1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the IslNodeBuilder, a class to translate an isl AST into
11 // a LLVM-IR AST.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslAst.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/LoopGenerators.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/CodeGen/Utils.h"
23 #include "polly/Config/config.h"
24 #include "polly/DependenceInfo.h"
25 #include "polly/LinkAllPasses.h"
26 #include "polly/Options.h"
27 #include "polly/ScopInfo.h"
28 #include "polly/Support/GICHelper.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "polly/Support/ScopHelper.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/PostDominators.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "isl/aff.h"
42 #include "isl/ast.h"
43 #include "isl/ast_build.h"
44 #include "isl/list.h"
45 #include "isl/map.h"
46 #include "isl/set.h"
47 #include "isl/union_map.h"
48 #include "isl/union_set.h"
49 
50 using namespace polly;
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "polly-codegen"
54 
55 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
56 
57 // The maximal number of dimensions we allow during invariant load construction.
58 // More complex access ranges will result in very high compile time and are also
59 // unlikely to result in good code. This value is very high and should only
60 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
61 static int const MaxDimensionsInAccessRange = 9;
62 
63 static cl::opt<bool> PollyGenerateRTCPrint(
64     "polly-codegen-emit-rtc-print",
65     cl::desc("Emit code that prints the runtime check result dynamically."),
66     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
67 
68 // If this option is set we always use the isl AST generator to regenerate
69 // memory accesses. Without this option set we regenerate expressions using the
70 // original SCEV expressions and only generate new expressions in case the
71 // access relation has been changed and consequently must be regenerated.
72 static cl::opt<bool> PollyGenerateExpressions(
73     "polly-codegen-generate-expressions",
74     cl::desc("Generate AST expressions for unmodified and modified accesses"),
75     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
76 
77 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
78     "polly-target-first-level-cache-line-size",
79     cl::desc("The size of the first level cache line size specified in bytes."),
80     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
81 
82 __isl_give isl_ast_expr *
83 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
84                               ICmpInst::Predicate &Predicate) {
85   isl_id *UBID, *IteratorID;
86   isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
87   isl_ast_op_type Type;
88 
89   Cond = isl_ast_node_for_get_cond(For);
90   Iterator = isl_ast_node_for_get_iterator(For);
91   isl_ast_expr_get_type(Cond);
92   assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
93          "conditional expression is not an atomic upper bound");
94 
95   Type = isl_ast_expr_get_op_type(Cond);
96 
97   switch (Type) {
98   case isl_ast_op_le:
99     Predicate = ICmpInst::ICMP_SLE;
100     break;
101   case isl_ast_op_lt:
102     Predicate = ICmpInst::ICMP_SLT;
103     break;
104   default:
105     llvm_unreachable("Unexpected comparision type in loop conditon");
106   }
107 
108   Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
109 
110   assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
111          "conditional expression is not an atomic upper bound");
112 
113   UBID = isl_ast_expr_get_id(Arg0);
114 
115   assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
116          "Could not get the iterator");
117 
118   IteratorID = isl_ast_expr_get_id(Iterator);
119 
120   assert(UBID == IteratorID &&
121          "conditional expression is not an atomic upper bound");
122 
123   UB = isl_ast_expr_get_op_arg(Cond, 1);
124 
125   isl_ast_expr_free(Cond);
126   isl_ast_expr_free(Iterator);
127   isl_ast_expr_free(Arg0);
128   isl_id_free(IteratorID);
129   isl_id_free(UBID);
130 
131   return UB;
132 }
133 
134 /// Return true if a return value of Predicate is true for the value represented
135 /// by passed isl_ast_expr_int.
136 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
137                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
138   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
139     isl_ast_expr_free(Expr);
140     return false;
141   }
142   auto ExprVal = isl_ast_expr_get_val(Expr);
143   isl_ast_expr_free(Expr);
144   if (Predicate(ExprVal) != true) {
145     isl_val_free(ExprVal);
146     return false;
147   }
148   isl_val_free(ExprVal);
149   return true;
150 }
151 
152 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
153   assert(isl_ast_node_get_type(For) == isl_ast_node_for);
154   auto Body = isl_ast_node_for_get_body(For);
155 
156   // First, check if we can actually handle this code.
157   switch (isl_ast_node_get_type(Body)) {
158   case isl_ast_node_user:
159     break;
160   case isl_ast_node_block: {
161     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
162     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
163       isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
164       int Type = isl_ast_node_get_type(Node);
165       isl_ast_node_free(Node);
166       if (Type != isl_ast_node_user) {
167         isl_ast_node_list_free(List);
168         isl_ast_node_free(Body);
169         return -1;
170       }
171     }
172     isl_ast_node_list_free(List);
173     break;
174   }
175   default:
176     isl_ast_node_free(Body);
177     return -1;
178   }
179   isl_ast_node_free(Body);
180 
181   auto Init = isl_ast_node_for_get_init(For);
182   if (!checkIslAstExprInt(Init, isl_val_is_zero))
183     return -1;
184   auto Inc = isl_ast_node_for_get_inc(For);
185   if (!checkIslAstExprInt(Inc, isl_val_is_one))
186     return -1;
187   CmpInst::Predicate Predicate;
188   auto UB = getUpperBound(For, Predicate);
189   if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
190     isl_ast_expr_free(UB);
191     return -1;
192   }
193   auto UpVal = isl_ast_expr_get_val(UB);
194   isl_ast_expr_free(UB);
195   int NumberIterations = isl_val_get_num_si(UpVal);
196   isl_val_free(UpVal);
197   if (NumberIterations < 0)
198     return -1;
199   if (Predicate == CmpInst::ICMP_SLT)
200     return NumberIterations;
201   else
202     return NumberIterations + 1;
203 }
204 
205 /// Extract the values and SCEVs needed to generate code for a block.
206 static int findReferencesInBlock(struct SubtreeReferences &References,
207                                  const ScopStmt *Stmt, const BasicBlock *BB) {
208   for (const Instruction &Inst : *BB)
209     for (Value *SrcVal : Inst.operands()) {
210       auto *Scope = References.LI.getLoopFor(BB);
211       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
212         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
213         continue;
214       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
215         References.Values.insert(NewVal);
216     }
217   return 0;
218 }
219 
220 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
221                                bool CreateScalarRefs) {
222   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
223 
224   if (Stmt->isBlockStmt())
225     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
226   else {
227     assert(Stmt->isRegionStmt() &&
228            "Stmt was neither block nor region statement");
229     for (const BasicBlock *BB : Stmt->getRegion()->blocks())
230       findReferencesInBlock(References, Stmt, BB);
231   }
232 
233   for (auto &Access : *Stmt) {
234     if (Access->isArrayKind()) {
235       auto *BasePtr = Access->getScopArrayInfo()->getBasePtr();
236       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
237         if (Stmt->getParent()->contains(OpInst))
238           continue;
239 
240       References.Values.insert(BasePtr);
241       continue;
242     }
243 
244     if (CreateScalarRefs)
245       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
246   }
247 
248   return isl_stat_ok;
249 }
250 
251 /// Extract the out-of-scop values and SCEVs referenced from a set describing
252 /// a ScopStmt.
253 ///
254 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
255 /// statement and the base pointers of the memory accesses. For scalar
256 /// statements we force the generation of alloca memory locations and list
257 /// these locations in the set of out-of-scop values as well.
258 ///
259 /// @param Set     A set which references the ScopStmt we are interested in.
260 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
261 ///                structure.
262 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
263                                          void *UserPtr) {
264   isl_id *Id = isl_set_get_tuple_id(Set);
265   auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
266   isl_id_free(Id);
267   isl_set_free(Set);
268   return addReferencesFromStmt(Stmt, UserPtr);
269 }
270 
271 /// Extract the out-of-scop values and SCEVs referenced from a union set
272 /// referencing multiple ScopStmts.
273 ///
274 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
275 /// statement and the base pointers of the memory accesses. For scalar
276 /// statements we force the generation of alloca memory locations and list
277 /// these locations in the set of out-of-scop values as well.
278 ///
279 /// @param USet       A union set referencing the ScopStmts we are interested
280 ///                   in.
281 /// @param References The SubtreeReferences data structure through which
282 ///                   results are returned and further information is
283 ///                   provided.
284 static void
285 addReferencesFromStmtUnionSet(isl_union_set *USet,
286                               struct SubtreeReferences &References) {
287   isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
288   isl_union_set_free(USet);
289 }
290 
291 __isl_give isl_union_map *
292 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
293   return IslAstInfo::getSchedule(For);
294 }
295 
296 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
297                                             SetVector<Value *> &Values,
298                                             SetVector<const Loop *> &Loops) {
299 
300   SetVector<const SCEV *> SCEVs;
301   struct SubtreeReferences References = {
302       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()};
303 
304   for (const auto &I : IDToValue)
305     Values.insert(I.second);
306 
307   for (const auto &I : OutsideLoopIterations)
308     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
309 
310   isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
311   addReferencesFromStmtUnionSet(Schedule, References);
312 
313   for (const SCEV *Expr : SCEVs) {
314     findValues(Expr, SE, Values);
315     findLoops(Expr, Loops);
316   }
317 
318   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
319 
320   /// Remove loops that contain the scop or that are part of the scop, as they
321   /// are considered local. This leaves only loops that are before the scop, but
322   /// do not contain the scop itself.
323   Loops.remove_if([this](const Loop *L) {
324     return S.contains(L) || L->contains(S.getEntry());
325   });
326 }
327 
328 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
329   SmallPtrSet<Value *, 5> Inserted;
330 
331   for (const auto &I : IDToValue) {
332     IDToValue[I.first] = NewValues[I.second];
333     Inserted.insert(I.second);
334   }
335 
336   for (const auto &I : NewValues) {
337     if (Inserted.count(I.first))
338       continue;
339 
340     ValueMap[I.first] = I.second;
341   }
342 }
343 
344 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
345                                       std::vector<Value *> &IVS,
346                                       __isl_take isl_id *IteratorID,
347                                       __isl_take isl_union_map *Schedule) {
348   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
349   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
350   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
351   isl_ast_expr_free(StmtExpr);
352   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
353   std::vector<LoopToScevMapT> VLTS(IVS.size());
354 
355   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain());
356   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
357   isl_map *S = isl_map_from_union_map(Schedule);
358 
359   auto *NewAccesses = createNewAccesses(Stmt, User);
360   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
361   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
362   isl_id_to_ast_expr_free(NewAccesses);
363   isl_map_free(S);
364   isl_id_free(Id);
365   isl_ast_node_free(User);
366 }
367 
368 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
369   auto *Id = isl_ast_node_mark_get_id(Node);
370   auto Child = isl_ast_node_mark_get_node(Node);
371   isl_ast_node_free(Node);
372   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
373   // it will be optimized away and we should skip it.
374   if (!strcmp(isl_id_get_name(Id), "SIMD") &&
375       isl_ast_node_get_type(Child) == isl_ast_node_for) {
376     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
377     int VectorWidth = getNumberOfIterations(Child);
378     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
379       createForVector(Child, VectorWidth);
380     else
381       createForSequential(Child, true);
382     isl_id_free(Id);
383     return;
384   }
385   create(Child);
386   isl_id_free(Id);
387 }
388 
389 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
390                                      int VectorWidth) {
391   isl_ast_node *Body = isl_ast_node_for_get_body(For);
392   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
393   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
394   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
395   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
396 
397   Value *ValueLB = ExprBuilder.create(Init);
398   Value *ValueInc = ExprBuilder.create(Inc);
399 
400   Type *MaxType = ExprBuilder.getType(Iterator);
401   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
402   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
403 
404   if (MaxType != ValueLB->getType())
405     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
406   if (MaxType != ValueInc->getType())
407     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
408 
409   std::vector<Value *> IVS(VectorWidth);
410   IVS[0] = ValueLB;
411 
412   for (int i = 1; i < VectorWidth; i++)
413     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
414 
415   isl_union_map *Schedule = getScheduleForAstNode(For);
416   assert(Schedule && "For statement annotation does not contain its schedule");
417 
418   IDToValue[IteratorID] = ValueLB;
419 
420   switch (isl_ast_node_get_type(Body)) {
421   case isl_ast_node_user:
422     createUserVector(Body, IVS, isl_id_copy(IteratorID),
423                      isl_union_map_copy(Schedule));
424     break;
425   case isl_ast_node_block: {
426     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
427 
428     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
429       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
430                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
431 
432     isl_ast_node_free(Body);
433     isl_ast_node_list_free(List);
434     break;
435   }
436   default:
437     isl_ast_node_dump(Body);
438     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
439   }
440 
441   IDToValue.erase(IDToValue.find(IteratorID));
442   isl_id_free(IteratorID);
443   isl_union_map_free(Schedule);
444 
445   isl_ast_node_free(For);
446   isl_ast_expr_free(Iterator);
447 }
448 
449 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
450                                          bool KnownParallel) {
451   isl_ast_node *Body;
452   isl_ast_expr *Init, *Inc, *Iterator, *UB;
453   isl_id *IteratorID;
454   Value *ValueLB, *ValueUB, *ValueInc;
455   Type *MaxType;
456   BasicBlock *ExitBlock;
457   Value *IV;
458   CmpInst::Predicate Predicate;
459   bool Parallel;
460 
461   Parallel =
462       KnownParallel ||
463       (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
464 
465   Body = isl_ast_node_for_get_body(For);
466 
467   // isl_ast_node_for_is_degenerate(For)
468   //
469   // TODO: For degenerated loops we could generate a plain assignment.
470   //       However, for now we just reuse the logic for normal loops, which will
471   //       create a loop with a single iteration.
472 
473   Init = isl_ast_node_for_get_init(For);
474   Inc = isl_ast_node_for_get_inc(For);
475   Iterator = isl_ast_node_for_get_iterator(For);
476   IteratorID = isl_ast_expr_get_id(Iterator);
477   UB = getUpperBound(For, Predicate);
478 
479   ValueLB = ExprBuilder.create(Init);
480   ValueUB = ExprBuilder.create(UB);
481   ValueInc = ExprBuilder.create(Inc);
482 
483   MaxType = ExprBuilder.getType(Iterator);
484   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
485   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
486   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
487 
488   if (MaxType != ValueLB->getType())
489     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
490   if (MaxType != ValueUB->getType())
491     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
492   if (MaxType != ValueInc->getType())
493     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
494 
495   // If we can show that LB <Predicate> UB holds at least once, we can
496   // omit the GuardBB in front of the loop.
497   bool UseGuardBB =
498       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
499   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock,
500                   Predicate, &Annotator, Parallel, UseGuardBB);
501   IDToValue[IteratorID] = IV;
502 
503   create(Body);
504 
505   Annotator.popLoop(Parallel);
506 
507   IDToValue.erase(IDToValue.find(IteratorID));
508 
509   Builder.SetInsertPoint(&ExitBlock->front());
510 
511   isl_ast_node_free(For);
512   isl_ast_expr_free(Iterator);
513   isl_id_free(IteratorID);
514 }
515 
516 /// Remove the BBs contained in a (sub)function from the dominator tree.
517 ///
518 /// This function removes the basic blocks that are part of a subfunction from
519 /// the dominator tree. Specifically, when generating code it may happen that at
520 /// some point the code generation continues in a new sub-function (e.g., when
521 /// generating OpenMP code). The basic blocks that are created in this
522 /// sub-function are then still part of the dominator tree of the original
523 /// function, such that the dominator tree reaches over function boundaries.
524 /// This is not only incorrect, but also causes crashes. This function now
525 /// removes from the dominator tree all basic blocks that are dominated (and
526 /// consequently reachable) from the entry block of this (sub)function.
527 ///
528 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
529 /// the function/region it runs on. Hence, the pure need for this function shows
530 /// that we do not comply to this rule. At the moment, this does not cause any
531 /// issues, but we should be aware that such issues may appear. Unfortunately
532 /// the current LLVM pass infrastructure does not allow to make Polly a module
533 /// or call-graph pass to solve this issue, as such a pass would not have access
534 /// to the per-function analyses passes needed by Polly. A future pass manager
535 /// infrastructure is supposed to enable such kind of access possibly allowing
536 /// us to create a cleaner solution here.
537 ///
538 /// FIXME: Instead of adding the dominance information and then dropping it
539 /// later on, we should try to just not add it in the first place. This requires
540 /// some careful testing to make sure this does not break in interaction with
541 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
542 /// which may try to update it.
543 ///
544 /// @param F The function which contains the BBs to removed.
545 /// @param DT The dominator tree from which to remove the BBs.
546 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
547   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
548   std::vector<BasicBlock *> Nodes;
549 
550   // We can only remove an element from the dominator tree, if all its children
551   // have been removed. To ensure this we obtain the list of nodes to remove
552   // using a post-order tree traversal.
553   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
554     Nodes.push_back(I->getBlock());
555 
556   for (BasicBlock *BB : Nodes)
557     DT.eraseNode(BB);
558 }
559 
560 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
561   isl_ast_node *Body;
562   isl_ast_expr *Init, *Inc, *Iterator, *UB;
563   isl_id *IteratorID;
564   Value *ValueLB, *ValueUB, *ValueInc;
565   Type *MaxType;
566   Value *IV;
567   CmpInst::Predicate Predicate;
568 
569   // The preamble of parallel code interacts different than normal code with
570   // e.g., scalar initialization. Therefore, we ensure the parallel code is
571   // separated from the last basic block.
572   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
573                                  &*Builder.GetInsertPoint(), &DT, &LI);
574   ParBB->setName("polly.parallel.for");
575   Builder.SetInsertPoint(&ParBB->front());
576 
577   Body = isl_ast_node_for_get_body(For);
578   Init = isl_ast_node_for_get_init(For);
579   Inc = isl_ast_node_for_get_inc(For);
580   Iterator = isl_ast_node_for_get_iterator(For);
581   IteratorID = isl_ast_expr_get_id(Iterator);
582   UB = getUpperBound(For, Predicate);
583 
584   ValueLB = ExprBuilder.create(Init);
585   ValueUB = ExprBuilder.create(UB);
586   ValueInc = ExprBuilder.create(Inc);
587 
588   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
589   // expression, we need to adjust the loop blound by one.
590   if (Predicate == CmpInst::ICMP_SLT)
591     ValueUB = Builder.CreateAdd(
592         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
593 
594   MaxType = ExprBuilder.getType(Iterator);
595   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
596   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
597   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
598 
599   if (MaxType != ValueLB->getType())
600     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
601   if (MaxType != ValueUB->getType())
602     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
603   if (MaxType != ValueInc->getType())
604     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
605 
606   BasicBlock::iterator LoopBody;
607 
608   SetVector<Value *> SubtreeValues;
609   SetVector<const Loop *> Loops;
610 
611   getReferencesInSubtree(For, SubtreeValues, Loops);
612 
613   // Create for all loops we depend on values that contain the current loop
614   // iteration. These values are necessary to generate code for SCEVs that
615   // depend on such loops. As a result we need to pass them to the subfunction.
616   for (const Loop *L : Loops) {
617     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
618                                             SE.getUnknown(Builder.getInt64(1)),
619                                             L, SCEV::FlagAnyWrap);
620     Value *V = generateSCEV(OuterLIV);
621     OutsideLoopIterations[L] = SE.getUnknown(V);
622     SubtreeValues.insert(V);
623   }
624 
625   ValueMapT NewValues;
626   ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL);
627 
628   IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
629                                           SubtreeValues, NewValues, &LoopBody);
630   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
631   Builder.SetInsertPoint(&*LoopBody);
632 
633   // Remember the parallel subfunction
634   ParallelSubfunctions.push_back(LoopBody->getFunction());
635 
636   // Save the current values.
637   auto ValueMapCopy = ValueMap;
638   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
639 
640   updateValues(NewValues);
641   IDToValue[IteratorID] = IV;
642 
643   ValueMapT NewValuesReverse;
644 
645   for (auto P : NewValues)
646     NewValuesReverse[P.second] = P.first;
647 
648   Annotator.addAlternativeAliasBases(NewValuesReverse);
649 
650   create(Body);
651 
652   Annotator.resetAlternativeAliasBases();
653   // Restore the original values.
654   ValueMap = ValueMapCopy;
655   IDToValue = IDToValueCopy;
656 
657   Builder.SetInsertPoint(&*AfterLoop);
658   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
659 
660   for (const Loop *L : Loops)
661     OutsideLoopIterations.erase(L);
662 
663   isl_ast_node_free(For);
664   isl_ast_expr_free(Iterator);
665   isl_id_free(IteratorID);
666 }
667 
668 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
669   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
670 
671   if (Vector && IslAstInfo::isInnermostParallel(For) &&
672       !IslAstInfo::isReductionParallel(For)) {
673     int VectorWidth = getNumberOfIterations(For);
674     if (1 < VectorWidth && VectorWidth <= 16) {
675       createForVector(For, VectorWidth);
676       return;
677     }
678   }
679 
680   if (IslAstInfo::isExecutedInParallel(For)) {
681     createForParallel(For);
682     return;
683   }
684   createForSequential(For, false);
685 }
686 
687 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
688   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
689 
690   Function *F = Builder.GetInsertBlock()->getParent();
691   LLVMContext &Context = F->getContext();
692 
693   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
694                                   &*Builder.GetInsertPoint(), &DT, &LI);
695   CondBB->setName("polly.cond");
696   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
697   MergeBB->setName("polly.merge");
698   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
699   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
700 
701   DT.addNewBlock(ThenBB, CondBB);
702   DT.addNewBlock(ElseBB, CondBB);
703   DT.changeImmediateDominator(MergeBB, CondBB);
704 
705   Loop *L = LI.getLoopFor(CondBB);
706   if (L) {
707     L->addBasicBlockToLoop(ThenBB, LI);
708     L->addBasicBlockToLoop(ElseBB, LI);
709   }
710 
711   CondBB->getTerminator()->eraseFromParent();
712 
713   Builder.SetInsertPoint(CondBB);
714   Value *Predicate = ExprBuilder.create(Cond);
715   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
716   Builder.SetInsertPoint(ThenBB);
717   Builder.CreateBr(MergeBB);
718   Builder.SetInsertPoint(ElseBB);
719   Builder.CreateBr(MergeBB);
720   Builder.SetInsertPoint(&ThenBB->front());
721 
722   create(isl_ast_node_if_get_then(If));
723 
724   Builder.SetInsertPoint(&ElseBB->front());
725 
726   if (isl_ast_node_if_has_else(If))
727     create(isl_ast_node_if_get_else(If));
728 
729   Builder.SetInsertPoint(&MergeBB->front());
730 
731   isl_ast_node_free(If);
732 }
733 
734 __isl_give isl_id_to_ast_expr *
735 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
736                                   __isl_keep isl_ast_node *Node) {
737   isl_id_to_ast_expr *NewAccesses =
738       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0);
739 
740   auto *Build = IslAstInfo::getBuild(Node);
741   assert(Build && "Could not obtain isl_ast_build from user node");
742   Stmt->setAstBuild(Build);
743 
744   for (auto *MA : *Stmt) {
745     if (!MA->hasNewAccessRelation()) {
746       if (PollyGenerateExpressions) {
747         if (!MA->isAffine())
748           continue;
749         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
750           continue;
751 
752         auto *BasePtr =
753             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
754         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
755           continue;
756       } else {
757         continue;
758       }
759     }
760     assert(MA->isAffine() &&
761            "Only affine memory accesses can be code generated");
762 
763     auto Schedule = isl_ast_build_get_schedule(Build);
764 
765 #ifndef NDEBUG
766     auto Dom = Stmt->getDomain();
767     auto SchedDom = isl_set_from_union_set(
768         isl_union_map_domain(isl_union_map_copy(Schedule)));
769     auto AccDom = isl_map_domain(MA->getAccessRelation());
770     Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext());
771     SchedDom =
772         isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext());
773     assert(isl_set_is_subset(SchedDom, AccDom) &&
774            "Access relation not defined on full schedule domain");
775     assert(isl_set_is_subset(Dom, AccDom) &&
776            "Access relation not defined on full domain");
777     isl_set_free(AccDom);
778     isl_set_free(SchedDom);
779     isl_set_free(Dom);
780 #endif
781 
782     auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule);
783 
784     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
785     NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr);
786   }
787 
788   return NewAccesses;
789 }
790 
791 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
792                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
793   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
794          "Expression of type 'op' expected");
795   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
796          "Opertation of type 'call' expected");
797   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
798     isl_ast_expr *SubExpr;
799     Value *V;
800 
801     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
802     V = ExprBuilder.create(SubExpr);
803     ScalarEvolution *SE = Stmt->getParent()->getSE();
804     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
805   }
806 
807   isl_ast_expr_free(Expr);
808 }
809 
810 void IslNodeBuilder::createSubstitutionsVector(
811     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
812     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
813     __isl_take isl_id *IteratorID) {
814   int i = 0;
815 
816   Value *OldValue = IDToValue[IteratorID];
817   for (Value *IV : IVS) {
818     IDToValue[IteratorID] = IV;
819     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
820     i++;
821   }
822 
823   IDToValue[IteratorID] = OldValue;
824   isl_id_free(IteratorID);
825   isl_ast_expr_free(Expr);
826 }
827 
828 void IslNodeBuilder::generateCopyStmt(
829     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
830   assert(Stmt->size() == 2);
831   auto ReadAccess = Stmt->begin();
832   auto WriteAccess = ReadAccess++;
833   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
834   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
835          "Accesses use the same data type");
836   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
837   auto *AccessExpr =
838       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId());
839   auto *LoadValue = ExprBuilder.create(AccessExpr);
840   AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId());
841   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
842   Builder.CreateStore(LoadValue, StoreAddr);
843 }
844 
845 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
846   LoopToScevMapT LTS;
847   isl_id *Id;
848   ScopStmt *Stmt;
849 
850   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
851   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
852   Id = isl_ast_expr_get_id(StmtExpr);
853   isl_ast_expr_free(StmtExpr);
854 
855   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
856 
857   Stmt = (ScopStmt *)isl_id_get_user(Id);
858   auto *NewAccesses = createNewAccesses(Stmt, User);
859   if (Stmt->isCopyStmt()) {
860     generateCopyStmt(Stmt, NewAccesses);
861     isl_ast_expr_free(Expr);
862   } else {
863     createSubstitutions(Expr, Stmt, LTS);
864 
865     if (Stmt->isBlockStmt())
866       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
867     else
868       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
869   }
870 
871   isl_id_to_ast_expr_free(NewAccesses);
872   isl_ast_node_free(User);
873   isl_id_free(Id);
874 }
875 
876 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
877   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
878 
879   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
880     create(isl_ast_node_list_get_ast_node(List, i));
881 
882   isl_ast_node_free(Block);
883   isl_ast_node_list_free(List);
884 }
885 
886 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
887   switch (isl_ast_node_get_type(Node)) {
888   case isl_ast_node_error:
889     llvm_unreachable("code generation error");
890   case isl_ast_node_mark:
891     createMark(Node);
892     return;
893   case isl_ast_node_for:
894     createFor(Node);
895     return;
896   case isl_ast_node_if:
897     createIf(Node);
898     return;
899   case isl_ast_node_user:
900     createUser(Node);
901     return;
902   case isl_ast_node_block:
903     createBlock(Node);
904     return;
905   }
906 
907   llvm_unreachable("Unknown isl_ast_node type");
908 }
909 
910 bool IslNodeBuilder::materializeValue(isl_id *Id) {
911   // If the Id is already mapped, skip it.
912   if (!IDToValue.count(Id)) {
913     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
914     Value *V = nullptr;
915 
916     // Parameters could refere to invariant loads that need to be
917     // preloaded before we can generate code for the parameter. Thus,
918     // check if any value refered to in ParamSCEV is an invariant load
919     // and if so make sure its equivalence class is preloaded.
920     SetVector<Value *> Values;
921     findValues(ParamSCEV, SE, Values);
922     for (auto *Val : Values) {
923 
924       // Check if the value is an instruction in a dead block within the SCoP
925       // and if so do not code generate it.
926       if (auto *Inst = dyn_cast<Instruction>(Val)) {
927         if (S.contains(Inst)) {
928           bool IsDead = true;
929 
930           // Check for "undef" loads first, then if there is a statement for
931           // the parent of Inst and lastly if the parent of Inst has an empty
932           // domain. In the first and last case the instruction is dead but if
933           // there is a statement or the domain is not empty Inst is not dead.
934           auto MemInst = MemAccInst::dyn_cast(Inst);
935           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
936           if (Address &&
937               SE.getUnknown(UndefValue::get(Address->getType())) ==
938                   SE.getPointerBase(SE.getSCEV(Address))) {
939           } else if (S.getStmtFor(Inst)) {
940             IsDead = false;
941           } else {
942             auto *Domain = S.getDomainConditions(Inst->getParent());
943             IsDead = isl_set_is_empty(Domain);
944             isl_set_free(Domain);
945           }
946 
947           if (IsDead) {
948             V = UndefValue::get(ParamSCEV->getType());
949             break;
950           }
951         }
952       }
953 
954       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
955 
956         // Check if this invariant access class is empty, hence if we never
957         // actually added a loads instruction to it. In that case it has no
958         // (meaningful) users and we should not try to code generate it.
959         if (IAClass->InvariantAccesses.empty())
960           V = UndefValue::get(ParamSCEV->getType());
961 
962         if (!preloadInvariantEquivClass(*IAClass)) {
963           isl_id_free(Id);
964           return false;
965         }
966       }
967     }
968 
969     V = V ? V : generateSCEV(ParamSCEV);
970     IDToValue[Id] = V;
971   }
972 
973   isl_id_free(Id);
974   return true;
975 }
976 
977 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) {
978   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
979     if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1))
980       continue;
981     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
982     if (!materializeValue(Id))
983       return false;
984   }
985   return true;
986 }
987 
988 /// Add the number of dimensions in @p BS to @p U.
989 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) {
990   unsigned *NumTotalDim = static_cast<unsigned *>(U);
991   *NumTotalDim += isl_basic_set_total_dim(BS);
992   isl_basic_set_free(BS);
993   return isl_stat_ok;
994 }
995 
996 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
997                                               isl_ast_build *Build,
998                                               Instruction *AccInst) {
999 
1000   // TODO: This check could be performed in the ScopInfo already.
1001   unsigned NumTotalDim = 0;
1002   isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim);
1003   if (NumTotalDim > MaxDimensionsInAccessRange) {
1004     isl_set_free(AccessRange);
1005     return nullptr;
1006   }
1007 
1008   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1009   isl_ast_expr *Access =
1010       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1011   auto *Address = isl_ast_expr_address_of(Access);
1012   auto *AddressValue = ExprBuilder.create(Address);
1013   Value *PreloadVal;
1014 
1015   // Correct the type as the SAI might have a different type than the user
1016   // expects, especially if the base pointer is a struct.
1017   Type *Ty = AccInst->getType();
1018 
1019   auto *Ptr = AddressValue;
1020   auto Name = Ptr->getName();
1021   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast");
1022   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1023   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1024     PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
1025 
1026   // TODO: This is only a hot fix for SCoP sequences that use the same load
1027   //       instruction contained and hoisted by one of the SCoPs.
1028   if (SE.isSCEVable(Ty))
1029     SE.forgetValue(AccInst);
1030 
1031   return PreloadVal;
1032 }
1033 
1034 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1035                                             isl_set *Domain) {
1036 
1037   isl_set *AccessRange = isl_map_range(MA.getAddressFunction());
1038   AccessRange = isl_set_gist_params(AccessRange, S.getContext());
1039 
1040   if (!materializeParameters(AccessRange, false)) {
1041     isl_set_free(AccessRange);
1042     isl_set_free(Domain);
1043     return nullptr;
1044   }
1045 
1046   auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace()));
1047   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1048   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1049   isl_set_free(Universe);
1050 
1051   Instruction *AccInst = MA.getAccessInstruction();
1052   Type *AccInstTy = AccInst->getType();
1053 
1054   Value *PreloadVal = nullptr;
1055   if (AlwaysExecuted) {
1056     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1057     isl_ast_build_free(Build);
1058     isl_set_free(Domain);
1059     return PreloadVal;
1060   }
1061 
1062   if (!materializeParameters(Domain, false)) {
1063     isl_ast_build_free(Build);
1064     isl_set_free(AccessRange);
1065     isl_set_free(Domain);
1066     return nullptr;
1067   }
1068 
1069   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1070   Domain = nullptr;
1071 
1072   ExprBuilder.setTrackOverflow(true);
1073   Value *Cond = ExprBuilder.create(DomainCond);
1074   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1075                                               "polly.preload.cond.overflown");
1076   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1077   ExprBuilder.setTrackOverflow(false);
1078 
1079   if (!Cond->getType()->isIntegerTy(1))
1080     Cond = Builder.CreateIsNotNull(Cond);
1081 
1082   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1083                                   &*Builder.GetInsertPoint(), &DT, &LI);
1084   CondBB->setName("polly.preload.cond");
1085 
1086   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1087   MergeBB->setName("polly.preload.merge");
1088 
1089   Function *F = Builder.GetInsertBlock()->getParent();
1090   LLVMContext &Context = F->getContext();
1091   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1092 
1093   DT.addNewBlock(ExecBB, CondBB);
1094   if (Loop *L = LI.getLoopFor(CondBB))
1095     L->addBasicBlockToLoop(ExecBB, LI);
1096 
1097   auto *CondBBTerminator = CondBB->getTerminator();
1098   Builder.SetInsertPoint(CondBBTerminator);
1099   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1100   CondBBTerminator->eraseFromParent();
1101 
1102   Builder.SetInsertPoint(ExecBB);
1103   Builder.CreateBr(MergeBB);
1104 
1105   Builder.SetInsertPoint(ExecBB->getTerminator());
1106   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1107   Builder.SetInsertPoint(MergeBB->getTerminator());
1108   auto *MergePHI = Builder.CreatePHI(
1109       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1110   PreloadVal = MergePHI;
1111 
1112   if (!PreAccInst) {
1113     PreloadVal = nullptr;
1114     PreAccInst = UndefValue::get(AccInstTy);
1115   }
1116 
1117   MergePHI->addIncoming(PreAccInst, ExecBB);
1118   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1119 
1120   isl_ast_build_free(Build);
1121   return PreloadVal;
1122 }
1123 
1124 bool IslNodeBuilder::preloadInvariantEquivClass(
1125     InvariantEquivClassTy &IAClass) {
1126   // For an equivalence class of invariant loads we pre-load the representing
1127   // element with the unified execution context. However, we have to map all
1128   // elements of the class to the one preloaded load as they are referenced
1129   // during the code generation and therefor need to be mapped.
1130   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1131   if (MAs.empty())
1132     return true;
1133 
1134   MemoryAccess *MA = MAs.front();
1135   assert(MA->isArrayKind() && MA->isRead());
1136 
1137   // If the access function was already mapped, the preload of this equivalence
1138   // class was triggered earlier already and doesn't need to be done again.
1139   if (ValueMap.count(MA->getAccessInstruction()))
1140     return true;
1141 
1142   // Check for recursion which can be caused by additional constraints, e.g.,
1143   // non-finite loop constraints. In such a case we have to bail out and insert
1144   // a "false" runtime check that will cause the original code to be executed.
1145   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1146   if (!PreloadedPtrs.insert(PtrId).second)
1147     return false;
1148 
1149   // The execution context of the IAClass.
1150   isl_set *&ExecutionCtx = IAClass.ExecutionContext;
1151 
1152   // If the base pointer of this class is dependent on another one we have to
1153   // make sure it was preloaded already.
1154   auto *SAI = MA->getScopArrayInfo();
1155   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1156     if (!preloadInvariantEquivClass(*BaseIAClass))
1157       return false;
1158 
1159     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1160     // we need to refine the ExecutionCtx.
1161     isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1162     ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1163   }
1164 
1165   // If the size of a dimension is dependent on another class, make sure it is
1166   // preloaded.
1167   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1168     const SCEV *Dim = SAI->getDimensionSize(i);
1169     SetVector<Value *> Values;
1170     findValues(Dim, SE, Values);
1171     for (auto *Val : Values) {
1172       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1173         if (!preloadInvariantEquivClass(*BaseIAClass))
1174           return false;
1175 
1176         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1177         // and we need to refine the ExecutionCtx.
1178         isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1179         ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1180       }
1181     }
1182   }
1183 
1184   Instruction *AccInst = MA->getAccessInstruction();
1185   Type *AccInstTy = AccInst->getType();
1186 
1187   Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx));
1188   if (!PreloadVal)
1189     return false;
1190 
1191   for (const MemoryAccess *MA : MAs) {
1192     Instruction *MAAccInst = MA->getAccessInstruction();
1193     assert(PreloadVal->getType() == MAAccInst->getType());
1194     ValueMap[MAAccInst] = PreloadVal;
1195   }
1196 
1197   if (SE.isSCEVable(AccInstTy)) {
1198     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst));
1199     if (ParamId)
1200       IDToValue[ParamId] = PreloadVal;
1201     isl_id_free(ParamId);
1202   }
1203 
1204   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1205   auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a");
1206   Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
1207   Builder.CreateStore(PreloadVal, Alloca);
1208 
1209   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1210     Value *BasePtr = DerivedSAI->getBasePtr();
1211 
1212     for (const MemoryAccess *MA : MAs) {
1213       // As the derived SAI information is quite coarse, any load from the
1214       // current SAI could be the base pointer of the derived SAI, however we
1215       // should only change the base pointer of the derived SAI if we actually
1216       // preloaded it.
1217       if (BasePtr == MA->getBaseAddr()) {
1218         assert(BasePtr->getType() == PreloadVal->getType());
1219         DerivedSAI->setBasePtr(PreloadVal);
1220       }
1221 
1222       // For scalar derived SAIs we remap the alloca used for the derived value.
1223       if (BasePtr == MA->getAccessInstruction()) {
1224         if (DerivedSAI->isPHIKind())
1225           PHIOpMap[BasePtr] = Alloca;
1226         else
1227           ScalarMap[BasePtr] = Alloca;
1228       }
1229     }
1230   }
1231 
1232   for (const MemoryAccess *MA : MAs) {
1233 
1234     Instruction *MAAccInst = MA->getAccessInstruction();
1235     // Use the escape system to get the correct value to users outside the SCoP.
1236     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1237     for (auto *U : MAAccInst->users())
1238       if (Instruction *UI = dyn_cast<Instruction>(U))
1239         if (!S.contains(UI))
1240           EscapeUsers.push_back(UI);
1241 
1242     if (EscapeUsers.empty())
1243       continue;
1244 
1245     EscapeMap[MA->getAccessInstruction()] =
1246         std::make_pair(Alloca, std::move(EscapeUsers));
1247   }
1248 
1249   return true;
1250 }
1251 
1252 void IslNodeBuilder::allocateNewArrays() {
1253   for (auto &SAI : S.arrays()) {
1254     if (SAI->getBasePtr())
1255       continue;
1256 
1257     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1258            "The size of the outermost dimension is used to declare newly "
1259            "created arrays that require memory allocation.");
1260 
1261     Type *NewArrayType = nullptr;
1262     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1263       auto *DimSize = SAI->getDimensionSize(i);
1264       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1265                                      ->getAPInt()
1266                                      .getLimitedValue();
1267 
1268       if (!NewArrayType)
1269         NewArrayType = SAI->getElementType();
1270 
1271       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1272     }
1273 
1274     auto InstIt =
1275         Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator();
1276     auto *CreatedArray = new AllocaInst(NewArrayType, SAI->getName(), &*InstIt);
1277     CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize);
1278     SAI->setBasePtr(CreatedArray);
1279   }
1280 }
1281 
1282 bool IslNodeBuilder::preloadInvariantLoads() {
1283 
1284   auto &InvariantEquivClasses = S.getInvariantAccesses();
1285   if (InvariantEquivClasses.empty())
1286     return true;
1287 
1288   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1289                                      &*Builder.GetInsertPoint(), &DT, &LI);
1290   PreLoadBB->setName("polly.preload.begin");
1291   Builder.SetInsertPoint(&PreLoadBB->front());
1292 
1293   for (auto &IAClass : InvariantEquivClasses)
1294     if (!preloadInvariantEquivClass(IAClass))
1295       return false;
1296 
1297   return true;
1298 }
1299 
1300 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1301 
1302   // Materialize values for the parameters of the SCoP.
1303   materializeParameters(Context, /* all */ true);
1304 
1305   // Generate values for the current loop iteration for all surrounding loops.
1306   //
1307   // We may also reference loops outside of the scop which do not contain the
1308   // scop itself, but as the number of such scops may be arbitrarily large we do
1309   // not generate code for them here, but only at the point of code generation
1310   // where these values are needed.
1311   Loop *L = LI.getLoopFor(S.getEntry());
1312 
1313   while (L != nullptr && S.contains(L))
1314     L = L->getParentLoop();
1315 
1316   while (L != nullptr) {
1317     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1318                                             SE.getUnknown(Builder.getInt64(1)),
1319                                             L, SCEV::FlagAnyWrap);
1320     Value *V = generateSCEV(OuterLIV);
1321     OutsideLoopIterations[L] = SE.getUnknown(V);
1322     L = L->getParentLoop();
1323   }
1324 
1325   isl_set_free(Context);
1326 }
1327 
1328 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1329   /// We pass the insert location of our Builder, as Polly ensures during IR
1330   /// generation that there is always a valid CFG into which instructions are
1331   /// inserted. As a result, the insertpoint is known to be always followed by a
1332   /// terminator instruction. This means the insert point may be specified by a
1333   /// terminator instruction, but it can never point to an ->end() iterator
1334   /// which does not have a corresponding instruction. Hence, dereferencing
1335   /// the insertpoint to obtain an instruction is known to be save.
1336   ///
1337   /// We also do not need to update the Builder here, as new instructions are
1338   /// always inserted _before_ the given InsertLocation. As a result, the
1339   /// insert location remains valid.
1340   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1341          "Insert location points after last valid instruction");
1342   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1343   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1344                        InsertLocation, &ValueMap,
1345                        StartBlock->getSinglePredecessor());
1346 }
1347 
1348 /// The AST expression we generate to perform the run-time check assumes
1349 /// computations on integer types of infinite size. As we only use 64-bit
1350 /// arithmetic we check for overflows, in case of which we set the result
1351 /// of this run-time check to false to be cosnservatively correct,
1352 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1353   auto ExprBuilder = getExprBuilder();
1354   ExprBuilder.setTrackOverflow(true);
1355   Value *RTC = ExprBuilder.create(Condition);
1356   if (!RTC->getType()->isIntegerTy(1))
1357     RTC = Builder.CreateIsNotNull(RTC);
1358   Value *OverflowHappened =
1359       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1360 
1361   if (PollyGenerateRTCPrint) {
1362     auto *F = Builder.GetInsertBlock()->getParent();
1363     RuntimeDebugBuilder::createCPUPrinter(
1364         Builder,
1365         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1366             " __RTC: ",
1367         RTC, " Overflow: ", OverflowHappened, "\n");
1368   }
1369 
1370   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1371   ExprBuilder.setTrackOverflow(false);
1372 
1373   if (!isa<ConstantInt>(RTC))
1374     VersionedScops++;
1375 
1376   return RTC;
1377 }
1378