1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the IslNodeBuilder, a class to translate an isl AST into
11 // a LLVM-IR AST.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslAst.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/LoopGenerators.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Config/config.h"
23 #include "polly/Options.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/GICHelper.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "polly/Support/ScopHelper.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/RegionInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "isl/aff.h"
54 #include "isl/aff_type.h"
55 #include "isl/ast.h"
56 #include "isl/ast_build.h"
57 #include "isl/isl-noexceptions.h"
58 #include "isl/map.h"
59 #include "isl/set.h"
60 #include "isl/union_map.h"
61 #include "isl/union_set.h"
62 #include "isl/val.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 using namespace polly;
73 
74 #define DEBUG_TYPE "polly-codegen"
75 
76 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
77 
78 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
79 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
80 STATISTIC(VectorLoops, "Number of generated vector for-loops");
81 STATISTIC(IfConditions, "Number of generated if-conditions");
82 
83 static cl::opt<bool> PollyGenerateRTCPrint(
84     "polly-codegen-emit-rtc-print",
85     cl::desc("Emit code that prints the runtime check result dynamically."),
86     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
87 
88 // If this option is set we always use the isl AST generator to regenerate
89 // memory accesses. Without this option set we regenerate expressions using the
90 // original SCEV expressions and only generate new expressions in case the
91 // access relation has been changed and consequently must be regenerated.
92 static cl::opt<bool> PollyGenerateExpressions(
93     "polly-codegen-generate-expressions",
94     cl::desc("Generate AST expressions for unmodified and modified accesses"),
95     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
96 
97 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
98     "polly-target-first-level-cache-line-size",
99     cl::desc("The size of the first level cache line size specified in bytes."),
100     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
101 
102 __isl_give isl_ast_expr *
103 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
104                               ICmpInst::Predicate &Predicate) {
105   isl_id *UBID, *IteratorID;
106   isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
107   isl_ast_op_type Type;
108 
109   Cond = isl_ast_node_for_get_cond(For);
110   Iterator = isl_ast_node_for_get_iterator(For);
111   assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
112          "conditional expression is not an atomic upper bound");
113 
114   Type = isl_ast_expr_get_op_type(Cond);
115 
116   switch (Type) {
117   case isl_ast_op_le:
118     Predicate = ICmpInst::ICMP_SLE;
119     break;
120   case isl_ast_op_lt:
121     Predicate = ICmpInst::ICMP_SLT;
122     break;
123   default:
124     llvm_unreachable("Unexpected comparison type in loop condition");
125   }
126 
127   Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
128 
129   assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
130          "conditional expression is not an atomic upper bound");
131 
132   UBID = isl_ast_expr_get_id(Arg0);
133 
134   assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
135          "Could not get the iterator");
136 
137   IteratorID = isl_ast_expr_get_id(Iterator);
138 
139   assert(UBID == IteratorID &&
140          "conditional expression is not an atomic upper bound");
141 
142   UB = isl_ast_expr_get_op_arg(Cond, 1);
143 
144   isl_ast_expr_free(Cond);
145   isl_ast_expr_free(Iterator);
146   isl_ast_expr_free(Arg0);
147   isl_id_free(IteratorID);
148   isl_id_free(UBID);
149 
150   return UB;
151 }
152 
153 /// Return true if a return value of Predicate is true for the value represented
154 /// by passed isl_ast_expr_int.
155 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
156                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
157   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
158     isl_ast_expr_free(Expr);
159     return false;
160   }
161   auto ExprVal = isl_ast_expr_get_val(Expr);
162   isl_ast_expr_free(Expr);
163   if (Predicate(ExprVal) != isl_bool_true) {
164     isl_val_free(ExprVal);
165     return false;
166   }
167   isl_val_free(ExprVal);
168   return true;
169 }
170 
171 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
172   assert(isl_ast_node_get_type(For) == isl_ast_node_for);
173   auto Body = isl_ast_node_for_get_body(For);
174 
175   // First, check if we can actually handle this code.
176   switch (isl_ast_node_get_type(Body)) {
177   case isl_ast_node_user:
178     break;
179   case isl_ast_node_block: {
180     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
181     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
182       isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
183       int Type = isl_ast_node_get_type(Node);
184       isl_ast_node_free(Node);
185       if (Type != isl_ast_node_user) {
186         isl_ast_node_list_free(List);
187         isl_ast_node_free(Body);
188         return -1;
189       }
190     }
191     isl_ast_node_list_free(List);
192     break;
193   }
194   default:
195     isl_ast_node_free(Body);
196     return -1;
197   }
198   isl_ast_node_free(Body);
199 
200   auto Init = isl_ast_node_for_get_init(For);
201   if (!checkIslAstExprInt(Init, isl_val_is_zero))
202     return -1;
203   auto Inc = isl_ast_node_for_get_inc(For);
204   if (!checkIslAstExprInt(Inc, isl_val_is_one))
205     return -1;
206   CmpInst::Predicate Predicate;
207   auto UB = getUpperBound(For, Predicate);
208   if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
209     isl_ast_expr_free(UB);
210     return -1;
211   }
212   auto UpVal = isl_ast_expr_get_val(UB);
213   isl_ast_expr_free(UB);
214   int NumberIterations = isl_val_get_num_si(UpVal);
215   isl_val_free(UpVal);
216   if (NumberIterations < 0)
217     return -1;
218   if (Predicate == CmpInst::ICMP_SLT)
219     return NumberIterations;
220   else
221     return NumberIterations + 1;
222 }
223 
224 /// Extract the values and SCEVs needed to generate code for a block.
225 static int findReferencesInBlock(struct SubtreeReferences &References,
226                                  const ScopStmt *Stmt, BasicBlock *BB) {
227   for (Instruction &Inst : *BB) {
228     // Include invariant loads
229     if (isa<LoadInst>(Inst))
230       if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
231         References.Values.insert(InvariantLoad);
232 
233     for (Value *SrcVal : Inst.operands()) {
234       auto *Scope = References.LI.getLoopFor(BB);
235       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
236         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
237         continue;
238       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
239         References.Values.insert(NewVal);
240     }
241   }
242   return 0;
243 }
244 
245 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
246                                bool CreateScalarRefs) {
247   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
248 
249   if (Stmt->isBlockStmt())
250     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
251   else {
252     assert(Stmt->isRegionStmt() &&
253            "Stmt was neither block nor region statement");
254     for (BasicBlock *BB : Stmt->getRegion()->blocks())
255       findReferencesInBlock(References, Stmt, BB);
256   }
257 
258   for (auto &Access : *Stmt) {
259     if (References.ParamSpace) {
260       isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
261       (*References.ParamSpace) =
262           References.ParamSpace->align_params(ParamSpace);
263     }
264 
265     if (Access->isLatestArrayKind()) {
266       auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
267       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
268         if (Stmt->getParent()->contains(OpInst))
269           continue;
270 
271       References.Values.insert(BasePtr);
272       continue;
273     }
274 
275     if (CreateScalarRefs)
276       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
277   }
278 
279   return isl_stat_ok;
280 }
281 
282 /// Extract the out-of-scop values and SCEVs referenced from a set describing
283 /// a ScopStmt.
284 ///
285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
286 /// statement and the base pointers of the memory accesses. For scalar
287 /// statements we force the generation of alloca memory locations and list
288 /// these locations in the set of out-of-scop values as well.
289 ///
290 /// @param Set     A set which references the ScopStmt we are interested in.
291 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
292 ///                structure.
293 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
294                                          void *UserPtr) {
295   isl_id *Id = isl_set_get_tuple_id(Set);
296   auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
297   isl_id_free(Id);
298   isl_set_free(Set);
299   return addReferencesFromStmt(Stmt, UserPtr);
300 }
301 
302 /// Extract the out-of-scop values and SCEVs referenced from a union set
303 /// referencing multiple ScopStmts.
304 ///
305 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
306 /// statement and the base pointers of the memory accesses. For scalar
307 /// statements we force the generation of alloca memory locations and list
308 /// these locations in the set of out-of-scop values as well.
309 ///
310 /// @param USet       A union set referencing the ScopStmts we are interested
311 ///                   in.
312 /// @param References The SubtreeReferences data structure through which
313 ///                   results are returned and further information is
314 ///                   provided.
315 static void
316 addReferencesFromStmtUnionSet(isl_union_set *USet,
317                               struct SubtreeReferences &References) {
318   isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
319   isl_union_set_free(USet);
320 }
321 
322 __isl_give isl_union_map *
323 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
324   return IslAstInfo::getSchedule(For);
325 }
326 
327 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
328                                             SetVector<Value *> &Values,
329                                             SetVector<const Loop *> &Loops) {
330   SetVector<const SCEV *> SCEVs;
331   struct SubtreeReferences References = {
332       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
333 
334   for (const auto &I : IDToValue)
335     Values.insert(I.second);
336 
337   // NOTE: this is populated in IslNodeBuilder::addParameters
338   for (const auto &I : OutsideLoopIterations)
339     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
340 
341   isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
342   addReferencesFromStmtUnionSet(Schedule, References);
343 
344   for (const SCEV *Expr : SCEVs) {
345     findValues(Expr, SE, Values);
346     findLoops(Expr, Loops);
347   }
348 
349   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
350 
351   /// Note: Code generation of induction variables of loops outside Scops
352   ///
353   /// Remove loops that contain the scop or that are part of the scop, as they
354   /// are considered local. This leaves only loops that are before the scop, but
355   /// do not contain the scop itself.
356   /// We ignore loops perfectly contained in the Scop because these are already
357   /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
358   /// whose induction variables are referred to by the Scop, but the Scop is not
359   /// fully contained in these Loops. Since there can be many of these,
360   /// we choose to codegen these on-demand.
361   /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
362   Loops.remove_if([this](const Loop *L) {
363     return S.contains(L) || L->contains(S.getEntry());
364   });
365 
366   // Contains Values that may need to be replaced with other values
367   // due to replacements from the ValueMap. We should make sure
368   // that we return correctly remapped values.
369   // NOTE: this code path is tested by:
370   //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
371   //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
372   SetVector<Value *> ReplacedValues;
373   for (Value *V : Values) {
374     ReplacedValues.insert(getLatestValue(V));
375   }
376   Values = ReplacedValues;
377 }
378 
379 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
380   SmallPtrSet<Value *, 5> Inserted;
381 
382   for (const auto &I : IDToValue) {
383     IDToValue[I.first] = NewValues[I.second];
384     Inserted.insert(I.second);
385   }
386 
387   for (const auto &I : NewValues) {
388     if (Inserted.count(I.first))
389       continue;
390 
391     ValueMap[I.first] = I.second;
392   }
393 }
394 
395 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
396   auto It = ValueMap.find(Original);
397   if (It == ValueMap.end())
398     return Original;
399   return It->second;
400 }
401 
402 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
403                                       std::vector<Value *> &IVS,
404                                       __isl_take isl_id *IteratorID,
405                                       __isl_take isl_union_map *Schedule) {
406   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
407   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
408   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
409   isl_ast_expr_free(StmtExpr);
410   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
411   std::vector<LoopToScevMapT> VLTS(IVS.size());
412 
413   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
414   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
415   isl_map *S = isl_map_from_union_map(Schedule);
416 
417   auto *NewAccesses = createNewAccesses(Stmt, User);
418   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
419   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
420   isl_id_to_ast_expr_free(NewAccesses);
421   isl_map_free(S);
422   isl_id_free(Id);
423   isl_ast_node_free(User);
424 }
425 
426 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
427   auto *Id = isl_ast_node_mark_get_id(Node);
428   auto Child = isl_ast_node_mark_get_node(Node);
429   isl_ast_node_free(Node);
430   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
431   // it will be optimized away and we should skip it.
432   if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
433       isl_ast_node_get_type(Child) == isl_ast_node_for) {
434     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
435     int VectorWidth = getNumberOfIterations(Child);
436     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
437       createForVector(Child, VectorWidth);
438     else
439       createForSequential(Child, true);
440     isl_id_free(Id);
441     return;
442   }
443   if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
444     auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
445     Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
446   }
447   create(Child);
448   isl_id_free(Id);
449 }
450 
451 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
452                                      int VectorWidth) {
453   isl_ast_node *Body = isl_ast_node_for_get_body(For);
454   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
455   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
456   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
457   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
458 
459   Value *ValueLB = ExprBuilder.create(Init);
460   Value *ValueInc = ExprBuilder.create(Inc);
461 
462   Type *MaxType = ExprBuilder.getType(Iterator);
463   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
464   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
465 
466   if (MaxType != ValueLB->getType())
467     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
468   if (MaxType != ValueInc->getType())
469     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
470 
471   std::vector<Value *> IVS(VectorWidth);
472   IVS[0] = ValueLB;
473 
474   for (int i = 1; i < VectorWidth; i++)
475     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
476 
477   isl_union_map *Schedule = getScheduleForAstNode(For);
478   assert(Schedule && "For statement annotation does not contain its schedule");
479 
480   IDToValue[IteratorID] = ValueLB;
481 
482   switch (isl_ast_node_get_type(Body)) {
483   case isl_ast_node_user:
484     createUserVector(Body, IVS, isl_id_copy(IteratorID),
485                      isl_union_map_copy(Schedule));
486     break;
487   case isl_ast_node_block: {
488     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
489 
490     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
491       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
492                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
493 
494     isl_ast_node_free(Body);
495     isl_ast_node_list_free(List);
496     break;
497   }
498   default:
499     isl_ast_node_dump(Body);
500     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
501   }
502 
503   IDToValue.erase(IDToValue.find(IteratorID));
504   isl_id_free(IteratorID);
505   isl_union_map_free(Schedule);
506 
507   isl_ast_node_free(For);
508   isl_ast_expr_free(Iterator);
509 
510   VectorLoops++;
511 }
512 
513 /// Restore the initial ordering of dimensions of the band node
514 ///
515 /// In case the band node represents all the dimensions of the iteration
516 /// domain, recreate the band node to restore the initial ordering of the
517 /// dimensions.
518 ///
519 /// @param Node The band node to be modified.
520 /// @return The modified schedule node.
521 static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
522   assert(isl_ast_node_get_type(Node.keep()) == isl_ast_node_for);
523   auto Body = Node.for_get_body();
524   if (isl_ast_node_get_type(Body.keep()) != isl_ast_node_mark)
525     return false;
526   auto Id = Body.mark_get_id();
527   if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
528     return true;
529   return false;
530 }
531 
532 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
533                                          bool MarkParallel) {
534   isl_ast_node *Body;
535   isl_ast_expr *Init, *Inc, *Iterator, *UB;
536   isl_id *IteratorID;
537   Value *ValueLB, *ValueUB, *ValueInc;
538   Type *MaxType;
539   BasicBlock *ExitBlock;
540   Value *IV;
541   CmpInst::Predicate Predicate;
542 
543   bool LoopVectorizerDisabled =
544       IsLoopVectorizerDisabled(isl::manage(isl_ast_node_copy(For)));
545 
546   Body = isl_ast_node_for_get_body(For);
547 
548   // isl_ast_node_for_is_degenerate(For)
549   //
550   // TODO: For degenerated loops we could generate a plain assignment.
551   //       However, for now we just reuse the logic for normal loops, which will
552   //       create a loop with a single iteration.
553 
554   Init = isl_ast_node_for_get_init(For);
555   Inc = isl_ast_node_for_get_inc(For);
556   Iterator = isl_ast_node_for_get_iterator(For);
557   IteratorID = isl_ast_expr_get_id(Iterator);
558   UB = getUpperBound(For, Predicate);
559 
560   ValueLB = ExprBuilder.create(Init);
561   ValueUB = ExprBuilder.create(UB);
562   ValueInc = ExprBuilder.create(Inc);
563 
564   MaxType = ExprBuilder.getType(Iterator);
565   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
566   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
567   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
568 
569   if (MaxType != ValueLB->getType())
570     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
571   if (MaxType != ValueUB->getType())
572     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
573   if (MaxType != ValueInc->getType())
574     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
575 
576   // If we can show that LB <Predicate> UB holds at least once, we can
577   // omit the GuardBB in front of the loop.
578   bool UseGuardBB =
579       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
580   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
581                   Predicate, &Annotator, MarkParallel, UseGuardBB,
582                   LoopVectorizerDisabled);
583   IDToValue[IteratorID] = IV;
584 
585   create(Body);
586 
587   Annotator.popLoop(MarkParallel);
588 
589   IDToValue.erase(IDToValue.find(IteratorID));
590 
591   Builder.SetInsertPoint(&ExitBlock->front());
592 
593   isl_ast_node_free(For);
594   isl_ast_expr_free(Iterator);
595   isl_id_free(IteratorID);
596 
597   SequentialLoops++;
598 }
599 
600 /// Remove the BBs contained in a (sub)function from the dominator tree.
601 ///
602 /// This function removes the basic blocks that are part of a subfunction from
603 /// the dominator tree. Specifically, when generating code it may happen that at
604 /// some point the code generation continues in a new sub-function (e.g., when
605 /// generating OpenMP code). The basic blocks that are created in this
606 /// sub-function are then still part of the dominator tree of the original
607 /// function, such that the dominator tree reaches over function boundaries.
608 /// This is not only incorrect, but also causes crashes. This function now
609 /// removes from the dominator tree all basic blocks that are dominated (and
610 /// consequently reachable) from the entry block of this (sub)function.
611 ///
612 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
613 /// the function/region it runs on. Hence, the pure need for this function shows
614 /// that we do not comply to this rule. At the moment, this does not cause any
615 /// issues, but we should be aware that such issues may appear. Unfortunately
616 /// the current LLVM pass infrastructure does not allow to make Polly a module
617 /// or call-graph pass to solve this issue, as such a pass would not have access
618 /// to the per-function analyses passes needed by Polly. A future pass manager
619 /// infrastructure is supposed to enable such kind of access possibly allowing
620 /// us to create a cleaner solution here.
621 ///
622 /// FIXME: Instead of adding the dominance information and then dropping it
623 /// later on, we should try to just not add it in the first place. This requires
624 /// some careful testing to make sure this does not break in interaction with
625 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
626 /// which may try to update it.
627 ///
628 /// @param F The function which contains the BBs to removed.
629 /// @param DT The dominator tree from which to remove the BBs.
630 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
631   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
632   std::vector<BasicBlock *> Nodes;
633 
634   // We can only remove an element from the dominator tree, if all its children
635   // have been removed. To ensure this we obtain the list of nodes to remove
636   // using a post-order tree traversal.
637   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
638     Nodes.push_back(I->getBlock());
639 
640   for (BasicBlock *BB : Nodes)
641     DT.eraseNode(BB);
642 }
643 
644 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
645   isl_ast_node *Body;
646   isl_ast_expr *Init, *Inc, *Iterator, *UB;
647   isl_id *IteratorID;
648   Value *ValueLB, *ValueUB, *ValueInc;
649   Type *MaxType;
650   Value *IV;
651   CmpInst::Predicate Predicate;
652 
653   // The preamble of parallel code interacts different than normal code with
654   // e.g., scalar initialization. Therefore, we ensure the parallel code is
655   // separated from the last basic block.
656   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
657                                  &*Builder.GetInsertPoint(), &DT, &LI);
658   ParBB->setName("polly.parallel.for");
659   Builder.SetInsertPoint(&ParBB->front());
660 
661   Body = isl_ast_node_for_get_body(For);
662   Init = isl_ast_node_for_get_init(For);
663   Inc = isl_ast_node_for_get_inc(For);
664   Iterator = isl_ast_node_for_get_iterator(For);
665   IteratorID = isl_ast_expr_get_id(Iterator);
666   UB = getUpperBound(For, Predicate);
667 
668   ValueLB = ExprBuilder.create(Init);
669   ValueUB = ExprBuilder.create(UB);
670   ValueInc = ExprBuilder.create(Inc);
671 
672   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
673   // expression, we need to adjust the loop bound by one.
674   if (Predicate == CmpInst::ICMP_SLT)
675     ValueUB = Builder.CreateAdd(
676         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
677 
678   MaxType = ExprBuilder.getType(Iterator);
679   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
680   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
681   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
682 
683   if (MaxType != ValueLB->getType())
684     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
685   if (MaxType != ValueUB->getType())
686     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
687   if (MaxType != ValueInc->getType())
688     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
689 
690   BasicBlock::iterator LoopBody;
691 
692   SetVector<Value *> SubtreeValues;
693   SetVector<const Loop *> Loops;
694 
695   getReferencesInSubtree(For, SubtreeValues, Loops);
696 
697   // Create for all loops we depend on values that contain the current loop
698   // iteration. These values are necessary to generate code for SCEVs that
699   // depend on such loops. As a result we need to pass them to the subfunction.
700   // See [Code generation of induction variables of loops outside Scops]
701   for (const Loop *L : Loops) {
702     Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
703     SubtreeValues.insert(LoopInductionVar);
704   }
705 
706   ValueMapT NewValues;
707   ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL);
708 
709   IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
710                                           SubtreeValues, NewValues, &LoopBody);
711   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
712   Builder.SetInsertPoint(&*LoopBody);
713 
714   // Remember the parallel subfunction
715   ParallelSubfunctions.push_back(LoopBody->getFunction());
716 
717   // Save the current values.
718   auto ValueMapCopy = ValueMap;
719   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
720 
721   updateValues(NewValues);
722   IDToValue[IteratorID] = IV;
723 
724   ValueMapT NewValuesReverse;
725 
726   for (auto P : NewValues)
727     NewValuesReverse[P.second] = P.first;
728 
729   Annotator.addAlternativeAliasBases(NewValuesReverse);
730 
731   create(Body);
732 
733   Annotator.resetAlternativeAliasBases();
734   // Restore the original values.
735   ValueMap = ValueMapCopy;
736   IDToValue = IDToValueCopy;
737 
738   Builder.SetInsertPoint(&*AfterLoop);
739   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
740 
741   for (const Loop *L : Loops)
742     OutsideLoopIterations.erase(L);
743 
744   isl_ast_node_free(For);
745   isl_ast_expr_free(Iterator);
746   isl_id_free(IteratorID);
747 
748   ParallelLoops++;
749 }
750 
751 /// Return whether any of @p Node's statements contain partial accesses.
752 ///
753 /// Partial accesses are not supported by Polly's vector code generator.
754 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
755   return isl_ast_node_foreach_descendant_top_down(
756              Node,
757              [](isl_ast_node *Node, void *User) -> isl_bool {
758                if (isl_ast_node_get_type(Node) != isl_ast_node_user)
759                  return isl_bool_true;
760 
761                isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node));
762                isl::ast_expr StmtExpr =
763                    give(isl_ast_expr_get_op_arg(Expr.keep(), 0));
764                isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep()));
765 
766                ScopStmt *Stmt =
767                    static_cast<ScopStmt *>(isl_id_get_user(Id.keep()));
768                isl::set StmtDom = Stmt->getDomain();
769                for (auto *MA : *Stmt) {
770                  if (MA->isLatestPartialAccess())
771                    return isl_bool_error;
772                }
773                return isl_bool_true;
774              },
775              nullptr) == isl_stat_error;
776 }
777 
778 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
779   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
780 
781   if (Vector && IslAstInfo::isInnermostParallel(For) &&
782       !IslAstInfo::isReductionParallel(For)) {
783     int VectorWidth = getNumberOfIterations(For);
784     if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
785       createForVector(For, VectorWidth);
786       return;
787     }
788   }
789 
790   if (IslAstInfo::isExecutedInParallel(For)) {
791     createForParallel(For);
792     return;
793   }
794   bool Parallel =
795       (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
796   createForSequential(For, Parallel);
797 }
798 
799 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
800   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
801 
802   Function *F = Builder.GetInsertBlock()->getParent();
803   LLVMContext &Context = F->getContext();
804 
805   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
806                                   &*Builder.GetInsertPoint(), &DT, &LI);
807   CondBB->setName("polly.cond");
808   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
809   MergeBB->setName("polly.merge");
810   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
811   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
812 
813   DT.addNewBlock(ThenBB, CondBB);
814   DT.addNewBlock(ElseBB, CondBB);
815   DT.changeImmediateDominator(MergeBB, CondBB);
816 
817   Loop *L = LI.getLoopFor(CondBB);
818   if (L) {
819     L->addBasicBlockToLoop(ThenBB, LI);
820     L->addBasicBlockToLoop(ElseBB, LI);
821   }
822 
823   CondBB->getTerminator()->eraseFromParent();
824 
825   Builder.SetInsertPoint(CondBB);
826   Value *Predicate = ExprBuilder.create(Cond);
827   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
828   Builder.SetInsertPoint(ThenBB);
829   Builder.CreateBr(MergeBB);
830   Builder.SetInsertPoint(ElseBB);
831   Builder.CreateBr(MergeBB);
832   Builder.SetInsertPoint(&ThenBB->front());
833 
834   create(isl_ast_node_if_get_then(If));
835 
836   Builder.SetInsertPoint(&ElseBB->front());
837 
838   if (isl_ast_node_if_has_else(If))
839     create(isl_ast_node_if_get_else(If));
840 
841   Builder.SetInsertPoint(&MergeBB->front());
842 
843   isl_ast_node_free(If);
844 
845   IfConditions++;
846 }
847 
848 __isl_give isl_id_to_ast_expr *
849 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
850                                   __isl_keep isl_ast_node *Node) {
851   isl_id_to_ast_expr *NewAccesses =
852       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);
853 
854   auto *Build = IslAstInfo::getBuild(Node);
855   assert(Build && "Could not obtain isl_ast_build from user node");
856   Stmt->setAstBuild(isl::manage(isl_ast_build_copy(Build)));
857 
858   for (auto *MA : *Stmt) {
859     if (!MA->hasNewAccessRelation()) {
860       if (PollyGenerateExpressions) {
861         if (!MA->isAffine())
862           continue;
863         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
864           continue;
865 
866         auto *BasePtr =
867             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
868         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
869           continue;
870       } else {
871         continue;
872       }
873     }
874     assert(MA->isAffine() &&
875            "Only affine memory accesses can be code generated");
876 
877     auto Schedule = isl_ast_build_get_schedule(Build);
878 
879 #ifndef NDEBUG
880     if (MA->isRead()) {
881       auto Dom = Stmt->getDomain().release();
882       auto SchedDom = isl_set_from_union_set(
883           isl_union_map_domain(isl_union_map_copy(Schedule)));
884       auto AccDom = isl_map_domain(MA->getAccessRelation().release());
885       Dom = isl_set_intersect_params(Dom,
886                                      Stmt->getParent()->getContext().release());
887       SchedDom = isl_set_intersect_params(
888           SchedDom, Stmt->getParent()->getContext().release());
889       assert(isl_set_is_subset(SchedDom, AccDom) &&
890              "Access relation not defined on full schedule domain");
891       assert(isl_set_is_subset(Dom, AccDom) &&
892              "Access relation not defined on full domain");
893       isl_set_free(AccDom);
894       isl_set_free(SchedDom);
895       isl_set_free(Dom);
896     }
897 #endif
898 
899     auto PWAccRel =
900         MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
901 
902     // isl cannot generate an index expression for access-nothing accesses.
903     isl::set AccDomain =
904         give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
905     isl::set Context = S.getContext();
906     AccDomain = AccDomain.intersect_params(Context);
907     if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) {
908       isl_pw_multi_aff_free(PWAccRel);
909       continue;
910     }
911 
912     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
913     NewAccesses =
914         isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
915   }
916 
917   return NewAccesses;
918 }
919 
920 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
921                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
922   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
923          "Expression of type 'op' expected");
924   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
925          "Operation of type 'call' expected");
926   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
927     isl_ast_expr *SubExpr;
928     Value *V;
929 
930     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
931     V = ExprBuilder.create(SubExpr);
932     ScalarEvolution *SE = Stmt->getParent()->getSE();
933     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
934   }
935 
936   isl_ast_expr_free(Expr);
937 }
938 
939 void IslNodeBuilder::createSubstitutionsVector(
940     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
941     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
942     __isl_take isl_id *IteratorID) {
943   int i = 0;
944 
945   Value *OldValue = IDToValue[IteratorID];
946   for (Value *IV : IVS) {
947     IDToValue[IteratorID] = IV;
948     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
949     i++;
950   }
951 
952   IDToValue[IteratorID] = OldValue;
953   isl_id_free(IteratorID);
954   isl_ast_expr_free(Expr);
955 }
956 
957 void IslNodeBuilder::generateCopyStmt(
958     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
959   assert(Stmt->size() == 2);
960   auto ReadAccess = Stmt->begin();
961   auto WriteAccess = ReadAccess++;
962   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
963   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
964          "Accesses use the same data type");
965   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
966   auto *AccessExpr =
967       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
968   auto *LoadValue = ExprBuilder.create(AccessExpr);
969   AccessExpr =
970       isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
971   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
972   Builder.CreateStore(LoadValue, StoreAddr);
973 }
974 
975 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
976   assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
977          "trying to materialize loop induction variable twice");
978   const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
979                                           SE.getUnknown(Builder.getInt64(1)), L,
980                                           SCEV::FlagAnyWrap);
981   Value *V = generateSCEV(OuterLIV);
982   OutsideLoopIterations[L] = SE.getUnknown(V);
983   return V;
984 }
985 
986 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
987   LoopToScevMapT LTS;
988   isl_id *Id;
989   ScopStmt *Stmt;
990 
991   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
992   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
993   Id = isl_ast_expr_get_id(StmtExpr);
994   isl_ast_expr_free(StmtExpr);
995 
996   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
997 
998   Stmt = (ScopStmt *)isl_id_get_user(Id);
999   auto *NewAccesses = createNewAccesses(Stmt, User);
1000   if (Stmt->isCopyStmt()) {
1001     generateCopyStmt(Stmt, NewAccesses);
1002     isl_ast_expr_free(Expr);
1003   } else {
1004     createSubstitutions(Expr, Stmt, LTS);
1005 
1006     if (Stmt->isBlockStmt())
1007       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
1008     else
1009       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
1010   }
1011 
1012   isl_id_to_ast_expr_free(NewAccesses);
1013   isl_ast_node_free(User);
1014   isl_id_free(Id);
1015 }
1016 
1017 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
1018   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
1019 
1020   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
1021     create(isl_ast_node_list_get_ast_node(List, i));
1022 
1023   isl_ast_node_free(Block);
1024   isl_ast_node_list_free(List);
1025 }
1026 
1027 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
1028   switch (isl_ast_node_get_type(Node)) {
1029   case isl_ast_node_error:
1030     llvm_unreachable("code generation error");
1031   case isl_ast_node_mark:
1032     createMark(Node);
1033     return;
1034   case isl_ast_node_for:
1035     createFor(Node);
1036     return;
1037   case isl_ast_node_if:
1038     createIf(Node);
1039     return;
1040   case isl_ast_node_user:
1041     createUser(Node);
1042     return;
1043   case isl_ast_node_block:
1044     createBlock(Node);
1045     return;
1046   }
1047 
1048   llvm_unreachable("Unknown isl_ast_node type");
1049 }
1050 
1051 bool IslNodeBuilder::materializeValue(isl_id *Id) {
1052   // If the Id is already mapped, skip it.
1053   if (!IDToValue.count(Id)) {
1054     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
1055     Value *V = nullptr;
1056 
1057     // Parameters could refer to invariant loads that need to be
1058     // preloaded before we can generate code for the parameter. Thus,
1059     // check if any value referred to in ParamSCEV is an invariant load
1060     // and if so make sure its equivalence class is preloaded.
1061     SetVector<Value *> Values;
1062     findValues(ParamSCEV, SE, Values);
1063     for (auto *Val : Values) {
1064       // Check if the value is an instruction in a dead block within the SCoP
1065       // and if so do not code generate it.
1066       if (auto *Inst = dyn_cast<Instruction>(Val)) {
1067         if (S.contains(Inst)) {
1068           bool IsDead = true;
1069 
1070           // Check for "undef" loads first, then if there is a statement for
1071           // the parent of Inst and lastly if the parent of Inst has an empty
1072           // domain. In the first and last case the instruction is dead but if
1073           // there is a statement or the domain is not empty Inst is not dead.
1074           auto MemInst = MemAccInst::dyn_cast(Inst);
1075           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
1076           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
1077                              SE.getPointerBase(SE.getSCEV(Address))) {
1078           } else if (S.getStmtFor(Inst)) {
1079             IsDead = false;
1080           } else {
1081             auto *Domain = S.getDomainConditions(Inst->getParent()).release();
1082             IsDead = isl_set_is_empty(Domain);
1083             isl_set_free(Domain);
1084           }
1085 
1086           if (IsDead) {
1087             V = UndefValue::get(ParamSCEV->getType());
1088             break;
1089           }
1090         }
1091       }
1092 
1093       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
1094         // Check if this invariant access class is empty, hence if we never
1095         // actually added a loads instruction to it. In that case it has no
1096         // (meaningful) users and we should not try to code generate it.
1097         if (IAClass->InvariantAccesses.empty())
1098           V = UndefValue::get(ParamSCEV->getType());
1099 
1100         if (!preloadInvariantEquivClass(*IAClass)) {
1101           isl_id_free(Id);
1102           return false;
1103         }
1104       }
1105     }
1106 
1107     V = V ? V : generateSCEV(ParamSCEV);
1108     IDToValue[Id] = V;
1109   }
1110 
1111   isl_id_free(Id);
1112   return true;
1113 }
1114 
1115 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
1116   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
1117     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
1118       continue;
1119     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
1120     if (!materializeValue(Id))
1121       return false;
1122   }
1123   return true;
1124 }
1125 
1126 bool IslNodeBuilder::materializeParameters() {
1127   for (const SCEV *Param : S.parameters()) {
1128     isl_id *Id = S.getIdForParam(Param).release();
1129     if (!materializeValue(Id))
1130       return false;
1131   }
1132   return true;
1133 }
1134 
1135 /// Generate the computation of the size of the outermost dimension from the
1136 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
1137 /// contains the size of the array.
1138 ///
1139 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
1140 /// %desc.dimensionty = type { i64, i64, i64 }
1141 /// @g_arr = global %arrty zeroinitializer, align 32
1142 /// ...
1143 /// %0 = load i64, i64* getelementptr inbounds
1144 ///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
1145 /// %1 = load i64, i64* getelementptr inbounds
1146 ///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
1147 /// %2 = sub nsw i64 %0, %1
1148 /// %size = add nsw i64 %2, 1
1149 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
1150                                              PollyIRBuilder &Builder,
1151                                              std::string ArrayName) {
1152   assert(GlobalDescriptor && "invalid global descriptor given");
1153 
1154   Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1155                       Builder.getInt64(0), Builder.getInt32(2)};
1156   Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
1157                                             ArrayName + "_end_ptr");
1158   Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");
1159 
1160   Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1161                         Builder.getInt64(0), Builder.getInt32(1)};
1162   Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
1163                                               ArrayName + "_begin_ptr");
1164   Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");
1165 
1166   Value *size =
1167       Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
1168   Type *endType = dyn_cast<IntegerType>(end->getType());
1169   assert(endType && "expected type of end to be integral");
1170 
1171   size = Builder.CreateNSWAdd(end,
1172                               ConstantInt::get(endType, 1, /* signed = */ true),
1173                               ArrayName + "_size");
1174 
1175   return size;
1176 }
1177 
1178 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
1179   for (ScopArrayInfo *Array : S.arrays()) {
1180     if (Array->getNumberOfDimensions() == 0)
1181       continue;
1182 
1183     Value *FAD = Array->getFortranArrayDescriptor();
1184     if (!FAD)
1185       continue;
1186 
1187     isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
1188     assert(ParametricPwAff && "parametric pw_aff corresponding "
1189                               "to outermost dimension does not "
1190                               "exist");
1191 
1192     isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
1193     isl_pw_aff_free(ParametricPwAff);
1194 
1195     assert(Id && "pw_aff is not parametric");
1196 
1197     if (IDToValue.count(Id)) {
1198       isl_id_free(Id);
1199       continue;
1200     }
1201 
1202     Value *FinalValue =
1203         buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
1204     assert(FinalValue && "unable to build Fortran array "
1205                          "descriptor load of outermost dimension");
1206     IDToValue[Id] = FinalValue;
1207     isl_id_free(Id);
1208   }
1209   return true;
1210 }
1211 
1212 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1213                                               isl_ast_build *Build,
1214                                               Instruction *AccInst) {
1215   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1216   isl_ast_expr *Access =
1217       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1218   auto *Address = isl_ast_expr_address_of(Access);
1219   auto *AddressValue = ExprBuilder.create(Address);
1220   Value *PreloadVal;
1221 
1222   // Correct the type as the SAI might have a different type than the user
1223   // expects, especially if the base pointer is a struct.
1224   Type *Ty = AccInst->getType();
1225 
1226   auto *Ptr = AddressValue;
1227   auto Name = Ptr->getName();
1228   auto AS = Ptr->getType()->getPointerAddressSpace();
1229   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1230   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1231   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1232     PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
1233 
1234   // TODO: This is only a hot fix for SCoP sequences that use the same load
1235   //       instruction contained and hoisted by one of the SCoPs.
1236   if (SE.isSCEVable(Ty))
1237     SE.forgetValue(AccInst);
1238 
1239   return PreloadVal;
1240 }
1241 
1242 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1243                                             isl_set *Domain) {
1244   isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1245   AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1246 
1247   if (!materializeParameters(AccessRange)) {
1248     isl_set_free(AccessRange);
1249     isl_set_free(Domain);
1250     return nullptr;
1251   }
1252 
1253   auto *Build =
1254       isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1255   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1256   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1257   isl_set_free(Universe);
1258 
1259   Instruction *AccInst = MA.getAccessInstruction();
1260   Type *AccInstTy = AccInst->getType();
1261 
1262   Value *PreloadVal = nullptr;
1263   if (AlwaysExecuted) {
1264     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1265     isl_ast_build_free(Build);
1266     isl_set_free(Domain);
1267     return PreloadVal;
1268   }
1269 
1270   if (!materializeParameters(Domain)) {
1271     isl_ast_build_free(Build);
1272     isl_set_free(AccessRange);
1273     isl_set_free(Domain);
1274     return nullptr;
1275   }
1276 
1277   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1278   Domain = nullptr;
1279 
1280   ExprBuilder.setTrackOverflow(true);
1281   Value *Cond = ExprBuilder.create(DomainCond);
1282   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1283                                               "polly.preload.cond.overflown");
1284   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1285   ExprBuilder.setTrackOverflow(false);
1286 
1287   if (!Cond->getType()->isIntegerTy(1))
1288     Cond = Builder.CreateIsNotNull(Cond);
1289 
1290   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1291                                   &*Builder.GetInsertPoint(), &DT, &LI);
1292   CondBB->setName("polly.preload.cond");
1293 
1294   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1295   MergeBB->setName("polly.preload.merge");
1296 
1297   Function *F = Builder.GetInsertBlock()->getParent();
1298   LLVMContext &Context = F->getContext();
1299   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1300 
1301   DT.addNewBlock(ExecBB, CondBB);
1302   if (Loop *L = LI.getLoopFor(CondBB))
1303     L->addBasicBlockToLoop(ExecBB, LI);
1304 
1305   auto *CondBBTerminator = CondBB->getTerminator();
1306   Builder.SetInsertPoint(CondBBTerminator);
1307   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1308   CondBBTerminator->eraseFromParent();
1309 
1310   Builder.SetInsertPoint(ExecBB);
1311   Builder.CreateBr(MergeBB);
1312 
1313   Builder.SetInsertPoint(ExecBB->getTerminator());
1314   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1315   Builder.SetInsertPoint(MergeBB->getTerminator());
1316   auto *MergePHI = Builder.CreatePHI(
1317       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1318   PreloadVal = MergePHI;
1319 
1320   if (!PreAccInst) {
1321     PreloadVal = nullptr;
1322     PreAccInst = UndefValue::get(AccInstTy);
1323   }
1324 
1325   MergePHI->addIncoming(PreAccInst, ExecBB);
1326   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1327 
1328   isl_ast_build_free(Build);
1329   return PreloadVal;
1330 }
1331 
1332 bool IslNodeBuilder::preloadInvariantEquivClass(
1333     InvariantEquivClassTy &IAClass) {
1334   // For an equivalence class of invariant loads we pre-load the representing
1335   // element with the unified execution context. However, we have to map all
1336   // elements of the class to the one preloaded load as they are referenced
1337   // during the code generation and therefor need to be mapped.
1338   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1339   if (MAs.empty())
1340     return true;
1341 
1342   MemoryAccess *MA = MAs.front();
1343   assert(MA->isArrayKind() && MA->isRead());
1344 
1345   // If the access function was already mapped, the preload of this equivalence
1346   // class was triggered earlier already and doesn't need to be done again.
1347   if (ValueMap.count(MA->getAccessInstruction()))
1348     return true;
1349 
1350   // Check for recursion which can be caused by additional constraints, e.g.,
1351   // non-finite loop constraints. In such a case we have to bail out and insert
1352   // a "false" runtime check that will cause the original code to be executed.
1353   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1354   if (!PreloadedPtrs.insert(PtrId).second)
1355     return false;
1356 
1357   // The execution context of the IAClass.
1358   isl::set &ExecutionCtx = IAClass.ExecutionContext;
1359 
1360   // If the base pointer of this class is dependent on another one we have to
1361   // make sure it was preloaded already.
1362   auto *SAI = MA->getScopArrayInfo();
1363   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1364     if (!preloadInvariantEquivClass(*BaseIAClass))
1365       return false;
1366 
1367     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1368     // we need to refine the ExecutionCtx.
1369     isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1370     ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1371   }
1372 
1373   // If the size of a dimension is dependent on another class, make sure it is
1374   // preloaded.
1375   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1376     const SCEV *Dim = SAI->getDimensionSize(i);
1377     SetVector<Value *> Values;
1378     findValues(Dim, SE, Values);
1379     for (auto *Val : Values) {
1380       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1381         if (!preloadInvariantEquivClass(*BaseIAClass))
1382           return false;
1383 
1384         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1385         // and we need to refine the ExecutionCtx.
1386         isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1387         ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1388       }
1389     }
1390   }
1391 
1392   Instruction *AccInst = MA->getAccessInstruction();
1393   Type *AccInstTy = AccInst->getType();
1394 
1395   Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
1396   if (!PreloadVal)
1397     return false;
1398 
1399   for (const MemoryAccess *MA : MAs) {
1400     Instruction *MAAccInst = MA->getAccessInstruction();
1401     assert(PreloadVal->getType() == MAAccInst->getType());
1402     ValueMap[MAAccInst] = PreloadVal;
1403   }
1404 
1405   if (SE.isSCEVable(AccInstTy)) {
1406     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1407     if (ParamId)
1408       IDToValue[ParamId] = PreloadVal;
1409     isl_id_free(ParamId);
1410   }
1411 
1412   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1413   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1414                                 AccInst->getName() + ".preload.s2a");
1415   Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
1416   Builder.CreateStore(PreloadVal, Alloca);
1417   ValueMapT PreloadedPointer;
1418   PreloadedPointer[PreloadVal] = AccInst;
1419   Annotator.addAlternativeAliasBases(PreloadedPointer);
1420 
1421   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1422     Value *BasePtr = DerivedSAI->getBasePtr();
1423 
1424     for (const MemoryAccess *MA : MAs) {
1425       // As the derived SAI information is quite coarse, any load from the
1426       // current SAI could be the base pointer of the derived SAI, however we
1427       // should only change the base pointer of the derived SAI if we actually
1428       // preloaded it.
1429       if (BasePtr == MA->getOriginalBaseAddr()) {
1430         assert(BasePtr->getType() == PreloadVal->getType());
1431         DerivedSAI->setBasePtr(PreloadVal);
1432       }
1433 
1434       // For scalar derived SAIs we remap the alloca used for the derived value.
1435       if (BasePtr == MA->getAccessInstruction())
1436         ScalarMap[DerivedSAI] = Alloca;
1437     }
1438   }
1439 
1440   for (const MemoryAccess *MA : MAs) {
1441     Instruction *MAAccInst = MA->getAccessInstruction();
1442     // Use the escape system to get the correct value to users outside the SCoP.
1443     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1444     for (auto *U : MAAccInst->users())
1445       if (Instruction *UI = dyn_cast<Instruction>(U))
1446         if (!S.contains(UI))
1447           EscapeUsers.push_back(UI);
1448 
1449     if (EscapeUsers.empty())
1450       continue;
1451 
1452     EscapeMap[MA->getAccessInstruction()] =
1453         std::make_pair(Alloca, std::move(EscapeUsers));
1454   }
1455 
1456   return true;
1457 }
1458 
1459 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1460   for (auto &SAI : S.arrays()) {
1461     if (SAI->getBasePtr())
1462       continue;
1463 
1464     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1465            "The size of the outermost dimension is used to declare newly "
1466            "created arrays that require memory allocation.");
1467 
1468     Type *NewArrayType = nullptr;
1469 
1470     // Get the size of the array = size(dim_1)*...*size(dim_n)
1471     uint64_t ArraySizeInt = 1;
1472     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1473       auto *DimSize = SAI->getDimensionSize(i);
1474       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1475                                      ->getAPInt()
1476                                      .getLimitedValue();
1477 
1478       if (!NewArrayType)
1479         NewArrayType = SAI->getElementType();
1480 
1481       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1482       ArraySizeInt *= UnsignedDimSize;
1483     }
1484 
1485     if (SAI->isOnHeap()) {
1486       LLVMContext &Ctx = NewArrayType->getContext();
1487 
1488       // Get the IntPtrTy from the Datalayout
1489       auto IntPtrTy = DL.getIntPtrType(Ctx);
1490 
1491       // Get the size of the element type in bits
1492       unsigned Size = SAI->getElemSizeInBytes();
1493 
1494       // Insert the malloc call at polly.start
1495       auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
1496       auto *CreatedArray = CallInst::CreateMalloc(
1497           &*InstIt, IntPtrTy, SAI->getElementType(),
1498           ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1499           ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1500           SAI->getName());
1501 
1502       SAI->setBasePtr(CreatedArray);
1503 
1504       // Insert the free call at polly.exiting
1505       CallInst::CreateFree(CreatedArray,
1506                            std::get<1>(StartExitBlocks)->getTerminator());
1507     } else {
1508       auto InstIt = Builder.GetInsertBlock()
1509                         ->getParent()
1510                         ->getEntryBlock()
1511                         .getTerminator();
1512 
1513       auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1514                                           SAI->getName(), &*InstIt);
1515       CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize);
1516       SAI->setBasePtr(CreatedArray);
1517     }
1518   }
1519 }
1520 
1521 bool IslNodeBuilder::preloadInvariantLoads() {
1522   auto &InvariantEquivClasses = S.getInvariantAccesses();
1523   if (InvariantEquivClasses.empty())
1524     return true;
1525 
1526   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1527                                      &*Builder.GetInsertPoint(), &DT, &LI);
1528   PreLoadBB->setName("polly.preload.begin");
1529   Builder.SetInsertPoint(&PreLoadBB->front());
1530 
1531   for (auto &IAClass : InvariantEquivClasses)
1532     if (!preloadInvariantEquivClass(IAClass))
1533       return false;
1534 
1535   return true;
1536 }
1537 
1538 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1539   // Materialize values for the parameters of the SCoP.
1540   materializeParameters();
1541 
1542   // materialize the outermost dimension parameters for a Fortran array.
1543   // NOTE: materializeParameters() does not work since it looks through
1544   // the SCEVs. We don't have a corresponding SCEV for the array size
1545   // parameter
1546   materializeFortranArrayOutermostDimension();
1547 
1548   // Generate values for the current loop iteration for all surrounding loops.
1549   //
1550   // We may also reference loops outside of the scop which do not contain the
1551   // scop itself, but as the number of such scops may be arbitrarily large we do
1552   // not generate code for them here, but only at the point of code generation
1553   // where these values are needed.
1554   Loop *L = LI.getLoopFor(S.getEntry());
1555 
1556   while (L != nullptr && S.contains(L))
1557     L = L->getParentLoop();
1558 
1559   while (L != nullptr) {
1560     materializeNonScopLoopInductionVariable(L);
1561     L = L->getParentLoop();
1562   }
1563 
1564   isl_set_free(Context);
1565 }
1566 
1567 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1568   /// We pass the insert location of our Builder, as Polly ensures during IR
1569   /// generation that there is always a valid CFG into which instructions are
1570   /// inserted. As a result, the insertpoint is known to be always followed by a
1571   /// terminator instruction. This means the insert point may be specified by a
1572   /// terminator instruction, but it can never point to an ->end() iterator
1573   /// which does not have a corresponding instruction. Hence, dereferencing
1574   /// the insertpoint to obtain an instruction is known to be save.
1575   ///
1576   /// We also do not need to update the Builder here, as new instructions are
1577   /// always inserted _before_ the given InsertLocation. As a result, the
1578   /// insert location remains valid.
1579   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1580          "Insert location points after last valid instruction");
1581   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1582   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1583                        InsertLocation, &ValueMap,
1584                        StartBlock->getSinglePredecessor());
1585 }
1586 
1587 /// The AST expression we generate to perform the run-time check assumes
1588 /// computations on integer types of infinite size. As we only use 64-bit
1589 /// arithmetic we check for overflows, in case of which we set the result
1590 /// of this run-time check to false to be conservatively correct,
1591 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1592   auto ExprBuilder = getExprBuilder();
1593 
1594   // In case the AST expression has integers larger than 64 bit, bail out. The
1595   // resulting LLVM-IR will contain operations on types that use more than 64
1596   // bits. These are -- in case wrapping intrinsics are used -- translated to
1597   // runtime library calls that are not available on all systems (e.g., Android)
1598   // and consequently will result in linker errors.
1599   if (ExprBuilder.hasLargeInts(isl::manage(isl_ast_expr_copy(Condition)))) {
1600     isl_ast_expr_free(Condition);
1601     return Builder.getFalse();
1602   }
1603 
1604   ExprBuilder.setTrackOverflow(true);
1605   Value *RTC = ExprBuilder.create(Condition);
1606   if (!RTC->getType()->isIntegerTy(1))
1607     RTC = Builder.CreateIsNotNull(RTC);
1608   Value *OverflowHappened =
1609       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1610 
1611   if (PollyGenerateRTCPrint) {
1612     auto *F = Builder.GetInsertBlock()->getParent();
1613     RuntimeDebugBuilder::createCPUPrinter(
1614         Builder,
1615         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1616             "RTC: ",
1617         RTC, " Overflow: ", OverflowHappened,
1618         "\n"
1619         "  (0 failed, -1 succeeded)\n"
1620         "  (if one or both are 0 falling back to original code, if both are -1 "
1621         "executing Polly code)\n");
1622   }
1623 
1624   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1625   ExprBuilder.setTrackOverflow(false);
1626 
1627   if (!isa<ConstantInt>(RTC))
1628     VersionedScops++;
1629 
1630   return RTC;
1631 }
1632