1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/CodeGen/Utils.h" 23 #include "polly/Config/config.h" 24 #include "polly/DependenceInfo.h" 25 #include "polly/LinkAllPasses.h" 26 #include "polly/Options.h" 27 #include "polly/ScopInfo.h" 28 #include "polly/Support/GICHelper.h" 29 #include "polly/Support/SCEVValidator.h" 30 #include "polly/Support/ScopHelper.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/PostDominators.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "isl/aff.h" 42 #include "isl/ast.h" 43 #include "isl/ast_build.h" 44 #include "isl/list.h" 45 #include "isl/map.h" 46 #include "isl/set.h" 47 #include "isl/union_map.h" 48 #include "isl/union_set.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen" 54 55 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 56 57 // The maximal number of dimensions we allow during invariant load construction. 58 // More complex access ranges will result in very high compile time and are also 59 // unlikely to result in good code. This value is very high and should only 60 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 61 static int const MaxDimensionsInAccessRange = 9; 62 63 static cl::opt<bool> PollyGenerateRTCPrint( 64 "polly-codegen-emit-rtc-print", 65 cl::desc("Emit code that prints the runtime check result dynamically."), 66 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 67 68 // If this option is set we always use the isl AST generator to regenerate 69 // memory accesses. Without this option set we regenerate expressions using the 70 // original SCEV expressions and only generate new expressions in case the 71 // access relation has been changed and consequently must be regenerated. 72 static cl::opt<bool> PollyGenerateExpressions( 73 "polly-codegen-generate-expressions", 74 cl::desc("Generate AST expressions for unmodified and modified accesses"), 75 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 76 77 __isl_give isl_ast_expr * 78 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 79 ICmpInst::Predicate &Predicate) { 80 isl_id *UBID, *IteratorID; 81 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 82 isl_ast_op_type Type; 83 84 Cond = isl_ast_node_for_get_cond(For); 85 Iterator = isl_ast_node_for_get_iterator(For); 86 isl_ast_expr_get_type(Cond); 87 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 88 "conditional expression is not an atomic upper bound"); 89 90 Type = isl_ast_expr_get_op_type(Cond); 91 92 switch (Type) { 93 case isl_ast_op_le: 94 Predicate = ICmpInst::ICMP_SLE; 95 break; 96 case isl_ast_op_lt: 97 Predicate = ICmpInst::ICMP_SLT; 98 break; 99 default: 100 llvm_unreachable("Unexpected comparision type in loop conditon"); 101 } 102 103 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 104 105 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 106 "conditional expression is not an atomic upper bound"); 107 108 UBID = isl_ast_expr_get_id(Arg0); 109 110 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 111 "Could not get the iterator"); 112 113 IteratorID = isl_ast_expr_get_id(Iterator); 114 115 assert(UBID == IteratorID && 116 "conditional expression is not an atomic upper bound"); 117 118 UB = isl_ast_expr_get_op_arg(Cond, 1); 119 120 isl_ast_expr_free(Cond); 121 isl_ast_expr_free(Iterator); 122 isl_ast_expr_free(Arg0); 123 isl_id_free(IteratorID); 124 isl_id_free(UBID); 125 126 return UB; 127 } 128 129 /// Return true if a return value of Predicate is true for the value represented 130 /// by passed isl_ast_expr_int. 131 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 132 isl_bool (*Predicate)(__isl_keep isl_val *)) { 133 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 134 isl_ast_expr_free(Expr); 135 return false; 136 } 137 auto ExprVal = isl_ast_expr_get_val(Expr); 138 isl_ast_expr_free(Expr); 139 if (Predicate(ExprVal) != true) { 140 isl_val_free(ExprVal); 141 return false; 142 } 143 isl_val_free(ExprVal); 144 return true; 145 } 146 147 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 148 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 149 auto Body = isl_ast_node_for_get_body(For); 150 151 // First, check if we can actually handle this code. 152 switch (isl_ast_node_get_type(Body)) { 153 case isl_ast_node_user: 154 break; 155 case isl_ast_node_block: { 156 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 157 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 158 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 159 int Type = isl_ast_node_get_type(Node); 160 isl_ast_node_free(Node); 161 if (Type != isl_ast_node_user) { 162 isl_ast_node_list_free(List); 163 isl_ast_node_free(Body); 164 return -1; 165 } 166 } 167 isl_ast_node_list_free(List); 168 break; 169 } 170 default: 171 isl_ast_node_free(Body); 172 return -1; 173 } 174 isl_ast_node_free(Body); 175 176 auto Init = isl_ast_node_for_get_init(For); 177 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 178 return -1; 179 auto Inc = isl_ast_node_for_get_inc(For); 180 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 181 return -1; 182 CmpInst::Predicate Predicate; 183 auto UB = getUpperBound(For, Predicate); 184 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 185 isl_ast_expr_free(UB); 186 return -1; 187 } 188 auto UpVal = isl_ast_expr_get_val(UB); 189 isl_ast_expr_free(UB); 190 int NumberIterations = isl_val_get_num_si(UpVal); 191 isl_val_free(UpVal); 192 if (NumberIterations < 0) 193 return -1; 194 if (Predicate == CmpInst::ICMP_SLT) 195 return NumberIterations; 196 else 197 return NumberIterations + 1; 198 } 199 200 /// Extract the values and SCEVs needed to generate code for a block. 201 static int findReferencesInBlock(struct SubtreeReferences &References, 202 const ScopStmt *Stmt, const BasicBlock *BB) { 203 for (const Instruction &Inst : *BB) 204 for (Value *SrcVal : Inst.operands()) { 205 auto *Scope = References.LI.getLoopFor(BB); 206 if (canSynthesize(SrcVal, References.S, &References.LI, &References.SE, 207 Scope)) { 208 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 209 continue; 210 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 211 References.Values.insert(NewVal); 212 } 213 return 0; 214 } 215 216 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 217 bool CreateScalarRefs) { 218 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 219 220 if (Stmt->isBlockStmt()) 221 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 222 else { 223 assert(Stmt->isRegionStmt() && 224 "Stmt was neither block nor region statement"); 225 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 226 findReferencesInBlock(References, Stmt, BB); 227 } 228 229 for (auto &Access : *Stmt) { 230 if (Access->isArrayKind()) { 231 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 232 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 233 if (Stmt->getParent()->contains(OpInst)) 234 continue; 235 236 References.Values.insert(BasePtr); 237 continue; 238 } 239 240 if (CreateScalarRefs) 241 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 242 } 243 244 return isl_stat_ok; 245 } 246 247 /// Extract the out-of-scop values and SCEVs referenced from a set describing 248 /// a ScopStmt. 249 /// 250 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 251 /// statement and the base pointers of the memory accesses. For scalar 252 /// statements we force the generation of alloca memory locations and list 253 /// these locations in the set of out-of-scop values as well. 254 /// 255 /// @param Set A set which references the ScopStmt we are interested in. 256 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 257 /// structure. 258 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 259 void *UserPtr) { 260 isl_id *Id = isl_set_get_tuple_id(Set); 261 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 262 isl_id_free(Id); 263 isl_set_free(Set); 264 return addReferencesFromStmt(Stmt, UserPtr); 265 } 266 267 /// Extract the out-of-scop values and SCEVs referenced from a union set 268 /// referencing multiple ScopStmts. 269 /// 270 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 271 /// statement and the base pointers of the memory accesses. For scalar 272 /// statements we force the generation of alloca memory locations and list 273 /// these locations in the set of out-of-scop values as well. 274 /// 275 /// @param USet A union set referencing the ScopStmts we are interested 276 /// in. 277 /// @param References The SubtreeReferences data structure through which 278 /// results are returned and further information is 279 /// provided. 280 static void 281 addReferencesFromStmtUnionSet(isl_union_set *USet, 282 struct SubtreeReferences &References) { 283 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 284 isl_union_set_free(USet); 285 } 286 287 __isl_give isl_union_map * 288 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 289 return IslAstInfo::getSchedule(For); 290 } 291 292 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 293 SetVector<Value *> &Values, 294 SetVector<const Loop *> &Loops) { 295 296 SetVector<const SCEV *> SCEVs; 297 struct SubtreeReferences References = { 298 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 299 300 for (const auto &I : IDToValue) 301 Values.insert(I.second); 302 303 for (const auto &I : OutsideLoopIterations) 304 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 305 306 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 307 addReferencesFromStmtUnionSet(Schedule, References); 308 309 for (const SCEV *Expr : SCEVs) { 310 findValues(Expr, SE, Values); 311 findLoops(Expr, Loops); 312 } 313 314 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 315 316 /// Remove loops that contain the scop or that are part of the scop, as they 317 /// are considered local. This leaves only loops that are before the scop, but 318 /// do not contain the scop itself. 319 Loops.remove_if([this](const Loop *L) { 320 return S.contains(L) || L->contains(S.getEntry()); 321 }); 322 } 323 324 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 325 SmallPtrSet<Value *, 5> Inserted; 326 327 for (const auto &I : IDToValue) { 328 IDToValue[I.first] = NewValues[I.second]; 329 Inserted.insert(I.second); 330 } 331 332 for (const auto &I : NewValues) { 333 if (Inserted.count(I.first)) 334 continue; 335 336 ValueMap[I.first] = I.second; 337 } 338 } 339 340 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 341 std::vector<Value *> &IVS, 342 __isl_take isl_id *IteratorID, 343 __isl_take isl_union_map *Schedule) { 344 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 345 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 346 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 347 isl_ast_expr_free(StmtExpr); 348 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 349 std::vector<LoopToScevMapT> VLTS(IVS.size()); 350 351 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 352 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 353 isl_map *S = isl_map_from_union_map(Schedule); 354 355 auto *NewAccesses = createNewAccesses(Stmt, User); 356 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 357 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 358 isl_id_to_ast_expr_free(NewAccesses); 359 isl_map_free(S); 360 isl_id_free(Id); 361 isl_ast_node_free(User); 362 } 363 364 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 365 auto *Id = isl_ast_node_mark_get_id(Node); 366 auto Child = isl_ast_node_mark_get_node(Node); 367 isl_ast_node_free(Node); 368 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 369 // it will be optimized away and we should skip it. 370 if (!strcmp(isl_id_get_name(Id), "SIMD") && 371 isl_ast_node_get_type(Child) == isl_ast_node_for) { 372 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 373 int VectorWidth = getNumberOfIterations(Child); 374 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 375 createForVector(Child, VectorWidth); 376 else 377 createForSequential(Child, true); 378 isl_id_free(Id); 379 return; 380 } 381 create(Child); 382 isl_id_free(Id); 383 } 384 385 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 386 int VectorWidth) { 387 isl_ast_node *Body = isl_ast_node_for_get_body(For); 388 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 389 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 390 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 391 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 392 393 Value *ValueLB = ExprBuilder.create(Init); 394 Value *ValueInc = ExprBuilder.create(Inc); 395 396 Type *MaxType = ExprBuilder.getType(Iterator); 397 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 398 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 399 400 if (MaxType != ValueLB->getType()) 401 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 402 if (MaxType != ValueInc->getType()) 403 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 404 405 std::vector<Value *> IVS(VectorWidth); 406 IVS[0] = ValueLB; 407 408 for (int i = 1; i < VectorWidth; i++) 409 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 410 411 isl_union_map *Schedule = getScheduleForAstNode(For); 412 assert(Schedule && "For statement annotation does not contain its schedule"); 413 414 IDToValue[IteratorID] = ValueLB; 415 416 switch (isl_ast_node_get_type(Body)) { 417 case isl_ast_node_user: 418 createUserVector(Body, IVS, isl_id_copy(IteratorID), 419 isl_union_map_copy(Schedule)); 420 break; 421 case isl_ast_node_block: { 422 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 423 424 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 425 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 426 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 427 428 isl_ast_node_free(Body); 429 isl_ast_node_list_free(List); 430 break; 431 } 432 default: 433 isl_ast_node_dump(Body); 434 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 435 } 436 437 IDToValue.erase(IDToValue.find(IteratorID)); 438 isl_id_free(IteratorID); 439 isl_union_map_free(Schedule); 440 441 isl_ast_node_free(For); 442 isl_ast_expr_free(Iterator); 443 } 444 445 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 446 bool KnownParallel) { 447 isl_ast_node *Body; 448 isl_ast_expr *Init, *Inc, *Iterator, *UB; 449 isl_id *IteratorID; 450 Value *ValueLB, *ValueUB, *ValueInc; 451 Type *MaxType; 452 BasicBlock *ExitBlock; 453 Value *IV; 454 CmpInst::Predicate Predicate; 455 bool Parallel; 456 457 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 458 !IslAstInfo::isReductionParallel(For)); 459 460 Body = isl_ast_node_for_get_body(For); 461 462 // isl_ast_node_for_is_degenerate(For) 463 // 464 // TODO: For degenerated loops we could generate a plain assignment. 465 // However, for now we just reuse the logic for normal loops, which will 466 // create a loop with a single iteration. 467 468 Init = isl_ast_node_for_get_init(For); 469 Inc = isl_ast_node_for_get_inc(For); 470 Iterator = isl_ast_node_for_get_iterator(For); 471 IteratorID = isl_ast_expr_get_id(Iterator); 472 UB = getUpperBound(For, Predicate); 473 474 ValueLB = ExprBuilder.create(Init); 475 ValueUB = ExprBuilder.create(UB); 476 ValueInc = ExprBuilder.create(Inc); 477 478 MaxType = ExprBuilder.getType(Iterator); 479 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 480 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 481 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 482 483 if (MaxType != ValueLB->getType()) 484 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 485 if (MaxType != ValueUB->getType()) 486 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 487 if (MaxType != ValueInc->getType()) 488 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 489 490 // If we can show that LB <Predicate> UB holds at least once, we can 491 // omit the GuardBB in front of the loop. 492 bool UseGuardBB = 493 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 494 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock, 495 Predicate, &Annotator, Parallel, UseGuardBB); 496 IDToValue[IteratorID] = IV; 497 498 create(Body); 499 500 Annotator.popLoop(Parallel); 501 502 IDToValue.erase(IDToValue.find(IteratorID)); 503 504 Builder.SetInsertPoint(&ExitBlock->front()); 505 506 isl_ast_node_free(For); 507 isl_ast_expr_free(Iterator); 508 isl_id_free(IteratorID); 509 } 510 511 /// Remove the BBs contained in a (sub)function from the dominator tree. 512 /// 513 /// This function removes the basic blocks that are part of a subfunction from 514 /// the dominator tree. Specifically, when generating code it may happen that at 515 /// some point the code generation continues in a new sub-function (e.g., when 516 /// generating OpenMP code). The basic blocks that are created in this 517 /// sub-function are then still part of the dominator tree of the original 518 /// function, such that the dominator tree reaches over function boundaries. 519 /// This is not only incorrect, but also causes crashes. This function now 520 /// removes from the dominator tree all basic blocks that are dominated (and 521 /// consequently reachable) from the entry block of this (sub)function. 522 /// 523 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 524 /// the function/region it runs on. Hence, the pure need for this function shows 525 /// that we do not comply to this rule. At the moment, this does not cause any 526 /// issues, but we should be aware that such issues may appear. Unfortunately 527 /// the current LLVM pass infrastructure does not allow to make Polly a module 528 /// or call-graph pass to solve this issue, as such a pass would not have access 529 /// to the per-function analyses passes needed by Polly. A future pass manager 530 /// infrastructure is supposed to enable such kind of access possibly allowing 531 /// us to create a cleaner solution here. 532 /// 533 /// FIXME: Instead of adding the dominance information and then dropping it 534 /// later on, we should try to just not add it in the first place. This requires 535 /// some careful testing to make sure this does not break in interaction with 536 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 537 /// which may try to update it. 538 /// 539 /// @param F The function which contains the BBs to removed. 540 /// @param DT The dominator tree from which to remove the BBs. 541 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 542 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 543 std::vector<BasicBlock *> Nodes; 544 545 // We can only remove an element from the dominator tree, if all its children 546 // have been removed. To ensure this we obtain the list of nodes to remove 547 // using a post-order tree traversal. 548 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 549 Nodes.push_back(I->getBlock()); 550 551 for (BasicBlock *BB : Nodes) 552 DT.eraseNode(BB); 553 } 554 555 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 556 isl_ast_node *Body; 557 isl_ast_expr *Init, *Inc, *Iterator, *UB; 558 isl_id *IteratorID; 559 Value *ValueLB, *ValueUB, *ValueInc; 560 Type *MaxType; 561 Value *IV; 562 CmpInst::Predicate Predicate; 563 564 // The preamble of parallel code interacts different than normal code with 565 // e.g., scalar initialization. Therefore, we ensure the parallel code is 566 // separated from the last basic block. 567 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 568 &*Builder.GetInsertPoint(), &DT, &LI); 569 ParBB->setName("polly.parallel.for"); 570 Builder.SetInsertPoint(&ParBB->front()); 571 572 Body = isl_ast_node_for_get_body(For); 573 Init = isl_ast_node_for_get_init(For); 574 Inc = isl_ast_node_for_get_inc(For); 575 Iterator = isl_ast_node_for_get_iterator(For); 576 IteratorID = isl_ast_expr_get_id(Iterator); 577 UB = getUpperBound(For, Predicate); 578 579 ValueLB = ExprBuilder.create(Init); 580 ValueUB = ExprBuilder.create(UB); 581 ValueInc = ExprBuilder.create(Inc); 582 583 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 584 // expression, we need to adjust the loop blound by one. 585 if (Predicate == CmpInst::ICMP_SLT) 586 ValueUB = Builder.CreateAdd( 587 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 588 589 MaxType = ExprBuilder.getType(Iterator); 590 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 591 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 592 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 593 594 if (MaxType != ValueLB->getType()) 595 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 596 if (MaxType != ValueUB->getType()) 597 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 598 if (MaxType != ValueInc->getType()) 599 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 600 601 BasicBlock::iterator LoopBody; 602 603 SetVector<Value *> SubtreeValues; 604 SetVector<const Loop *> Loops; 605 606 getReferencesInSubtree(For, SubtreeValues, Loops); 607 608 // Create for all loops we depend on values that contain the current loop 609 // iteration. These values are necessary to generate code for SCEVs that 610 // depend on such loops. As a result we need to pass them to the subfunction. 611 for (const Loop *L : Loops) { 612 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 613 SE.getUnknown(Builder.getInt64(1)), 614 L, SCEV::FlagAnyWrap); 615 Value *V = generateSCEV(OuterLIV); 616 OutsideLoopIterations[L] = SE.getUnknown(V); 617 SubtreeValues.insert(V); 618 } 619 620 ValueMapT NewValues; 621 ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL); 622 623 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 624 SubtreeValues, NewValues, &LoopBody); 625 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 626 Builder.SetInsertPoint(&*LoopBody); 627 628 // Remember the parallel subfunction 629 ParallelSubfunctions.push_back(LoopBody->getFunction()); 630 631 // Save the current values. 632 auto ValueMapCopy = ValueMap; 633 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 634 635 updateValues(NewValues); 636 IDToValue[IteratorID] = IV; 637 638 ValueMapT NewValuesReverse; 639 640 for (auto P : NewValues) 641 NewValuesReverse[P.second] = P.first; 642 643 Annotator.addAlternativeAliasBases(NewValuesReverse); 644 645 create(Body); 646 647 Annotator.resetAlternativeAliasBases(); 648 // Restore the original values. 649 ValueMap = ValueMapCopy; 650 IDToValue = IDToValueCopy; 651 652 Builder.SetInsertPoint(&*AfterLoop); 653 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 654 655 for (const Loop *L : Loops) 656 OutsideLoopIterations.erase(L); 657 658 isl_ast_node_free(For); 659 isl_ast_expr_free(Iterator); 660 isl_id_free(IteratorID); 661 } 662 663 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 664 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 665 666 if (Vector && IslAstInfo::isInnermostParallel(For) && 667 !IslAstInfo::isReductionParallel(For)) { 668 int VectorWidth = getNumberOfIterations(For); 669 if (1 < VectorWidth && VectorWidth <= 16) { 670 createForVector(For, VectorWidth); 671 return; 672 } 673 } 674 675 if (IslAstInfo::isExecutedInParallel(For)) { 676 createForParallel(For); 677 return; 678 } 679 createForSequential(For, false); 680 } 681 682 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 683 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 684 685 Function *F = Builder.GetInsertBlock()->getParent(); 686 LLVMContext &Context = F->getContext(); 687 688 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 689 &*Builder.GetInsertPoint(), &DT, &LI); 690 CondBB->setName("polly.cond"); 691 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 692 MergeBB->setName("polly.merge"); 693 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 694 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 695 696 DT.addNewBlock(ThenBB, CondBB); 697 DT.addNewBlock(ElseBB, CondBB); 698 DT.changeImmediateDominator(MergeBB, CondBB); 699 700 Loop *L = LI.getLoopFor(CondBB); 701 if (L) { 702 L->addBasicBlockToLoop(ThenBB, LI); 703 L->addBasicBlockToLoop(ElseBB, LI); 704 } 705 706 CondBB->getTerminator()->eraseFromParent(); 707 708 Builder.SetInsertPoint(CondBB); 709 Value *Predicate = ExprBuilder.create(Cond); 710 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 711 Builder.SetInsertPoint(ThenBB); 712 Builder.CreateBr(MergeBB); 713 Builder.SetInsertPoint(ElseBB); 714 Builder.CreateBr(MergeBB); 715 Builder.SetInsertPoint(&ThenBB->front()); 716 717 create(isl_ast_node_if_get_then(If)); 718 719 Builder.SetInsertPoint(&ElseBB->front()); 720 721 if (isl_ast_node_if_has_else(If)) 722 create(isl_ast_node_if_get_else(If)); 723 724 Builder.SetInsertPoint(&MergeBB->front()); 725 726 isl_ast_node_free(If); 727 } 728 729 __isl_give isl_id_to_ast_expr * 730 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 731 __isl_keep isl_ast_node *Node) { 732 isl_id_to_ast_expr *NewAccesses = 733 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 734 735 auto *Build = IslAstInfo::getBuild(Node); 736 assert(Build && "Could not obtain isl_ast_build from user node"); 737 Stmt->setAstBuild(Build); 738 739 for (auto *MA : *Stmt) { 740 if (!MA->hasNewAccessRelation()) { 741 if (PollyGenerateExpressions) { 742 if (!MA->isAffine()) 743 continue; 744 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 745 continue; 746 747 auto *BasePtr = 748 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 749 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 750 continue; 751 } else { 752 continue; 753 } 754 } 755 assert(MA->isAffine() && 756 "Only affine memory accesses can be code generated"); 757 assert(!MA->getLatestScopArrayInfo()->getBasePtrOriginSAI() && 758 "Generating new index expressions to indirect arrays not working"); 759 760 auto Schedule = isl_ast_build_get_schedule(Build); 761 762 #ifndef NDEBUG 763 auto Dom = Stmt->getDomain(); 764 auto SchedDom = isl_set_from_union_set( 765 isl_union_map_domain(isl_union_map_copy(Schedule))); 766 auto AccDom = isl_map_domain(MA->getAccessRelation()); 767 Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext()); 768 SchedDom = 769 isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext()); 770 assert(isl_set_is_subset(SchedDom, AccDom) && 771 "Access relation not defined on full schedule domain"); 772 assert(isl_set_is_subset(Dom, AccDom) && 773 "Access relation not defined on full domain"); 774 isl_set_free(AccDom); 775 isl_set_free(SchedDom); 776 isl_set_free(Dom); 777 #endif 778 779 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 780 781 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 782 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 783 } 784 785 return NewAccesses; 786 } 787 788 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 789 ScopStmt *Stmt, LoopToScevMapT <S) { 790 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 791 "Expression of type 'op' expected"); 792 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 793 "Opertation of type 'call' expected"); 794 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 795 isl_ast_expr *SubExpr; 796 Value *V; 797 798 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 799 V = ExprBuilder.create(SubExpr); 800 ScalarEvolution *SE = Stmt->getParent()->getSE(); 801 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 802 } 803 804 isl_ast_expr_free(Expr); 805 } 806 807 void IslNodeBuilder::createSubstitutionsVector( 808 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 809 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 810 __isl_take isl_id *IteratorID) { 811 int i = 0; 812 813 Value *OldValue = IDToValue[IteratorID]; 814 for (Value *IV : IVS) { 815 IDToValue[IteratorID] = IV; 816 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 817 i++; 818 } 819 820 IDToValue[IteratorID] = OldValue; 821 isl_id_free(IteratorID); 822 isl_ast_expr_free(Expr); 823 } 824 825 void IslNodeBuilder::generateCopyStmt( 826 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 827 assert(Stmt->size() == 2); 828 auto ReadAccess = Stmt->begin(); 829 auto WriteAccess = ReadAccess++; 830 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 831 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 832 "Accesses use the same data type"); 833 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 834 auto *AccessExpr = 835 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId()); 836 auto *LoadValue = ExprBuilder.create(AccessExpr); 837 AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId()); 838 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 839 Builder.CreateStore(LoadValue, StoreAddr); 840 } 841 842 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 843 LoopToScevMapT LTS; 844 isl_id *Id; 845 ScopStmt *Stmt; 846 847 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 848 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 849 Id = isl_ast_expr_get_id(StmtExpr); 850 isl_ast_expr_free(StmtExpr); 851 852 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 853 854 Stmt = (ScopStmt *)isl_id_get_user(Id); 855 auto *NewAccesses = createNewAccesses(Stmt, User); 856 if (Stmt->isCopyStmt()) { 857 generateCopyStmt(Stmt, NewAccesses); 858 isl_ast_expr_free(Expr); 859 } else { 860 createSubstitutions(Expr, Stmt, LTS); 861 862 if (Stmt->isBlockStmt()) 863 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 864 else 865 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 866 } 867 868 isl_id_to_ast_expr_free(NewAccesses); 869 isl_ast_node_free(User); 870 isl_id_free(Id); 871 } 872 873 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 874 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 875 876 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 877 create(isl_ast_node_list_get_ast_node(List, i)); 878 879 isl_ast_node_free(Block); 880 isl_ast_node_list_free(List); 881 } 882 883 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 884 switch (isl_ast_node_get_type(Node)) { 885 case isl_ast_node_error: 886 llvm_unreachable("code generation error"); 887 case isl_ast_node_mark: 888 createMark(Node); 889 return; 890 case isl_ast_node_for: 891 createFor(Node); 892 return; 893 case isl_ast_node_if: 894 createIf(Node); 895 return; 896 case isl_ast_node_user: 897 createUser(Node); 898 return; 899 case isl_ast_node_block: 900 createBlock(Node); 901 return; 902 } 903 904 llvm_unreachable("Unknown isl_ast_node type"); 905 } 906 907 bool IslNodeBuilder::materializeValue(isl_id *Id) { 908 // If the Id is already mapped, skip it. 909 if (!IDToValue.count(Id)) { 910 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 911 Value *V = nullptr; 912 913 // Parameters could refere to invariant loads that need to be 914 // preloaded before we can generate code for the parameter. Thus, 915 // check if any value refered to in ParamSCEV is an invariant load 916 // and if so make sure its equivalence class is preloaded. 917 SetVector<Value *> Values; 918 findValues(ParamSCEV, SE, Values); 919 for (auto *Val : Values) { 920 921 // Check if the value is an instruction in a dead block within the SCoP 922 // and if so do not code generate it. 923 if (auto *Inst = dyn_cast<Instruction>(Val)) { 924 if (S.contains(Inst)) { 925 bool IsDead = true; 926 927 // Check for "undef" loads first, then if there is a statement for 928 // the parent of Inst and lastly if the parent of Inst has an empty 929 // domain. In the first and last case the instruction is dead but if 930 // there is a statement or the domain is not empty Inst is not dead. 931 auto MemInst = MemAccInst::dyn_cast(Inst); 932 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 933 if (Address && 934 SE.getUnknown(UndefValue::get(Address->getType())) == 935 SE.getPointerBase(SE.getSCEV(Address))) { 936 } else if (S.getStmtFor(Inst)) { 937 IsDead = false; 938 } else { 939 auto *Domain = S.getDomainConditions(Inst->getParent()); 940 IsDead = isl_set_is_empty(Domain); 941 isl_set_free(Domain); 942 } 943 944 if (IsDead) { 945 V = UndefValue::get(ParamSCEV->getType()); 946 break; 947 } 948 } 949 } 950 951 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 952 953 // Check if this invariant access class is empty, hence if we never 954 // actually added a loads instruction to it. In that case it has no 955 // (meaningful) users and we should not try to code generate it. 956 if (IAClass->InvariantAccesses.empty()) 957 V = UndefValue::get(ParamSCEV->getType()); 958 959 if (!preloadInvariantEquivClass(*IAClass)) { 960 isl_id_free(Id); 961 return false; 962 } 963 } 964 } 965 966 V = V ? V : generateSCEV(ParamSCEV); 967 IDToValue[Id] = V; 968 } 969 970 isl_id_free(Id); 971 return true; 972 } 973 974 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) { 975 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 976 if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1)) 977 continue; 978 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 979 if (!materializeValue(Id)) 980 return false; 981 } 982 return true; 983 } 984 985 /// Add the number of dimensions in @p BS to @p U. 986 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) { 987 unsigned *NumTotalDim = static_cast<unsigned *>(U); 988 *NumTotalDim += isl_basic_set_total_dim(BS); 989 isl_basic_set_free(BS); 990 return isl_stat_ok; 991 } 992 993 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 994 isl_ast_build *Build, 995 Instruction *AccInst) { 996 997 // TODO: This check could be performed in the ScopInfo already. 998 unsigned NumTotalDim = 0; 999 isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim); 1000 if (NumTotalDim > MaxDimensionsInAccessRange) { 1001 isl_set_free(AccessRange); 1002 return nullptr; 1003 } 1004 1005 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1006 isl_ast_expr *Access = 1007 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1008 auto *Address = isl_ast_expr_address_of(Access); 1009 auto *AddressValue = ExprBuilder.create(Address); 1010 Value *PreloadVal; 1011 1012 // Correct the type as the SAI might have a different type than the user 1013 // expects, especially if the base pointer is a struct. 1014 Type *Ty = AccInst->getType(); 1015 1016 auto *Ptr = AddressValue; 1017 auto Name = Ptr->getName(); 1018 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast"); 1019 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1020 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1021 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1022 1023 // TODO: This is only a hot fix for SCoP sequences that use the same load 1024 // instruction contained and hoisted by one of the SCoPs. 1025 if (SE.isSCEVable(Ty)) 1026 SE.forgetValue(AccInst); 1027 1028 return PreloadVal; 1029 } 1030 1031 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1032 isl_set *Domain) { 1033 1034 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 1035 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 1036 1037 if (!materializeParameters(AccessRange, false)) { 1038 isl_set_free(AccessRange); 1039 isl_set_free(Domain); 1040 return nullptr; 1041 } 1042 1043 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 1044 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1045 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1046 isl_set_free(Universe); 1047 1048 Instruction *AccInst = MA.getAccessInstruction(); 1049 Type *AccInstTy = AccInst->getType(); 1050 1051 Value *PreloadVal = nullptr; 1052 if (AlwaysExecuted) { 1053 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1054 isl_ast_build_free(Build); 1055 isl_set_free(Domain); 1056 return PreloadVal; 1057 } 1058 1059 if (!materializeParameters(Domain, false)) { 1060 isl_ast_build_free(Build); 1061 isl_set_free(AccessRange); 1062 isl_set_free(Domain); 1063 return nullptr; 1064 } 1065 1066 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1067 Domain = nullptr; 1068 1069 ExprBuilder.setTrackOverflow(true); 1070 Value *Cond = ExprBuilder.create(DomainCond); 1071 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1072 "polly.preload.cond.overflown"); 1073 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1074 ExprBuilder.setTrackOverflow(false); 1075 1076 if (!Cond->getType()->isIntegerTy(1)) 1077 Cond = Builder.CreateIsNotNull(Cond); 1078 1079 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1080 &*Builder.GetInsertPoint(), &DT, &LI); 1081 CondBB->setName("polly.preload.cond"); 1082 1083 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1084 MergeBB->setName("polly.preload.merge"); 1085 1086 Function *F = Builder.GetInsertBlock()->getParent(); 1087 LLVMContext &Context = F->getContext(); 1088 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1089 1090 DT.addNewBlock(ExecBB, CondBB); 1091 if (Loop *L = LI.getLoopFor(CondBB)) 1092 L->addBasicBlockToLoop(ExecBB, LI); 1093 1094 auto *CondBBTerminator = CondBB->getTerminator(); 1095 Builder.SetInsertPoint(CondBBTerminator); 1096 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1097 CondBBTerminator->eraseFromParent(); 1098 1099 Builder.SetInsertPoint(ExecBB); 1100 Builder.CreateBr(MergeBB); 1101 1102 Builder.SetInsertPoint(ExecBB->getTerminator()); 1103 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1104 Builder.SetInsertPoint(MergeBB->getTerminator()); 1105 auto *MergePHI = Builder.CreatePHI( 1106 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1107 PreloadVal = MergePHI; 1108 1109 if (!PreAccInst) { 1110 PreloadVal = nullptr; 1111 PreAccInst = UndefValue::get(AccInstTy); 1112 } 1113 1114 MergePHI->addIncoming(PreAccInst, ExecBB); 1115 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1116 1117 isl_ast_build_free(Build); 1118 return PreloadVal; 1119 } 1120 1121 bool IslNodeBuilder::preloadInvariantEquivClass( 1122 InvariantEquivClassTy &IAClass) { 1123 // For an equivalence class of invariant loads we pre-load the representing 1124 // element with the unified execution context. However, we have to map all 1125 // elements of the class to the one preloaded load as they are referenced 1126 // during the code generation and therefor need to be mapped. 1127 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1128 if (MAs.empty()) 1129 return true; 1130 1131 MemoryAccess *MA = MAs.front(); 1132 assert(MA->isArrayKind() && MA->isRead()); 1133 1134 // If the access function was already mapped, the preload of this equivalence 1135 // class was triggered earlier already and doesn't need to be done again. 1136 if (ValueMap.count(MA->getAccessInstruction())) 1137 return true; 1138 1139 // Check for recursion which can be caused by additional constraints, e.g., 1140 // non-finite loop constraints. In such a case we have to bail out and insert 1141 // a "false" runtime check that will cause the original code to be executed. 1142 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1143 if (!PreloadedPtrs.insert(PtrId).second) 1144 return false; 1145 1146 // The execution context of the IAClass. 1147 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1148 1149 // If the base pointer of this class is dependent on another one we have to 1150 // make sure it was preloaded already. 1151 auto *SAI = MA->getScopArrayInfo(); 1152 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1153 if (!preloadInvariantEquivClass(*BaseIAClass)) 1154 return false; 1155 1156 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1157 // we need to refine the ExecutionCtx. 1158 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1159 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1160 } 1161 1162 // If the size of a dimension is dependent on another class, make sure it is 1163 // preloaded. 1164 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1165 const SCEV *Dim = SAI->getDimensionSize(i); 1166 SetVector<Value *> Values; 1167 findValues(Dim, SE, Values); 1168 for (auto *Val : Values) { 1169 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1170 if (!preloadInvariantEquivClass(*BaseIAClass)) 1171 return false; 1172 1173 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1174 // and we need to refine the ExecutionCtx. 1175 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1176 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1177 } 1178 } 1179 } 1180 1181 Instruction *AccInst = MA->getAccessInstruction(); 1182 Type *AccInstTy = AccInst->getType(); 1183 1184 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1185 if (!PreloadVal) 1186 return false; 1187 1188 for (const MemoryAccess *MA : MAs) { 1189 Instruction *MAAccInst = MA->getAccessInstruction(); 1190 assert(PreloadVal->getType() == MAAccInst->getType()); 1191 ValueMap[MAAccInst] = PreloadVal; 1192 } 1193 1194 if (SE.isSCEVable(AccInstTy)) { 1195 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1196 if (ParamId) 1197 IDToValue[ParamId] = PreloadVal; 1198 isl_id_free(ParamId); 1199 } 1200 1201 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1202 auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a"); 1203 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1204 Builder.CreateStore(PreloadVal, Alloca); 1205 1206 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1207 Value *BasePtr = DerivedSAI->getBasePtr(); 1208 1209 for (const MemoryAccess *MA : MAs) { 1210 // As the derived SAI information is quite coarse, any load from the 1211 // current SAI could be the base pointer of the derived SAI, however we 1212 // should only change the base pointer of the derived SAI if we actually 1213 // preloaded it. 1214 if (BasePtr == MA->getBaseAddr()) { 1215 assert(BasePtr->getType() == PreloadVal->getType()); 1216 DerivedSAI->setBasePtr(PreloadVal); 1217 } 1218 1219 // For scalar derived SAIs we remap the alloca used for the derived value. 1220 if (BasePtr == MA->getAccessInstruction()) { 1221 if (DerivedSAI->isPHIKind()) 1222 PHIOpMap[BasePtr] = Alloca; 1223 else 1224 ScalarMap[BasePtr] = Alloca; 1225 } 1226 } 1227 } 1228 1229 for (const MemoryAccess *MA : MAs) { 1230 1231 Instruction *MAAccInst = MA->getAccessInstruction(); 1232 // Use the escape system to get the correct value to users outside the SCoP. 1233 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1234 for (auto *U : MAAccInst->users()) 1235 if (Instruction *UI = dyn_cast<Instruction>(U)) 1236 if (!S.contains(UI)) 1237 EscapeUsers.push_back(UI); 1238 1239 if (EscapeUsers.empty()) 1240 continue; 1241 1242 EscapeMap[MA->getAccessInstruction()] = 1243 std::make_pair(Alloca, std::move(EscapeUsers)); 1244 } 1245 1246 return true; 1247 } 1248 1249 void IslNodeBuilder::allocateNewArrays() { 1250 for (auto &SAI : S.arrays()) { 1251 if (SAI->getBasePtr()) 1252 continue; 1253 1254 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1255 "The size of the outermost dimension is used to declare newly " 1256 "created arrays that require memory allocation."); 1257 1258 Type *NewArrayType = nullptr; 1259 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1260 auto *DimSize = SAI->getDimensionSize(i); 1261 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1262 ->getAPInt() 1263 .getLimitedValue(); 1264 1265 if (!NewArrayType) 1266 NewArrayType = SAI->getElementType(); 1267 1268 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1269 } 1270 1271 auto InstIt = 1272 Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator(); 1273 Value *CreatedArray = 1274 new AllocaInst(NewArrayType, SAI->getName(), &*InstIt); 1275 SAI->setBasePtr(CreatedArray); 1276 } 1277 } 1278 1279 bool IslNodeBuilder::preloadInvariantLoads() { 1280 1281 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1282 if (InvariantEquivClasses.empty()) 1283 return true; 1284 1285 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1286 &*Builder.GetInsertPoint(), &DT, &LI); 1287 PreLoadBB->setName("polly.preload.begin"); 1288 Builder.SetInsertPoint(&PreLoadBB->front()); 1289 1290 for (auto &IAClass : InvariantEquivClasses) 1291 if (!preloadInvariantEquivClass(IAClass)) 1292 return false; 1293 1294 return true; 1295 } 1296 1297 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1298 1299 // Materialize values for the parameters of the SCoP. 1300 materializeParameters(Context, /* all */ true); 1301 1302 // Generate values for the current loop iteration for all surrounding loops. 1303 // 1304 // We may also reference loops outside of the scop which do not contain the 1305 // scop itself, but as the number of such scops may be arbitrarily large we do 1306 // not generate code for them here, but only at the point of code generation 1307 // where these values are needed. 1308 Loop *L = LI.getLoopFor(S.getEntry()); 1309 1310 while (L != nullptr && S.contains(L)) 1311 L = L->getParentLoop(); 1312 1313 while (L != nullptr) { 1314 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1315 SE.getUnknown(Builder.getInt64(1)), 1316 L, SCEV::FlagAnyWrap); 1317 Value *V = generateSCEV(OuterLIV); 1318 OutsideLoopIterations[L] = SE.getUnknown(V); 1319 L = L->getParentLoop(); 1320 } 1321 1322 isl_set_free(Context); 1323 } 1324 1325 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1326 /// We pass the insert location of our Builder, as Polly ensures during IR 1327 /// generation that there is always a valid CFG into which instructions are 1328 /// inserted. As a result, the insertpoint is known to be always followed by a 1329 /// terminator instruction. This means the insert point may be specified by a 1330 /// terminator instruction, but it can never point to an ->end() iterator 1331 /// which does not have a corresponding instruction. Hence, dereferencing 1332 /// the insertpoint to obtain an instruction is known to be save. 1333 /// 1334 /// We also do not need to update the Builder here, as new instructions are 1335 /// always inserted _before_ the given InsertLocation. As a result, the 1336 /// insert location remains valid. 1337 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1338 "Insert location points after last valid instruction"); 1339 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1340 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1341 InsertLocation, &ValueMap, 1342 StartBlock->getSinglePredecessor()); 1343 } 1344 1345 /// The AST expression we generate to perform the run-time check assumes 1346 /// computations on integer types of infinite size. As we only use 64-bit 1347 /// arithmetic we check for overflows, in case of which we set the result 1348 /// of this run-time check to false to be cosnservatively correct, 1349 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1350 auto ExprBuilder = getExprBuilder(); 1351 ExprBuilder.setTrackOverflow(true); 1352 Value *RTC = ExprBuilder.create(Condition); 1353 if (!RTC->getType()->isIntegerTy(1)) 1354 RTC = Builder.CreateIsNotNull(RTC); 1355 Value *OverflowHappened = 1356 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1357 1358 if (PollyGenerateRTCPrint) { 1359 auto *F = Builder.GetInsertBlock()->getParent(); 1360 RuntimeDebugBuilder::createCPUPrinter( 1361 Builder, "F: " + F->getName().str() + " R: " + 1362 S.getRegion().getNameStr() + " __RTC: ", 1363 RTC, " Overflow: ", OverflowHappened); 1364 } 1365 1366 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1367 ExprBuilder.setTrackOverflow(false); 1368 1369 if (!isa<ConstantInt>(RTC)) 1370 VersionedScops++; 1371 1372 return RTC; 1373 } 1374