1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/Utils.h" 22 #include "polly/Config/config.h" 23 #include "polly/DependenceInfo.h" 24 #include "polly/LinkAllPasses.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/GICHelper.h" 27 #include "polly/Support/SCEVValidator.h" 28 #include "polly/Support/ScopHelper.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/aff.h" 40 #include "isl/ast.h" 41 #include "isl/ast_build.h" 42 #include "isl/list.h" 43 #include "isl/map.h" 44 #include "isl/set.h" 45 #include "isl/union_map.h" 46 #include "isl/union_set.h" 47 48 using namespace polly; 49 using namespace llvm; 50 51 // The maximal number of dimensions we allow during invariant load construction. 52 // More complex access ranges will result in very high compile time and are also 53 // unlikely to result in good code. This value is very high and should only 54 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 55 static int const MaxDimensionsInAccessRange = 9; 56 57 __isl_give isl_ast_expr * 58 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 59 ICmpInst::Predicate &Predicate) { 60 isl_id *UBID, *IteratorID; 61 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 62 isl_ast_op_type Type; 63 64 Cond = isl_ast_node_for_get_cond(For); 65 Iterator = isl_ast_node_for_get_iterator(For); 66 isl_ast_expr_get_type(Cond); 67 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 68 "conditional expression is not an atomic upper bound"); 69 70 Type = isl_ast_expr_get_op_type(Cond); 71 72 switch (Type) { 73 case isl_ast_op_le: 74 Predicate = ICmpInst::ICMP_SLE; 75 break; 76 case isl_ast_op_lt: 77 Predicate = ICmpInst::ICMP_SLT; 78 break; 79 default: 80 llvm_unreachable("Unexpected comparision type in loop conditon"); 81 } 82 83 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 84 85 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 86 "conditional expression is not an atomic upper bound"); 87 88 UBID = isl_ast_expr_get_id(Arg0); 89 90 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 91 "Could not get the iterator"); 92 93 IteratorID = isl_ast_expr_get_id(Iterator); 94 95 assert(UBID == IteratorID && 96 "conditional expression is not an atomic upper bound"); 97 98 UB = isl_ast_expr_get_op_arg(Cond, 1); 99 100 isl_ast_expr_free(Cond); 101 isl_ast_expr_free(Iterator); 102 isl_ast_expr_free(Arg0); 103 isl_id_free(IteratorID); 104 isl_id_free(UBID); 105 106 return UB; 107 } 108 109 /// Return true if a return value of Predicate is true for the value represented 110 /// by passed isl_ast_expr_int. 111 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 112 isl_bool (*Predicate)(__isl_keep isl_val *)) { 113 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 114 isl_ast_expr_free(Expr); 115 return false; 116 } 117 auto ExprVal = isl_ast_expr_get_val(Expr); 118 isl_ast_expr_free(Expr); 119 if (Predicate(ExprVal) != true) { 120 isl_val_free(ExprVal); 121 return false; 122 } 123 isl_val_free(ExprVal); 124 return true; 125 } 126 127 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 128 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 129 auto Body = isl_ast_node_for_get_body(For); 130 131 // First, check if we can actually handle this code. 132 switch (isl_ast_node_get_type(Body)) { 133 case isl_ast_node_user: 134 break; 135 case isl_ast_node_block: { 136 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 137 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 138 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 139 int Type = isl_ast_node_get_type(Node); 140 isl_ast_node_free(Node); 141 if (Type != isl_ast_node_user) { 142 isl_ast_node_list_free(List); 143 isl_ast_node_free(Body); 144 return -1; 145 } 146 } 147 isl_ast_node_list_free(List); 148 break; 149 } 150 default: 151 isl_ast_node_free(Body); 152 return -1; 153 } 154 isl_ast_node_free(Body); 155 156 auto Init = isl_ast_node_for_get_init(For); 157 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 158 return -1; 159 auto Inc = isl_ast_node_for_get_inc(For); 160 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 161 return -1; 162 CmpInst::Predicate Predicate; 163 auto UB = getUpperBound(For, Predicate); 164 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 165 isl_ast_expr_free(UB); 166 return -1; 167 } 168 auto UpVal = isl_ast_expr_get_val(UB); 169 isl_ast_expr_free(UB); 170 int NumberIterations = isl_val_get_num_si(UpVal); 171 isl_val_free(UpVal); 172 if (NumberIterations < 0) 173 return -1; 174 if (Predicate == CmpInst::ICMP_SLT) 175 return NumberIterations; 176 else 177 return NumberIterations + 1; 178 } 179 180 /// Extract the values and SCEVs needed to generate code for a block. 181 static int findReferencesInBlock(struct SubtreeReferences &References, 182 const ScopStmt *Stmt, const BasicBlock *BB) { 183 for (const Instruction &Inst : *BB) 184 for (Value *SrcVal : Inst.operands()) { 185 auto *Scope = References.LI.getLoopFor(BB); 186 if (canSynthesize(SrcVal, References.S, &References.LI, &References.SE, 187 Scope)) { 188 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 189 continue; 190 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 191 References.Values.insert(NewVal); 192 } 193 return 0; 194 } 195 196 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 197 bool CreateScalarRefs) { 198 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 199 200 if (Stmt->isBlockStmt()) 201 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 202 else { 203 assert(Stmt->isRegionStmt() && 204 "Stmt was neither block nor region statement"); 205 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 206 findReferencesInBlock(References, Stmt, BB); 207 } 208 209 for (auto &Access : *Stmt) { 210 if (Access->isArrayKind()) { 211 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 212 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 213 if (Stmt->getParent()->contains(OpInst)) 214 continue; 215 216 References.Values.insert(BasePtr); 217 continue; 218 } 219 220 if (CreateScalarRefs) 221 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 222 } 223 224 return isl_stat_ok; 225 } 226 227 /// Extract the out-of-scop values and SCEVs referenced from a set describing 228 /// a ScopStmt. 229 /// 230 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 231 /// statement and the base pointers of the memory accesses. For scalar 232 /// statements we force the generation of alloca memory locations and list 233 /// these locations in the set of out-of-scop values as well. 234 /// 235 /// @param Set A set which references the ScopStmt we are interested in. 236 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 237 /// structure. 238 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 239 void *UserPtr) { 240 isl_id *Id = isl_set_get_tuple_id(Set); 241 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 242 isl_id_free(Id); 243 isl_set_free(Set); 244 return addReferencesFromStmt(Stmt, UserPtr); 245 } 246 247 /// Extract the out-of-scop values and SCEVs referenced from a union set 248 /// referencing multiple ScopStmts. 249 /// 250 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 251 /// statement and the base pointers of the memory accesses. For scalar 252 /// statements we force the generation of alloca memory locations and list 253 /// these locations in the set of out-of-scop values as well. 254 /// 255 /// @param USet A union set referencing the ScopStmts we are interested 256 /// in. 257 /// @param References The SubtreeReferences data structure through which 258 /// results are returned and further information is 259 /// provided. 260 static void 261 addReferencesFromStmtUnionSet(isl_union_set *USet, 262 struct SubtreeReferences &References) { 263 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 264 isl_union_set_free(USet); 265 } 266 267 __isl_give isl_union_map * 268 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 269 return IslAstInfo::getSchedule(For); 270 } 271 272 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 273 SetVector<Value *> &Values, 274 SetVector<const Loop *> &Loops) { 275 276 SetVector<const SCEV *> SCEVs; 277 struct SubtreeReferences References = { 278 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 279 280 for (const auto &I : IDToValue) 281 Values.insert(I.second); 282 283 for (const auto &I : OutsideLoopIterations) 284 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 285 286 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 287 addReferencesFromStmtUnionSet(Schedule, References); 288 289 for (const SCEV *Expr : SCEVs) { 290 findValues(Expr, SE, Values); 291 findLoops(Expr, Loops); 292 } 293 294 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 295 296 /// Remove loops that contain the scop or that are part of the scop, as they 297 /// are considered local. This leaves only loops that are before the scop, but 298 /// do not contain the scop itself. 299 Loops.remove_if([this](const Loop *L) { 300 return S.contains(L) || L->contains(S.getEntry()); 301 }); 302 } 303 304 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 305 SmallPtrSet<Value *, 5> Inserted; 306 307 for (const auto &I : IDToValue) { 308 IDToValue[I.first] = NewValues[I.second]; 309 Inserted.insert(I.second); 310 } 311 312 for (const auto &I : NewValues) { 313 if (Inserted.count(I.first)) 314 continue; 315 316 ValueMap[I.first] = I.second; 317 } 318 } 319 320 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 321 std::vector<Value *> &IVS, 322 __isl_take isl_id *IteratorID, 323 __isl_take isl_union_map *Schedule) { 324 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 325 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 326 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 327 isl_ast_expr_free(StmtExpr); 328 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 329 std::vector<LoopToScevMapT> VLTS(IVS.size()); 330 331 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 332 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 333 isl_map *S = isl_map_from_union_map(Schedule); 334 335 auto *NewAccesses = createNewAccesses(Stmt, User); 336 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 337 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 338 isl_id_to_ast_expr_free(NewAccesses); 339 isl_map_free(S); 340 isl_id_free(Id); 341 isl_ast_node_free(User); 342 } 343 344 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 345 auto *Id = isl_ast_node_mark_get_id(Node); 346 auto Child = isl_ast_node_mark_get_node(Node); 347 isl_ast_node_free(Node); 348 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 349 // it will be optimized away and we should skip it. 350 if (!strcmp(isl_id_get_name(Id), "SIMD") && 351 isl_ast_node_get_type(Child) == isl_ast_node_for) { 352 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 353 int VectorWidth = getNumberOfIterations(Child); 354 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 355 createForVector(Child, VectorWidth); 356 else 357 createForSequential(Child, true); 358 isl_id_free(Id); 359 return; 360 } 361 create(Child); 362 isl_id_free(Id); 363 } 364 365 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 366 int VectorWidth) { 367 isl_ast_node *Body = isl_ast_node_for_get_body(For); 368 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 369 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 370 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 371 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 372 373 Value *ValueLB = ExprBuilder.create(Init); 374 Value *ValueInc = ExprBuilder.create(Inc); 375 376 Type *MaxType = ExprBuilder.getType(Iterator); 377 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 378 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 379 380 if (MaxType != ValueLB->getType()) 381 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 382 if (MaxType != ValueInc->getType()) 383 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 384 385 std::vector<Value *> IVS(VectorWidth); 386 IVS[0] = ValueLB; 387 388 for (int i = 1; i < VectorWidth; i++) 389 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 390 391 isl_union_map *Schedule = getScheduleForAstNode(For); 392 assert(Schedule && "For statement annotation does not contain its schedule"); 393 394 IDToValue[IteratorID] = ValueLB; 395 396 switch (isl_ast_node_get_type(Body)) { 397 case isl_ast_node_user: 398 createUserVector(Body, IVS, isl_id_copy(IteratorID), 399 isl_union_map_copy(Schedule)); 400 break; 401 case isl_ast_node_block: { 402 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 403 404 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 405 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 406 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 407 408 isl_ast_node_free(Body); 409 isl_ast_node_list_free(List); 410 break; 411 } 412 default: 413 isl_ast_node_dump(Body); 414 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 415 } 416 417 IDToValue.erase(IDToValue.find(IteratorID)); 418 isl_id_free(IteratorID); 419 isl_union_map_free(Schedule); 420 421 isl_ast_node_free(For); 422 isl_ast_expr_free(Iterator); 423 } 424 425 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 426 bool KnownParallel) { 427 isl_ast_node *Body; 428 isl_ast_expr *Init, *Inc, *Iterator, *UB; 429 isl_id *IteratorID; 430 Value *ValueLB, *ValueUB, *ValueInc; 431 Type *MaxType; 432 BasicBlock *ExitBlock; 433 Value *IV; 434 CmpInst::Predicate Predicate; 435 bool Parallel; 436 437 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 438 !IslAstInfo::isReductionParallel(For)); 439 440 Body = isl_ast_node_for_get_body(For); 441 442 // isl_ast_node_for_is_degenerate(For) 443 // 444 // TODO: For degenerated loops we could generate a plain assignment. 445 // However, for now we just reuse the logic for normal loops, which will 446 // create a loop with a single iteration. 447 448 Init = isl_ast_node_for_get_init(For); 449 Inc = isl_ast_node_for_get_inc(For); 450 Iterator = isl_ast_node_for_get_iterator(For); 451 IteratorID = isl_ast_expr_get_id(Iterator); 452 UB = getUpperBound(For, Predicate); 453 454 ValueLB = ExprBuilder.create(Init); 455 ValueUB = ExprBuilder.create(UB); 456 ValueInc = ExprBuilder.create(Inc); 457 458 MaxType = ExprBuilder.getType(Iterator); 459 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 460 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 461 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 462 463 if (MaxType != ValueLB->getType()) 464 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 465 if (MaxType != ValueUB->getType()) 466 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 467 if (MaxType != ValueInc->getType()) 468 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 469 470 // If we can show that LB <Predicate> UB holds at least once, we can 471 // omit the GuardBB in front of the loop. 472 bool UseGuardBB = 473 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 474 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock, 475 Predicate, &Annotator, Parallel, UseGuardBB); 476 IDToValue[IteratorID] = IV; 477 478 create(Body); 479 480 Annotator.popLoop(Parallel); 481 482 IDToValue.erase(IDToValue.find(IteratorID)); 483 484 Builder.SetInsertPoint(&ExitBlock->front()); 485 486 isl_ast_node_free(For); 487 isl_ast_expr_free(Iterator); 488 isl_id_free(IteratorID); 489 } 490 491 /// Remove the BBs contained in a (sub)function from the dominator tree. 492 /// 493 /// This function removes the basic blocks that are part of a subfunction from 494 /// the dominator tree. Specifically, when generating code it may happen that at 495 /// some point the code generation continues in a new sub-function (e.g., when 496 /// generating OpenMP code). The basic blocks that are created in this 497 /// sub-function are then still part of the dominator tree of the original 498 /// function, such that the dominator tree reaches over function boundaries. 499 /// This is not only incorrect, but also causes crashes. This function now 500 /// removes from the dominator tree all basic blocks that are dominated (and 501 /// consequently reachable) from the entry block of this (sub)function. 502 /// 503 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 504 /// the function/region it runs on. Hence, the pure need for this function shows 505 /// that we do not comply to this rule. At the moment, this does not cause any 506 /// issues, but we should be aware that such issues may appear. Unfortunately 507 /// the current LLVM pass infrastructure does not allow to make Polly a module 508 /// or call-graph pass to solve this issue, as such a pass would not have access 509 /// to the per-function analyses passes needed by Polly. A future pass manager 510 /// infrastructure is supposed to enable such kind of access possibly allowing 511 /// us to create a cleaner solution here. 512 /// 513 /// FIXME: Instead of adding the dominance information and then dropping it 514 /// later on, we should try to just not add it in the first place. This requires 515 /// some careful testing to make sure this does not break in interaction with 516 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 517 /// which may try to update it. 518 /// 519 /// @param F The function which contains the BBs to removed. 520 /// @param DT The dominator tree from which to remove the BBs. 521 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 522 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 523 std::vector<BasicBlock *> Nodes; 524 525 // We can only remove an element from the dominator tree, if all its children 526 // have been removed. To ensure this we obtain the list of nodes to remove 527 // using a post-order tree traversal. 528 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 529 Nodes.push_back(I->getBlock()); 530 531 for (BasicBlock *BB : Nodes) 532 DT.eraseNode(BB); 533 } 534 535 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 536 isl_ast_node *Body; 537 isl_ast_expr *Init, *Inc, *Iterator, *UB; 538 isl_id *IteratorID; 539 Value *ValueLB, *ValueUB, *ValueInc; 540 Type *MaxType; 541 Value *IV; 542 CmpInst::Predicate Predicate; 543 544 // The preamble of parallel code interacts different than normal code with 545 // e.g., scalar initialization. Therefore, we ensure the parallel code is 546 // separated from the last basic block. 547 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 548 &*Builder.GetInsertPoint(), &DT, &LI); 549 ParBB->setName("polly.parallel.for"); 550 Builder.SetInsertPoint(&ParBB->front()); 551 552 Body = isl_ast_node_for_get_body(For); 553 Init = isl_ast_node_for_get_init(For); 554 Inc = isl_ast_node_for_get_inc(For); 555 Iterator = isl_ast_node_for_get_iterator(For); 556 IteratorID = isl_ast_expr_get_id(Iterator); 557 UB = getUpperBound(For, Predicate); 558 559 ValueLB = ExprBuilder.create(Init); 560 ValueUB = ExprBuilder.create(UB); 561 ValueInc = ExprBuilder.create(Inc); 562 563 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 564 // expression, we need to adjust the loop blound by one. 565 if (Predicate == CmpInst::ICMP_SLT) 566 ValueUB = Builder.CreateAdd( 567 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 568 569 MaxType = ExprBuilder.getType(Iterator); 570 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 571 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 572 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 573 574 if (MaxType != ValueLB->getType()) 575 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 576 if (MaxType != ValueUB->getType()) 577 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 578 if (MaxType != ValueInc->getType()) 579 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 580 581 BasicBlock::iterator LoopBody; 582 583 SetVector<Value *> SubtreeValues; 584 SetVector<const Loop *> Loops; 585 586 getReferencesInSubtree(For, SubtreeValues, Loops); 587 588 // Create for all loops we depend on values that contain the current loop 589 // iteration. These values are necessary to generate code for SCEVs that 590 // depend on such loops. As a result we need to pass them to the subfunction. 591 for (const Loop *L : Loops) { 592 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 593 SE.getUnknown(Builder.getInt64(1)), 594 L, SCEV::FlagAnyWrap); 595 Value *V = generateSCEV(OuterLIV); 596 OutsideLoopIterations[L] = SE.getUnknown(V); 597 SubtreeValues.insert(V); 598 } 599 600 ValueMapT NewValues; 601 ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL); 602 603 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 604 SubtreeValues, NewValues, &LoopBody); 605 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 606 Builder.SetInsertPoint(&*LoopBody); 607 608 // Remember the parallel subfunction 609 ParallelSubfunctions.push_back(LoopBody->getFunction()); 610 611 // Save the current values. 612 auto ValueMapCopy = ValueMap; 613 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 614 615 updateValues(NewValues); 616 IDToValue[IteratorID] = IV; 617 618 ValueMapT NewValuesReverse; 619 620 for (auto P : NewValues) 621 NewValuesReverse[P.second] = P.first; 622 623 Annotator.addAlternativeAliasBases(NewValuesReverse); 624 625 create(Body); 626 627 Annotator.resetAlternativeAliasBases(); 628 // Restore the original values. 629 ValueMap = ValueMapCopy; 630 IDToValue = IDToValueCopy; 631 632 Builder.SetInsertPoint(&*AfterLoop); 633 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 634 635 for (const Loop *L : Loops) 636 OutsideLoopIterations.erase(L); 637 638 isl_ast_node_free(For); 639 isl_ast_expr_free(Iterator); 640 isl_id_free(IteratorID); 641 } 642 643 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 644 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 645 646 if (Vector && IslAstInfo::isInnermostParallel(For) && 647 !IslAstInfo::isReductionParallel(For)) { 648 int VectorWidth = getNumberOfIterations(For); 649 if (1 < VectorWidth && VectorWidth <= 16) { 650 createForVector(For, VectorWidth); 651 return; 652 } 653 } 654 655 if (IslAstInfo::isExecutedInParallel(For)) { 656 createForParallel(For); 657 return; 658 } 659 createForSequential(For, false); 660 } 661 662 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 663 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 664 665 Function *F = Builder.GetInsertBlock()->getParent(); 666 LLVMContext &Context = F->getContext(); 667 668 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 669 &*Builder.GetInsertPoint(), &DT, &LI); 670 CondBB->setName("polly.cond"); 671 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 672 MergeBB->setName("polly.merge"); 673 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 674 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 675 676 DT.addNewBlock(ThenBB, CondBB); 677 DT.addNewBlock(ElseBB, CondBB); 678 DT.changeImmediateDominator(MergeBB, CondBB); 679 680 Loop *L = LI.getLoopFor(CondBB); 681 if (L) { 682 L->addBasicBlockToLoop(ThenBB, LI); 683 L->addBasicBlockToLoop(ElseBB, LI); 684 } 685 686 CondBB->getTerminator()->eraseFromParent(); 687 688 Builder.SetInsertPoint(CondBB); 689 Value *Predicate = ExprBuilder.create(Cond); 690 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 691 Builder.SetInsertPoint(ThenBB); 692 Builder.CreateBr(MergeBB); 693 Builder.SetInsertPoint(ElseBB); 694 Builder.CreateBr(MergeBB); 695 Builder.SetInsertPoint(&ThenBB->front()); 696 697 create(isl_ast_node_if_get_then(If)); 698 699 Builder.SetInsertPoint(&ElseBB->front()); 700 701 if (isl_ast_node_if_has_else(If)) 702 create(isl_ast_node_if_get_else(If)); 703 704 Builder.SetInsertPoint(&MergeBB->front()); 705 706 isl_ast_node_free(If); 707 } 708 709 __isl_give isl_id_to_ast_expr * 710 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 711 __isl_keep isl_ast_node *Node) { 712 isl_id_to_ast_expr *NewAccesses = 713 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 714 715 auto *Build = IslAstInfo::getBuild(Node); 716 assert(Build && "Could not obtain isl_ast_build from user node"); 717 Stmt->setAstBuild(Build); 718 719 for (auto *MA : *Stmt) { 720 if (!MA->hasNewAccessRelation()) 721 continue; 722 723 assert(!MA->getLatestScopArrayInfo()->getBasePtrOriginSAI() && 724 "Generating new index expressions to indirect arrays not working"); 725 726 auto Schedule = isl_ast_build_get_schedule(Build); 727 728 #ifndef NDEBUG 729 auto Dom = Stmt->getDomain(); 730 auto SchedDom = isl_set_from_union_set( 731 isl_union_map_domain(isl_union_map_copy(Schedule))); 732 auto AccDom = isl_map_domain(MA->getAccessRelation()); 733 Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext()); 734 SchedDom = 735 isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext()); 736 assert(isl_set_is_subset(SchedDom, AccDom) && 737 "Access relation not defined on full schedule domain"); 738 assert(isl_set_is_subset(Dom, AccDom) && 739 "Access relation not defined on full domain"); 740 isl_set_free(AccDom); 741 isl_set_free(SchedDom); 742 isl_set_free(Dom); 743 #endif 744 745 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 746 747 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 748 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 749 } 750 751 return NewAccesses; 752 } 753 754 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 755 ScopStmt *Stmt, LoopToScevMapT <S) { 756 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 757 "Expression of type 'op' expected"); 758 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 759 "Opertation of type 'call' expected"); 760 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 761 isl_ast_expr *SubExpr; 762 Value *V; 763 764 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 765 V = ExprBuilder.create(SubExpr); 766 ScalarEvolution *SE = Stmt->getParent()->getSE(); 767 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 768 } 769 770 isl_ast_expr_free(Expr); 771 } 772 773 void IslNodeBuilder::createSubstitutionsVector( 774 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 775 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 776 __isl_take isl_id *IteratorID) { 777 int i = 0; 778 779 Value *OldValue = IDToValue[IteratorID]; 780 for (Value *IV : IVS) { 781 IDToValue[IteratorID] = IV; 782 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 783 i++; 784 } 785 786 IDToValue[IteratorID] = OldValue; 787 isl_id_free(IteratorID); 788 isl_ast_expr_free(Expr); 789 } 790 791 void IslNodeBuilder::generateCopyStmt( 792 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 793 assert(Stmt->size() == 2); 794 auto ReadAccess = Stmt->begin(); 795 auto WriteAccess = ReadAccess++; 796 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 797 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 798 "Accesses use the same data type"); 799 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 800 auto *AccessExpr = 801 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId()); 802 auto *LoadValue = ExprBuilder.create(AccessExpr); 803 AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId()); 804 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 805 Builder.CreateStore(LoadValue, StoreAddr); 806 } 807 808 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 809 LoopToScevMapT LTS; 810 isl_id *Id; 811 ScopStmt *Stmt; 812 813 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 814 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 815 Id = isl_ast_expr_get_id(StmtExpr); 816 isl_ast_expr_free(StmtExpr); 817 818 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 819 820 Stmt = (ScopStmt *)isl_id_get_user(Id); 821 auto *NewAccesses = createNewAccesses(Stmt, User); 822 if (Stmt->isCopyStmt()) { 823 generateCopyStmt(Stmt, NewAccesses); 824 isl_ast_expr_free(Expr); 825 } else { 826 createSubstitutions(Expr, Stmt, LTS); 827 828 if (Stmt->isBlockStmt()) 829 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 830 else 831 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 832 } 833 834 isl_id_to_ast_expr_free(NewAccesses); 835 isl_ast_node_free(User); 836 isl_id_free(Id); 837 } 838 839 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 840 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 841 842 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 843 create(isl_ast_node_list_get_ast_node(List, i)); 844 845 isl_ast_node_free(Block); 846 isl_ast_node_list_free(List); 847 } 848 849 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 850 switch (isl_ast_node_get_type(Node)) { 851 case isl_ast_node_error: 852 llvm_unreachable("code generation error"); 853 case isl_ast_node_mark: 854 createMark(Node); 855 return; 856 case isl_ast_node_for: 857 createFor(Node); 858 return; 859 case isl_ast_node_if: 860 createIf(Node); 861 return; 862 case isl_ast_node_user: 863 createUser(Node); 864 return; 865 case isl_ast_node_block: 866 createBlock(Node); 867 return; 868 } 869 870 llvm_unreachable("Unknown isl_ast_node type"); 871 } 872 873 bool IslNodeBuilder::materializeValue(isl_id *Id) { 874 // If the Id is already mapped, skip it. 875 if (!IDToValue.count(Id)) { 876 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 877 Value *V = nullptr; 878 879 // Parameters could refere to invariant loads that need to be 880 // preloaded before we can generate code for the parameter. Thus, 881 // check if any value refered to in ParamSCEV is an invariant load 882 // and if so make sure its equivalence class is preloaded. 883 SetVector<Value *> Values; 884 findValues(ParamSCEV, SE, Values); 885 for (auto *Val : Values) { 886 887 // Check if the value is an instruction in a dead block within the SCoP 888 // and if so do not code generate it. 889 if (auto *Inst = dyn_cast<Instruction>(Val)) { 890 if (S.contains(Inst)) { 891 bool IsDead = true; 892 893 // Check for "undef" loads first, then if there is a statement for 894 // the parent of Inst and lastly if the parent of Inst has an empty 895 // domain. In the first and last case the instruction is dead but if 896 // there is a statement or the domain is not empty Inst is not dead. 897 auto MemInst = MemAccInst::dyn_cast(Inst); 898 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 899 if (Address && 900 SE.getUnknown(UndefValue::get(Address->getType())) == 901 SE.getPointerBase(SE.getSCEV(Address))) { 902 } else if (S.getStmtFor(Inst)) { 903 IsDead = false; 904 } else { 905 auto *Domain = S.getDomainConditions(Inst->getParent()); 906 IsDead = isl_set_is_empty(Domain); 907 isl_set_free(Domain); 908 } 909 910 if (IsDead) { 911 V = UndefValue::get(ParamSCEV->getType()); 912 break; 913 } 914 } 915 } 916 917 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 918 919 // Check if this invariant access class is empty, hence if we never 920 // actually added a loads instruction to it. In that case it has no 921 // (meaningful) users and we should not try to code generate it. 922 if (IAClass->InvariantAccesses.empty()) 923 V = UndefValue::get(ParamSCEV->getType()); 924 925 if (!preloadInvariantEquivClass(*IAClass)) { 926 isl_id_free(Id); 927 return false; 928 } 929 } 930 } 931 932 V = V ? V : generateSCEV(ParamSCEV); 933 IDToValue[Id] = V; 934 } 935 936 isl_id_free(Id); 937 return true; 938 } 939 940 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) { 941 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 942 if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1)) 943 continue; 944 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 945 if (!materializeValue(Id)) 946 return false; 947 } 948 return true; 949 } 950 951 /// Add the number of dimensions in @p BS to @p U. 952 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) { 953 unsigned *NumTotalDim = static_cast<unsigned *>(U); 954 *NumTotalDim += isl_basic_set_total_dim(BS); 955 isl_basic_set_free(BS); 956 return isl_stat_ok; 957 } 958 959 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 960 isl_ast_build *Build, 961 Instruction *AccInst) { 962 963 // TODO: This check could be performed in the ScopInfo already. 964 unsigned NumTotalDim = 0; 965 isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim); 966 if (NumTotalDim > MaxDimensionsInAccessRange) { 967 isl_set_free(AccessRange); 968 return nullptr; 969 } 970 971 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 972 isl_ast_expr *Access = 973 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 974 auto *Address = isl_ast_expr_address_of(Access); 975 auto *AddressValue = ExprBuilder.create(Address); 976 Value *PreloadVal; 977 978 // Correct the type as the SAI might have a different type than the user 979 // expects, especially if the base pointer is a struct. 980 Type *Ty = AccInst->getType(); 981 982 auto *Ptr = AddressValue; 983 auto Name = Ptr->getName(); 984 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast"); 985 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 986 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 987 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 988 989 // TODO: This is only a hot fix for SCoP sequences that use the same load 990 // instruction contained and hoisted by one of the SCoPs. 991 if (SE.isSCEVable(Ty)) 992 SE.forgetValue(AccInst); 993 994 return PreloadVal; 995 } 996 997 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 998 isl_set *Domain) { 999 1000 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 1001 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 1002 1003 if (!materializeParameters(AccessRange, false)) { 1004 isl_set_free(AccessRange); 1005 isl_set_free(Domain); 1006 return nullptr; 1007 } 1008 1009 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 1010 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1011 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1012 isl_set_free(Universe); 1013 1014 Instruction *AccInst = MA.getAccessInstruction(); 1015 Type *AccInstTy = AccInst->getType(); 1016 1017 Value *PreloadVal = nullptr; 1018 if (AlwaysExecuted) { 1019 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1020 isl_ast_build_free(Build); 1021 isl_set_free(Domain); 1022 return PreloadVal; 1023 } 1024 1025 if (!materializeParameters(Domain, false)) { 1026 isl_ast_build_free(Build); 1027 isl_set_free(AccessRange); 1028 isl_set_free(Domain); 1029 return nullptr; 1030 } 1031 1032 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1033 Domain = nullptr; 1034 1035 ExprBuilder.setTrackOverflow(true); 1036 Value *Cond = ExprBuilder.create(DomainCond); 1037 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1038 "polly.preload.cond.overflown"); 1039 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1040 ExprBuilder.setTrackOverflow(false); 1041 1042 if (!Cond->getType()->isIntegerTy(1)) 1043 Cond = Builder.CreateIsNotNull(Cond); 1044 1045 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1046 &*Builder.GetInsertPoint(), &DT, &LI); 1047 CondBB->setName("polly.preload.cond"); 1048 1049 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1050 MergeBB->setName("polly.preload.merge"); 1051 1052 Function *F = Builder.GetInsertBlock()->getParent(); 1053 LLVMContext &Context = F->getContext(); 1054 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1055 1056 DT.addNewBlock(ExecBB, CondBB); 1057 if (Loop *L = LI.getLoopFor(CondBB)) 1058 L->addBasicBlockToLoop(ExecBB, LI); 1059 1060 auto *CondBBTerminator = CondBB->getTerminator(); 1061 Builder.SetInsertPoint(CondBBTerminator); 1062 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1063 CondBBTerminator->eraseFromParent(); 1064 1065 Builder.SetInsertPoint(ExecBB); 1066 Builder.CreateBr(MergeBB); 1067 1068 Builder.SetInsertPoint(ExecBB->getTerminator()); 1069 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1070 Builder.SetInsertPoint(MergeBB->getTerminator()); 1071 auto *MergePHI = Builder.CreatePHI( 1072 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1073 PreloadVal = MergePHI; 1074 1075 if (!PreAccInst) { 1076 PreloadVal = nullptr; 1077 PreAccInst = UndefValue::get(AccInstTy); 1078 } 1079 1080 MergePHI->addIncoming(PreAccInst, ExecBB); 1081 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1082 1083 isl_ast_build_free(Build); 1084 return PreloadVal; 1085 } 1086 1087 bool IslNodeBuilder::preloadInvariantEquivClass( 1088 InvariantEquivClassTy &IAClass) { 1089 // For an equivalence class of invariant loads we pre-load the representing 1090 // element with the unified execution context. However, we have to map all 1091 // elements of the class to the one preloaded load as they are referenced 1092 // during the code generation and therefor need to be mapped. 1093 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1094 if (MAs.empty()) 1095 return true; 1096 1097 MemoryAccess *MA = MAs.front(); 1098 assert(MA->isArrayKind() && MA->isRead()); 1099 1100 // If the access function was already mapped, the preload of this equivalence 1101 // class was triggered earlier already and doesn't need to be done again. 1102 if (ValueMap.count(MA->getAccessInstruction())) 1103 return true; 1104 1105 // Check for recursion which can be caused by additional constraints, e.g., 1106 // non-finite loop constraints. In such a case we have to bail out and insert 1107 // a "false" runtime check that will cause the original code to be executed. 1108 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1109 if (!PreloadedPtrs.insert(PtrId).second) 1110 return false; 1111 1112 // The execution context of the IAClass. 1113 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1114 1115 // If the base pointer of this class is dependent on another one we have to 1116 // make sure it was preloaded already. 1117 auto *SAI = MA->getScopArrayInfo(); 1118 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1119 if (!preloadInvariantEquivClass(*BaseIAClass)) 1120 return false; 1121 1122 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1123 // we need to refine the ExecutionCtx. 1124 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1125 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1126 } 1127 1128 // If the size of a dimension is dependent on another class, make sure it is 1129 // preloaded. 1130 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1131 const SCEV *Dim = SAI->getDimensionSize(i); 1132 SetVector<Value *> Values; 1133 findValues(Dim, SE, Values); 1134 for (auto *Val : Values) { 1135 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1136 if (!preloadInvariantEquivClass(*BaseIAClass)) 1137 return false; 1138 1139 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1140 // and we need to refine the ExecutionCtx. 1141 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1142 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1143 } 1144 } 1145 } 1146 1147 Instruction *AccInst = MA->getAccessInstruction(); 1148 Type *AccInstTy = AccInst->getType(); 1149 1150 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1151 if (!PreloadVal) 1152 return false; 1153 1154 for (const MemoryAccess *MA : MAs) { 1155 Instruction *MAAccInst = MA->getAccessInstruction(); 1156 assert(PreloadVal->getType() == MAAccInst->getType()); 1157 ValueMap[MAAccInst] = PreloadVal; 1158 } 1159 1160 if (SE.isSCEVable(AccInstTy)) { 1161 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1162 if (ParamId) 1163 IDToValue[ParamId] = PreloadVal; 1164 isl_id_free(ParamId); 1165 } 1166 1167 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1168 auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a"); 1169 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1170 Builder.CreateStore(PreloadVal, Alloca); 1171 1172 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1173 Value *BasePtr = DerivedSAI->getBasePtr(); 1174 1175 for (const MemoryAccess *MA : MAs) { 1176 // As the derived SAI information is quite coarse, any load from the 1177 // current SAI could be the base pointer of the derived SAI, however we 1178 // should only change the base pointer of the derived SAI if we actually 1179 // preloaded it. 1180 if (BasePtr == MA->getBaseAddr()) { 1181 assert(BasePtr->getType() == PreloadVal->getType()); 1182 DerivedSAI->setBasePtr(PreloadVal); 1183 } 1184 1185 // For scalar derived SAIs we remap the alloca used for the derived value. 1186 if (BasePtr == MA->getAccessInstruction()) { 1187 if (DerivedSAI->isPHIKind()) 1188 PHIOpMap[BasePtr] = Alloca; 1189 else 1190 ScalarMap[BasePtr] = Alloca; 1191 } 1192 } 1193 } 1194 1195 for (const MemoryAccess *MA : MAs) { 1196 1197 Instruction *MAAccInst = MA->getAccessInstruction(); 1198 // Use the escape system to get the correct value to users outside the SCoP. 1199 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1200 for (auto *U : MAAccInst->users()) 1201 if (Instruction *UI = dyn_cast<Instruction>(U)) 1202 if (!S.contains(UI)) 1203 EscapeUsers.push_back(UI); 1204 1205 if (EscapeUsers.empty()) 1206 continue; 1207 1208 EscapeMap[MA->getAccessInstruction()] = 1209 std::make_pair(Alloca, std::move(EscapeUsers)); 1210 } 1211 1212 return true; 1213 } 1214 1215 void IslNodeBuilder::allocateNewArrays() { 1216 for (auto &SAI : S.arrays()) { 1217 if (SAI->getBasePtr()) 1218 continue; 1219 1220 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1221 "The size of the outermost dimension is used to declare newly " 1222 "created arrays that require memory allocation."); 1223 1224 Type *NewArrayType = nullptr; 1225 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1226 auto *DimSize = SAI->getDimensionSize(i); 1227 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1228 ->getAPInt() 1229 .getLimitedValue(); 1230 1231 if (!NewArrayType) 1232 NewArrayType = SAI->getElementType(); 1233 1234 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1235 } 1236 1237 auto InstIt = 1238 Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator(); 1239 Value *CreatedArray = 1240 new AllocaInst(NewArrayType, SAI->getName(), &*InstIt); 1241 SAI->setBasePtr(CreatedArray); 1242 } 1243 } 1244 1245 bool IslNodeBuilder::preloadInvariantLoads() { 1246 1247 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1248 if (InvariantEquivClasses.empty()) 1249 return true; 1250 1251 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1252 &*Builder.GetInsertPoint(), &DT, &LI); 1253 PreLoadBB->setName("polly.preload.begin"); 1254 Builder.SetInsertPoint(&PreLoadBB->front()); 1255 1256 for (auto &IAClass : InvariantEquivClasses) 1257 if (!preloadInvariantEquivClass(IAClass)) 1258 return false; 1259 1260 return true; 1261 } 1262 1263 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1264 1265 // Materialize values for the parameters of the SCoP. 1266 materializeParameters(Context, /* all */ true); 1267 1268 // Generate values for the current loop iteration for all surrounding loops. 1269 // 1270 // We may also reference loops outside of the scop which do not contain the 1271 // scop itself, but as the number of such scops may be arbitrarily large we do 1272 // not generate code for them here, but only at the point of code generation 1273 // where these values are needed. 1274 Loop *L = LI.getLoopFor(S.getEntry()); 1275 1276 while (L != nullptr && S.contains(L)) 1277 L = L->getParentLoop(); 1278 1279 while (L != nullptr) { 1280 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1281 SE.getUnknown(Builder.getInt64(1)), 1282 L, SCEV::FlagAnyWrap); 1283 Value *V = generateSCEV(OuterLIV); 1284 OutsideLoopIterations[L] = SE.getUnknown(V); 1285 L = L->getParentLoop(); 1286 } 1287 1288 isl_set_free(Context); 1289 } 1290 1291 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1292 /// We pass the insert location of our Builder, as Polly ensures during IR 1293 /// generation that there is always a valid CFG into which instructions are 1294 /// inserted. As a result, the insertpoint is known to be always followed by a 1295 /// terminator instruction. This means the insert point may be specified by a 1296 /// terminator instruction, but it can never point to an ->end() iterator 1297 /// which does not have a corresponding instruction. Hence, dereferencing 1298 /// the insertpoint to obtain an instruction is known to be save. 1299 /// 1300 /// We also do not need to update the Builder here, as new instructions are 1301 /// always inserted _before_ the given InsertLocation. As a result, the 1302 /// insert location remains valid. 1303 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1304 "Insert location points after last valid instruction"); 1305 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1306 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1307 InsertLocation, &ValueMap, 1308 StartBlock->getSinglePredecessor()); 1309 } 1310 1311 /// The AST expression we generate to perform the run-time check assumes 1312 /// computations on integer types of infinite size. As we only use 64-bit 1313 /// arithmetic we check for overflows, in case of which we set the result 1314 /// of this run-time check to false to be cosnservatively correct, 1315 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1316 auto ExprBuilder = getExprBuilder(); 1317 ExprBuilder.setTrackOverflow(true); 1318 Value *RTC = ExprBuilder.create(Condition); 1319 if (!RTC->getType()->isIntegerTy(1)) 1320 RTC = Builder.CreateIsNotNull(RTC); 1321 Value *OverflowHappened = 1322 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1323 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1324 ExprBuilder.setTrackOverflow(false); 1325 return RTC; 1326 } 1327