1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Options.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/ISLTools.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "polly/Support/ScopHelper.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/RegionInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "isl/aff.h" 53 #include "isl/aff_type.h" 54 #include "isl/ast.h" 55 #include "isl/ast_build.h" 56 #include "isl/isl-noexceptions.h" 57 #include "isl/map.h" 58 #include "isl/set.h" 59 #include "isl/union_map.h" 60 #include "isl/union_set.h" 61 #include "isl/val.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-codegen" 74 75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 76 77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 79 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 80 STATISTIC(IfConditions, "Number of generated if-conditions"); 81 82 /// OpenMP backend options 83 enum class OpenMPBackend { GNU, LLVM }; 84 85 static cl::opt<bool> PollyGenerateRTCPrint( 86 "polly-codegen-emit-rtc-print", 87 cl::desc("Emit code that prints the runtime check result dynamically."), 88 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 89 90 // If this option is set we always use the isl AST generator to regenerate 91 // memory accesses. Without this option set we regenerate expressions using the 92 // original SCEV expressions and only generate new expressions in case the 93 // access relation has been changed and consequently must be regenerated. 94 static cl::opt<bool> PollyGenerateExpressions( 95 "polly-codegen-generate-expressions", 96 cl::desc("Generate AST expressions for unmodified and modified accesses"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 98 99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 100 "polly-target-first-level-cache-line-size", 101 cl::desc("The size of the first level cache line size specified in bytes."), 102 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 103 104 static cl::opt<OpenMPBackend> PollyOmpBackend( 105 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 106 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 107 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 108 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 109 110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For, 111 ICmpInst::Predicate &Predicate) { 112 isl::ast_expr Cond = For.for_get_cond(); 113 isl::ast_expr Iterator = For.for_get_iterator(); 114 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 115 "conditional expression is not an atomic upper bound"); 116 117 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 118 119 switch (OpType) { 120 case isl_ast_op_le: 121 Predicate = ICmpInst::ICMP_SLE; 122 break; 123 case isl_ast_op_lt: 124 Predicate = ICmpInst::ICMP_SLT; 125 break; 126 default: 127 llvm_unreachable("Unexpected comparison type in loop condition"); 128 } 129 130 isl::ast_expr Arg0 = Cond.get_op_arg(0); 131 132 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 133 "conditional expression is not an atomic upper bound"); 134 135 isl::id UBID = Arg0.get_id(); 136 137 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 138 "Could not get the iterator"); 139 140 isl::id IteratorID = Iterator.get_id(); 141 142 assert(UBID.get() == IteratorID.get() && 143 "conditional expression is not an atomic upper bound"); 144 145 return Cond.get_op_arg(1); 146 } 147 148 /// Return true if a return value of Predicate is true for the value represented 149 /// by passed isl_ast_expr_int. 150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 151 isl_bool (*Predicate)(__isl_keep isl_val *)) { 152 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 153 isl_ast_expr_free(Expr); 154 return false; 155 } 156 auto ExprVal = isl_ast_expr_get_val(Expr); 157 isl_ast_expr_free(Expr); 158 if (Predicate(ExprVal) != isl_bool_true) { 159 isl_val_free(ExprVal); 160 return false; 161 } 162 isl_val_free(ExprVal); 163 return true; 164 } 165 166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) { 167 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 168 isl::ast_node Body = For.for_get_body(); 169 170 // First, check if we can actually handle this code. 171 switch (isl_ast_node_get_type(Body.get())) { 172 case isl_ast_node_user: 173 break; 174 case isl_ast_node_block: { 175 isl::ast_node_list List = Body.block_get_children(); 176 for (isl::ast_node Node : List) { 177 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 178 if (NodeType != isl_ast_node_user) 179 return -1; 180 } 181 break; 182 } 183 default: 184 return -1; 185 } 186 187 isl::ast_expr Init = For.for_get_init(); 188 if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) 189 return -1; 190 isl::ast_expr Inc = For.for_get_inc(); 191 if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) 192 return -1; 193 CmpInst::Predicate Predicate; 194 isl::ast_expr UB = getUpperBound(For, Predicate); 195 if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) 196 return -1; 197 isl::val UpVal = UB.get_val(); 198 int NumberIterations = UpVal.get_num_si(); 199 if (NumberIterations < 0) 200 return -1; 201 if (Predicate == CmpInst::ICMP_SLT) 202 return NumberIterations; 203 else 204 return NumberIterations + 1; 205 } 206 207 /// Extract the values and SCEVs needed to generate code for a block. 208 static int findReferencesInBlock(struct SubtreeReferences &References, 209 const ScopStmt *Stmt, BasicBlock *BB) { 210 for (Instruction &Inst : *BB) { 211 // Include invariant loads 212 if (isa<LoadInst>(Inst)) 213 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 214 References.Values.insert(InvariantLoad); 215 216 for (Value *SrcVal : Inst.operands()) { 217 auto *Scope = References.LI.getLoopFor(BB); 218 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 219 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 220 continue; 221 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 222 References.Values.insert(NewVal); 223 } 224 } 225 return 0; 226 } 227 228 void addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 229 bool CreateScalarRefs) { 230 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 231 232 if (Stmt->isBlockStmt()) 233 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 234 else if (Stmt->isRegionStmt()) { 235 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 236 findReferencesInBlock(References, Stmt, BB); 237 } else { 238 assert(Stmt->isCopyStmt()); 239 // Copy Stmts have no instructions that we need to consider. 240 } 241 242 for (auto &Access : *Stmt) { 243 if (References.ParamSpace) { 244 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 245 (*References.ParamSpace) = 246 References.ParamSpace->align_params(ParamSpace); 247 } 248 249 if (Access->isLatestArrayKind()) { 250 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 251 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 252 if (Stmt->getParent()->contains(OpInst)) 253 continue; 254 255 References.Values.insert(BasePtr); 256 continue; 257 } 258 259 if (CreateScalarRefs) 260 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 261 } 262 } 263 264 /// Extract the out-of-scop values and SCEVs referenced from a set describing 265 /// a ScopStmt. 266 /// 267 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 268 /// statement and the base pointers of the memory accesses. For scalar 269 /// statements we force the generation of alloca memory locations and list 270 /// these locations in the set of out-of-scop values as well. 271 /// 272 /// @param Set A set which references the ScopStmt we are interested in. 273 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 274 /// structure. 275 static void addReferencesFromStmtSet(isl::set Set, 276 struct SubtreeReferences *UserPtr) { 277 isl::id Id = Set.get_tuple_id(); 278 auto *Stmt = static_cast<const ScopStmt *>(Id.get_user()); 279 return addReferencesFromStmt(Stmt, UserPtr); 280 } 281 282 /// Extract the out-of-scop values and SCEVs referenced from a union set 283 /// referencing multiple ScopStmts. 284 /// 285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 286 /// statement and the base pointers of the memory accesses. For scalar 287 /// statements we force the generation of alloca memory locations and list 288 /// these locations in the set of out-of-scop values as well. 289 /// 290 /// @param USet A union set referencing the ScopStmts we are interested 291 /// in. 292 /// @param References The SubtreeReferences data structure through which 293 /// results are returned and further information is 294 /// provided. 295 static void 296 addReferencesFromStmtUnionSet(isl::union_set USet, 297 struct SubtreeReferences &References) { 298 299 for (isl::set Set : USet.get_set_list()) 300 addReferencesFromStmtSet(Set, &References); 301 } 302 303 __isl_give isl_union_map * 304 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 305 return IslAstInfo::getSchedule(For); 306 } 307 308 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 309 SetVector<Value *> &Values, 310 SetVector<const Loop *> &Loops) { 311 SetVector<const SCEV *> SCEVs; 312 struct SubtreeReferences References = { 313 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 314 315 for (const auto &I : IDToValue) 316 Values.insert(I.second); 317 318 // NOTE: this is populated in IslNodeBuilder::addParameters 319 for (const auto &I : OutsideLoopIterations) 320 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 321 322 isl::union_set Schedule = 323 isl::manage(isl_union_map_domain(getScheduleForAstNode(For))); 324 addReferencesFromStmtUnionSet(Schedule, References); 325 326 for (const SCEV *Expr : SCEVs) { 327 findValues(Expr, SE, Values); 328 findLoops(Expr, Loops); 329 } 330 331 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 332 333 /// Note: Code generation of induction variables of loops outside Scops 334 /// 335 /// Remove loops that contain the scop or that are part of the scop, as they 336 /// are considered local. This leaves only loops that are before the scop, but 337 /// do not contain the scop itself. 338 /// We ignore loops perfectly contained in the Scop because these are already 339 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 340 /// whose induction variables are referred to by the Scop, but the Scop is not 341 /// fully contained in these Loops. Since there can be many of these, 342 /// we choose to codegen these on-demand. 343 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 344 Loops.remove_if([this](const Loop *L) { 345 return S.contains(L) || L->contains(S.getEntry()); 346 }); 347 348 // Contains Values that may need to be replaced with other values 349 // due to replacements from the ValueMap. We should make sure 350 // that we return correctly remapped values. 351 // NOTE: this code path is tested by: 352 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 353 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 354 SetVector<Value *> ReplacedValues; 355 for (Value *V : Values) { 356 ReplacedValues.insert(getLatestValue(V)); 357 } 358 Values = ReplacedValues; 359 } 360 361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 362 SmallPtrSet<Value *, 5> Inserted; 363 364 for (const auto &I : IDToValue) { 365 IDToValue[I.first] = NewValues[I.second]; 366 Inserted.insert(I.second); 367 } 368 369 for (const auto &I : NewValues) { 370 if (Inserted.count(I.first)) 371 continue; 372 373 ValueMap[I.first] = I.second; 374 } 375 } 376 377 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 378 auto It = ValueMap.find(Original); 379 if (It == ValueMap.end()) 380 return Original; 381 return It->second; 382 } 383 384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 385 std::vector<Value *> &IVS, 386 __isl_take isl_id *IteratorID, 387 __isl_take isl_union_map *Schedule) { 388 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 389 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 390 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 391 isl_ast_expr_free(StmtExpr); 392 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 393 std::vector<LoopToScevMapT> VLTS(IVS.size()); 394 395 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 396 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 397 isl_map *S = isl_map_from_union_map(Schedule); 398 399 auto *NewAccesses = createNewAccesses(Stmt, User); 400 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 401 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 402 isl_id_to_ast_expr_free(NewAccesses); 403 isl_map_free(S); 404 isl_id_free(Id); 405 isl_ast_node_free(User); 406 } 407 408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 409 auto *Id = isl_ast_node_mark_get_id(Node); 410 auto Child = isl_ast_node_mark_get_node(Node); 411 isl_ast_node_free(Node); 412 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 413 // it will be optimized away and we should skip it. 414 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 415 isl_ast_node_get_type(Child) == isl_ast_node_for) { 416 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 417 int VectorWidth = getNumberOfIterations(isl::manage_copy(Child)); 418 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 419 createForVector(Child, VectorWidth); 420 else 421 createForSequential(isl::manage(Child), true); 422 isl_id_free(Id); 423 return; 424 } 425 if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { 426 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 427 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 428 } 429 create(Child); 430 isl_id_free(Id); 431 } 432 433 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 434 int VectorWidth) { 435 isl_ast_node *Body = isl_ast_node_for_get_body(For); 436 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 437 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 438 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 439 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 440 441 Value *ValueLB = ExprBuilder.create(Init); 442 Value *ValueInc = ExprBuilder.create(Inc); 443 444 Type *MaxType = ExprBuilder.getType(Iterator); 445 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 446 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 447 448 if (MaxType != ValueLB->getType()) 449 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 450 if (MaxType != ValueInc->getType()) 451 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 452 453 std::vector<Value *> IVS(VectorWidth); 454 IVS[0] = ValueLB; 455 456 for (int i = 1; i < VectorWidth; i++) 457 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 458 459 isl_union_map *Schedule = getScheduleForAstNode(For); 460 assert(Schedule && "For statement annotation does not contain its schedule"); 461 462 IDToValue[IteratorID] = ValueLB; 463 464 switch (isl_ast_node_get_type(Body)) { 465 case isl_ast_node_user: 466 createUserVector(Body, IVS, isl_id_copy(IteratorID), 467 isl_union_map_copy(Schedule)); 468 break; 469 case isl_ast_node_block: { 470 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 471 472 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 473 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 474 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 475 476 isl_ast_node_free(Body); 477 isl_ast_node_list_free(List); 478 break; 479 } 480 default: 481 isl_ast_node_dump(Body); 482 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 483 } 484 485 IDToValue.erase(IDToValue.find(IteratorID)); 486 isl_id_free(IteratorID); 487 isl_union_map_free(Schedule); 488 489 isl_ast_node_free(For); 490 isl_ast_expr_free(Iterator); 491 492 VectorLoops++; 493 } 494 495 /// Restore the initial ordering of dimensions of the band node 496 /// 497 /// In case the band node represents all the dimensions of the iteration 498 /// domain, recreate the band node to restore the initial ordering of the 499 /// dimensions. 500 /// 501 /// @param Node The band node to be modified. 502 /// @return The modified schedule node. 503 static bool IsLoopVectorizerDisabled(isl::ast_node Node) { 504 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 505 auto Body = Node.for_get_body(); 506 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 507 return false; 508 auto Id = Body.mark_get_id(); 509 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 510 return true; 511 return false; 512 } 513 514 void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) { 515 Value *ValueLB, *ValueUB, *ValueInc; 516 Type *MaxType; 517 BasicBlock *ExitBlock; 518 Value *IV; 519 CmpInst::Predicate Predicate; 520 521 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 522 523 isl::ast_node Body = For.for_get_body(); 524 525 // isl_ast_node_for_is_degenerate(For) 526 // 527 // TODO: For degenerated loops we could generate a plain assignment. 528 // However, for now we just reuse the logic for normal loops, which will 529 // create a loop with a single iteration. 530 531 isl::ast_expr Init = For.for_get_init(); 532 isl::ast_expr Inc = For.for_get_inc(); 533 isl::ast_expr Iterator = For.for_get_iterator(); 534 isl::id IteratorID = Iterator.get_id(); 535 isl::ast_expr UB = getUpperBound(For, Predicate); 536 537 ValueLB = ExprBuilder.create(Init.release()); 538 ValueUB = ExprBuilder.create(UB.release()); 539 ValueInc = ExprBuilder.create(Inc.release()); 540 541 MaxType = ExprBuilder.getType(Iterator.get()); 542 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 543 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 544 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 545 546 if (MaxType != ValueLB->getType()) 547 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 548 if (MaxType != ValueUB->getType()) 549 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 550 if (MaxType != ValueInc->getType()) 551 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 552 553 // If we can show that LB <Predicate> UB holds at least once, we can 554 // omit the GuardBB in front of the loop. 555 bool UseGuardBB = 556 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 557 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 558 Predicate, &Annotator, MarkParallel, UseGuardBB, 559 LoopVectorizerDisabled); 560 IDToValue[IteratorID.get()] = IV; 561 562 create(Body.release()); 563 564 Annotator.popLoop(MarkParallel); 565 566 IDToValue.erase(IDToValue.find(IteratorID.get())); 567 568 Builder.SetInsertPoint(&ExitBlock->front()); 569 570 SequentialLoops++; 571 } 572 573 /// Remove the BBs contained in a (sub)function from the dominator tree. 574 /// 575 /// This function removes the basic blocks that are part of a subfunction from 576 /// the dominator tree. Specifically, when generating code it may happen that at 577 /// some point the code generation continues in a new sub-function (e.g., when 578 /// generating OpenMP code). The basic blocks that are created in this 579 /// sub-function are then still part of the dominator tree of the original 580 /// function, such that the dominator tree reaches over function boundaries. 581 /// This is not only incorrect, but also causes crashes. This function now 582 /// removes from the dominator tree all basic blocks that are dominated (and 583 /// consequently reachable) from the entry block of this (sub)function. 584 /// 585 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 586 /// the function/region it runs on. Hence, the pure need for this function shows 587 /// that we do not comply to this rule. At the moment, this does not cause any 588 /// issues, but we should be aware that such issues may appear. Unfortunately 589 /// the current LLVM pass infrastructure does not allow to make Polly a module 590 /// or call-graph pass to solve this issue, as such a pass would not have access 591 /// to the per-function analyses passes needed by Polly. A future pass manager 592 /// infrastructure is supposed to enable such kind of access possibly allowing 593 /// us to create a cleaner solution here. 594 /// 595 /// FIXME: Instead of adding the dominance information and then dropping it 596 /// later on, we should try to just not add it in the first place. This requires 597 /// some careful testing to make sure this does not break in interaction with 598 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 599 /// which may try to update it. 600 /// 601 /// @param F The function which contains the BBs to removed. 602 /// @param DT The dominator tree from which to remove the BBs. 603 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 604 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 605 std::vector<BasicBlock *> Nodes; 606 607 // We can only remove an element from the dominator tree, if all its children 608 // have been removed. To ensure this we obtain the list of nodes to remove 609 // using a post-order tree traversal. 610 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 611 Nodes.push_back(I->getBlock()); 612 613 for (BasicBlock *BB : Nodes) 614 DT.eraseNode(BB); 615 } 616 617 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 618 isl_ast_node *Body; 619 isl_ast_expr *Init, *Inc, *Iterator, *UB; 620 isl_id *IteratorID; 621 Value *ValueLB, *ValueUB, *ValueInc; 622 Type *MaxType; 623 Value *IV; 624 CmpInst::Predicate Predicate; 625 626 // The preamble of parallel code interacts different than normal code with 627 // e.g., scalar initialization. Therefore, we ensure the parallel code is 628 // separated from the last basic block. 629 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 630 &*Builder.GetInsertPoint(), &DT, &LI); 631 ParBB->setName("polly.parallel.for"); 632 Builder.SetInsertPoint(&ParBB->front()); 633 634 Body = isl_ast_node_for_get_body(For); 635 Init = isl_ast_node_for_get_init(For); 636 Inc = isl_ast_node_for_get_inc(For); 637 Iterator = isl_ast_node_for_get_iterator(For); 638 IteratorID = isl_ast_expr_get_id(Iterator); 639 UB = getUpperBound(isl::manage_copy(For), Predicate).release(); 640 641 ValueLB = ExprBuilder.create(Init); 642 ValueUB = ExprBuilder.create(UB); 643 ValueInc = ExprBuilder.create(Inc); 644 645 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 646 // expression, we need to adjust the loop bound by one. 647 if (Predicate == CmpInst::ICMP_SLT) 648 ValueUB = Builder.CreateAdd( 649 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 650 651 MaxType = ExprBuilder.getType(Iterator); 652 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 653 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 654 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 655 656 if (MaxType != ValueLB->getType()) 657 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 658 if (MaxType != ValueUB->getType()) 659 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 660 if (MaxType != ValueInc->getType()) 661 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 662 663 BasicBlock::iterator LoopBody; 664 665 SetVector<Value *> SubtreeValues; 666 SetVector<const Loop *> Loops; 667 668 getReferencesInSubtree(For, SubtreeValues, Loops); 669 670 // Create for all loops we depend on values that contain the current loop 671 // iteration. These values are necessary to generate code for SCEVs that 672 // depend on such loops. As a result we need to pass them to the subfunction. 673 // See [Code generation of induction variables of loops outside Scops] 674 for (const Loop *L : Loops) { 675 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 676 SubtreeValues.insert(LoopInductionVar); 677 } 678 679 ValueMapT NewValues; 680 681 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 682 683 switch (PollyOmpBackend) { 684 case OpenMPBackend::GNU: 685 ParallelLoopGenPtr.reset( 686 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 687 break; 688 case OpenMPBackend::LLVM: 689 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 690 break; 691 } 692 693 IV = ParallelLoopGenPtr->createParallelLoop( 694 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 695 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 696 Builder.SetInsertPoint(&*LoopBody); 697 698 // Remember the parallel subfunction 699 ParallelSubfunctions.push_back(LoopBody->getFunction()); 700 701 // Save the current values. 702 auto ValueMapCopy = ValueMap; 703 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 704 705 updateValues(NewValues); 706 IDToValue[IteratorID] = IV; 707 708 ValueMapT NewValuesReverse; 709 710 for (auto P : NewValues) 711 NewValuesReverse[P.second] = P.first; 712 713 Annotator.addAlternativeAliasBases(NewValuesReverse); 714 715 create(Body); 716 717 Annotator.resetAlternativeAliasBases(); 718 // Restore the original values. 719 ValueMap = ValueMapCopy; 720 IDToValue = IDToValueCopy; 721 722 Builder.SetInsertPoint(&*AfterLoop); 723 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 724 725 for (const Loop *L : Loops) 726 OutsideLoopIterations.erase(L); 727 728 isl_ast_node_free(For); 729 isl_ast_expr_free(Iterator); 730 isl_id_free(IteratorID); 731 732 ParallelLoops++; 733 } 734 735 /// Return whether any of @p Node's statements contain partial accesses. 736 /// 737 /// Partial accesses are not supported by Polly's vector code generator. 738 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 739 return isl_ast_node_foreach_descendant_top_down( 740 Node, 741 [](isl_ast_node *Node, void *User) -> isl_bool { 742 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 743 return isl_bool_true; 744 745 isl::ast_expr Expr = 746 isl::manage(isl_ast_node_user_get_expr(Node)); 747 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 748 isl::id Id = StmtExpr.get_id(); 749 750 ScopStmt *Stmt = 751 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 752 isl::set StmtDom = Stmt->getDomain(); 753 for (auto *MA : *Stmt) { 754 if (MA->isLatestPartialAccess()) 755 return isl_bool_error; 756 } 757 return isl_bool_true; 758 }, 759 nullptr) == isl_stat_error; 760 } 761 762 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 763 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 764 765 if (Vector && IslAstInfo::isInnermostParallel(For) && 766 !IslAstInfo::isReductionParallel(For)) { 767 int VectorWidth = getNumberOfIterations(isl::manage_copy(For)); 768 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 769 createForVector(For, VectorWidth); 770 return; 771 } 772 } 773 774 if (IslAstInfo::isExecutedInParallel(For)) { 775 createForParallel(For); 776 return; 777 } 778 bool Parallel = 779 (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For)); 780 createForSequential(isl::manage(For), Parallel); 781 } 782 783 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 784 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 785 786 Function *F = Builder.GetInsertBlock()->getParent(); 787 LLVMContext &Context = F->getContext(); 788 789 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 790 &*Builder.GetInsertPoint(), &DT, &LI); 791 CondBB->setName("polly.cond"); 792 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 793 MergeBB->setName("polly.merge"); 794 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 795 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 796 797 DT.addNewBlock(ThenBB, CondBB); 798 DT.addNewBlock(ElseBB, CondBB); 799 DT.changeImmediateDominator(MergeBB, CondBB); 800 801 Loop *L = LI.getLoopFor(CondBB); 802 if (L) { 803 L->addBasicBlockToLoop(ThenBB, LI); 804 L->addBasicBlockToLoop(ElseBB, LI); 805 } 806 807 CondBB->getTerminator()->eraseFromParent(); 808 809 Builder.SetInsertPoint(CondBB); 810 Value *Predicate = ExprBuilder.create(Cond); 811 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 812 Builder.SetInsertPoint(ThenBB); 813 Builder.CreateBr(MergeBB); 814 Builder.SetInsertPoint(ElseBB); 815 Builder.CreateBr(MergeBB); 816 Builder.SetInsertPoint(&ThenBB->front()); 817 818 create(isl_ast_node_if_get_then(If)); 819 820 Builder.SetInsertPoint(&ElseBB->front()); 821 822 if (isl_ast_node_if_has_else(If)) 823 create(isl_ast_node_if_get_else(If)); 824 825 Builder.SetInsertPoint(&MergeBB->front()); 826 827 isl_ast_node_free(If); 828 829 IfConditions++; 830 } 831 832 __isl_give isl_id_to_ast_expr * 833 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 834 __isl_keep isl_ast_node *Node) { 835 isl_id_to_ast_expr *NewAccesses = 836 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0); 837 838 auto *Build = IslAstInfo::getBuild(Node); 839 assert(Build && "Could not obtain isl_ast_build from user node"); 840 Stmt->setAstBuild(isl::manage_copy(Build)); 841 842 for (auto *MA : *Stmt) { 843 if (!MA->hasNewAccessRelation()) { 844 if (PollyGenerateExpressions) { 845 if (!MA->isAffine()) 846 continue; 847 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 848 continue; 849 850 auto *BasePtr = 851 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 852 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 853 continue; 854 } else { 855 continue; 856 } 857 } 858 assert(MA->isAffine() && 859 "Only affine memory accesses can be code generated"); 860 861 auto Schedule = isl_ast_build_get_schedule(Build); 862 863 #ifndef NDEBUG 864 if (MA->isRead()) { 865 auto Dom = Stmt->getDomain().release(); 866 auto SchedDom = isl_set_from_union_set( 867 isl_union_map_domain(isl_union_map_copy(Schedule))); 868 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 869 Dom = isl_set_intersect_params(Dom, 870 Stmt->getParent()->getContext().release()); 871 SchedDom = isl_set_intersect_params( 872 SchedDom, Stmt->getParent()->getContext().release()); 873 assert(isl_set_is_subset(SchedDom, AccDom) && 874 "Access relation not defined on full schedule domain"); 875 assert(isl_set_is_subset(Dom, AccDom) && 876 "Access relation not defined on full domain"); 877 isl_set_free(AccDom); 878 isl_set_free(SchedDom); 879 isl_set_free(Dom); 880 } 881 #endif 882 883 auto PWAccRel = 884 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 885 886 // isl cannot generate an index expression for access-nothing accesses. 887 isl::set AccDomain = 888 isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 889 isl::set Context = S.getContext(); 890 AccDomain = AccDomain.intersect_params(Context); 891 if (AccDomain.is_empty()) { 892 isl_pw_multi_aff_free(PWAccRel); 893 continue; 894 } 895 896 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 897 NewAccesses = 898 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 899 } 900 901 return NewAccesses; 902 } 903 904 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 905 ScopStmt *Stmt, LoopToScevMapT <S) { 906 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 907 "Expression of type 'op' expected"); 908 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 909 "Operation of type 'call' expected"); 910 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 911 isl_ast_expr *SubExpr; 912 Value *V; 913 914 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 915 V = ExprBuilder.create(SubExpr); 916 ScalarEvolution *SE = Stmt->getParent()->getSE(); 917 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 918 } 919 920 isl_ast_expr_free(Expr); 921 } 922 923 void IslNodeBuilder::createSubstitutionsVector( 924 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 925 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 926 __isl_take isl_id *IteratorID) { 927 int i = 0; 928 929 Value *OldValue = IDToValue[IteratorID]; 930 for (Value *IV : IVS) { 931 IDToValue[IteratorID] = IV; 932 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 933 i++; 934 } 935 936 IDToValue[IteratorID] = OldValue; 937 isl_id_free(IteratorID); 938 isl_ast_expr_free(Expr); 939 } 940 941 void IslNodeBuilder::generateCopyStmt( 942 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 943 assert(Stmt->size() == 2); 944 auto ReadAccess = Stmt->begin(); 945 auto WriteAccess = ReadAccess++; 946 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 947 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 948 "Accesses use the same data type"); 949 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 950 auto *AccessExpr = 951 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 952 auto *LoadValue = ExprBuilder.create(AccessExpr); 953 AccessExpr = 954 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 955 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 956 Builder.CreateStore(LoadValue, StoreAddr); 957 } 958 959 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 960 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 961 "trying to materialize loop induction variable twice"); 962 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 963 SE.getUnknown(Builder.getInt64(1)), L, 964 SCEV::FlagAnyWrap); 965 Value *V = generateSCEV(OuterLIV); 966 OutsideLoopIterations[L] = SE.getUnknown(V); 967 return V; 968 } 969 970 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 971 LoopToScevMapT LTS; 972 isl_id *Id; 973 ScopStmt *Stmt; 974 975 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 976 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 977 Id = isl_ast_expr_get_id(StmtExpr); 978 isl_ast_expr_free(StmtExpr); 979 980 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 981 982 Stmt = (ScopStmt *)isl_id_get_user(Id); 983 auto *NewAccesses = createNewAccesses(Stmt, User); 984 if (Stmt->isCopyStmt()) { 985 generateCopyStmt(Stmt, NewAccesses); 986 isl_ast_expr_free(Expr); 987 } else { 988 createSubstitutions(Expr, Stmt, LTS); 989 990 if (Stmt->isBlockStmt()) 991 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 992 else 993 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 994 } 995 996 isl_id_to_ast_expr_free(NewAccesses); 997 isl_ast_node_free(User); 998 isl_id_free(Id); 999 } 1000 1001 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1002 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1003 1004 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1005 create(isl_ast_node_list_get_ast_node(List, i)); 1006 1007 isl_ast_node_free(Block); 1008 isl_ast_node_list_free(List); 1009 } 1010 1011 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1012 switch (isl_ast_node_get_type(Node)) { 1013 case isl_ast_node_error: 1014 llvm_unreachable("code generation error"); 1015 case isl_ast_node_mark: 1016 createMark(Node); 1017 return; 1018 case isl_ast_node_for: 1019 createFor(Node); 1020 return; 1021 case isl_ast_node_if: 1022 createIf(Node); 1023 return; 1024 case isl_ast_node_user: 1025 createUser(Node); 1026 return; 1027 case isl_ast_node_block: 1028 createBlock(Node); 1029 return; 1030 } 1031 1032 llvm_unreachable("Unknown isl_ast_node type"); 1033 } 1034 1035 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1036 // If the Id is already mapped, skip it. 1037 if (!IDToValue.count(Id)) { 1038 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1039 Value *V = nullptr; 1040 1041 // Parameters could refer to invariant loads that need to be 1042 // preloaded before we can generate code for the parameter. Thus, 1043 // check if any value referred to in ParamSCEV is an invariant load 1044 // and if so make sure its equivalence class is preloaded. 1045 SetVector<Value *> Values; 1046 findValues(ParamSCEV, SE, Values); 1047 for (auto *Val : Values) { 1048 // Check if the value is an instruction in a dead block within the SCoP 1049 // and if so do not code generate it. 1050 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1051 if (S.contains(Inst)) { 1052 bool IsDead = true; 1053 1054 // Check for "undef" loads first, then if there is a statement for 1055 // the parent of Inst and lastly if the parent of Inst has an empty 1056 // domain. In the first and last case the instruction is dead but if 1057 // there is a statement or the domain is not empty Inst is not dead. 1058 auto MemInst = MemAccInst::dyn_cast(Inst); 1059 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1060 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1061 SE.getPointerBase(SE.getSCEV(Address))) { 1062 } else if (S.getStmtFor(Inst)) { 1063 IsDead = false; 1064 } else { 1065 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1066 IsDead = isl_set_is_empty(Domain); 1067 isl_set_free(Domain); 1068 } 1069 1070 if (IsDead) { 1071 V = UndefValue::get(ParamSCEV->getType()); 1072 break; 1073 } 1074 } 1075 } 1076 1077 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1078 // Check if this invariant access class is empty, hence if we never 1079 // actually added a loads instruction to it. In that case it has no 1080 // (meaningful) users and we should not try to code generate it. 1081 if (IAClass->InvariantAccesses.empty()) 1082 V = UndefValue::get(ParamSCEV->getType()); 1083 1084 if (!preloadInvariantEquivClass(*IAClass)) { 1085 isl_id_free(Id); 1086 return false; 1087 } 1088 } 1089 } 1090 1091 V = V ? V : generateSCEV(ParamSCEV); 1092 IDToValue[Id] = V; 1093 } 1094 1095 isl_id_free(Id); 1096 return true; 1097 } 1098 1099 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1100 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1101 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1102 continue; 1103 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1104 if (!materializeValue(Id)) 1105 return false; 1106 } 1107 return true; 1108 } 1109 1110 bool IslNodeBuilder::materializeParameters() { 1111 for (const SCEV *Param : S.parameters()) { 1112 isl_id *Id = S.getIdForParam(Param).release(); 1113 if (!materializeValue(Id)) 1114 return false; 1115 } 1116 return true; 1117 } 1118 1119 /// Generate the computation of the size of the outermost dimension from the 1120 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1121 /// contains the size of the array. 1122 /// 1123 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1124 /// %desc.dimensionty = type { i64, i64, i64 } 1125 /// @g_arr = global %arrty zeroinitializer, align 32 1126 /// ... 1127 /// %0 = load i64, i64* getelementptr inbounds 1128 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1129 /// %1 = load i64, i64* getelementptr inbounds 1130 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1131 /// %2 = sub nsw i64 %0, %1 1132 /// %size = add nsw i64 %2, 1 1133 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1134 PollyIRBuilder &Builder, 1135 std::string ArrayName) { 1136 assert(GlobalDescriptor && "invalid global descriptor given"); 1137 1138 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1139 Builder.getInt64(0), Builder.getInt32(2)}; 1140 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1141 ArrayName + "_end_ptr"); 1142 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1143 1144 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1145 Builder.getInt64(0), Builder.getInt32(1)}; 1146 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1147 ArrayName + "_begin_ptr"); 1148 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1149 1150 Value *size = 1151 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1152 Type *endType = dyn_cast<IntegerType>(end->getType()); 1153 assert(endType && "expected type of end to be integral"); 1154 1155 size = Builder.CreateNSWAdd(end, 1156 ConstantInt::get(endType, 1, /* signed = */ true), 1157 ArrayName + "_size"); 1158 1159 return size; 1160 } 1161 1162 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1163 for (ScopArrayInfo *Array : S.arrays()) { 1164 if (Array->getNumberOfDimensions() == 0) 1165 continue; 1166 1167 Value *FAD = Array->getFortranArrayDescriptor(); 1168 if (!FAD) 1169 continue; 1170 1171 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1172 assert(ParametricPwAff && "parametric pw_aff corresponding " 1173 "to outermost dimension does not " 1174 "exist"); 1175 1176 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1177 isl_pw_aff_free(ParametricPwAff); 1178 1179 assert(Id && "pw_aff is not parametric"); 1180 1181 if (IDToValue.count(Id)) { 1182 isl_id_free(Id); 1183 continue; 1184 } 1185 1186 Value *FinalValue = 1187 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1188 assert(FinalValue && "unable to build Fortran array " 1189 "descriptor load of outermost dimension"); 1190 IDToValue[Id] = FinalValue; 1191 isl_id_free(Id); 1192 } 1193 return true; 1194 } 1195 1196 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1197 isl_ast_build *Build, 1198 Instruction *AccInst) { 1199 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1200 isl_ast_expr *Access = 1201 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1202 auto *Address = isl_ast_expr_address_of(Access); 1203 auto *AddressValue = ExprBuilder.create(Address); 1204 Value *PreloadVal; 1205 1206 // Correct the type as the SAI might have a different type than the user 1207 // expects, especially if the base pointer is a struct. 1208 Type *Ty = AccInst->getType(); 1209 1210 auto *Ptr = AddressValue; 1211 auto Name = Ptr->getName(); 1212 auto AS = Ptr->getType()->getPointerAddressSpace(); 1213 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1214 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1215 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1216 PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign()); 1217 1218 // TODO: This is only a hot fix for SCoP sequences that use the same load 1219 // instruction contained and hoisted by one of the SCoPs. 1220 if (SE.isSCEVable(Ty)) 1221 SE.forgetValue(AccInst); 1222 1223 return PreloadVal; 1224 } 1225 1226 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1227 isl_set *Domain) { 1228 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1229 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1230 1231 if (!materializeParameters(AccessRange)) { 1232 isl_set_free(AccessRange); 1233 isl_set_free(Domain); 1234 return nullptr; 1235 } 1236 1237 auto *Build = 1238 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1239 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1240 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1241 isl_set_free(Universe); 1242 1243 Instruction *AccInst = MA.getAccessInstruction(); 1244 Type *AccInstTy = AccInst->getType(); 1245 1246 Value *PreloadVal = nullptr; 1247 if (AlwaysExecuted) { 1248 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1249 isl_ast_build_free(Build); 1250 isl_set_free(Domain); 1251 return PreloadVal; 1252 } 1253 1254 if (!materializeParameters(Domain)) { 1255 isl_ast_build_free(Build); 1256 isl_set_free(AccessRange); 1257 isl_set_free(Domain); 1258 return nullptr; 1259 } 1260 1261 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1262 Domain = nullptr; 1263 1264 ExprBuilder.setTrackOverflow(true); 1265 Value *Cond = ExprBuilder.create(DomainCond); 1266 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1267 "polly.preload.cond.overflown"); 1268 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1269 ExprBuilder.setTrackOverflow(false); 1270 1271 if (!Cond->getType()->isIntegerTy(1)) 1272 Cond = Builder.CreateIsNotNull(Cond); 1273 1274 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1275 &*Builder.GetInsertPoint(), &DT, &LI); 1276 CondBB->setName("polly.preload.cond"); 1277 1278 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1279 MergeBB->setName("polly.preload.merge"); 1280 1281 Function *F = Builder.GetInsertBlock()->getParent(); 1282 LLVMContext &Context = F->getContext(); 1283 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1284 1285 DT.addNewBlock(ExecBB, CondBB); 1286 if (Loop *L = LI.getLoopFor(CondBB)) 1287 L->addBasicBlockToLoop(ExecBB, LI); 1288 1289 auto *CondBBTerminator = CondBB->getTerminator(); 1290 Builder.SetInsertPoint(CondBBTerminator); 1291 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1292 CondBBTerminator->eraseFromParent(); 1293 1294 Builder.SetInsertPoint(ExecBB); 1295 Builder.CreateBr(MergeBB); 1296 1297 Builder.SetInsertPoint(ExecBB->getTerminator()); 1298 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1299 Builder.SetInsertPoint(MergeBB->getTerminator()); 1300 auto *MergePHI = Builder.CreatePHI( 1301 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1302 PreloadVal = MergePHI; 1303 1304 if (!PreAccInst) { 1305 PreloadVal = nullptr; 1306 PreAccInst = UndefValue::get(AccInstTy); 1307 } 1308 1309 MergePHI->addIncoming(PreAccInst, ExecBB); 1310 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1311 1312 isl_ast_build_free(Build); 1313 return PreloadVal; 1314 } 1315 1316 bool IslNodeBuilder::preloadInvariantEquivClass( 1317 InvariantEquivClassTy &IAClass) { 1318 // For an equivalence class of invariant loads we pre-load the representing 1319 // element with the unified execution context. However, we have to map all 1320 // elements of the class to the one preloaded load as they are referenced 1321 // during the code generation and therefor need to be mapped. 1322 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1323 if (MAs.empty()) 1324 return true; 1325 1326 MemoryAccess *MA = MAs.front(); 1327 assert(MA->isArrayKind() && MA->isRead()); 1328 1329 // If the access function was already mapped, the preload of this equivalence 1330 // class was triggered earlier already and doesn't need to be done again. 1331 if (ValueMap.count(MA->getAccessInstruction())) 1332 return true; 1333 1334 // Check for recursion which can be caused by additional constraints, e.g., 1335 // non-finite loop constraints. In such a case we have to bail out and insert 1336 // a "false" runtime check that will cause the original code to be executed. 1337 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1338 if (!PreloadedPtrs.insert(PtrId).second) 1339 return false; 1340 1341 // The execution context of the IAClass. 1342 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1343 1344 // If the base pointer of this class is dependent on another one we have to 1345 // make sure it was preloaded already. 1346 auto *SAI = MA->getScopArrayInfo(); 1347 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1348 if (!preloadInvariantEquivClass(*BaseIAClass)) 1349 return false; 1350 1351 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1352 // we need to refine the ExecutionCtx. 1353 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1354 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1355 } 1356 1357 // If the size of a dimension is dependent on another class, make sure it is 1358 // preloaded. 1359 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1360 const SCEV *Dim = SAI->getDimensionSize(i); 1361 SetVector<Value *> Values; 1362 findValues(Dim, SE, Values); 1363 for (auto *Val : Values) { 1364 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1365 if (!preloadInvariantEquivClass(*BaseIAClass)) 1366 return false; 1367 1368 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1369 // and we need to refine the ExecutionCtx. 1370 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1371 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1372 } 1373 } 1374 } 1375 1376 Instruction *AccInst = MA->getAccessInstruction(); 1377 Type *AccInstTy = AccInst->getType(); 1378 1379 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1380 if (!PreloadVal) 1381 return false; 1382 1383 for (const MemoryAccess *MA : MAs) { 1384 Instruction *MAAccInst = MA->getAccessInstruction(); 1385 assert(PreloadVal->getType() == MAAccInst->getType()); 1386 ValueMap[MAAccInst] = PreloadVal; 1387 } 1388 1389 if (SE.isSCEVable(AccInstTy)) { 1390 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1391 if (ParamId) 1392 IDToValue[ParamId] = PreloadVal; 1393 isl_id_free(ParamId); 1394 } 1395 1396 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1397 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1398 AccInst->getName() + ".preload.s2a", 1399 &*EntryBB->getFirstInsertionPt()); 1400 Builder.CreateStore(PreloadVal, Alloca); 1401 ValueMapT PreloadedPointer; 1402 PreloadedPointer[PreloadVal] = AccInst; 1403 Annotator.addAlternativeAliasBases(PreloadedPointer); 1404 1405 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1406 Value *BasePtr = DerivedSAI->getBasePtr(); 1407 1408 for (const MemoryAccess *MA : MAs) { 1409 // As the derived SAI information is quite coarse, any load from the 1410 // current SAI could be the base pointer of the derived SAI, however we 1411 // should only change the base pointer of the derived SAI if we actually 1412 // preloaded it. 1413 if (BasePtr == MA->getOriginalBaseAddr()) { 1414 assert(BasePtr->getType() == PreloadVal->getType()); 1415 DerivedSAI->setBasePtr(PreloadVal); 1416 } 1417 1418 // For scalar derived SAIs we remap the alloca used for the derived value. 1419 if (BasePtr == MA->getAccessInstruction()) 1420 ScalarMap[DerivedSAI] = Alloca; 1421 } 1422 } 1423 1424 for (const MemoryAccess *MA : MAs) { 1425 Instruction *MAAccInst = MA->getAccessInstruction(); 1426 // Use the escape system to get the correct value to users outside the SCoP. 1427 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1428 for (auto *U : MAAccInst->users()) 1429 if (Instruction *UI = dyn_cast<Instruction>(U)) 1430 if (!S.contains(UI)) 1431 EscapeUsers.push_back(UI); 1432 1433 if (EscapeUsers.empty()) 1434 continue; 1435 1436 EscapeMap[MA->getAccessInstruction()] = 1437 std::make_pair(Alloca, std::move(EscapeUsers)); 1438 } 1439 1440 return true; 1441 } 1442 1443 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1444 for (auto &SAI : S.arrays()) { 1445 if (SAI->getBasePtr()) 1446 continue; 1447 1448 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1449 "The size of the outermost dimension is used to declare newly " 1450 "created arrays that require memory allocation."); 1451 1452 Type *NewArrayType = nullptr; 1453 1454 // Get the size of the array = size(dim_1)*...*size(dim_n) 1455 uint64_t ArraySizeInt = 1; 1456 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1457 auto *DimSize = SAI->getDimensionSize(i); 1458 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1459 ->getAPInt() 1460 .getLimitedValue(); 1461 1462 if (!NewArrayType) 1463 NewArrayType = SAI->getElementType(); 1464 1465 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1466 ArraySizeInt *= UnsignedDimSize; 1467 } 1468 1469 if (SAI->isOnHeap()) { 1470 LLVMContext &Ctx = NewArrayType->getContext(); 1471 1472 // Get the IntPtrTy from the Datalayout 1473 auto IntPtrTy = DL.getIntPtrType(Ctx); 1474 1475 // Get the size of the element type in bits 1476 unsigned Size = SAI->getElemSizeInBytes(); 1477 1478 // Insert the malloc call at polly.start 1479 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1480 auto *CreatedArray = CallInst::CreateMalloc( 1481 &*InstIt, IntPtrTy, SAI->getElementType(), 1482 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1483 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1484 SAI->getName()); 1485 1486 SAI->setBasePtr(CreatedArray); 1487 1488 // Insert the free call at polly.exiting 1489 CallInst::CreateFree(CreatedArray, 1490 std::get<1>(StartExitBlocks)->getTerminator()); 1491 } else { 1492 auto InstIt = Builder.GetInsertBlock() 1493 ->getParent() 1494 ->getEntryBlock() 1495 .getTerminator(); 1496 1497 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1498 SAI->getName(), &*InstIt); 1499 if (PollyTargetFirstLevelCacheLineSize) 1500 CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); 1501 SAI->setBasePtr(CreatedArray); 1502 } 1503 } 1504 } 1505 1506 bool IslNodeBuilder::preloadInvariantLoads() { 1507 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1508 if (InvariantEquivClasses.empty()) 1509 return true; 1510 1511 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1512 &*Builder.GetInsertPoint(), &DT, &LI); 1513 PreLoadBB->setName("polly.preload.begin"); 1514 Builder.SetInsertPoint(&PreLoadBB->front()); 1515 1516 for (auto &IAClass : InvariantEquivClasses) 1517 if (!preloadInvariantEquivClass(IAClass)) 1518 return false; 1519 1520 return true; 1521 } 1522 1523 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1524 // Materialize values for the parameters of the SCoP. 1525 materializeParameters(); 1526 1527 // materialize the outermost dimension parameters for a Fortran array. 1528 // NOTE: materializeParameters() does not work since it looks through 1529 // the SCEVs. We don't have a corresponding SCEV for the array size 1530 // parameter 1531 materializeFortranArrayOutermostDimension(); 1532 1533 // Generate values for the current loop iteration for all surrounding loops. 1534 // 1535 // We may also reference loops outside of the scop which do not contain the 1536 // scop itself, but as the number of such scops may be arbitrarily large we do 1537 // not generate code for them here, but only at the point of code generation 1538 // where these values are needed. 1539 Loop *L = LI.getLoopFor(S.getEntry()); 1540 1541 while (L != nullptr && S.contains(L)) 1542 L = L->getParentLoop(); 1543 1544 while (L != nullptr) { 1545 materializeNonScopLoopInductionVariable(L); 1546 L = L->getParentLoop(); 1547 } 1548 1549 isl_set_free(Context); 1550 } 1551 1552 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1553 /// We pass the insert location of our Builder, as Polly ensures during IR 1554 /// generation that there is always a valid CFG into which instructions are 1555 /// inserted. As a result, the insertpoint is known to be always followed by a 1556 /// terminator instruction. This means the insert point may be specified by a 1557 /// terminator instruction, but it can never point to an ->end() iterator 1558 /// which does not have a corresponding instruction. Hence, dereferencing 1559 /// the insertpoint to obtain an instruction is known to be save. 1560 /// 1561 /// We also do not need to update the Builder here, as new instructions are 1562 /// always inserted _before_ the given InsertLocation. As a result, the 1563 /// insert location remains valid. 1564 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1565 "Insert location points after last valid instruction"); 1566 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1567 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1568 InsertLocation, &ValueMap, 1569 StartBlock->getSinglePredecessor()); 1570 } 1571 1572 /// The AST expression we generate to perform the run-time check assumes 1573 /// computations on integer types of infinite size. As we only use 64-bit 1574 /// arithmetic we check for overflows, in case of which we set the result 1575 /// of this run-time check to false to be conservatively correct, 1576 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1577 auto ExprBuilder = getExprBuilder(); 1578 1579 // In case the AST expression has integers larger than 64 bit, bail out. The 1580 // resulting LLVM-IR will contain operations on types that use more than 64 1581 // bits. These are -- in case wrapping intrinsics are used -- translated to 1582 // runtime library calls that are not available on all systems (e.g., Android) 1583 // and consequently will result in linker errors. 1584 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1585 isl_ast_expr_free(Condition); 1586 return Builder.getFalse(); 1587 } 1588 1589 ExprBuilder.setTrackOverflow(true); 1590 Value *RTC = ExprBuilder.create(Condition); 1591 if (!RTC->getType()->isIntegerTy(1)) 1592 RTC = Builder.CreateIsNotNull(RTC); 1593 Value *OverflowHappened = 1594 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1595 1596 if (PollyGenerateRTCPrint) { 1597 auto *F = Builder.GetInsertBlock()->getParent(); 1598 RuntimeDebugBuilder::createCPUPrinter( 1599 Builder, 1600 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1601 "RTC: ", 1602 RTC, " Overflow: ", OverflowHappened, 1603 "\n" 1604 " (0 failed, -1 succeeded)\n" 1605 " (if one or both are 0 falling back to original code, if both are -1 " 1606 "executing Polly code)\n"); 1607 } 1608 1609 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1610 ExprBuilder.setTrackOverflow(false); 1611 1612 if (!isa<ConstantInt>(RTC)) 1613 VersionedScops++; 1614 1615 return RTC; 1616 } 1617