1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Options.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/ISLTools.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "polly/Support/ScopHelper.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/RegionInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "isl/aff.h" 53 #include "isl/aff_type.h" 54 #include "isl/ast.h" 55 #include "isl/ast_build.h" 56 #include "isl/isl-noexceptions.h" 57 #include "isl/map.h" 58 #include "isl/set.h" 59 #include "isl/union_map.h" 60 #include "isl/union_set.h" 61 #include "isl/val.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-codegen" 74 75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 76 77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 79 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 80 STATISTIC(IfConditions, "Number of generated if-conditions"); 81 82 /// OpenMP backend options 83 enum class OpenMPBackend { GNU, LLVM }; 84 85 static cl::opt<bool> PollyGenerateRTCPrint( 86 "polly-codegen-emit-rtc-print", 87 cl::desc("Emit code that prints the runtime check result dynamically."), 88 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 89 90 // If this option is set we always use the isl AST generator to regenerate 91 // memory accesses. Without this option set we regenerate expressions using the 92 // original SCEV expressions and only generate new expressions in case the 93 // access relation has been changed and consequently must be regenerated. 94 static cl::opt<bool> PollyGenerateExpressions( 95 "polly-codegen-generate-expressions", 96 cl::desc("Generate AST expressions for unmodified and modified accesses"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 98 99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 100 "polly-target-first-level-cache-line-size", 101 cl::desc("The size of the first level cache line size specified in bytes."), 102 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 103 104 static cl::opt<OpenMPBackend> PollyOmpBackend( 105 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 106 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 107 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 108 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 109 110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For, 111 ICmpInst::Predicate &Predicate) { 112 isl::ast_expr Cond = For.for_get_cond(); 113 isl::ast_expr Iterator = For.for_get_iterator(); 114 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 115 "conditional expression is not an atomic upper bound"); 116 117 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 118 119 switch (OpType) { 120 case isl_ast_op_le: 121 Predicate = ICmpInst::ICMP_SLE; 122 break; 123 case isl_ast_op_lt: 124 Predicate = ICmpInst::ICMP_SLT; 125 break; 126 default: 127 llvm_unreachable("Unexpected comparison type in loop condition"); 128 } 129 130 isl::ast_expr Arg0 = Cond.get_op_arg(0); 131 132 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 133 "conditional expression is not an atomic upper bound"); 134 135 isl::id UBID = Arg0.get_id(); 136 137 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 138 "Could not get the iterator"); 139 140 isl::id IteratorID = Iterator.get_id(); 141 142 assert(UBID.get() == IteratorID.get() && 143 "conditional expression is not an atomic upper bound"); 144 145 return Cond.get_op_arg(1); 146 } 147 148 /// Return true if a return value of Predicate is true for the value represented 149 /// by passed isl_ast_expr_int. 150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 151 isl_bool (*Predicate)(__isl_keep isl_val *)) { 152 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 153 isl_ast_expr_free(Expr); 154 return false; 155 } 156 auto ExprVal = isl_ast_expr_get_val(Expr); 157 isl_ast_expr_free(Expr); 158 if (Predicate(ExprVal) != isl_bool_true) { 159 isl_val_free(ExprVal); 160 return false; 161 } 162 isl_val_free(ExprVal); 163 return true; 164 } 165 166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) { 167 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 168 isl::ast_node Body = For.for_get_body(); 169 170 // First, check if we can actually handle this code. 171 switch (isl_ast_node_get_type(Body.get())) { 172 case isl_ast_node_user: 173 break; 174 case isl_ast_node_block: { 175 isl::ast_node_list List = Body.block_get_children(); 176 for (isl::ast_node Node : List) { 177 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 178 if (NodeType != isl_ast_node_user) 179 return -1; 180 } 181 break; 182 } 183 default: 184 return -1; 185 } 186 187 isl::ast_expr Init = For.for_get_init(); 188 if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) 189 return -1; 190 isl::ast_expr Inc = For.for_get_inc(); 191 if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) 192 return -1; 193 CmpInst::Predicate Predicate; 194 isl::ast_expr UB = getUpperBound(For, Predicate); 195 if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) 196 return -1; 197 isl::val UpVal = UB.get_val(); 198 int NumberIterations = UpVal.get_num_si(); 199 if (NumberIterations < 0) 200 return -1; 201 if (Predicate == CmpInst::ICMP_SLT) 202 return NumberIterations; 203 else 204 return NumberIterations + 1; 205 } 206 207 /// Extract the values and SCEVs needed to generate code for a block. 208 static int findReferencesInBlock(struct SubtreeReferences &References, 209 const ScopStmt *Stmt, BasicBlock *BB) { 210 for (Instruction &Inst : *BB) { 211 // Include invariant loads 212 if (isa<LoadInst>(Inst)) 213 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 214 References.Values.insert(InvariantLoad); 215 216 for (Value *SrcVal : Inst.operands()) { 217 auto *Scope = References.LI.getLoopFor(BB); 218 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 219 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 220 continue; 221 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 222 References.Values.insert(NewVal); 223 } 224 } 225 return 0; 226 } 227 228 void addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 229 bool CreateScalarRefs) { 230 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 231 232 if (Stmt->isBlockStmt()) 233 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 234 else { 235 assert(Stmt->isRegionStmt() && 236 "Stmt was neither block nor region statement"); 237 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 238 findReferencesInBlock(References, Stmt, BB); 239 } 240 241 for (auto &Access : *Stmt) { 242 if (References.ParamSpace) { 243 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 244 (*References.ParamSpace) = 245 References.ParamSpace->align_params(ParamSpace); 246 } 247 248 if (Access->isLatestArrayKind()) { 249 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 250 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 251 if (Stmt->getParent()->contains(OpInst)) 252 continue; 253 254 References.Values.insert(BasePtr); 255 continue; 256 } 257 258 if (CreateScalarRefs) 259 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 260 } 261 } 262 263 /// Extract the out-of-scop values and SCEVs referenced from a set describing 264 /// a ScopStmt. 265 /// 266 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 267 /// statement and the base pointers of the memory accesses. For scalar 268 /// statements we force the generation of alloca memory locations and list 269 /// these locations in the set of out-of-scop values as well. 270 /// 271 /// @param Set A set which references the ScopStmt we are interested in. 272 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 273 /// structure. 274 static void addReferencesFromStmtSet(isl::set Set, 275 struct SubtreeReferences *UserPtr) { 276 isl::id Id = Set.get_tuple_id(); 277 auto *Stmt = static_cast<const ScopStmt *>(Id.get_user()); 278 return addReferencesFromStmt(Stmt, UserPtr); 279 } 280 281 /// Extract the out-of-scop values and SCEVs referenced from a union set 282 /// referencing multiple ScopStmts. 283 /// 284 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 285 /// statement and the base pointers of the memory accesses. For scalar 286 /// statements we force the generation of alloca memory locations and list 287 /// these locations in the set of out-of-scop values as well. 288 /// 289 /// @param USet A union set referencing the ScopStmts we are interested 290 /// in. 291 /// @param References The SubtreeReferences data structure through which 292 /// results are returned and further information is 293 /// provided. 294 static void 295 addReferencesFromStmtUnionSet(isl::union_set USet, 296 struct SubtreeReferences &References) { 297 298 for (isl::set Set : USet.get_set_list()) 299 addReferencesFromStmtSet(Set, &References); 300 } 301 302 __isl_give isl_union_map * 303 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 304 return IslAstInfo::getSchedule(For); 305 } 306 307 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 308 SetVector<Value *> &Values, 309 SetVector<const Loop *> &Loops) { 310 SetVector<const SCEV *> SCEVs; 311 struct SubtreeReferences References = { 312 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 313 314 for (const auto &I : IDToValue) 315 Values.insert(I.second); 316 317 // NOTE: this is populated in IslNodeBuilder::addParameters 318 for (const auto &I : OutsideLoopIterations) 319 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 320 321 isl::union_set Schedule = 322 isl::manage(isl_union_map_domain(getScheduleForAstNode(For))); 323 addReferencesFromStmtUnionSet(Schedule, References); 324 325 for (const SCEV *Expr : SCEVs) { 326 findValues(Expr, SE, Values); 327 findLoops(Expr, Loops); 328 } 329 330 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 331 332 /// Note: Code generation of induction variables of loops outside Scops 333 /// 334 /// Remove loops that contain the scop or that are part of the scop, as they 335 /// are considered local. This leaves only loops that are before the scop, but 336 /// do not contain the scop itself. 337 /// We ignore loops perfectly contained in the Scop because these are already 338 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 339 /// whose induction variables are referred to by the Scop, but the Scop is not 340 /// fully contained in these Loops. Since there can be many of these, 341 /// we choose to codegen these on-demand. 342 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 343 Loops.remove_if([this](const Loop *L) { 344 return S.contains(L) || L->contains(S.getEntry()); 345 }); 346 347 // Contains Values that may need to be replaced with other values 348 // due to replacements from the ValueMap. We should make sure 349 // that we return correctly remapped values. 350 // NOTE: this code path is tested by: 351 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 352 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 353 SetVector<Value *> ReplacedValues; 354 for (Value *V : Values) { 355 ReplacedValues.insert(getLatestValue(V)); 356 } 357 Values = ReplacedValues; 358 } 359 360 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 361 SmallPtrSet<Value *, 5> Inserted; 362 363 for (const auto &I : IDToValue) { 364 IDToValue[I.first] = NewValues[I.second]; 365 Inserted.insert(I.second); 366 } 367 368 for (const auto &I : NewValues) { 369 if (Inserted.count(I.first)) 370 continue; 371 372 ValueMap[I.first] = I.second; 373 } 374 } 375 376 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 377 auto It = ValueMap.find(Original); 378 if (It == ValueMap.end()) 379 return Original; 380 return It->second; 381 } 382 383 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 384 std::vector<Value *> &IVS, 385 __isl_take isl_id *IteratorID, 386 __isl_take isl_union_map *Schedule) { 387 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 388 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 389 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 390 isl_ast_expr_free(StmtExpr); 391 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 392 std::vector<LoopToScevMapT> VLTS(IVS.size()); 393 394 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 395 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 396 isl_map *S = isl_map_from_union_map(Schedule); 397 398 auto *NewAccesses = createNewAccesses(Stmt, User); 399 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 400 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 401 isl_id_to_ast_expr_free(NewAccesses); 402 isl_map_free(S); 403 isl_id_free(Id); 404 isl_ast_node_free(User); 405 } 406 407 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 408 auto *Id = isl_ast_node_mark_get_id(Node); 409 auto Child = isl_ast_node_mark_get_node(Node); 410 isl_ast_node_free(Node); 411 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 412 // it will be optimized away and we should skip it. 413 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 414 isl_ast_node_get_type(Child) == isl_ast_node_for) { 415 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 416 int VectorWidth = getNumberOfIterations(isl::manage_copy(Child)); 417 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 418 createForVector(Child, VectorWidth); 419 else 420 createForSequential(isl::manage(Child), true); 421 isl_id_free(Id); 422 return; 423 } 424 if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { 425 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 426 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 427 } 428 create(Child); 429 isl_id_free(Id); 430 } 431 432 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 433 int VectorWidth) { 434 isl_ast_node *Body = isl_ast_node_for_get_body(For); 435 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 436 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 437 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 438 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 439 440 Value *ValueLB = ExprBuilder.create(Init); 441 Value *ValueInc = ExprBuilder.create(Inc); 442 443 Type *MaxType = ExprBuilder.getType(Iterator); 444 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 445 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 446 447 if (MaxType != ValueLB->getType()) 448 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 449 if (MaxType != ValueInc->getType()) 450 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 451 452 std::vector<Value *> IVS(VectorWidth); 453 IVS[0] = ValueLB; 454 455 for (int i = 1; i < VectorWidth; i++) 456 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 457 458 isl_union_map *Schedule = getScheduleForAstNode(For); 459 assert(Schedule && "For statement annotation does not contain its schedule"); 460 461 IDToValue[IteratorID] = ValueLB; 462 463 switch (isl_ast_node_get_type(Body)) { 464 case isl_ast_node_user: 465 createUserVector(Body, IVS, isl_id_copy(IteratorID), 466 isl_union_map_copy(Schedule)); 467 break; 468 case isl_ast_node_block: { 469 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 470 471 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 472 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 473 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 474 475 isl_ast_node_free(Body); 476 isl_ast_node_list_free(List); 477 break; 478 } 479 default: 480 isl_ast_node_dump(Body); 481 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 482 } 483 484 IDToValue.erase(IDToValue.find(IteratorID)); 485 isl_id_free(IteratorID); 486 isl_union_map_free(Schedule); 487 488 isl_ast_node_free(For); 489 isl_ast_expr_free(Iterator); 490 491 VectorLoops++; 492 } 493 494 /// Restore the initial ordering of dimensions of the band node 495 /// 496 /// In case the band node represents all the dimensions of the iteration 497 /// domain, recreate the band node to restore the initial ordering of the 498 /// dimensions. 499 /// 500 /// @param Node The band node to be modified. 501 /// @return The modified schedule node. 502 static bool IsLoopVectorizerDisabled(isl::ast_node Node) { 503 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 504 auto Body = Node.for_get_body(); 505 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 506 return false; 507 auto Id = Body.mark_get_id(); 508 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 509 return true; 510 return false; 511 } 512 513 void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) { 514 Value *ValueLB, *ValueUB, *ValueInc; 515 Type *MaxType; 516 BasicBlock *ExitBlock; 517 Value *IV; 518 CmpInst::Predicate Predicate; 519 520 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 521 522 isl::ast_node Body = For.for_get_body(); 523 524 // isl_ast_node_for_is_degenerate(For) 525 // 526 // TODO: For degenerated loops we could generate a plain assignment. 527 // However, for now we just reuse the logic for normal loops, which will 528 // create a loop with a single iteration. 529 530 isl::ast_expr Init = For.for_get_init(); 531 isl::ast_expr Inc = For.for_get_inc(); 532 isl::ast_expr Iterator = For.for_get_iterator(); 533 isl::id IteratorID = Iterator.get_id(); 534 isl::ast_expr UB = getUpperBound(For, Predicate); 535 536 ValueLB = ExprBuilder.create(Init.release()); 537 ValueUB = ExprBuilder.create(UB.release()); 538 ValueInc = ExprBuilder.create(Inc.release()); 539 540 MaxType = ExprBuilder.getType(Iterator.get()); 541 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 542 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 543 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 544 545 if (MaxType != ValueLB->getType()) 546 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 547 if (MaxType != ValueUB->getType()) 548 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 549 if (MaxType != ValueInc->getType()) 550 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 551 552 // If we can show that LB <Predicate> UB holds at least once, we can 553 // omit the GuardBB in front of the loop. 554 bool UseGuardBB = 555 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 556 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 557 Predicate, &Annotator, MarkParallel, UseGuardBB, 558 LoopVectorizerDisabled); 559 IDToValue[IteratorID.get()] = IV; 560 561 create(Body.release()); 562 563 Annotator.popLoop(MarkParallel); 564 565 IDToValue.erase(IDToValue.find(IteratorID.get())); 566 567 Builder.SetInsertPoint(&ExitBlock->front()); 568 569 SequentialLoops++; 570 } 571 572 /// Remove the BBs contained in a (sub)function from the dominator tree. 573 /// 574 /// This function removes the basic blocks that are part of a subfunction from 575 /// the dominator tree. Specifically, when generating code it may happen that at 576 /// some point the code generation continues in a new sub-function (e.g., when 577 /// generating OpenMP code). The basic blocks that are created in this 578 /// sub-function are then still part of the dominator tree of the original 579 /// function, such that the dominator tree reaches over function boundaries. 580 /// This is not only incorrect, but also causes crashes. This function now 581 /// removes from the dominator tree all basic blocks that are dominated (and 582 /// consequently reachable) from the entry block of this (sub)function. 583 /// 584 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 585 /// the function/region it runs on. Hence, the pure need for this function shows 586 /// that we do not comply to this rule. At the moment, this does not cause any 587 /// issues, but we should be aware that such issues may appear. Unfortunately 588 /// the current LLVM pass infrastructure does not allow to make Polly a module 589 /// or call-graph pass to solve this issue, as such a pass would not have access 590 /// to the per-function analyses passes needed by Polly. A future pass manager 591 /// infrastructure is supposed to enable such kind of access possibly allowing 592 /// us to create a cleaner solution here. 593 /// 594 /// FIXME: Instead of adding the dominance information and then dropping it 595 /// later on, we should try to just not add it in the first place. This requires 596 /// some careful testing to make sure this does not break in interaction with 597 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 598 /// which may try to update it. 599 /// 600 /// @param F The function which contains the BBs to removed. 601 /// @param DT The dominator tree from which to remove the BBs. 602 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 603 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 604 std::vector<BasicBlock *> Nodes; 605 606 // We can only remove an element from the dominator tree, if all its children 607 // have been removed. To ensure this we obtain the list of nodes to remove 608 // using a post-order tree traversal. 609 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 610 Nodes.push_back(I->getBlock()); 611 612 for (BasicBlock *BB : Nodes) 613 DT.eraseNode(BB); 614 } 615 616 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 617 isl_ast_node *Body; 618 isl_ast_expr *Init, *Inc, *Iterator, *UB; 619 isl_id *IteratorID; 620 Value *ValueLB, *ValueUB, *ValueInc; 621 Type *MaxType; 622 Value *IV; 623 CmpInst::Predicate Predicate; 624 625 // The preamble of parallel code interacts different than normal code with 626 // e.g., scalar initialization. Therefore, we ensure the parallel code is 627 // separated from the last basic block. 628 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 629 &*Builder.GetInsertPoint(), &DT, &LI); 630 ParBB->setName("polly.parallel.for"); 631 Builder.SetInsertPoint(&ParBB->front()); 632 633 Body = isl_ast_node_for_get_body(For); 634 Init = isl_ast_node_for_get_init(For); 635 Inc = isl_ast_node_for_get_inc(For); 636 Iterator = isl_ast_node_for_get_iterator(For); 637 IteratorID = isl_ast_expr_get_id(Iterator); 638 UB = getUpperBound(isl::manage_copy(For), Predicate).release(); 639 640 ValueLB = ExprBuilder.create(Init); 641 ValueUB = ExprBuilder.create(UB); 642 ValueInc = ExprBuilder.create(Inc); 643 644 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 645 // expression, we need to adjust the loop bound by one. 646 if (Predicate == CmpInst::ICMP_SLT) 647 ValueUB = Builder.CreateAdd( 648 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 649 650 MaxType = ExprBuilder.getType(Iterator); 651 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 652 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 653 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 654 655 if (MaxType != ValueLB->getType()) 656 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 657 if (MaxType != ValueUB->getType()) 658 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 659 if (MaxType != ValueInc->getType()) 660 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 661 662 BasicBlock::iterator LoopBody; 663 664 SetVector<Value *> SubtreeValues; 665 SetVector<const Loop *> Loops; 666 667 getReferencesInSubtree(For, SubtreeValues, Loops); 668 669 // Create for all loops we depend on values that contain the current loop 670 // iteration. These values are necessary to generate code for SCEVs that 671 // depend on such loops. As a result we need to pass them to the subfunction. 672 // See [Code generation of induction variables of loops outside Scops] 673 for (const Loop *L : Loops) { 674 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 675 SubtreeValues.insert(LoopInductionVar); 676 } 677 678 ValueMapT NewValues; 679 680 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 681 682 switch (PollyOmpBackend) { 683 case OpenMPBackend::GNU: 684 ParallelLoopGenPtr.reset( 685 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 686 break; 687 case OpenMPBackend::LLVM: 688 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 689 break; 690 } 691 692 IV = ParallelLoopGenPtr->createParallelLoop( 693 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 694 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 695 Builder.SetInsertPoint(&*LoopBody); 696 697 // Remember the parallel subfunction 698 ParallelSubfunctions.push_back(LoopBody->getFunction()); 699 700 // Save the current values. 701 auto ValueMapCopy = ValueMap; 702 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 703 704 updateValues(NewValues); 705 IDToValue[IteratorID] = IV; 706 707 ValueMapT NewValuesReverse; 708 709 for (auto P : NewValues) 710 NewValuesReverse[P.second] = P.first; 711 712 Annotator.addAlternativeAliasBases(NewValuesReverse); 713 714 create(Body); 715 716 Annotator.resetAlternativeAliasBases(); 717 // Restore the original values. 718 ValueMap = ValueMapCopy; 719 IDToValue = IDToValueCopy; 720 721 Builder.SetInsertPoint(&*AfterLoop); 722 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 723 724 for (const Loop *L : Loops) 725 OutsideLoopIterations.erase(L); 726 727 isl_ast_node_free(For); 728 isl_ast_expr_free(Iterator); 729 isl_id_free(IteratorID); 730 731 ParallelLoops++; 732 } 733 734 /// Return whether any of @p Node's statements contain partial accesses. 735 /// 736 /// Partial accesses are not supported by Polly's vector code generator. 737 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 738 return isl_ast_node_foreach_descendant_top_down( 739 Node, 740 [](isl_ast_node *Node, void *User) -> isl_bool { 741 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 742 return isl_bool_true; 743 744 isl::ast_expr Expr = 745 isl::manage(isl_ast_node_user_get_expr(Node)); 746 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 747 isl::id Id = StmtExpr.get_id(); 748 749 ScopStmt *Stmt = 750 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 751 isl::set StmtDom = Stmt->getDomain(); 752 for (auto *MA : *Stmt) { 753 if (MA->isLatestPartialAccess()) 754 return isl_bool_error; 755 } 756 return isl_bool_true; 757 }, 758 nullptr) == isl_stat_error; 759 } 760 761 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 762 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 763 764 if (Vector && IslAstInfo::isInnermostParallel(For) && 765 !IslAstInfo::isReductionParallel(For)) { 766 int VectorWidth = getNumberOfIterations(isl::manage_copy(For)); 767 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 768 createForVector(For, VectorWidth); 769 return; 770 } 771 } 772 773 if (IslAstInfo::isExecutedInParallel(For)) { 774 createForParallel(For); 775 return; 776 } 777 bool Parallel = 778 (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For)); 779 createForSequential(isl::manage(For), Parallel); 780 } 781 782 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 783 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 784 785 Function *F = Builder.GetInsertBlock()->getParent(); 786 LLVMContext &Context = F->getContext(); 787 788 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 789 &*Builder.GetInsertPoint(), &DT, &LI); 790 CondBB->setName("polly.cond"); 791 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 792 MergeBB->setName("polly.merge"); 793 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 794 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 795 796 DT.addNewBlock(ThenBB, CondBB); 797 DT.addNewBlock(ElseBB, CondBB); 798 DT.changeImmediateDominator(MergeBB, CondBB); 799 800 Loop *L = LI.getLoopFor(CondBB); 801 if (L) { 802 L->addBasicBlockToLoop(ThenBB, LI); 803 L->addBasicBlockToLoop(ElseBB, LI); 804 } 805 806 CondBB->getTerminator()->eraseFromParent(); 807 808 Builder.SetInsertPoint(CondBB); 809 Value *Predicate = ExprBuilder.create(Cond); 810 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 811 Builder.SetInsertPoint(ThenBB); 812 Builder.CreateBr(MergeBB); 813 Builder.SetInsertPoint(ElseBB); 814 Builder.CreateBr(MergeBB); 815 Builder.SetInsertPoint(&ThenBB->front()); 816 817 create(isl_ast_node_if_get_then(If)); 818 819 Builder.SetInsertPoint(&ElseBB->front()); 820 821 if (isl_ast_node_if_has_else(If)) 822 create(isl_ast_node_if_get_else(If)); 823 824 Builder.SetInsertPoint(&MergeBB->front()); 825 826 isl_ast_node_free(If); 827 828 IfConditions++; 829 } 830 831 __isl_give isl_id_to_ast_expr * 832 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 833 __isl_keep isl_ast_node *Node) { 834 isl_id_to_ast_expr *NewAccesses = 835 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0); 836 837 auto *Build = IslAstInfo::getBuild(Node); 838 assert(Build && "Could not obtain isl_ast_build from user node"); 839 Stmt->setAstBuild(isl::manage_copy(Build)); 840 841 for (auto *MA : *Stmt) { 842 if (!MA->hasNewAccessRelation()) { 843 if (PollyGenerateExpressions) { 844 if (!MA->isAffine()) 845 continue; 846 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 847 continue; 848 849 auto *BasePtr = 850 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 851 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 852 continue; 853 } else { 854 continue; 855 } 856 } 857 assert(MA->isAffine() && 858 "Only affine memory accesses can be code generated"); 859 860 auto Schedule = isl_ast_build_get_schedule(Build); 861 862 #ifndef NDEBUG 863 if (MA->isRead()) { 864 auto Dom = Stmt->getDomain().release(); 865 auto SchedDom = isl_set_from_union_set( 866 isl_union_map_domain(isl_union_map_copy(Schedule))); 867 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 868 Dom = isl_set_intersect_params(Dom, 869 Stmt->getParent()->getContext().release()); 870 SchedDom = isl_set_intersect_params( 871 SchedDom, Stmt->getParent()->getContext().release()); 872 assert(isl_set_is_subset(SchedDom, AccDom) && 873 "Access relation not defined on full schedule domain"); 874 assert(isl_set_is_subset(Dom, AccDom) && 875 "Access relation not defined on full domain"); 876 isl_set_free(AccDom); 877 isl_set_free(SchedDom); 878 isl_set_free(Dom); 879 } 880 #endif 881 882 auto PWAccRel = 883 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 884 885 // isl cannot generate an index expression for access-nothing accesses. 886 isl::set AccDomain = 887 isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 888 isl::set Context = S.getContext(); 889 AccDomain = AccDomain.intersect_params(Context); 890 if (AccDomain.is_empty()) { 891 isl_pw_multi_aff_free(PWAccRel); 892 continue; 893 } 894 895 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 896 NewAccesses = 897 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 898 } 899 900 return NewAccesses; 901 } 902 903 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 904 ScopStmt *Stmt, LoopToScevMapT <S) { 905 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 906 "Expression of type 'op' expected"); 907 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 908 "Operation of type 'call' expected"); 909 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 910 isl_ast_expr *SubExpr; 911 Value *V; 912 913 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 914 V = ExprBuilder.create(SubExpr); 915 ScalarEvolution *SE = Stmt->getParent()->getSE(); 916 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 917 } 918 919 isl_ast_expr_free(Expr); 920 } 921 922 void IslNodeBuilder::createSubstitutionsVector( 923 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 924 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 925 __isl_take isl_id *IteratorID) { 926 int i = 0; 927 928 Value *OldValue = IDToValue[IteratorID]; 929 for (Value *IV : IVS) { 930 IDToValue[IteratorID] = IV; 931 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 932 i++; 933 } 934 935 IDToValue[IteratorID] = OldValue; 936 isl_id_free(IteratorID); 937 isl_ast_expr_free(Expr); 938 } 939 940 void IslNodeBuilder::generateCopyStmt( 941 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 942 assert(Stmt->size() == 2); 943 auto ReadAccess = Stmt->begin(); 944 auto WriteAccess = ReadAccess++; 945 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 946 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 947 "Accesses use the same data type"); 948 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 949 auto *AccessExpr = 950 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 951 auto *LoadValue = ExprBuilder.create(AccessExpr); 952 AccessExpr = 953 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 954 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 955 Builder.CreateStore(LoadValue, StoreAddr); 956 } 957 958 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 959 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 960 "trying to materialize loop induction variable twice"); 961 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 962 SE.getUnknown(Builder.getInt64(1)), L, 963 SCEV::FlagAnyWrap); 964 Value *V = generateSCEV(OuterLIV); 965 OutsideLoopIterations[L] = SE.getUnknown(V); 966 return V; 967 } 968 969 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 970 LoopToScevMapT LTS; 971 isl_id *Id; 972 ScopStmt *Stmt; 973 974 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 975 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 976 Id = isl_ast_expr_get_id(StmtExpr); 977 isl_ast_expr_free(StmtExpr); 978 979 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 980 981 Stmt = (ScopStmt *)isl_id_get_user(Id); 982 auto *NewAccesses = createNewAccesses(Stmt, User); 983 if (Stmt->isCopyStmt()) { 984 generateCopyStmt(Stmt, NewAccesses); 985 isl_ast_expr_free(Expr); 986 } else { 987 createSubstitutions(Expr, Stmt, LTS); 988 989 if (Stmt->isBlockStmt()) 990 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 991 else 992 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 993 } 994 995 isl_id_to_ast_expr_free(NewAccesses); 996 isl_ast_node_free(User); 997 isl_id_free(Id); 998 } 999 1000 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1001 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1002 1003 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1004 create(isl_ast_node_list_get_ast_node(List, i)); 1005 1006 isl_ast_node_free(Block); 1007 isl_ast_node_list_free(List); 1008 } 1009 1010 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1011 switch (isl_ast_node_get_type(Node)) { 1012 case isl_ast_node_error: 1013 llvm_unreachable("code generation error"); 1014 case isl_ast_node_mark: 1015 createMark(Node); 1016 return; 1017 case isl_ast_node_for: 1018 createFor(Node); 1019 return; 1020 case isl_ast_node_if: 1021 createIf(Node); 1022 return; 1023 case isl_ast_node_user: 1024 createUser(Node); 1025 return; 1026 case isl_ast_node_block: 1027 createBlock(Node); 1028 return; 1029 } 1030 1031 llvm_unreachable("Unknown isl_ast_node type"); 1032 } 1033 1034 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1035 // If the Id is already mapped, skip it. 1036 if (!IDToValue.count(Id)) { 1037 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1038 Value *V = nullptr; 1039 1040 // Parameters could refer to invariant loads that need to be 1041 // preloaded before we can generate code for the parameter. Thus, 1042 // check if any value referred to in ParamSCEV is an invariant load 1043 // and if so make sure its equivalence class is preloaded. 1044 SetVector<Value *> Values; 1045 findValues(ParamSCEV, SE, Values); 1046 for (auto *Val : Values) { 1047 // Check if the value is an instruction in a dead block within the SCoP 1048 // and if so do not code generate it. 1049 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1050 if (S.contains(Inst)) { 1051 bool IsDead = true; 1052 1053 // Check for "undef" loads first, then if there is a statement for 1054 // the parent of Inst and lastly if the parent of Inst has an empty 1055 // domain. In the first and last case the instruction is dead but if 1056 // there is a statement or the domain is not empty Inst is not dead. 1057 auto MemInst = MemAccInst::dyn_cast(Inst); 1058 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1059 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1060 SE.getPointerBase(SE.getSCEV(Address))) { 1061 } else if (S.getStmtFor(Inst)) { 1062 IsDead = false; 1063 } else { 1064 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1065 IsDead = isl_set_is_empty(Domain); 1066 isl_set_free(Domain); 1067 } 1068 1069 if (IsDead) { 1070 V = UndefValue::get(ParamSCEV->getType()); 1071 break; 1072 } 1073 } 1074 } 1075 1076 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1077 // Check if this invariant access class is empty, hence if we never 1078 // actually added a loads instruction to it. In that case it has no 1079 // (meaningful) users and we should not try to code generate it. 1080 if (IAClass->InvariantAccesses.empty()) 1081 V = UndefValue::get(ParamSCEV->getType()); 1082 1083 if (!preloadInvariantEquivClass(*IAClass)) { 1084 isl_id_free(Id); 1085 return false; 1086 } 1087 } 1088 } 1089 1090 V = V ? V : generateSCEV(ParamSCEV); 1091 IDToValue[Id] = V; 1092 } 1093 1094 isl_id_free(Id); 1095 return true; 1096 } 1097 1098 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1099 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1100 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1101 continue; 1102 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1103 if (!materializeValue(Id)) 1104 return false; 1105 } 1106 return true; 1107 } 1108 1109 bool IslNodeBuilder::materializeParameters() { 1110 for (const SCEV *Param : S.parameters()) { 1111 isl_id *Id = S.getIdForParam(Param).release(); 1112 if (!materializeValue(Id)) 1113 return false; 1114 } 1115 return true; 1116 } 1117 1118 /// Generate the computation of the size of the outermost dimension from the 1119 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1120 /// contains the size of the array. 1121 /// 1122 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1123 /// %desc.dimensionty = type { i64, i64, i64 } 1124 /// @g_arr = global %arrty zeroinitializer, align 32 1125 /// ... 1126 /// %0 = load i64, i64* getelementptr inbounds 1127 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1128 /// %1 = load i64, i64* getelementptr inbounds 1129 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1130 /// %2 = sub nsw i64 %0, %1 1131 /// %size = add nsw i64 %2, 1 1132 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1133 PollyIRBuilder &Builder, 1134 std::string ArrayName) { 1135 assert(GlobalDescriptor && "invalid global descriptor given"); 1136 1137 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1138 Builder.getInt64(0), Builder.getInt32(2)}; 1139 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1140 ArrayName + "_end_ptr"); 1141 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1142 1143 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1144 Builder.getInt64(0), Builder.getInt32(1)}; 1145 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1146 ArrayName + "_begin_ptr"); 1147 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1148 1149 Value *size = 1150 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1151 Type *endType = dyn_cast<IntegerType>(end->getType()); 1152 assert(endType && "expected type of end to be integral"); 1153 1154 size = Builder.CreateNSWAdd(end, 1155 ConstantInt::get(endType, 1, /* signed = */ true), 1156 ArrayName + "_size"); 1157 1158 return size; 1159 } 1160 1161 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1162 for (ScopArrayInfo *Array : S.arrays()) { 1163 if (Array->getNumberOfDimensions() == 0) 1164 continue; 1165 1166 Value *FAD = Array->getFortranArrayDescriptor(); 1167 if (!FAD) 1168 continue; 1169 1170 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1171 assert(ParametricPwAff && "parametric pw_aff corresponding " 1172 "to outermost dimension does not " 1173 "exist"); 1174 1175 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1176 isl_pw_aff_free(ParametricPwAff); 1177 1178 assert(Id && "pw_aff is not parametric"); 1179 1180 if (IDToValue.count(Id)) { 1181 isl_id_free(Id); 1182 continue; 1183 } 1184 1185 Value *FinalValue = 1186 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1187 assert(FinalValue && "unable to build Fortran array " 1188 "descriptor load of outermost dimension"); 1189 IDToValue[Id] = FinalValue; 1190 isl_id_free(Id); 1191 } 1192 return true; 1193 } 1194 1195 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1196 isl_ast_build *Build, 1197 Instruction *AccInst) { 1198 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1199 isl_ast_expr *Access = 1200 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1201 auto *Address = isl_ast_expr_address_of(Access); 1202 auto *AddressValue = ExprBuilder.create(Address); 1203 Value *PreloadVal; 1204 1205 // Correct the type as the SAI might have a different type than the user 1206 // expects, especially if the base pointer is a struct. 1207 Type *Ty = AccInst->getType(); 1208 1209 auto *Ptr = AddressValue; 1210 auto Name = Ptr->getName(); 1211 auto AS = Ptr->getType()->getPointerAddressSpace(); 1212 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1213 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1214 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1215 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1216 1217 // TODO: This is only a hot fix for SCoP sequences that use the same load 1218 // instruction contained and hoisted by one of the SCoPs. 1219 if (SE.isSCEVable(Ty)) 1220 SE.forgetValue(AccInst); 1221 1222 return PreloadVal; 1223 } 1224 1225 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1226 isl_set *Domain) { 1227 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1228 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1229 1230 if (!materializeParameters(AccessRange)) { 1231 isl_set_free(AccessRange); 1232 isl_set_free(Domain); 1233 return nullptr; 1234 } 1235 1236 auto *Build = 1237 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1238 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1239 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1240 isl_set_free(Universe); 1241 1242 Instruction *AccInst = MA.getAccessInstruction(); 1243 Type *AccInstTy = AccInst->getType(); 1244 1245 Value *PreloadVal = nullptr; 1246 if (AlwaysExecuted) { 1247 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1248 isl_ast_build_free(Build); 1249 isl_set_free(Domain); 1250 return PreloadVal; 1251 } 1252 1253 if (!materializeParameters(Domain)) { 1254 isl_ast_build_free(Build); 1255 isl_set_free(AccessRange); 1256 isl_set_free(Domain); 1257 return nullptr; 1258 } 1259 1260 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1261 Domain = nullptr; 1262 1263 ExprBuilder.setTrackOverflow(true); 1264 Value *Cond = ExprBuilder.create(DomainCond); 1265 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1266 "polly.preload.cond.overflown"); 1267 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1268 ExprBuilder.setTrackOverflow(false); 1269 1270 if (!Cond->getType()->isIntegerTy(1)) 1271 Cond = Builder.CreateIsNotNull(Cond); 1272 1273 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1274 &*Builder.GetInsertPoint(), &DT, &LI); 1275 CondBB->setName("polly.preload.cond"); 1276 1277 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1278 MergeBB->setName("polly.preload.merge"); 1279 1280 Function *F = Builder.GetInsertBlock()->getParent(); 1281 LLVMContext &Context = F->getContext(); 1282 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1283 1284 DT.addNewBlock(ExecBB, CondBB); 1285 if (Loop *L = LI.getLoopFor(CondBB)) 1286 L->addBasicBlockToLoop(ExecBB, LI); 1287 1288 auto *CondBBTerminator = CondBB->getTerminator(); 1289 Builder.SetInsertPoint(CondBBTerminator); 1290 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1291 CondBBTerminator->eraseFromParent(); 1292 1293 Builder.SetInsertPoint(ExecBB); 1294 Builder.CreateBr(MergeBB); 1295 1296 Builder.SetInsertPoint(ExecBB->getTerminator()); 1297 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1298 Builder.SetInsertPoint(MergeBB->getTerminator()); 1299 auto *MergePHI = Builder.CreatePHI( 1300 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1301 PreloadVal = MergePHI; 1302 1303 if (!PreAccInst) { 1304 PreloadVal = nullptr; 1305 PreAccInst = UndefValue::get(AccInstTy); 1306 } 1307 1308 MergePHI->addIncoming(PreAccInst, ExecBB); 1309 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1310 1311 isl_ast_build_free(Build); 1312 return PreloadVal; 1313 } 1314 1315 bool IslNodeBuilder::preloadInvariantEquivClass( 1316 InvariantEquivClassTy &IAClass) { 1317 // For an equivalence class of invariant loads we pre-load the representing 1318 // element with the unified execution context. However, we have to map all 1319 // elements of the class to the one preloaded load as they are referenced 1320 // during the code generation and therefor need to be mapped. 1321 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1322 if (MAs.empty()) 1323 return true; 1324 1325 MemoryAccess *MA = MAs.front(); 1326 assert(MA->isArrayKind() && MA->isRead()); 1327 1328 // If the access function was already mapped, the preload of this equivalence 1329 // class was triggered earlier already and doesn't need to be done again. 1330 if (ValueMap.count(MA->getAccessInstruction())) 1331 return true; 1332 1333 // Check for recursion which can be caused by additional constraints, e.g., 1334 // non-finite loop constraints. In such a case we have to bail out and insert 1335 // a "false" runtime check that will cause the original code to be executed. 1336 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1337 if (!PreloadedPtrs.insert(PtrId).second) 1338 return false; 1339 1340 // The execution context of the IAClass. 1341 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1342 1343 // If the base pointer of this class is dependent on another one we have to 1344 // make sure it was preloaded already. 1345 auto *SAI = MA->getScopArrayInfo(); 1346 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1347 if (!preloadInvariantEquivClass(*BaseIAClass)) 1348 return false; 1349 1350 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1351 // we need to refine the ExecutionCtx. 1352 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1353 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1354 } 1355 1356 // If the size of a dimension is dependent on another class, make sure it is 1357 // preloaded. 1358 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1359 const SCEV *Dim = SAI->getDimensionSize(i); 1360 SetVector<Value *> Values; 1361 findValues(Dim, SE, Values); 1362 for (auto *Val : Values) { 1363 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1364 if (!preloadInvariantEquivClass(*BaseIAClass)) 1365 return false; 1366 1367 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1368 // and we need to refine the ExecutionCtx. 1369 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1370 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1371 } 1372 } 1373 } 1374 1375 Instruction *AccInst = MA->getAccessInstruction(); 1376 Type *AccInstTy = AccInst->getType(); 1377 1378 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1379 if (!PreloadVal) 1380 return false; 1381 1382 for (const MemoryAccess *MA : MAs) { 1383 Instruction *MAAccInst = MA->getAccessInstruction(); 1384 assert(PreloadVal->getType() == MAAccInst->getType()); 1385 ValueMap[MAAccInst] = PreloadVal; 1386 } 1387 1388 if (SE.isSCEVable(AccInstTy)) { 1389 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1390 if (ParamId) 1391 IDToValue[ParamId] = PreloadVal; 1392 isl_id_free(ParamId); 1393 } 1394 1395 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1396 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1397 AccInst->getName() + ".preload.s2a"); 1398 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1399 Builder.CreateStore(PreloadVal, Alloca); 1400 ValueMapT PreloadedPointer; 1401 PreloadedPointer[PreloadVal] = AccInst; 1402 Annotator.addAlternativeAliasBases(PreloadedPointer); 1403 1404 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1405 Value *BasePtr = DerivedSAI->getBasePtr(); 1406 1407 for (const MemoryAccess *MA : MAs) { 1408 // As the derived SAI information is quite coarse, any load from the 1409 // current SAI could be the base pointer of the derived SAI, however we 1410 // should only change the base pointer of the derived SAI if we actually 1411 // preloaded it. 1412 if (BasePtr == MA->getOriginalBaseAddr()) { 1413 assert(BasePtr->getType() == PreloadVal->getType()); 1414 DerivedSAI->setBasePtr(PreloadVal); 1415 } 1416 1417 // For scalar derived SAIs we remap the alloca used for the derived value. 1418 if (BasePtr == MA->getAccessInstruction()) 1419 ScalarMap[DerivedSAI] = Alloca; 1420 } 1421 } 1422 1423 for (const MemoryAccess *MA : MAs) { 1424 Instruction *MAAccInst = MA->getAccessInstruction(); 1425 // Use the escape system to get the correct value to users outside the SCoP. 1426 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1427 for (auto *U : MAAccInst->users()) 1428 if (Instruction *UI = dyn_cast<Instruction>(U)) 1429 if (!S.contains(UI)) 1430 EscapeUsers.push_back(UI); 1431 1432 if (EscapeUsers.empty()) 1433 continue; 1434 1435 EscapeMap[MA->getAccessInstruction()] = 1436 std::make_pair(Alloca, std::move(EscapeUsers)); 1437 } 1438 1439 return true; 1440 } 1441 1442 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1443 for (auto &SAI : S.arrays()) { 1444 if (SAI->getBasePtr()) 1445 continue; 1446 1447 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1448 "The size of the outermost dimension is used to declare newly " 1449 "created arrays that require memory allocation."); 1450 1451 Type *NewArrayType = nullptr; 1452 1453 // Get the size of the array = size(dim_1)*...*size(dim_n) 1454 uint64_t ArraySizeInt = 1; 1455 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1456 auto *DimSize = SAI->getDimensionSize(i); 1457 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1458 ->getAPInt() 1459 .getLimitedValue(); 1460 1461 if (!NewArrayType) 1462 NewArrayType = SAI->getElementType(); 1463 1464 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1465 ArraySizeInt *= UnsignedDimSize; 1466 } 1467 1468 if (SAI->isOnHeap()) { 1469 LLVMContext &Ctx = NewArrayType->getContext(); 1470 1471 // Get the IntPtrTy from the Datalayout 1472 auto IntPtrTy = DL.getIntPtrType(Ctx); 1473 1474 // Get the size of the element type in bits 1475 unsigned Size = SAI->getElemSizeInBytes(); 1476 1477 // Insert the malloc call at polly.start 1478 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1479 auto *CreatedArray = CallInst::CreateMalloc( 1480 &*InstIt, IntPtrTy, SAI->getElementType(), 1481 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1482 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1483 SAI->getName()); 1484 1485 SAI->setBasePtr(CreatedArray); 1486 1487 // Insert the free call at polly.exiting 1488 CallInst::CreateFree(CreatedArray, 1489 std::get<1>(StartExitBlocks)->getTerminator()); 1490 } else { 1491 auto InstIt = Builder.GetInsertBlock() 1492 ->getParent() 1493 ->getEntryBlock() 1494 .getTerminator(); 1495 1496 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1497 SAI->getName(), &*InstIt); 1498 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1499 SAI->setBasePtr(CreatedArray); 1500 } 1501 } 1502 } 1503 1504 bool IslNodeBuilder::preloadInvariantLoads() { 1505 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1506 if (InvariantEquivClasses.empty()) 1507 return true; 1508 1509 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1510 &*Builder.GetInsertPoint(), &DT, &LI); 1511 PreLoadBB->setName("polly.preload.begin"); 1512 Builder.SetInsertPoint(&PreLoadBB->front()); 1513 1514 for (auto &IAClass : InvariantEquivClasses) 1515 if (!preloadInvariantEquivClass(IAClass)) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1522 // Materialize values for the parameters of the SCoP. 1523 materializeParameters(); 1524 1525 // materialize the outermost dimension parameters for a Fortran array. 1526 // NOTE: materializeParameters() does not work since it looks through 1527 // the SCEVs. We don't have a corresponding SCEV for the array size 1528 // parameter 1529 materializeFortranArrayOutermostDimension(); 1530 1531 // Generate values for the current loop iteration for all surrounding loops. 1532 // 1533 // We may also reference loops outside of the scop which do not contain the 1534 // scop itself, but as the number of such scops may be arbitrarily large we do 1535 // not generate code for them here, but only at the point of code generation 1536 // where these values are needed. 1537 Loop *L = LI.getLoopFor(S.getEntry()); 1538 1539 while (L != nullptr && S.contains(L)) 1540 L = L->getParentLoop(); 1541 1542 while (L != nullptr) { 1543 materializeNonScopLoopInductionVariable(L); 1544 L = L->getParentLoop(); 1545 } 1546 1547 isl_set_free(Context); 1548 } 1549 1550 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1551 /// We pass the insert location of our Builder, as Polly ensures during IR 1552 /// generation that there is always a valid CFG into which instructions are 1553 /// inserted. As a result, the insertpoint is known to be always followed by a 1554 /// terminator instruction. This means the insert point may be specified by a 1555 /// terminator instruction, but it can never point to an ->end() iterator 1556 /// which does not have a corresponding instruction. Hence, dereferencing 1557 /// the insertpoint to obtain an instruction is known to be save. 1558 /// 1559 /// We also do not need to update the Builder here, as new instructions are 1560 /// always inserted _before_ the given InsertLocation. As a result, the 1561 /// insert location remains valid. 1562 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1563 "Insert location points after last valid instruction"); 1564 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1565 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1566 InsertLocation, &ValueMap, 1567 StartBlock->getSinglePredecessor()); 1568 } 1569 1570 /// The AST expression we generate to perform the run-time check assumes 1571 /// computations on integer types of infinite size. As we only use 64-bit 1572 /// arithmetic we check for overflows, in case of which we set the result 1573 /// of this run-time check to false to be conservatively correct, 1574 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1575 auto ExprBuilder = getExprBuilder(); 1576 1577 // In case the AST expression has integers larger than 64 bit, bail out. The 1578 // resulting LLVM-IR will contain operations on types that use more than 64 1579 // bits. These are -- in case wrapping intrinsics are used -- translated to 1580 // runtime library calls that are not available on all systems (e.g., Android) 1581 // and consequently will result in linker errors. 1582 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1583 isl_ast_expr_free(Condition); 1584 return Builder.getFalse(); 1585 } 1586 1587 ExprBuilder.setTrackOverflow(true); 1588 Value *RTC = ExprBuilder.create(Condition); 1589 if (!RTC->getType()->isIntegerTy(1)) 1590 RTC = Builder.CreateIsNotNull(RTC); 1591 Value *OverflowHappened = 1592 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1593 1594 if (PollyGenerateRTCPrint) { 1595 auto *F = Builder.GetInsertBlock()->getParent(); 1596 RuntimeDebugBuilder::createCPUPrinter( 1597 Builder, 1598 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1599 "RTC: ", 1600 RTC, " Overflow: ", OverflowHappened, 1601 "\n" 1602 " (0 failed, -1 succeeded)\n" 1603 " (if one or both are 0 falling back to original code, if both are -1 " 1604 "executing Polly code)\n"); 1605 } 1606 1607 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1608 ExprBuilder.setTrackOverflow(false); 1609 1610 if (!isa<ConstantInt>(RTC)) 1611 VersionedScops++; 1612 1613 return RTC; 1614 } 1615