule) { 388 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 389 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 390 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 391 isl_ast_expr_free(StmtExpr); 392 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 393 std::vector<LoopToScevMapT> VLTS(IVS.size()); 394 395 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 396 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 397 isl_map *S = isl_map_from_union_map(Schedule); 398 399 auto *NewAccesses = createNewAccesses(Stmt, User); 400 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 401 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 402 isl_id_to_ast_expr_free(NewAccesses); 403 isl_map_free(S); 404 isl_id_free(Id); 405 isl_ast_node_free(User); 406 } 407 408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 409 auto *Id = isl_ast_node_mark_get_id(Node); 410 auto Child = isl_ast_node_mark_get_node(Node); 411 isl_ast_node_free(Node); 412 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 413 // it will be optimized away and we should skip it. 414 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 415 isl_ast_node_get_type(Child) == isl_ast_node_for) { 416 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 417 int VectorWidth = 418 getNumberOfIterations(isl::manage_copy(Child).as<isl::ast_node_for>()); 419 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 420 createForVector(Child, VectorWidth); 421 else 422 createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true); 423 isl_id_free(Id); 424 return; 425 } 426 if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { 427 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 428 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 429 } 430 431 BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id)); 432 BandAttr *AncestorLoopAttr; 433 if (ChildLoopAttr) { 434 // Save current LoopAttr environment to restore again when leaving this 435 // subtree. This means there was no loop between the ancestor LoopAttr and 436 // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This 437 // can happen e.g. if the AST build peeled or unrolled the loop. 438 AncestorLoopAttr = Annotator.getStagingAttrEnv(); 439 440 Annotator.getStagingAttrEnv() = ChildLoopAttr; 441 } 442 443 create(Child); 444 445 if (ChildLoopAttr) { 446 assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && 447 "Nest must not overwrite loop attr environment"); 448 Annotator.getStagingAttrEnv() = AncestorLoopAttr; 449 } 450 451 isl_id_free(Id); 452 } 453 454 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 455 int VectorWidth) { 456 isl_ast_node *Body = isl_ast_node_for_get_body(For); 457 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 458 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 459 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 460 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 461 462 Value *ValueLB = ExprBuilder.create(Init); 463 Value *ValueInc = ExprBuilder.create(Inc); 464 465 Type *MaxType = ExprBuilder.getType(Iterator); 466 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 467 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 468 469 if (MaxType != ValueLB->getType()) 470 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 471 if (MaxType != ValueInc->getType()) 472 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 473 474 std::vector<Value *> IVS(VectorWidth); 475 IVS[0] = ValueLB; 476 477 for (int i = 1; i < VectorWidth; i++) 478 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 479 480 isl::union_map Schedule = getScheduleForAstNode(isl::manage_copy(For)); 481 assert(!Schedule.is_null() && 482 "For statement annotation does not contain its schedule"); 483 484 IDToValue[IteratorID] = ValueLB; 485 486 switch (isl_ast_node_get_type(Body)) { 487 case isl_ast_node_user: 488 createUserVector(Body, IVS, isl_id_copy(IteratorID), Schedule.copy()); 489 break; 490 case isl_ast_node_block: { 491 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 492 493 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 494 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 495 isl_id_copy(IteratorID), Schedule.copy()); 496 497 isl_ast_node_free(Body); 498 isl_ast_node_list_free(List); 499 break; 500 } 501 default: 502 isl_ast_node_dump(Body); 503 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 504 } 505 506 IDToValue.erase(IDToValue.find(IteratorID)); 507 isl_id_free(IteratorID); 508 509 isl_ast_node_free(For); 510 isl_ast_expr_free(Iterator); 511 512 VectorLoops++; 513 } 514 515 /// Restore the initial ordering of dimensions of the band node 516 /// 517 /// In case the band node represents all the dimensions of the iteration 518 /// domain, recreate the band node to restore the initial ordering of the 519 /// dimensions. 520 /// 521 /// @param Node The band node to be modified. 522 /// @return The modified schedule node. 523 static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) { 524 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 525 isl::ast_node Body = Node.body(); 526 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 527 return false; 528 529 isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>(); 530 auto Id = BodyMark.id(); 531 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 532 return true; 533 return false; 534 } 535 536 void IslNodeBuilder::createForSequential(isl::ast_node_for For, 537 bool MarkParallel) { 538 Value *ValueLB, *ValueUB, *ValueInc; 539 Type *MaxType; 540 BasicBlock *ExitBlock; 541 Value *IV; 542 CmpInst::Predicate Predicate; 543 544 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 545 546 isl::ast_node Body = For.body(); 547 548 // isl_ast_node_for_is_degenerate(For) 549 // 550 // TODO: For degenerated loops we could generate a plain assignment. 551 // However, for now we just reuse the logic for normal loops, which will 552 // create a loop with a single iteration. 553 554 isl::ast_expr Init = For.init(); 555 isl::ast_expr Inc = For.inc(); 556 isl::ast_expr Iterator = For.iterator(); 557 isl::id IteratorID = Iterator.get_id(); 558 isl::ast_expr UB = getUpperBound(For, Predicate); 559 560 ValueLB = ExprBuilder.create(Init.release()); 561 ValueUB = ExprBuilder.create(UB.release()); 562 ValueInc = ExprBuilder.create(Inc.release()); 563 564 MaxType = ExprBuilder.getType(Iterator.get()); 565 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 566 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 567 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 568 569 if (MaxType != ValueLB->getType()) 570 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 571 if (MaxType != ValueUB->getType()) 572 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 573 if (MaxType != ValueInc->getType()) 574 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 575 576 // If we can show that LB <Predicate> UB holds at least once, we can 577 // omit the GuardBB in front of the loop. 578 bool UseGuardBB = 579 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 580 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 581 Predicate, &Annotator, MarkParallel, UseGuardBB, 582 LoopVectorizerDisabled); 583 IDToValue[IteratorID.get()] = IV; 584 585 create(Body.release()); 586 587 Annotator.popLoop(MarkParallel); 588 589 IDToValue.erase(IDToValue.find(IteratorID.get())); 590 591 Builder.SetInsertPoint(&ExitBlock->front()); 592 593 SequentialLoops++; 594 } 595 596 /// Remove the BBs contained in a (sub)function from the dominator tree. 597 /// 598 /// This function removes the basic blocks that are part of a subfunction from 599 /// the dominator tree. Specifically, when generating code it may happen that at 600 /// some point the code generation continues in a new sub-function (e.g., when 601 /// generating OpenMP code). The basic blocks that are created in this 602 /// sub-function are then still part of the dominator tree of the original 603 /// function, such that the dominator tree reaches over function boundaries. 604 /// This is not only incorrect, but also causes crashes. This function now 605 /// removes from the dominator tree all basic blocks that are dominated (and 606 /// consequently reachable) from the entry block of this (sub)function. 607 /// 608 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 609 /// the function/region it runs on. Hence, the pure need for this function shows 610 /// that we do not comply to this rule. At the moment, this does not cause any 611 /// issues, but we should be aware that such issues may appear. Unfortunately 612 /// the current LLVM pass infrastructure does not allow to make Polly a module 613 /// or call-graph pass to solve this issue, as such a pass would not have access 614 /// to the per-function analyses passes needed by Polly. A future pass manager 615 /// infrastructure is supposed to enable such kind of access possibly allowing 616 /// us to create a cleaner solution here. 617 /// 618 /// FIXME: Instead of adding the dominance information and then dropping it 619 /// later on, we should try to just not add it in the first place. This requires 620 /// some careful testing to make sure this does not break in interaction with 621 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 622 /// which may try to update it. 623 /// 624 /// @param F The function which contains the BBs to removed. 625 /// @param DT The dominator tree from which to remove the BBs. 626 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 627 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 628 std::vector<BasicBlock *> Nodes; 629 630 // We can only remove an element from the dominator tree, if all its children 631 // have been removed. To ensure this we obtain the list of nodes to remove 632 // using a post-order tree traversal. 633 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 634 Nodes.push_back(I->getBlock()); 635 636 for (BasicBlock *BB : Nodes) 637 DT.eraseNode(BB); 638 } 639 640 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 641 isl_ast_node *Body; 642 isl_ast_expr *Init, *Inc, *Iterator, *UB; 643 isl_id *IteratorID; 644 Value *ValueLB, *ValueUB, *ValueInc; 645 Type *MaxType; 646 Value *IV; 647 CmpInst::Predicate Predicate; 648 649 // The preamble of parallel code interacts different than normal code with 650 // e.g., scalar initialization. Therefore, we ensure the parallel code is 651 // separated from the last basic block. 652 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 653 &*Builder.GetInsertPoint(), &DT, &LI); 654 ParBB->setName("polly.parallel.for"); 655 Builder.SetInsertPoint(&ParBB->front()); 656 657 Body = isl_ast_node_for_get_body(For); 658 Init = isl_ast_node_for_get_init(For); 659 Inc = isl_ast_node_for_get_inc(For); 660 Iterator = isl_ast_node_for_get_iterator(For); 661 IteratorID = isl_ast_expr_get_id(Iterator); 662 UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate) 663 .release(); 664 665 ValueLB = ExprBuilder.create(Init); 666 ValueUB = ExprBuilder.create(UB); 667 ValueInc = ExprBuilder.create(Inc); 668 669 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 670 // expression, we need to adjust the loop bound by one. 671 if (Predicate == CmpInst::ICMP_SLT) 672 ValueUB = Builder.CreateAdd( 673 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 674 675 MaxType = ExprBuilder.getType(Iterator); 676 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 677 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 678 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 679 680 if (MaxType != ValueLB->getType()) 681 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 682 if (MaxType != ValueUB->getType()) 683 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 684 if (MaxType != ValueInc->getType()) 685 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 686 687 BasicBlock::iterator LoopBody; 688 689 SetVector<Value *> SubtreeValues; 690 SetVector<const Loop *> Loops; 691 692 getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops); 693 694 // Create for all loops we depend on values that contain the current loop 695 // iteration. These values are necessary to generate code for SCEVs that 696 // depend on such loops. As a result we need to pass them to the subfunction. 697 // See [Code generation of induction variables of loops outside Scops] 698 for (const Loop *L : Loops) { 699 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 700 SubtreeValues.insert(LoopInductionVar); 701 } 702 703 ValueMapT NewValues; 704 705 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 706 707 switch (PollyOmpBackend) { 708 case OpenMPBackend::GNU: 709 ParallelLoopGenPtr.reset( 710 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 711 break; 712 case OpenMPBackend::LLVM: 713 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 714 break; 715 } 716 717 IV = ParallelLoopGenPtr->createParallelLoop( 718 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 719 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 720 Builder.SetInsertPoint(&*LoopBody); 721 722 // Remember the parallel subfunction 723 ParallelSubfunctions.push_back(LoopBody->getFunction()); 724 725 // Save the current values. 726 auto ValueMapCopy = ValueMap; 727 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 728 729 updateValues(NewValues); 730 IDToValue[IteratorID] = IV; 731 732 ValueMapT NewValuesReverse; 733 734 for (auto P : NewValues) 735 NewValuesReverse[P.second] = P.first; 736 737 Annotator.addAlternativeAliasBases(NewValuesReverse); 738 739 create(Body); 740 741 Annotator.resetAlternativeAliasBases(); 742 // Restore the original values. 743 ValueMap = ValueMapCopy; 744 IDToValue = IDToValueCopy; 745 746 Builder.SetInsertPoint(&*AfterLoop); 747 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 748 749 for (const Loop *L : Loops) 750 OutsideLoopIterations.erase(L); 751 752 isl_ast_node_free(For); 753 isl_ast_expr_free(Iterator); 754 isl_id_free(IteratorID); 755 756 ParallelLoops++; 757 } 758 759 /// Return whether any of @p Node's statements contain partial accesses. 760 /// 761 /// Partial accesses are not supported by Polly's vector code generator. 762 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 763 return isl_ast_node_foreach_descendant_top_down( 764 Node, 765 [](isl_ast_node *Node, void *User) -> isl_bool { 766 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 767 return isl_bool_true; 768 769 isl::ast_expr Expr = 770 isl::manage(isl_ast_node_user_get_expr(Node)); 771 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 772 isl::id Id = StmtExpr.get_id(); 773 774 ScopStmt *Stmt = 775 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 776 isl::set StmtDom = Stmt->getDomain(); 777 for (auto *MA : *Stmt) { 778 if (MA->isLatestPartialAccess()) 779 return isl_bool_error; 780 } 781 return isl_bool_true; 782 }, 783 nullptr) == isl_stat_error; 784 } 785 786 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 787 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 788 789 if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) && 790 !IslAstInfo::isReductionParallel(isl::manage_copy(For))) { 791 int VectorWidth = 792 getNumberOfIterations(isl::manage_copy(For).as<isl::ast_node_for>()); 793 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 794 createForVector(For, VectorWidth); 795 return; 796 } 797 } 798 799 if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) { 800 createForParallel(For); 801 return; 802 } 803 bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) && 804 !IslAstInfo::isReductionParallel(isl::manage_copy(For))); 805 createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel); 806 } 807 808 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 809 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 810 811 Function *F = Builder.GetInsertBlock()->getParent(); 812 LLVMContext &Context = F->getContext(); 813 814 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 815 &*Builder.GetInsertPoint(), &DT, &LI); 816 CondBB->setName("polly.cond"); 817 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 818 MergeBB->setName("polly.merge"); 819 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 820 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 821 822 DT.addNewBlock(ThenBB, CondBB); 823 DT.addNewBlock(ElseBB, CondBB); 824 DT.changeImmediateDominator(MergeBB, CondBB); 825 826 Loop *L = LI.getLoopFor(CondBB); 827 if (L) { 828 L->addBasicBlockToLoop(ThenBB, LI); 829 L->addBasicBlockToLoop(ElseBB, LI); 830 } 831 832 CondBB->getTerminator()->eraseFromParent(); 833 834 Builder.SetInsertPoint(CondBB); 835 Value *Predicate = ExprBuilder.create(Cond); 836 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 837 Builder.SetInsertPoint(ThenBB); 838 Builder.CreateBr(MergeBB); 839 Builder.SetInsertPoint(ElseBB); 840 Builder.CreateBr(MergeBB); 841 Builder.SetInsertPoint(&ThenBB->front()); 842 843 create(isl_ast_node_if_get_then(If)); 844 845 Builder.SetInsertPoint(&ElseBB->front()); 846 847 if (isl_ast_node_if_has_else(If)) 848 create(isl_ast_node_if_get_else(If)); 849 850 Builder.SetInsertPoint(&MergeBB->front()); 851 852 isl_ast_node_free(If); 853 854 IfConditions++; 855 } 856 857 __isl_give isl_id_to_ast_expr * 858 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 859 __isl_keep isl_ast_node *Node) { 860 isl::id_to_ast_expr NewAccesses = 861 isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0); 862 863 isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node)); 864 assert(!Build.is_null() && "Could not obtain isl_ast_build from user node"); 865 Stmt->setAstBuild(Build); 866 867 for (auto *MA : *Stmt) { 868 if (!MA->hasNewAccessRelation()) { 869 if (PollyGenerateExpressions) { 870 if (!MA->isAffine()) 871 continue; 872 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 873 continue; 874 875 auto *BasePtr = 876 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 877 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 878 continue; 879 } else { 880 continue; 881 } 882 } 883 assert(MA->isAffine() && 884 "Only affine memory accesses can be code generated"); 885 886 isl::union_map Schedule = Build.get_schedule(); 887 888 #ifndef NDEBUG 889 if (MA->isRead()) { 890 auto Dom = Stmt->getDomain().release(); 891 auto SchedDom = isl_set_from_union_set(Schedule.domain().release()); 892 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 893 Dom = isl_set_intersect_params(Dom, 894 Stmt->getParent()->getContext().release()); 895 SchedDom = isl_set_intersect_params( 896 SchedDom, Stmt->getParent()->getContext().release()); 897 assert(isl_set_is_subset(SchedDom, AccDom) && 898 "Access relation not defined on full schedule domain"); 899 assert(isl_set_is_subset(Dom, AccDom) && 900 "Access relation not defined on full domain"); 901 isl_set_free(AccDom); 902 isl_set_free(SchedDom); 903 isl_set_free(Dom); 904 } 905 #endif 906 907 isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 908 909 // isl cannot generate an index expression for access-nothing accesses. 910 isl::set AccDomain = PWAccRel.domain(); 911 isl::set Context = S.getContext(); 912 AccDomain = AccDomain.intersect_params(Context); 913 if (AccDomain.is_empty()) 914 continue; 915 916 isl::ast_expr AccessExpr = Build.access_from(PWAccRel); 917 NewAccesses = NewAccesses.set(MA->getId(), AccessExpr); 918 } 919 920 return NewAccesses.release(); 921 } 922 923 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 924 ScopStmt *Stmt, LoopToScevMapT <S) { 925 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 926 "Expression of type 'op' expected"); 927 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 928 "Operation of type 'call' expected"); 929 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 930 isl_ast_expr *SubExpr; 931 Value *V; 932 933 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 934 V = ExprBuilder.create(SubExpr); 935 ScalarEvolution *SE = Stmt->getParent()->getSE(); 936 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 937 } 938 939 isl_ast_expr_free(Expr); 940 } 941 942 void IslNodeBuilder::createSubstitutionsVector( 943 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 944 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 945 __isl_take isl_id *IteratorID) { 946 int i = 0; 947 948 Value *OldValue = IDToValue[IteratorID]; 949 for (Value *IV : IVS) { 950 IDToValue[IteratorID] = IV; 951 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 952 i++; 953 } 954 955 IDToValue[IteratorID] = OldValue; 956 isl_id_free(IteratorID); 957 isl_ast_expr_free(Expr); 958 } 959 960 void IslNodeBuilder::generateCopyStmt( 961 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 962 assert(Stmt->size() == 2); 963 auto ReadAccess = Stmt->begin(); 964 auto WriteAccess = ReadAccess++; 965 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 966 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 967 "Accesses use the same data type"); 968 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 969 auto *AccessExpr = 970 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 971 auto *LoadValue = ExprBuilder.create(AccessExpr); 972 AccessExpr = 973 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 974 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first; 975 Builder.CreateStore(LoadValue, StoreAddr); 976 } 977 978 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 979 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 980 "trying to materialize loop induction variable twice"); 981 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 982 SE.getUnknown(Builder.getInt64(1)), L, 983 SCEV::FlagAnyWrap); 984 Value *V = generateSCEV(OuterLIV); 985 OutsideLoopIterations[L] = SE.getUnknown(V); 986 return V; 987 } 988 989 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 990 LoopToScevMapT LTS; 991 isl_id *Id; 992 ScopStmt *Stmt; 993 994 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 995 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 996 Id = isl_ast_expr_get_id(StmtExpr); 997 isl_ast_expr_free(StmtExpr); 998 999 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1000 1001 Stmt = (ScopStmt *)isl_id_get_user(Id); 1002 auto *NewAccesses = createNewAccesses(Stmt, User); 1003 if (Stmt->isCopyStmt()) { 1004 generateCopyStmt(Stmt, NewAccesses); 1005 isl_ast_expr_free(Expr); 1006 } else { 1007 createSubstitutions(Expr, Stmt, LTS); 1008 1009 if (Stmt->isBlockStmt()) 1010 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 1011 else 1012 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 1013 } 1014 1015 isl_id_to_ast_expr_free(NewAccesses); 1016 isl_ast_node_free(User); 1017 isl_id_free(Id); 1018 } 1019 1020 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1021 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1022 1023 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1024 create(isl_ast_node_list_get_ast_node(List, i)); 1025 1026 isl_ast_node_free(Block); 1027 isl_ast_node_list_free(List); 1028 } 1029 1030 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1031 switch (isl_ast_node_get_type(Node)) { 1032 case isl_ast_node_error: 1033 llvm_unreachable("code generation error"); 1034 case isl_ast_node_mark: 1035 createMark(Node); 1036 return; 1037 case isl_ast_node_for: 1038 createFor(Node); 1039 return; 1040 case isl_ast_node_if: 1041 createIf(Node); 1042 return; 1043 case isl_ast_node_user: 1044 createUser(Node); 1045 return; 1046 case isl_ast_node_block: 1047 createBlock(Node); 1048 return; 1049 } 1050 1051 llvm_unreachable("Unknown isl_ast_node type"); 1052 } 1053 1054 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1055 // If the Id is already mapped, skip it. 1056 if (!IDToValue.count(Id)) { 1057 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1058 Value *V = nullptr; 1059 1060 // Parameters could refer to invariant loads that need to be 1061 // preloaded before we can generate code for the parameter. Thus, 1062 // check if any value referred to in ParamSCEV is an invariant load 1063 // and if so make sure its equivalence class is preloaded. 1064 SetVector<Value *> Values; 1065 findValues(ParamSCEV, SE, Values); 1066 for (auto *Val : Values) { 1067 // Check if the value is an instruction in a dead block within the SCoP 1068 // and if so do not code generate it. 1069 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1070 if (S.contains(Inst)) { 1071 bool IsDead = true; 1072 1073 // Check for "undef" loads first, then if there is a statement for 1074 // the parent of Inst and lastly if the parent of Inst has an empty 1075 // domain. In the first and last case the instruction is dead but if 1076 // there is a statement or the domain is not empty Inst is not dead. 1077 auto MemInst = MemAccInst::dyn_cast(Inst); 1078 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1079 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1080 SE.getPointerBase(SE.getSCEV(Address))) { 1081 } else if (S.getStmtFor(Inst)) { 1082 IsDead = false; 1083 } else { 1084 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1085 IsDead = isl_set_is_empty(Domain); 1086 isl_set_free(Domain); 1087 } 1088 1089 if (IsDead) { 1090 V = UndefValue::get(ParamSCEV->getType()); 1091 break; 1092 } 1093 } 1094 } 1095 1096 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1097 // Check if this invariant access class is empty, hence if we never 1098 // actually added a loads instruction to it. In that case it has no 1099 // (meaningful) users and we should not try to code generate it. 1100 if (IAClass->InvariantAccesses.empty()) 1101 V = UndefValue::get(ParamSCEV->getType()); 1102 1103 if (!preloadInvariantEquivClass(*IAClass)) { 1104 isl_id_free(Id); 1105 return false; 1106 } 1107 } 1108 } 1109 1110 V = V ? V : generateSCEV(ParamSCEV); 1111 IDToValue[Id] = V; 1112 } 1113 1114 isl_id_free(Id); 1115 return true; 1116 } 1117 1118 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1119 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1120 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1121 continue; 1122 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1123 if (!materializeValue(Id)) 1124 return false; 1125 } 1126 return true; 1127 } 1128 1129 bool IslNodeBuilder::materializeParameters() { 1130 for (const SCEV *Param : S.parameters()) { 1131 isl_id *Id = S.getIdForParam(Param).release(); 1132 if (!materializeValue(Id)) 1133 return false; 1134 } 1135 return true; 1136 } 1137 1138 /// Generate the computation of the size of the outermost dimension from the 1139 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1140 /// contains the size of the array. 1141 /// 1142 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1143 /// %desc.dimensionty = type { i64, i64, i64 } 1144 /// @g_arr = global %arrty zeroinitializer, align 32 1145 /// ... 1146 /// %0 = load i64, i64* getelementptr inbounds 1147 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1148 /// %1 = load i64, i64* getelementptr inbounds 1149 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1150 /// %2 = sub nsw i64 %0, %1 1151 /// %size = add nsw i64 %2, 1 1152 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1153 PollyIRBuilder &Builder, 1154 std::string ArrayName) { 1155 assert(GlobalDescriptor && "invalid global descriptor given"); 1156 Type *Ty = GlobalDescriptor->getType()->getPointerElementType(); 1157 1158 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1159 Builder.getInt64(0), Builder.getInt32(2)}; 1160 Value *endPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, endIdx, 1161 ArrayName + "_end_ptr"); 1162 Type *type = cast<GEPOperator>(endPtr)->getResultElementType(); 1163 assert(isa<IntegerType>(type) && "expected type of end to be integral"); 1164 1165 Value *end = Builder.CreateLoad(type, endPtr, ArrayName + "_end"); 1166 1167 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1168 Builder.getInt64(0), Builder.getInt32(1)}; 1169 Value *beginPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, beginIdx, 1170 ArrayName + "_begin_ptr"); 1171 Value *begin = Builder.CreateLoad(type, beginPtr, ArrayName + "_begin"); 1172 1173 Value *size = 1174 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1175 1176 size = Builder.CreateNSWAdd( 1177 end, ConstantInt::get(type, 1, /* signed = */ true), ArrayName + "_size"); 1178 1179 return size; 1180 } 1181 1182 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1183 for (ScopArrayInfo *Array : S.arrays()) { 1184 if (Array->getNumberOfDimensions() == 0) 1185 continue; 1186 1187 Value *FAD = Array->getFortranArrayDescriptor(); 1188 if (!FAD) 1189 continue; 1190 1191 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1192 assert(ParametricPwAff && "parametric pw_aff corresponding " 1193 "to outermost dimension does not " 1194 "exist"); 1195 1196 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1197 isl_pw_aff_free(ParametricPwAff); 1198 1199 assert(Id && "pw_aff is not parametric"); 1200 1201 if (IDToValue.count(Id)) { 1202 isl_id_free(Id); 1203 continue; 1204 } 1205 1206 Value *FinalValue = 1207 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1208 assert(FinalValue && "unable to build Fortran array " 1209 "descriptor load of outermost dimension"); 1210 IDToValue[Id] = FinalValue; 1211 isl_id_free(Id); 1212 } 1213 return true; 1214 } 1215 1216 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1217 isl_ast_build *Build, 1218 Instruction *AccInst) { 1219 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1220 isl_ast_expr *Access = 1221 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1222 auto *Address = isl_ast_expr_address_of(Access); 1223 auto *AddressValue = ExprBuilder.create(Address); 1224 Value *PreloadVal; 1225 1226 // Correct the type as the SAI might have a different type than the user 1227 // expects, especially if the base pointer is a struct. 1228 Type *Ty = AccInst->getType(); 1229 1230 auto *Ptr = AddressValue; 1231 auto Name = Ptr->getName(); 1232 auto AS = Ptr->getType()->getPointerAddressSpace(); 1233 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1234 PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load"); 1235 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1236 PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign()); 1237 1238 // TODO: This is only a hot fix for SCoP sequences that use the same load 1239 // instruction contained and hoisted by one of the SCoPs. 1240 if (SE.isSCEVable(Ty)) 1241 SE.forgetValue(AccInst); 1242 1243 return PreloadVal; 1244 } 1245 1246 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1247 isl_set *Domain) { 1248 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1249 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1250 1251 if (!materializeParameters(AccessRange)) { 1252 isl_set_free(AccessRange); 1253 isl_set_free(Domain); 1254 return nullptr; 1255 } 1256 1257 auto *Build = 1258 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1259 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1260 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1261 isl_set_free(Universe); 1262 1263 Instruction *AccInst = MA.getAccessInstruction(); 1264 Type *AccInstTy = AccInst->getType(); 1265 1266 Value *PreloadVal = nullptr; 1267 if (AlwaysExecuted) { 1268 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1269 isl_ast_build_free(Build); 1270 isl_set_free(Domain); 1271 return PreloadVal; 1272 } 1273 1274 if (!materializeParameters(Domain)) { 1275 isl_ast_build_free(Build); 1276 isl_set_free(AccessRange); 1277 isl_set_free(Domain); 1278 return nullptr; 1279 } 1280 1281 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1282 Domain = nullptr; 1283 1284 ExprBuilder.setTrackOverflow(true); 1285 Value *Cond = ExprBuilder.create(DomainCond); 1286 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1287 "polly.preload.cond.overflown"); 1288 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1289 ExprBuilder.setTrackOverflow(false); 1290 1291 if (!Cond->getType()->isIntegerTy(1)) 1292 Cond = Builder.CreateIsNotNull(Cond); 1293 1294 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1295 &*Builder.GetInsertPoint(), &DT, &LI); 1296 CondBB->setName("polly.preload.cond"); 1297 1298 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1299 MergeBB->setName("polly.preload.merge"); 1300 1301 Function *F = Builder.GetInsertBlock()->getParent(); 1302 LLVMContext &Context = F->getContext(); 1303 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1304 1305 DT.addNewBlock(ExecBB, CondBB); 1306 if (Loop *L = LI.getLoopFor(CondBB)) 1307 L->addBasicBlockToLoop(ExecBB, LI); 1308 1309 auto *CondBBTerminator = CondBB->getTerminator(); 1310 Builder.SetInsertPoint(CondBBTerminator); 1311 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1312 CondBBTerminator->eraseFromParent(); 1313 1314 Builder.SetInsertPoint(ExecBB); 1315 Builder.CreateBr(MergeBB); 1316 1317 Builder.SetInsertPoint(ExecBB->getTerminator()); 1318 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1319 Builder.SetInsertPoint(MergeBB->getTerminator()); 1320 auto *MergePHI = Builder.CreatePHI( 1321 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1322 PreloadVal = MergePHI; 1323 1324 if (!PreAccInst) { 1325 PreloadVal = nullptr; 1326 PreAccInst = UndefValue::get(AccInstTy); 1327 } 1328 1329 MergePHI->addIncoming(PreAccInst, ExecBB); 1330 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1331 1332 isl_ast_build_free(Build); 1333 return PreloadVal; 1334 } 1335 1336 bool IslNodeBuilder::preloadInvariantEquivClass( 1337 InvariantEquivClassTy &IAClass) { 1338 // For an equivalence class of invariant loads we pre-load the representing 1339 // element with the unified execution context. However, we have to map all 1340 // elements of the class to the one preloaded load as they are referenced 1341 // during the code generation and therefor need to be mapped. 1342 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1343 if (MAs.empty()) 1344 return true; 1345 1346 MemoryAccess *MA = MAs.front(); 1347 assert(MA->isArrayKind() && MA->isRead()); 1348 1349 // If the access function was already mapped, the preload of this equivalence 1350 // class was triggered earlier already and doesn't need to be done again. 1351 if (ValueMap.count(MA->getAccessInstruction())) 1352 return true; 1353 1354 // Check for recursion which can be caused by additional constraints, e.g., 1355 // non-finite loop constraints. In such a case we have to bail out and insert 1356 // a "false" runtime check that will cause the original code to be executed. 1357 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1358 if (!PreloadedPtrs.insert(PtrId).second) 1359 return false; 1360 1361 // The execution context of the IAClass. 1362 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1363 1364 // If the base pointer of this class is dependent on another one we have to 1365 // make sure it was preloaded already. 1366 auto *SAI = MA->getScopArrayInfo(); 1367 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1368 if (!preloadInvariantEquivClass(*BaseIAClass)) 1369 return false; 1370 1371 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1372 // we need to refine the ExecutionCtx. 1373 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1374 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1375 } 1376 1377 // If the size of a dimension is dependent on another class, make sure it is 1378 // preloaded. 1379 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1380 const SCEV *Dim = SAI->getDimensionSize(i); 1381 SetVector<Value *> Values; 1382 findValues(Dim, SE, Values); 1383 for (auto *Val : Values) { 1384 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1385 if (!preloadInvariantEquivClass(*BaseIAClass)) 1386 return false; 1387 1388 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1389 // and we need to refine the ExecutionCtx. 1390 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1391 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1392 } 1393 } 1394 } 1395 1396 Instruction *AccInst = MA->getAccessInstruction(); 1397 Type *AccInstTy = AccInst->getType(); 1398 1399 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1400 if (!PreloadVal) 1401 return false; 1402 1403 for (const MemoryAccess *MA : MAs) { 1404 Instruction *MAAccInst = MA->getAccessInstruction(); 1405 assert(PreloadVal->getType() == MAAccInst->getType()); 1406 ValueMap[MAAccInst] = PreloadVal; 1407 } 1408 1409 if (SE.isSCEVable(AccInstTy)) { 1410 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1411 if (ParamId) 1412 IDToValue[ParamId] = PreloadVal; 1413 isl_id_free(ParamId); 1414 } 1415 1416 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1417 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1418 AccInst->getName() + ".preload.s2a", 1419 &*EntryBB->getFirstInsertionPt()); 1420 Builder.CreateStore(PreloadVal, Alloca); 1421 ValueMapT PreloadedPointer; 1422 PreloadedPointer[PreloadVal] = AccInst; 1423 Annotator.addAlternativeAliasBases(PreloadedPointer); 1424 1425 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1426 Value *BasePtr = DerivedSAI->getBasePtr(); 1427 1428 for (const MemoryAccess *MA : MAs) { 1429 // As the derived SAI information is quite coarse, any load from the 1430 // current SAI could be the base pointer of the derived SAI, however we 1431 // should only change the base pointer of the derived SAI if we actually 1432 // preloaded it. 1433 if (BasePtr == MA->getOriginalBaseAddr()) { 1434 assert(BasePtr->getType() == PreloadVal->getType()); 1435 DerivedSAI->setBasePtr(PreloadVal); 1436 } 1437 1438 // For scalar derived SAIs we remap the alloca used for the derived value. 1439 if (BasePtr == MA->getAccessInstruction()) 1440 ScalarMap[DerivedSAI] = Alloca; 1441 } 1442 } 1443 1444 for (const MemoryAccess *MA : MAs) { 1445 Instruction *MAAccInst = MA->getAccessInstruction(); 1446 // Use the escape system to get the correct value to users outside the SCoP. 1447 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1448 for (auto *U : MAAccInst->users()) 1449 if (Instruction *UI = dyn_cast<Instruction>(U)) 1450 if (!S.contains(UI)) 1451 EscapeUsers.push_back(UI); 1452 1453 if (EscapeUsers.empty()) 1454 continue; 1455 1456 EscapeMap[MA->getAccessInstruction()] = 1457 std::make_pair(Alloca, std::move(EscapeUsers)); 1458 } 1459 1460 return true; 1461 } 1462 1463 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1464 for (auto &SAI : S.arrays()) { 1465 if (SAI->getBasePtr()) 1466 continue; 1467 1468 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1469 "The size of the outermost dimension is used to declare newly " 1470 "created arrays that require memory allocation."); 1471 1472 Type *NewArrayType = nullptr; 1473 1474 // Get the size of the array = size(dim_1)*...*size(dim_n) 1475 uint64_t ArraySizeInt = 1; 1476 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1477 auto *DimSize = SAI->getDimensionSize(i); 1478 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1479 ->getAPInt() 1480 .getLimitedValue(); 1481 1482 if (!NewArrayType) 1483 NewArrayType = SAI->getElementType(); 1484 1485 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1486 ArraySizeInt *= UnsignedDimSize; 1487 } 1488 1489 if (SAI->isOnHeap()) { 1490 LLVMContext &Ctx = NewArrayType->getContext(); 1491 1492 // Get the IntPtrTy from the Datalayout 1493 auto IntPtrTy = DL.getIntPtrType(Ctx); 1494 1495 // Get the size of the element type in bits 1496 unsigned Size = SAI->getElemSizeInBytes(); 1497 1498 // Insert the malloc call at polly.start 1499 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1500 auto *CreatedArray = CallInst::CreateMalloc( 1501 &*InstIt, IntPtrTy, SAI->getElementType(), 1502 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1503 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1504 SAI->getName()); 1505 1506 SAI->setBasePtr(CreatedArray); 1507 1508 // Insert the free call at polly.exiting 1509 CallInst::CreateFree(CreatedArray, 1510 std::get<1>(StartExitBlocks)->getTerminator()); 1511 } else { 1512 auto InstIt = Builder.GetInsertBlock() 1513 ->getParent() 1514 ->getEntryBlock() 1515 .getTerminator(); 1516 1517 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1518 SAI->getName(), &*InstIt); 1519 if (PollyTargetFirstLevelCacheLineSize) 1520 CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); 1521 SAI->setBasePtr(CreatedArray); 1522 } 1523 } 1524 } 1525 1526 bool IslNodeBuilder::preloadInvariantLoads() { 1527 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1528 if (InvariantEquivClasses.empty()) 1529 return true; 1530 1531 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1532 &*Builder.GetInsertPoint(), &DT, &LI); 1533 PreLoadBB->setName("polly.preload.begin"); 1534 Builder.SetInsertPoint(&PreLoadBB->front()); 1535 1536 for (auto &IAClass : InvariantEquivClasses) 1537 if (!preloadInvariantEquivClass(IAClass)) 1538 return false; 1539 1540 return true; 1541 } 1542 1543 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1544 // Materialize values for the parameters of the SCoP. 1545 materializeParameters(); 1546 1547 // materialize the outermost dimension parameters for a Fortran array. 1548 // NOTE: materializeParameters() does not work since it looks through 1549 // the SCEVs. We don't have a corresponding SCEV for the array size 1550 // parameter 1551 materializeFortranArrayOutermostDimension(); 1552 1553 // Generate values for the current loop iteration for all surrounding loops. 1554 // 1555 // We may also reference loops outside of the scop which do not contain the 1556 // scop itself, but as the number of such scops may be arbitrarily large we do 1557 // not generate code for them here, but only at the point of code generation 1558 // where these values are needed. 1559 Loop *L = LI.getLoopFor(S.getEntry()); 1560 1561 while (L != nullptr && S.contains(L)) 1562 L = L->getParentLoop(); 1563 1564 while (L != nullptr) { 1565 materializeNonScopLoopInductionVariable(L); 1566 L = L->getParentLoop(); 1567 } 1568 1569 isl_set_free(Context); 1570 } 1571 1572 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1573 /// We pass the insert location of our Builder, as Polly ensures during IR 1574 /// generation that there is always a valid CFG into which instructions are 1575 /// inserted. As a result, the insertpoint is known to be always followed by a 1576 /// terminator instruction. This means the insert point may be specified by a 1577 /// terminator instruction, but it can never point to an ->end() iterator 1578 /// which does not have a corresponding instruction. Hence, dereferencing 1579 /// the insertpoint to obtain an instruction is known to be save. 1580 /// 1581 /// We also do not need to update the Builder here, as new instructions are 1582 /// always inserted _before_ the given InsertLocation. As a result, the 1583 /// insert location remains valid. 1584 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1585 "Insert location points after last valid instruction"); 1586 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1587 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1588 InsertLocation, &ValueMap, 1589 StartBlock->getSinglePredecessor()); 1590 } 1591 1592 /// The AST expression we generate to perform the run-time check assumes 1593 /// computations on integer types of infinite size. As we only use 64-bit 1594 /// arithmetic we check for overflows, in case of which we set the result 1595 /// of this run-time check to false to be conservatively correct, 1596 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1597 auto ExprBuilder = getExprBuilder(); 1598 1599 // In case the AST expression has integers larger than 64 bit, bail out. The 1600 // resulting LLVM-IR will contain operations on types that use more than 64 1601 // bits. These are -- in case wrapping intrinsics are used -- translated to 1602 // runtime library calls that are not available on all systems (e.g., Android) 1603 // and consequently will result in linker errors. 1604 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1605 isl_ast_expr_free(Condition); 1606 return Builder.getFalse(); 1607 } 1608 1609 ExprBuilder.setTrackOverflow(true); 1610 Value *RTC = ExprBuilder.create(Condition); 1611 if (!RTC->getType()->isIntegerTy(1)) 1612 RTC = Builder.CreateIsNotNull(RTC); 1613 Value *OverflowHappened = 1614 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1615 1616 if (PollyGenerateRTCPrint) { 1617 auto *F = Builder.GetInsertBlock()->getParent(); 1618 RuntimeDebugBuilder::createCPUPrinter( 1619 Builder, 1620 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1621 "RTC: ", 1622 RTC, " Overflow: ", OverflowHappened, 1623 "\n" 1624 " (0 failed, -1 succeeded)\n" 1625 " (if one or both are 0 falling back to original code, if both are -1 " 1626 "executing Polly code)\n"); 1627 } 1628 1629 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1630 ExprBuilder.setTrackOverflow(false); 1631 1632 if (!isa<ConstantInt>(RTC)) 1633 VersionedScops++; 1634 1635 return RTC; 1636 } 1637