1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Config/config.h" 23 #include "polly/Options.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/GICHelper.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "polly/Support/ScopHelper.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/RegionInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "isl/aff.h" 54 #include "isl/aff_type.h" 55 #include "isl/ast.h" 56 #include "isl/ast_build.h" 57 #include "isl/isl-noexceptions.h" 58 #include "isl/map.h" 59 #include "isl/set.h" 60 #include "isl/union_map.h" 61 #include "isl/union_set.h" 62 #include "isl/val.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <cstring> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace polly; 73 74 #define DEBUG_TYPE "polly-codegen" 75 76 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 77 78 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 79 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 80 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 81 STATISTIC(IfConditions, "Number of generated if-conditions"); 82 83 static cl::opt<bool> PollyGenerateRTCPrint( 84 "polly-codegen-emit-rtc-print", 85 cl::desc("Emit code that prints the runtime check result dynamically."), 86 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 87 88 // If this option is set we always use the isl AST generator to regenerate 89 // memory accesses. Without this option set we regenerate expressions using the 90 // original SCEV expressions and only generate new expressions in case the 91 // access relation has been changed and consequently must be regenerated. 92 static cl::opt<bool> PollyGenerateExpressions( 93 "polly-codegen-generate-expressions", 94 cl::desc("Generate AST expressions for unmodified and modified accesses"), 95 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 98 "polly-target-first-level-cache-line-size", 99 cl::desc("The size of the first level cache line size specified in bytes."), 100 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 101 102 __isl_give isl_ast_expr * 103 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 104 ICmpInst::Predicate &Predicate) { 105 isl_id *UBID, *IteratorID; 106 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 107 isl_ast_op_type Type; 108 109 Cond = isl_ast_node_for_get_cond(For); 110 Iterator = isl_ast_node_for_get_iterator(For); 111 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 112 "conditional expression is not an atomic upper bound"); 113 114 Type = isl_ast_expr_get_op_type(Cond); 115 116 switch (Type) { 117 case isl_ast_op_le: 118 Predicate = ICmpInst::ICMP_SLE; 119 break; 120 case isl_ast_op_lt: 121 Predicate = ICmpInst::ICMP_SLT; 122 break; 123 default: 124 llvm_unreachable("Unexpected comparison type in loop condition"); 125 } 126 127 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 128 129 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 130 "conditional expression is not an atomic upper bound"); 131 132 UBID = isl_ast_expr_get_id(Arg0); 133 134 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 135 "Could not get the iterator"); 136 137 IteratorID = isl_ast_expr_get_id(Iterator); 138 139 assert(UBID == IteratorID && 140 "conditional expression is not an atomic upper bound"); 141 142 UB = isl_ast_expr_get_op_arg(Cond, 1); 143 144 isl_ast_expr_free(Cond); 145 isl_ast_expr_free(Iterator); 146 isl_ast_expr_free(Arg0); 147 isl_id_free(IteratorID); 148 isl_id_free(UBID); 149 150 return UB; 151 } 152 153 /// Return true if a return value of Predicate is true for the value represented 154 /// by passed isl_ast_expr_int. 155 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 156 isl_bool (*Predicate)(__isl_keep isl_val *)) { 157 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 158 isl_ast_expr_free(Expr); 159 return false; 160 } 161 auto ExprVal = isl_ast_expr_get_val(Expr); 162 isl_ast_expr_free(Expr); 163 if (Predicate(ExprVal) != isl_bool_true) { 164 isl_val_free(ExprVal); 165 return false; 166 } 167 isl_val_free(ExprVal); 168 return true; 169 } 170 171 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 172 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 173 auto Body = isl_ast_node_for_get_body(For); 174 175 // First, check if we can actually handle this code. 176 switch (isl_ast_node_get_type(Body)) { 177 case isl_ast_node_user: 178 break; 179 case isl_ast_node_block: { 180 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 181 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 182 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 183 int Type = isl_ast_node_get_type(Node); 184 isl_ast_node_free(Node); 185 if (Type != isl_ast_node_user) { 186 isl_ast_node_list_free(List); 187 isl_ast_node_free(Body); 188 return -1; 189 } 190 } 191 isl_ast_node_list_free(List); 192 break; 193 } 194 default: 195 isl_ast_node_free(Body); 196 return -1; 197 } 198 isl_ast_node_free(Body); 199 200 auto Init = isl_ast_node_for_get_init(For); 201 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 202 return -1; 203 auto Inc = isl_ast_node_for_get_inc(For); 204 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 205 return -1; 206 CmpInst::Predicate Predicate; 207 auto UB = getUpperBound(For, Predicate); 208 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 209 isl_ast_expr_free(UB); 210 return -1; 211 } 212 auto UpVal = isl_ast_expr_get_val(UB); 213 isl_ast_expr_free(UB); 214 int NumberIterations = isl_val_get_num_si(UpVal); 215 isl_val_free(UpVal); 216 if (NumberIterations < 0) 217 return -1; 218 if (Predicate == CmpInst::ICMP_SLT) 219 return NumberIterations; 220 else 221 return NumberIterations + 1; 222 } 223 224 /// Extract the values and SCEVs needed to generate code for a block. 225 static int findReferencesInBlock(struct SubtreeReferences &References, 226 const ScopStmt *Stmt, BasicBlock *BB) { 227 for (Instruction &Inst : *BB) { 228 // Include invariant loads 229 if (isa<LoadInst>(Inst)) 230 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 231 References.Values.insert(InvariantLoad); 232 233 for (Value *SrcVal : Inst.operands()) { 234 auto *Scope = References.LI.getLoopFor(BB); 235 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 236 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 237 continue; 238 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 239 References.Values.insert(NewVal); 240 } 241 } 242 return 0; 243 } 244 245 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 246 bool CreateScalarRefs) { 247 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 248 249 if (Stmt->isBlockStmt()) 250 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 251 else { 252 assert(Stmt->isRegionStmt() && 253 "Stmt was neither block nor region statement"); 254 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 255 findReferencesInBlock(References, Stmt, BB); 256 } 257 258 for (auto &Access : *Stmt) { 259 if (References.ParamSpace) { 260 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 261 (*References.ParamSpace) = 262 References.ParamSpace->align_params(ParamSpace); 263 } 264 265 if (Access->isLatestArrayKind()) { 266 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 267 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 268 if (Stmt->getParent()->contains(OpInst)) 269 continue; 270 271 References.Values.insert(BasePtr); 272 continue; 273 } 274 275 if (CreateScalarRefs) 276 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 277 } 278 279 return isl_stat_ok; 280 } 281 282 /// Extract the out-of-scop values and SCEVs referenced from a set describing 283 /// a ScopStmt. 284 /// 285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 286 /// statement and the base pointers of the memory accesses. For scalar 287 /// statements we force the generation of alloca memory locations and list 288 /// these locations in the set of out-of-scop values as well. 289 /// 290 /// @param Set A set which references the ScopStmt we are interested in. 291 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 292 /// structure. 293 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 294 void *UserPtr) { 295 isl_id *Id = isl_set_get_tuple_id(Set); 296 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 297 isl_id_free(Id); 298 isl_set_free(Set); 299 return addReferencesFromStmt(Stmt, UserPtr); 300 } 301 302 /// Extract the out-of-scop values and SCEVs referenced from a union set 303 /// referencing multiple ScopStmts. 304 /// 305 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 306 /// statement and the base pointers of the memory accesses. For scalar 307 /// statements we force the generation of alloca memory locations and list 308 /// these locations in the set of out-of-scop values as well. 309 /// 310 /// @param USet A union set referencing the ScopStmts we are interested 311 /// in. 312 /// @param References The SubtreeReferences data structure through which 313 /// results are returned and further information is 314 /// provided. 315 static void 316 addReferencesFromStmtUnionSet(isl_union_set *USet, 317 struct SubtreeReferences &References) { 318 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 319 isl_union_set_free(USet); 320 } 321 322 __isl_give isl_union_map * 323 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 324 return IslAstInfo::getSchedule(For); 325 } 326 327 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 328 SetVector<Value *> &Values, 329 SetVector<const Loop *> &Loops) { 330 SetVector<const SCEV *> SCEVs; 331 struct SubtreeReferences References = { 332 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 333 334 for (const auto &I : IDToValue) 335 Values.insert(I.second); 336 337 // NOTE: this is populated in IslNodeBuilder::addParameters 338 for (const auto &I : OutsideLoopIterations) 339 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 340 341 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 342 addReferencesFromStmtUnionSet(Schedule, References); 343 344 for (const SCEV *Expr : SCEVs) { 345 findValues(Expr, SE, Values); 346 findLoops(Expr, Loops); 347 } 348 349 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 350 351 /// Note: Code generation of induction variables of loops outside Scops 352 /// 353 /// Remove loops that contain the scop or that are part of the scop, as they 354 /// are considered local. This leaves only loops that are before the scop, but 355 /// do not contain the scop itself. 356 /// We ignore loops perfectly contained in the Scop because these are already 357 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 358 /// whose induction variables are referred to by the Scop, but the Scop is not 359 /// fully contained in these Loops. Since there can be many of these, 360 /// we choose to codegen these on-demand. 361 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 362 Loops.remove_if([this](const Loop *L) { 363 return S.contains(L) || L->contains(S.getEntry()); 364 }); 365 366 // Contains Values that may need to be replaced with other values 367 // due to replacements from the ValueMap. We should make sure 368 // that we return correctly remapped values. 369 // NOTE: this code path is tested by: 370 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 371 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 372 SetVector<Value *> ReplacedValues; 373 for (Value *V : Values) { 374 ReplacedValues.insert(getLatestValue(V)); 375 } 376 Values = ReplacedValues; 377 } 378 379 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 380 SmallPtrSet<Value *, 5> Inserted; 381 382 for (const auto &I : IDToValue) { 383 IDToValue[I.first] = NewValues[I.second]; 384 Inserted.insert(I.second); 385 } 386 387 for (const auto &I : NewValues) { 388 if (Inserted.count(I.first)) 389 continue; 390 391 ValueMap[I.first] = I.second; 392 } 393 } 394 395 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 396 auto It = ValueMap.find(Original); 397 if (It == ValueMap.end()) 398 return Original; 399 return It->second; 400 } 401 402 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 403 std::vector<Value *> &IVS, 404 __isl_take isl_id *IteratorID, 405 __isl_take isl_union_map *Schedule) { 406 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 407 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 408 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 409 isl_ast_expr_free(StmtExpr); 410 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 411 std::vector<LoopToScevMapT> VLTS(IVS.size()); 412 413 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 414 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 415 isl_map *S = isl_map_from_union_map(Schedule); 416 417 auto *NewAccesses = createNewAccesses(Stmt, User); 418 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 419 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 420 isl_id_to_ast_expr_free(NewAccesses); 421 isl_map_free(S); 422 isl_id_free(Id); 423 isl_ast_node_free(User); 424 } 425 426 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 427 auto *Id = isl_ast_node_mark_get_id(Node); 428 auto Child = isl_ast_node_mark_get_node(Node); 429 isl_ast_node_free(Node); 430 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 431 // it will be optimized away and we should skip it. 432 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 433 isl_ast_node_get_type(Child) == isl_ast_node_for) { 434 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 435 int VectorWidth = getNumberOfIterations(Child); 436 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 437 createForVector(Child, VectorWidth); 438 else 439 createForSequential(Child, true); 440 isl_id_free(Id); 441 return; 442 } 443 if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { 444 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 445 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 446 } 447 create(Child); 448 isl_id_free(Id); 449 } 450 451 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 452 int VectorWidth) { 453 isl_ast_node *Body = isl_ast_node_for_get_body(For); 454 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 455 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 456 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 457 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 458 459 Value *ValueLB = ExprBuilder.create(Init); 460 Value *ValueInc = ExprBuilder.create(Inc); 461 462 Type *MaxType = ExprBuilder.getType(Iterator); 463 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 464 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 465 466 if (MaxType != ValueLB->getType()) 467 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 468 if (MaxType != ValueInc->getType()) 469 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 470 471 std::vector<Value *> IVS(VectorWidth); 472 IVS[0] = ValueLB; 473 474 for (int i = 1; i < VectorWidth; i++) 475 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 476 477 isl_union_map *Schedule = getScheduleForAstNode(For); 478 assert(Schedule && "For statement annotation does not contain its schedule"); 479 480 IDToValue[IteratorID] = ValueLB; 481 482 switch (isl_ast_node_get_type(Body)) { 483 case isl_ast_node_user: 484 createUserVector(Body, IVS, isl_id_copy(IteratorID), 485 isl_union_map_copy(Schedule)); 486 break; 487 case isl_ast_node_block: { 488 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 489 490 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 491 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 492 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 493 494 isl_ast_node_free(Body); 495 isl_ast_node_list_free(List); 496 break; 497 } 498 default: 499 isl_ast_node_dump(Body); 500 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 501 } 502 503 IDToValue.erase(IDToValue.find(IteratorID)); 504 isl_id_free(IteratorID); 505 isl_union_map_free(Schedule); 506 507 isl_ast_node_free(For); 508 isl_ast_expr_free(Iterator); 509 510 VectorLoops++; 511 } 512 513 /// Restore the initial ordering of dimensions of the band node 514 /// 515 /// In case the band node represents all the dimensions of the iteration 516 /// domain, recreate the band node to restore the initial ordering of the 517 /// dimensions. 518 /// 519 /// @param Node The band node to be modified. 520 /// @return The modified schedule node. 521 static bool IsLoopVectorizerDisabled(isl::ast_node Node) { 522 assert(isl_ast_node_get_type(Node.keep()) == isl_ast_node_for); 523 auto Body = Node.for_get_body(); 524 if (isl_ast_node_get_type(Body.keep()) != isl_ast_node_mark) 525 return false; 526 auto Id = Body.mark_get_id(); 527 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 528 return true; 529 return false; 530 } 531 532 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 533 bool MarkParallel) { 534 isl_ast_node *Body; 535 isl_ast_expr *Init, *Inc, *Iterator, *UB; 536 isl_id *IteratorID; 537 Value *ValueLB, *ValueUB, *ValueInc; 538 Type *MaxType; 539 BasicBlock *ExitBlock; 540 Value *IV; 541 CmpInst::Predicate Predicate; 542 543 bool LoopVectorizerDisabled = 544 IsLoopVectorizerDisabled(isl::manage(isl_ast_node_copy(For))); 545 546 Body = isl_ast_node_for_get_body(For); 547 548 // isl_ast_node_for_is_degenerate(For) 549 // 550 // TODO: For degenerated loops we could generate a plain assignment. 551 // However, for now we just reuse the logic for normal loops, which will 552 // create a loop with a single iteration. 553 554 Init = isl_ast_node_for_get_init(For); 555 Inc = isl_ast_node_for_get_inc(For); 556 Iterator = isl_ast_node_for_get_iterator(For); 557 IteratorID = isl_ast_expr_get_id(Iterator); 558 UB = getUpperBound(For, Predicate); 559 560 ValueLB = ExprBuilder.create(Init); 561 ValueUB = ExprBuilder.create(UB); 562 ValueInc = ExprBuilder.create(Inc); 563 564 MaxType = ExprBuilder.getType(Iterator); 565 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 566 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 567 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 568 569 if (MaxType != ValueLB->getType()) 570 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 571 if (MaxType != ValueUB->getType()) 572 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 573 if (MaxType != ValueInc->getType()) 574 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 575 576 // If we can show that LB <Predicate> UB holds at least once, we can 577 // omit the GuardBB in front of the loop. 578 bool UseGuardBB = 579 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 580 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 581 Predicate, &Annotator, MarkParallel, UseGuardBB, 582 LoopVectorizerDisabled); 583 IDToValue[IteratorID] = IV; 584 585 create(Body); 586 587 Annotator.popLoop(MarkParallel); 588 589 IDToValue.erase(IDToValue.find(IteratorID)); 590 591 Builder.SetInsertPoint(&ExitBlock->front()); 592 593 isl_ast_node_free(For); 594 isl_ast_expr_free(Iterator); 595 isl_id_free(IteratorID); 596 597 SequentialLoops++; 598 } 599 600 /// Remove the BBs contained in a (sub)function from the dominator tree. 601 /// 602 /// This function removes the basic blocks that are part of a subfunction from 603 /// the dominator tree. Specifically, when generating code it may happen that at 604 /// some point the code generation continues in a new sub-function (e.g., when 605 /// generating OpenMP code). The basic blocks that are created in this 606 /// sub-function are then still part of the dominator tree of the original 607 /// function, such that the dominator tree reaches over function boundaries. 608 /// This is not only incorrect, but also causes crashes. This function now 609 /// removes from the dominator tree all basic blocks that are dominated (and 610 /// consequently reachable) from the entry block of this (sub)function. 611 /// 612 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 613 /// the function/region it runs on. Hence, the pure need for this function shows 614 /// that we do not comply to this rule. At the moment, this does not cause any 615 /// issues, but we should be aware that such issues may appear. Unfortunately 616 /// the current LLVM pass infrastructure does not allow to make Polly a module 617 /// or call-graph pass to solve this issue, as such a pass would not have access 618 /// to the per-function analyses passes needed by Polly. A future pass manager 619 /// infrastructure is supposed to enable such kind of access possibly allowing 620 /// us to create a cleaner solution here. 621 /// 622 /// FIXME: Instead of adding the dominance information and then dropping it 623 /// later on, we should try to just not add it in the first place. This requires 624 /// some careful testing to make sure this does not break in interaction with 625 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 626 /// which may try to update it. 627 /// 628 /// @param F The function which contains the BBs to removed. 629 /// @param DT The dominator tree from which to remove the BBs. 630 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 631 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 632 std::vector<BasicBlock *> Nodes; 633 634 // We can only remove an element from the dominator tree, if all its children 635 // have been removed. To ensure this we obtain the list of nodes to remove 636 // using a post-order tree traversal. 637 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 638 Nodes.push_back(I->getBlock()); 639 640 for (BasicBlock *BB : Nodes) 641 DT.eraseNode(BB); 642 } 643 644 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 645 isl_ast_node *Body; 646 isl_ast_expr *Init, *Inc, *Iterator, *UB; 647 isl_id *IteratorID; 648 Value *ValueLB, *ValueUB, *ValueInc; 649 Type *MaxType; 650 Value *IV; 651 CmpInst::Predicate Predicate; 652 653 // The preamble of parallel code interacts different than normal code with 654 // e.g., scalar initialization. Therefore, we ensure the parallel code is 655 // separated from the last basic block. 656 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 657 &*Builder.GetInsertPoint(), &DT, &LI); 658 ParBB->setName("polly.parallel.for"); 659 Builder.SetInsertPoint(&ParBB->front()); 660 661 Body = isl_ast_node_for_get_body(For); 662 Init = isl_ast_node_for_get_init(For); 663 Inc = isl_ast_node_for_get_inc(For); 664 Iterator = isl_ast_node_for_get_iterator(For); 665 IteratorID = isl_ast_expr_get_id(Iterator); 666 UB = getUpperBound(For, Predicate); 667 668 ValueLB = ExprBuilder.create(Init); 669 ValueUB = ExprBuilder.create(UB); 670 ValueInc = ExprBuilder.create(Inc); 671 672 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 673 // expression, we need to adjust the loop bound by one. 674 if (Predicate == CmpInst::ICMP_SLT) 675 ValueUB = Builder.CreateAdd( 676 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 677 678 MaxType = ExprBuilder.getType(Iterator); 679 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 680 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 681 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 682 683 if (MaxType != ValueLB->getType()) 684 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 685 if (MaxType != ValueUB->getType()) 686 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 687 if (MaxType != ValueInc->getType()) 688 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 689 690 BasicBlock::iterator LoopBody; 691 692 SetVector<Value *> SubtreeValues; 693 SetVector<const Loop *> Loops; 694 695 getReferencesInSubtree(For, SubtreeValues, Loops); 696 697 // Create for all loops we depend on values that contain the current loop 698 // iteration. These values are necessary to generate code for SCEVs that 699 // depend on such loops. As a result we need to pass them to the subfunction. 700 // See [Code generation of induction variables of loops outside Scops] 701 for (const Loop *L : Loops) { 702 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 703 SubtreeValues.insert(LoopInductionVar); 704 } 705 706 ValueMapT NewValues; 707 ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL); 708 709 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 710 SubtreeValues, NewValues, &LoopBody); 711 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 712 Builder.SetInsertPoint(&*LoopBody); 713 714 // Remember the parallel subfunction 715 ParallelSubfunctions.push_back(LoopBody->getFunction()); 716 717 // Save the current values. 718 auto ValueMapCopy = ValueMap; 719 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 720 721 updateValues(NewValues); 722 IDToValue[IteratorID] = IV; 723 724 ValueMapT NewValuesReverse; 725 726 for (auto P : NewValues) 727 NewValuesReverse[P.second] = P.first; 728 729 Annotator.addAlternativeAliasBases(NewValuesReverse); 730 731 create(Body); 732 733 Annotator.resetAlternativeAliasBases(); 734 // Restore the original values. 735 ValueMap = ValueMapCopy; 736 IDToValue = IDToValueCopy; 737 738 Builder.SetInsertPoint(&*AfterLoop); 739 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 740 741 for (const Loop *L : Loops) 742 OutsideLoopIterations.erase(L); 743 744 isl_ast_node_free(For); 745 isl_ast_expr_free(Iterator); 746 isl_id_free(IteratorID); 747 748 ParallelLoops++; 749 } 750 751 /// Return whether any of @p Node's statements contain partial accesses. 752 /// 753 /// Partial accesses are not supported by Polly's vector code generator. 754 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 755 return isl_ast_node_foreach_descendant_top_down( 756 Node, 757 [](isl_ast_node *Node, void *User) -> isl_bool { 758 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 759 return isl_bool_true; 760 761 isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node)); 762 isl::ast_expr StmtExpr = 763 give(isl_ast_expr_get_op_arg(Expr.keep(), 0)); 764 isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep())); 765 766 ScopStmt *Stmt = 767 static_cast<ScopStmt *>(isl_id_get_user(Id.keep())); 768 isl::set StmtDom = Stmt->getDomain(); 769 for (auto *MA : *Stmt) { 770 if (MA->isLatestPartialAccess()) 771 return isl_bool_error; 772 } 773 return isl_bool_true; 774 }, 775 nullptr) == isl_stat_error; 776 } 777 778 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 779 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 780 781 if (Vector && IslAstInfo::isInnermostParallel(For) && 782 !IslAstInfo::isReductionParallel(For)) { 783 int VectorWidth = getNumberOfIterations(For); 784 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 785 createForVector(For, VectorWidth); 786 return; 787 } 788 } 789 790 if (IslAstInfo::isExecutedInParallel(For)) { 791 createForParallel(For); 792 return; 793 } 794 bool Parallel = 795 (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For)); 796 createForSequential(For, Parallel); 797 } 798 799 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 800 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 801 802 Function *F = Builder.GetInsertBlock()->getParent(); 803 LLVMContext &Context = F->getContext(); 804 805 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 806 &*Builder.GetInsertPoint(), &DT, &LI); 807 CondBB->setName("polly.cond"); 808 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 809 MergeBB->setName("polly.merge"); 810 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 811 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 812 813 DT.addNewBlock(ThenBB, CondBB); 814 DT.addNewBlock(ElseBB, CondBB); 815 DT.changeImmediateDominator(MergeBB, CondBB); 816 817 Loop *L = LI.getLoopFor(CondBB); 818 if (L) { 819 L->addBasicBlockToLoop(ThenBB, LI); 820 L->addBasicBlockToLoop(ElseBB, LI); 821 } 822 823 CondBB->getTerminator()->eraseFromParent(); 824 825 Builder.SetInsertPoint(CondBB); 826 Value *Predicate = ExprBuilder.create(Cond); 827 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 828 Builder.SetInsertPoint(ThenBB); 829 Builder.CreateBr(MergeBB); 830 Builder.SetInsertPoint(ElseBB); 831 Builder.CreateBr(MergeBB); 832 Builder.SetInsertPoint(&ThenBB->front()); 833 834 create(isl_ast_node_if_get_then(If)); 835 836 Builder.SetInsertPoint(&ElseBB->front()); 837 838 if (isl_ast_node_if_has_else(If)) 839 create(isl_ast_node_if_get_else(If)); 840 841 Builder.SetInsertPoint(&MergeBB->front()); 842 843 isl_ast_node_free(If); 844 845 IfConditions++; 846 } 847 848 __isl_give isl_id_to_ast_expr * 849 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 850 __isl_keep isl_ast_node *Node) { 851 isl_id_to_ast_expr *NewAccesses = 852 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0); 853 854 auto *Build = IslAstInfo::getBuild(Node); 855 assert(Build && "Could not obtain isl_ast_build from user node"); 856 Stmt->setAstBuild(isl::manage(isl_ast_build_copy(Build))); 857 858 for (auto *MA : *Stmt) { 859 if (!MA->hasNewAccessRelation()) { 860 if (PollyGenerateExpressions) { 861 if (!MA->isAffine()) 862 continue; 863 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 864 continue; 865 866 auto *BasePtr = 867 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 868 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 869 continue; 870 } else { 871 continue; 872 } 873 } 874 assert(MA->isAffine() && 875 "Only affine memory accesses can be code generated"); 876 877 auto Schedule = isl_ast_build_get_schedule(Build); 878 879 #ifndef NDEBUG 880 if (MA->isRead()) { 881 auto Dom = Stmt->getDomain().release(); 882 auto SchedDom = isl_set_from_union_set( 883 isl_union_map_domain(isl_union_map_copy(Schedule))); 884 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 885 Dom = isl_set_intersect_params(Dom, 886 Stmt->getParent()->getContext().release()); 887 SchedDom = isl_set_intersect_params( 888 SchedDom, Stmt->getParent()->getContext().release()); 889 assert(isl_set_is_subset(SchedDom, AccDom) && 890 "Access relation not defined on full schedule domain"); 891 assert(isl_set_is_subset(Dom, AccDom) && 892 "Access relation not defined on full domain"); 893 isl_set_free(AccDom); 894 isl_set_free(SchedDom); 895 isl_set_free(Dom); 896 } 897 #endif 898 899 auto PWAccRel = 900 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 901 902 // isl cannot generate an index expression for access-nothing accesses. 903 isl::set AccDomain = 904 give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 905 isl::set Context = S.getContext(); 906 AccDomain = AccDomain.intersect_params(Context); 907 if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) { 908 isl_pw_multi_aff_free(PWAccRel); 909 continue; 910 } 911 912 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 913 NewAccesses = 914 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 915 } 916 917 return NewAccesses; 918 } 919 920 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 921 ScopStmt *Stmt, LoopToScevMapT <S) { 922 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 923 "Expression of type 'op' expected"); 924 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 925 "Operation of type 'call' expected"); 926 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 927 isl_ast_expr *SubExpr; 928 Value *V; 929 930 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 931 V = ExprBuilder.create(SubExpr); 932 ScalarEvolution *SE = Stmt->getParent()->getSE(); 933 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 934 } 935 936 isl_ast_expr_free(Expr); 937 } 938 939 void IslNodeBuilder::createSubstitutionsVector( 940 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 941 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 942 __isl_take isl_id *IteratorID) { 943 int i = 0; 944 945 Value *OldValue = IDToValue[IteratorID]; 946 for (Value *IV : IVS) { 947 IDToValue[IteratorID] = IV; 948 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 949 i++; 950 } 951 952 IDToValue[IteratorID] = OldValue; 953 isl_id_free(IteratorID); 954 isl_ast_expr_free(Expr); 955 } 956 957 void IslNodeBuilder::generateCopyStmt( 958 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 959 assert(Stmt->size() == 2); 960 auto ReadAccess = Stmt->begin(); 961 auto WriteAccess = ReadAccess++; 962 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 963 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 964 "Accesses use the same data type"); 965 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 966 auto *AccessExpr = 967 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 968 auto *LoadValue = ExprBuilder.create(AccessExpr); 969 AccessExpr = 970 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 971 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 972 Builder.CreateStore(LoadValue, StoreAddr); 973 } 974 975 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 976 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 977 "trying to materialize loop induction variable twice"); 978 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 979 SE.getUnknown(Builder.getInt64(1)), L, 980 SCEV::FlagAnyWrap); 981 Value *V = generateSCEV(OuterLIV); 982 OutsideLoopIterations[L] = SE.getUnknown(V); 983 return V; 984 } 985 986 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 987 LoopToScevMapT LTS; 988 isl_id *Id; 989 ScopStmt *Stmt; 990 991 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 992 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 993 Id = isl_ast_expr_get_id(StmtExpr); 994 isl_ast_expr_free(StmtExpr); 995 996 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 997 998 Stmt = (ScopStmt *)isl_id_get_user(Id); 999 auto *NewAccesses = createNewAccesses(Stmt, User); 1000 if (Stmt->isCopyStmt()) { 1001 generateCopyStmt(Stmt, NewAccesses); 1002 isl_ast_expr_free(Expr); 1003 } else { 1004 createSubstitutions(Expr, Stmt, LTS); 1005 1006 if (Stmt->isBlockStmt()) 1007 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 1008 else 1009 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 1010 } 1011 1012 isl_id_to_ast_expr_free(NewAccesses); 1013 isl_ast_node_free(User); 1014 isl_id_free(Id); 1015 } 1016 1017 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1018 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1019 1020 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1021 create(isl_ast_node_list_get_ast_node(List, i)); 1022 1023 isl_ast_node_free(Block); 1024 isl_ast_node_list_free(List); 1025 } 1026 1027 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1028 switch (isl_ast_node_get_type(Node)) { 1029 case isl_ast_node_error: 1030 llvm_unreachable("code generation error"); 1031 case isl_ast_node_mark: 1032 createMark(Node); 1033 return; 1034 case isl_ast_node_for: 1035 createFor(Node); 1036 return; 1037 case isl_ast_node_if: 1038 createIf(Node); 1039 return; 1040 case isl_ast_node_user: 1041 createUser(Node); 1042 return; 1043 case isl_ast_node_block: 1044 createBlock(Node); 1045 return; 1046 } 1047 1048 llvm_unreachable("Unknown isl_ast_node type"); 1049 } 1050 1051 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1052 // If the Id is already mapped, skip it. 1053 if (!IDToValue.count(Id)) { 1054 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1055 Value *V = nullptr; 1056 1057 // Parameters could refer to invariant loads that need to be 1058 // preloaded before we can generate code for the parameter. Thus, 1059 // check if any value referred to in ParamSCEV is an invariant load 1060 // and if so make sure its equivalence class is preloaded. 1061 SetVector<Value *> Values; 1062 findValues(ParamSCEV, SE, Values); 1063 for (auto *Val : Values) { 1064 // Check if the value is an instruction in a dead block within the SCoP 1065 // and if so do not code generate it. 1066 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1067 if (S.contains(Inst)) { 1068 bool IsDead = true; 1069 1070 // Check for "undef" loads first, then if there is a statement for 1071 // the parent of Inst and lastly if the parent of Inst has an empty 1072 // domain. In the first and last case the instruction is dead but if 1073 // there is a statement or the domain is not empty Inst is not dead. 1074 auto MemInst = MemAccInst::dyn_cast(Inst); 1075 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1076 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1077 SE.getPointerBase(SE.getSCEV(Address))) { 1078 } else if (S.getStmtFor(Inst)) { 1079 IsDead = false; 1080 } else { 1081 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1082 IsDead = isl_set_is_empty(Domain); 1083 isl_set_free(Domain); 1084 } 1085 1086 if (IsDead) { 1087 V = UndefValue::get(ParamSCEV->getType()); 1088 break; 1089 } 1090 } 1091 } 1092 1093 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1094 // Check if this invariant access class is empty, hence if we never 1095 // actually added a loads instruction to it. In that case it has no 1096 // (meaningful) users and we should not try to code generate it. 1097 if (IAClass->InvariantAccesses.empty()) 1098 V = UndefValue::get(ParamSCEV->getType()); 1099 1100 if (!preloadInvariantEquivClass(*IAClass)) { 1101 isl_id_free(Id); 1102 return false; 1103 } 1104 } 1105 } 1106 1107 V = V ? V : generateSCEV(ParamSCEV); 1108 IDToValue[Id] = V; 1109 } 1110 1111 isl_id_free(Id); 1112 return true; 1113 } 1114 1115 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1116 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1117 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1118 continue; 1119 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1120 if (!materializeValue(Id)) 1121 return false; 1122 } 1123 return true; 1124 } 1125 1126 bool IslNodeBuilder::materializeParameters() { 1127 for (const SCEV *Param : S.parameters()) { 1128 isl_id *Id = S.getIdForParam(Param).release(); 1129 if (!materializeValue(Id)) 1130 return false; 1131 } 1132 return true; 1133 } 1134 1135 /// Generate the computation of the size of the outermost dimension from the 1136 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1137 /// contains the size of the array. 1138 /// 1139 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1140 /// %desc.dimensionty = type { i64, i64, i64 } 1141 /// @g_arr = global %arrty zeroinitializer, align 32 1142 /// ... 1143 /// %0 = load i64, i64* getelementptr inbounds 1144 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1145 /// %1 = load i64, i64* getelementptr inbounds 1146 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1147 /// %2 = sub nsw i64 %0, %1 1148 /// %size = add nsw i64 %2, 1 1149 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1150 PollyIRBuilder &Builder, 1151 std::string ArrayName) { 1152 assert(GlobalDescriptor && "invalid global descriptor given"); 1153 1154 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1155 Builder.getInt64(0), Builder.getInt32(2)}; 1156 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1157 ArrayName + "_end_ptr"); 1158 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1159 1160 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1161 Builder.getInt64(0), Builder.getInt32(1)}; 1162 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1163 ArrayName + "_begin_ptr"); 1164 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1165 1166 Value *size = 1167 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1168 Type *endType = dyn_cast<IntegerType>(end->getType()); 1169 assert(endType && "expected type of end to be integral"); 1170 1171 size = Builder.CreateNSWAdd(end, 1172 ConstantInt::get(endType, 1, /* signed = */ true), 1173 ArrayName + "_size"); 1174 1175 return size; 1176 } 1177 1178 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1179 for (ScopArrayInfo *Array : S.arrays()) { 1180 if (Array->getNumberOfDimensions() == 0) 1181 continue; 1182 1183 Value *FAD = Array->getFortranArrayDescriptor(); 1184 if (!FAD) 1185 continue; 1186 1187 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1188 assert(ParametricPwAff && "parametric pw_aff corresponding " 1189 "to outermost dimension does not " 1190 "exist"); 1191 1192 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1193 isl_pw_aff_free(ParametricPwAff); 1194 1195 assert(Id && "pw_aff is not parametric"); 1196 1197 if (IDToValue.count(Id)) { 1198 isl_id_free(Id); 1199 continue; 1200 } 1201 1202 Value *FinalValue = 1203 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1204 assert(FinalValue && "unable to build Fortran array " 1205 "descriptor load of outermost dimension"); 1206 IDToValue[Id] = FinalValue; 1207 isl_id_free(Id); 1208 } 1209 return true; 1210 } 1211 1212 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1213 isl_ast_build *Build, 1214 Instruction *AccInst) { 1215 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1216 isl_ast_expr *Access = 1217 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1218 auto *Address = isl_ast_expr_address_of(Access); 1219 auto *AddressValue = ExprBuilder.create(Address); 1220 Value *PreloadVal; 1221 1222 // Correct the type as the SAI might have a different type than the user 1223 // expects, especially if the base pointer is a struct. 1224 Type *Ty = AccInst->getType(); 1225 1226 auto *Ptr = AddressValue; 1227 auto Name = Ptr->getName(); 1228 auto AS = Ptr->getType()->getPointerAddressSpace(); 1229 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1230 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1231 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1232 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1233 1234 // TODO: This is only a hot fix for SCoP sequences that use the same load 1235 // instruction contained and hoisted by one of the SCoPs. 1236 if (SE.isSCEVable(Ty)) 1237 SE.forgetValue(AccInst); 1238 1239 return PreloadVal; 1240 } 1241 1242 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1243 isl_set *Domain) { 1244 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1245 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1246 1247 if (!materializeParameters(AccessRange)) { 1248 isl_set_free(AccessRange); 1249 isl_set_free(Domain); 1250 return nullptr; 1251 } 1252 1253 auto *Build = 1254 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1255 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1256 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1257 isl_set_free(Universe); 1258 1259 Instruction *AccInst = MA.getAccessInstruction(); 1260 Type *AccInstTy = AccInst->getType(); 1261 1262 Value *PreloadVal = nullptr; 1263 if (AlwaysExecuted) { 1264 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1265 isl_ast_build_free(Build); 1266 isl_set_free(Domain); 1267 return PreloadVal; 1268 } 1269 1270 if (!materializeParameters(Domain)) { 1271 isl_ast_build_free(Build); 1272 isl_set_free(AccessRange); 1273 isl_set_free(Domain); 1274 return nullptr; 1275 } 1276 1277 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1278 Domain = nullptr; 1279 1280 ExprBuilder.setTrackOverflow(true); 1281 Value *Cond = ExprBuilder.create(DomainCond); 1282 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1283 "polly.preload.cond.overflown"); 1284 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1285 ExprBuilder.setTrackOverflow(false); 1286 1287 if (!Cond->getType()->isIntegerTy(1)) 1288 Cond = Builder.CreateIsNotNull(Cond); 1289 1290 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1291 &*Builder.GetInsertPoint(), &DT, &LI); 1292 CondBB->setName("polly.preload.cond"); 1293 1294 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1295 MergeBB->setName("polly.preload.merge"); 1296 1297 Function *F = Builder.GetInsertBlock()->getParent(); 1298 LLVMContext &Context = F->getContext(); 1299 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1300 1301 DT.addNewBlock(ExecBB, CondBB); 1302 if (Loop *L = LI.getLoopFor(CondBB)) 1303 L->addBasicBlockToLoop(ExecBB, LI); 1304 1305 auto *CondBBTerminator = CondBB->getTerminator(); 1306 Builder.SetInsertPoint(CondBBTerminator); 1307 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1308 CondBBTerminator->eraseFromParent(); 1309 1310 Builder.SetInsertPoint(ExecBB); 1311 Builder.CreateBr(MergeBB); 1312 1313 Builder.SetInsertPoint(ExecBB->getTerminator()); 1314 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1315 Builder.SetInsertPoint(MergeBB->getTerminator()); 1316 auto *MergePHI = Builder.CreatePHI( 1317 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1318 PreloadVal = MergePHI; 1319 1320 if (!PreAccInst) { 1321 PreloadVal = nullptr; 1322 PreAccInst = UndefValue::get(AccInstTy); 1323 } 1324 1325 MergePHI->addIncoming(PreAccInst, ExecBB); 1326 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1327 1328 isl_ast_build_free(Build); 1329 return PreloadVal; 1330 } 1331 1332 bool IslNodeBuilder::preloadInvariantEquivClass( 1333 InvariantEquivClassTy &IAClass) { 1334 // For an equivalence class of invariant loads we pre-load the representing 1335 // element with the unified execution context. However, we have to map all 1336 // elements of the class to the one preloaded load as they are referenced 1337 // during the code generation and therefor need to be mapped. 1338 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1339 if (MAs.empty()) 1340 return true; 1341 1342 MemoryAccess *MA = MAs.front(); 1343 assert(MA->isArrayKind() && MA->isRead()); 1344 1345 // If the access function was already mapped, the preload of this equivalence 1346 // class was triggered earlier already and doesn't need to be done again. 1347 if (ValueMap.count(MA->getAccessInstruction())) 1348 return true; 1349 1350 // Check for recursion which can be caused by additional constraints, e.g., 1351 // non-finite loop constraints. In such a case we have to bail out and insert 1352 // a "false" runtime check that will cause the original code to be executed. 1353 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1354 if (!PreloadedPtrs.insert(PtrId).second) 1355 return false; 1356 1357 // The execution context of the IAClass. 1358 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1359 1360 // If the base pointer of this class is dependent on another one we have to 1361 // make sure it was preloaded already. 1362 auto *SAI = MA->getScopArrayInfo(); 1363 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1364 if (!preloadInvariantEquivClass(*BaseIAClass)) 1365 return false; 1366 1367 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1368 // we need to refine the ExecutionCtx. 1369 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1370 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1371 } 1372 1373 // If the size of a dimension is dependent on another class, make sure it is 1374 // preloaded. 1375 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1376 const SCEV *Dim = SAI->getDimensionSize(i); 1377 SetVector<Value *> Values; 1378 findValues(Dim, SE, Values); 1379 for (auto *Val : Values) { 1380 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1381 if (!preloadInvariantEquivClass(*BaseIAClass)) 1382 return false; 1383 1384 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1385 // and we need to refine the ExecutionCtx. 1386 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1387 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1388 } 1389 } 1390 } 1391 1392 Instruction *AccInst = MA->getAccessInstruction(); 1393 Type *AccInstTy = AccInst->getType(); 1394 1395 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1396 if (!PreloadVal) 1397 return false; 1398 1399 for (const MemoryAccess *MA : MAs) { 1400 Instruction *MAAccInst = MA->getAccessInstruction(); 1401 assert(PreloadVal->getType() == MAAccInst->getType()); 1402 ValueMap[MAAccInst] = PreloadVal; 1403 } 1404 1405 if (SE.isSCEVable(AccInstTy)) { 1406 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1407 if (ParamId) 1408 IDToValue[ParamId] = PreloadVal; 1409 isl_id_free(ParamId); 1410 } 1411 1412 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1413 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1414 AccInst->getName() + ".preload.s2a"); 1415 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1416 Builder.CreateStore(PreloadVal, Alloca); 1417 ValueMapT PreloadedPointer; 1418 PreloadedPointer[PreloadVal] = AccInst; 1419 Annotator.addAlternativeAliasBases(PreloadedPointer); 1420 1421 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1422 Value *BasePtr = DerivedSAI->getBasePtr(); 1423 1424 for (const MemoryAccess *MA : MAs) { 1425 // As the derived SAI information is quite coarse, any load from the 1426 // current SAI could be the base pointer of the derived SAI, however we 1427 // should only change the base pointer of the derived SAI if we actually 1428 // preloaded it. 1429 if (BasePtr == MA->getOriginalBaseAddr()) { 1430 assert(BasePtr->getType() == PreloadVal->getType()); 1431 DerivedSAI->setBasePtr(PreloadVal); 1432 } 1433 1434 // For scalar derived SAIs we remap the alloca used for the derived value. 1435 if (BasePtr == MA->getAccessInstruction()) 1436 ScalarMap[DerivedSAI] = Alloca; 1437 } 1438 } 1439 1440 for (const MemoryAccess *MA : MAs) { 1441 Instruction *MAAccInst = MA->getAccessInstruction(); 1442 // Use the escape system to get the correct value to users outside the SCoP. 1443 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1444 for (auto *U : MAAccInst->users()) 1445 if (Instruction *UI = dyn_cast<Instruction>(U)) 1446 if (!S.contains(UI)) 1447 EscapeUsers.push_back(UI); 1448 1449 if (EscapeUsers.empty()) 1450 continue; 1451 1452 EscapeMap[MA->getAccessInstruction()] = 1453 std::make_pair(Alloca, std::move(EscapeUsers)); 1454 } 1455 1456 return true; 1457 } 1458 1459 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1460 for (auto &SAI : S.arrays()) { 1461 if (SAI->getBasePtr()) 1462 continue; 1463 1464 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1465 "The size of the outermost dimension is used to declare newly " 1466 "created arrays that require memory allocation."); 1467 1468 Type *NewArrayType = nullptr; 1469 1470 // Get the size of the array = size(dim_1)*...*size(dim_n) 1471 uint64_t ArraySizeInt = 1; 1472 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1473 auto *DimSize = SAI->getDimensionSize(i); 1474 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1475 ->getAPInt() 1476 .getLimitedValue(); 1477 1478 if (!NewArrayType) 1479 NewArrayType = SAI->getElementType(); 1480 1481 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1482 ArraySizeInt *= UnsignedDimSize; 1483 } 1484 1485 if (SAI->isOnHeap()) { 1486 LLVMContext &Ctx = NewArrayType->getContext(); 1487 1488 // Get the IntPtrTy from the Datalayout 1489 auto IntPtrTy = DL.getIntPtrType(Ctx); 1490 1491 // Get the size of the element type in bits 1492 unsigned Size = SAI->getElemSizeInBytes(); 1493 1494 // Insert the malloc call at polly.start 1495 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1496 auto *CreatedArray = CallInst::CreateMalloc( 1497 &*InstIt, IntPtrTy, SAI->getElementType(), 1498 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1499 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1500 SAI->getName()); 1501 1502 SAI->setBasePtr(CreatedArray); 1503 1504 // Insert the free call at polly.exiting 1505 CallInst::CreateFree(CreatedArray, 1506 std::get<1>(StartExitBlocks)->getTerminator()); 1507 } else { 1508 auto InstIt = Builder.GetInsertBlock() 1509 ->getParent() 1510 ->getEntryBlock() 1511 .getTerminator(); 1512 1513 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1514 SAI->getName(), &*InstIt); 1515 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1516 SAI->setBasePtr(CreatedArray); 1517 } 1518 } 1519 } 1520 1521 bool IslNodeBuilder::preloadInvariantLoads() { 1522 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1523 if (InvariantEquivClasses.empty()) 1524 return true; 1525 1526 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1527 &*Builder.GetInsertPoint(), &DT, &LI); 1528 PreLoadBB->setName("polly.preload.begin"); 1529 Builder.SetInsertPoint(&PreLoadBB->front()); 1530 1531 for (auto &IAClass : InvariantEquivClasses) 1532 if (!preloadInvariantEquivClass(IAClass)) 1533 return false; 1534 1535 return true; 1536 } 1537 1538 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1539 // Materialize values for the parameters of the SCoP. 1540 materializeParameters(); 1541 1542 // materialize the outermost dimension parameters for a Fortran array. 1543 // NOTE: materializeParameters() does not work since it looks through 1544 // the SCEVs. We don't have a corresponding SCEV for the array size 1545 // parameter 1546 materializeFortranArrayOutermostDimension(); 1547 1548 // Generate values for the current loop iteration for all surrounding loops. 1549 // 1550 // We may also reference loops outside of the scop which do not contain the 1551 // scop itself, but as the number of such scops may be arbitrarily large we do 1552 // not generate code for them here, but only at the point of code generation 1553 // where these values are needed. 1554 Loop *L = LI.getLoopFor(S.getEntry()); 1555 1556 while (L != nullptr && S.contains(L)) 1557 L = L->getParentLoop(); 1558 1559 while (L != nullptr) { 1560 materializeNonScopLoopInductionVariable(L); 1561 L = L->getParentLoop(); 1562 } 1563 1564 isl_set_free(Context); 1565 } 1566 1567 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1568 /// We pass the insert location of our Builder, as Polly ensures during IR 1569 /// generation that there is always a valid CFG into which instructions are 1570 /// inserted. As a result, the insertpoint is known to be always followed by a 1571 /// terminator instruction. This means the insert point may be specified by a 1572 /// terminator instruction, but it can never point to an ->end() iterator 1573 /// which does not have a corresponding instruction. Hence, dereferencing 1574 /// the insertpoint to obtain an instruction is known to be save. 1575 /// 1576 /// We also do not need to update the Builder here, as new instructions are 1577 /// always inserted _before_ the given InsertLocation. As a result, the 1578 /// insert location remains valid. 1579 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1580 "Insert location points after last valid instruction"); 1581 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1582 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1583 InsertLocation, &ValueMap, 1584 StartBlock->getSinglePredecessor()); 1585 } 1586 1587 /// The AST expression we generate to perform the run-time check assumes 1588 /// computations on integer types of infinite size. As we only use 64-bit 1589 /// arithmetic we check for overflows, in case of which we set the result 1590 /// of this run-time check to false to be conservatively correct, 1591 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1592 auto ExprBuilder = getExprBuilder(); 1593 1594 // In case the AST expression has integers larger than 64 bit, bail out. The 1595 // resulting LLVM-IR will contain operations on types that use more than 64 1596 // bits. These are -- in case wrapping intrinsics are used -- translated to 1597 // runtime library calls that are not available on all systems (e.g., Android) 1598 // and consequently will result in linker errors. 1599 if (ExprBuilder.hasLargeInts(isl::manage(isl_ast_expr_copy(Condition)))) { 1600 isl_ast_expr_free(Condition); 1601 return Builder.getFalse(); 1602 } 1603 1604 ExprBuilder.setTrackOverflow(true); 1605 Value *RTC = ExprBuilder.create(Condition); 1606 if (!RTC->getType()->isIntegerTy(1)) 1607 RTC = Builder.CreateIsNotNull(RTC); 1608 Value *OverflowHappened = 1609 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1610 1611 if (PollyGenerateRTCPrint) { 1612 auto *F = Builder.GetInsertBlock()->getParent(); 1613 RuntimeDebugBuilder::createCPUPrinter( 1614 Builder, 1615 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1616 "RTC: ", 1617 RTC, " Overflow: ", OverflowHappened, 1618 "\n" 1619 " (0 failed, -1 succeeded)\n" 1620 " (if one or both are 0 falling back to original code, if both are -1 " 1621 "executing Polly code)\n"); 1622 } 1623 1624 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1625 ExprBuilder.setTrackOverflow(false); 1626 1627 if (!isa<ConstantInt>(RTC)) 1628 VersionedScops++; 1629 1630 return RTC; 1631 } 1632