1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Config/config.h" 23 #include "polly/Options.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/GICHelper.h" 26 #include "polly/Support/ISLTools.h" 27 #include "polly/Support/SCEVValidator.h" 28 #include "polly/Support/ScopHelper.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/PostOrderIterator.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/LoopInfo.h" 35 #include "llvm/Analysis/RegionInfo.h" 36 #include "llvm/Analysis/ScalarEvolution.h" 37 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "isl/aff.h" 55 #include "isl/aff_type.h" 56 #include "isl/ast.h" 57 #include "isl/ast_build.h" 58 #include "isl/isl-noexceptions.h" 59 #include "isl/map.h" 60 #include "isl/set.h" 61 #include "isl/union_map.h" 62 #include "isl/union_set.h" 63 #include "isl/val.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <cstring> 68 #include <string> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 using namespace polly; 74 75 #define DEBUG_TYPE "polly-codegen" 76 77 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 78 79 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 80 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 81 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 82 STATISTIC(IfConditions, "Number of generated if-conditions"); 83 84 /// OpenMP backend options 85 enum class OpenMPBackend { GNU, LLVM }; 86 87 static cl::opt<bool> PollyGenerateRTCPrint( 88 "polly-codegen-emit-rtc-print", 89 cl::desc("Emit code that prints the runtime check result dynamically."), 90 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 91 92 // If this option is set we always use the isl AST generator to regenerate 93 // memory accesses. Without this option set we regenerate expressions using the 94 // original SCEV expressions and only generate new expressions in case the 95 // access relation has been changed and consequently must be regenerated. 96 static cl::opt<bool> PollyGenerateExpressions( 97 "polly-codegen-generate-expressions", 98 cl::desc("Generate AST expressions for unmodified and modified accesses"), 99 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 100 101 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 102 "polly-target-first-level-cache-line-size", 103 cl::desc("The size of the first level cache line size specified in bytes."), 104 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 105 106 static cl::opt<OpenMPBackend> PollyOmpBackend( 107 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 108 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 109 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 110 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 111 112 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For, 113 ICmpInst::Predicate &Predicate) { 114 isl::ast_expr Cond = For.for_get_cond(); 115 isl::ast_expr Iterator = For.for_get_iterator(); 116 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 117 "conditional expression is not an atomic upper bound"); 118 119 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 120 121 switch (OpType) { 122 case isl_ast_op_le: 123 Predicate = ICmpInst::ICMP_SLE; 124 break; 125 case isl_ast_op_lt: 126 Predicate = ICmpInst::ICMP_SLT; 127 break; 128 default: 129 llvm_unreachable("Unexpected comparison type in loop condition"); 130 } 131 132 isl::ast_expr Arg0 = Cond.get_op_arg(0); 133 134 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 135 "conditional expression is not an atomic upper bound"); 136 137 isl::id UBID = Arg0.get_id(); 138 139 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 140 "Could not get the iterator"); 141 142 isl::id IteratorID = Iterator.get_id(); 143 144 assert(UBID.get() == IteratorID.get() && 145 "conditional expression is not an atomic upper bound"); 146 147 return Cond.get_op_arg(1); 148 } 149 150 /// Return true if a return value of Predicate is true for the value represented 151 /// by passed isl_ast_expr_int. 152 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 153 isl_bool (*Predicate)(__isl_keep isl_val *)) { 154 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 155 isl_ast_expr_free(Expr); 156 return false; 157 } 158 auto ExprVal = isl_ast_expr_get_val(Expr); 159 isl_ast_expr_free(Expr); 160 if (Predicate(ExprVal) != isl_bool_true) { 161 isl_val_free(ExprVal); 162 return false; 163 } 164 isl_val_free(ExprVal); 165 return true; 166 } 167 168 int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) { 169 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 170 isl::ast_node Body = For.for_get_body(); 171 172 // First, check if we can actually handle this code. 173 switch (isl_ast_node_get_type(Body.get())) { 174 case isl_ast_node_user: 175 break; 176 case isl_ast_node_block: { 177 isl::ast_node_list List = Body.block_get_children(); 178 for (isl::ast_node Node : List) { 179 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 180 if (NodeType != isl_ast_node_user) 181 return -1; 182 } 183 break; 184 } 185 default: 186 return -1; 187 } 188 189 isl::ast_expr Init = For.for_get_init(); 190 if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) 191 return -1; 192 isl::ast_expr Inc = For.for_get_inc(); 193 if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) 194 return -1; 195 CmpInst::Predicate Predicate; 196 isl::ast_expr UB = getUpperBound(For, Predicate); 197 if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) 198 return -1; 199 isl::val UpVal = UB.get_val(); 200 int NumberIterations = UpVal.get_num_si(); 201 if (NumberIterations < 0) 202 return -1; 203 if (Predicate == CmpInst::ICMP_SLT) 204 return NumberIterations; 205 else 206 return NumberIterations + 1; 207 } 208 209 /// Extract the values and SCEVs needed to generate code for a block. 210 static int findReferencesInBlock(struct SubtreeReferences &References, 211 const ScopStmt *Stmt, BasicBlock *BB) { 212 for (Instruction &Inst : *BB) { 213 // Include invariant loads 214 if (isa<LoadInst>(Inst)) 215 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 216 References.Values.insert(InvariantLoad); 217 218 for (Value *SrcVal : Inst.operands()) { 219 auto *Scope = References.LI.getLoopFor(BB); 220 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 221 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 222 continue; 223 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 224 References.Values.insert(NewVal); 225 } 226 } 227 return 0; 228 } 229 230 void addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 231 bool CreateScalarRefs) { 232 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 233 234 if (Stmt->isBlockStmt()) 235 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 236 else { 237 assert(Stmt->isRegionStmt() && 238 "Stmt was neither block nor region statement"); 239 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 240 findReferencesInBlock(References, Stmt, BB); 241 } 242 243 for (auto &Access : *Stmt) { 244 if (References.ParamSpace) { 245 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 246 (*References.ParamSpace) = 247 References.ParamSpace->align_params(ParamSpace); 248 } 249 250 if (Access->isLatestArrayKind()) { 251 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 252 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 253 if (Stmt->getParent()->contains(OpInst)) 254 continue; 255 256 References.Values.insert(BasePtr); 257 continue; 258 } 259 260 if (CreateScalarRefs) 261 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 262 } 263 } 264 265 /// Extract the out-of-scop values and SCEVs referenced from a set describing 266 /// a ScopStmt. 267 /// 268 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 269 /// statement and the base pointers of the memory accesses. For scalar 270 /// statements we force the generation of alloca memory locations and list 271 /// these locations in the set of out-of-scop values as well. 272 /// 273 /// @param Set A set which references the ScopStmt we are interested in. 274 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 275 /// structure. 276 static void addReferencesFromStmtSet(isl::set Set, 277 struct SubtreeReferences *UserPtr) { 278 isl::id Id = Set.get_tuple_id(); 279 auto *Stmt = static_cast<const ScopStmt *>(Id.get_user()); 280 return addReferencesFromStmt(Stmt, UserPtr); 281 } 282 283 /// Extract the out-of-scop values and SCEVs referenced from a union set 284 /// referencing multiple ScopStmts. 285 /// 286 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 287 /// statement and the base pointers of the memory accesses. For scalar 288 /// statements we force the generation of alloca memory locations and list 289 /// these locations in the set of out-of-scop values as well. 290 /// 291 /// @param USet A union set referencing the ScopStmts we are interested 292 /// in. 293 /// @param References The SubtreeReferences data structure through which 294 /// results are returned and further information is 295 /// provided. 296 static void 297 addReferencesFromStmtUnionSet(isl::union_set USet, 298 struct SubtreeReferences &References) { 299 300 for (isl::set Set : USet.get_set_list()) 301 addReferencesFromStmtSet(Set, &References); 302 } 303 304 __isl_give isl_union_map * 305 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 306 return IslAstInfo::getSchedule(For); 307 } 308 309 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 310 SetVector<Value *> &Values, 311 SetVector<const Loop *> &Loops) { 312 SetVector<const SCEV *> SCEVs; 313 struct SubtreeReferences References = { 314 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 315 316 for (const auto &I : IDToValue) 317 Values.insert(I.second); 318 319 // NOTE: this is populated in IslNodeBuilder::addParameters 320 for (const auto &I : OutsideLoopIterations) 321 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 322 323 isl::union_set Schedule = 324 isl::manage(isl_union_map_domain(getScheduleForAstNode(For))); 325 addReferencesFromStmtUnionSet(Schedule, References); 326 327 for (const SCEV *Expr : SCEVs) { 328 findValues(Expr, SE, Values); 329 findLoops(Expr, Loops); 330 } 331 332 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 333 334 /// Note: Code generation of induction variables of loops outside Scops 335 /// 336 /// Remove loops that contain the scop or that are part of the scop, as they 337 /// are considered local. This leaves only loops that are before the scop, but 338 /// do not contain the scop itself. 339 /// We ignore loops perfectly contained in the Scop because these are already 340 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 341 /// whose induction variables are referred to by the Scop, but the Scop is not 342 /// fully contained in these Loops. Since there can be many of these, 343 /// we choose to codegen these on-demand. 344 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 345 Loops.remove_if([this](const Loop *L) { 346 return S.contains(L) || L->contains(S.getEntry()); 347 }); 348 349 // Contains Values that may need to be replaced with other values 350 // due to replacements from the ValueMap. We should make sure 351 // that we return correctly remapped values. 352 // NOTE: this code path is tested by: 353 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 354 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 355 SetVector<Value *> ReplacedValues; 356 for (Value *V : Values) { 357 ReplacedValues.insert(getLatestValue(V)); 358 } 359 Values = ReplacedValues; 360 } 361 362 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 363 SmallPtrSet<Value *, 5> Inserted; 364 365 for (const auto &I : IDToValue) { 366 IDToValue[I.first] = NewValues[I.second]; 367 Inserted.insert(I.second); 368 } 369 370 for (const auto &I : NewValues) { 371 if (Inserted.count(I.first)) 372 continue; 373 374 ValueMap[I.first] = I.second; 375 } 376 } 377 378 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 379 auto It = ValueMap.find(Original); 380 if (It == ValueMap.end()) 381 return Original; 382 return It->second; 383 } 384 385 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 386 std::vector<Value *> &IVS, 387 __isl_take isl_id *IteratorID, 388 __isl_take isl_union_map *Schedule) { 389 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 390 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 391 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 392 isl_ast_expr_free(StmtExpr); 393 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 394 std::vector<LoopToScevMapT> VLTS(IVS.size()); 395 396 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 397 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 398 isl_map *S = isl_map_from_union_map(Schedule); 399 400 auto *NewAccesses = createNewAccesses(Stmt, User); 401 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 402 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 403 isl_id_to_ast_expr_free(NewAccesses); 404 isl_map_free(S); 405 isl_id_free(Id); 406 isl_ast_node_free(User); 407 } 408 409 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 410 auto *Id = isl_ast_node_mark_get_id(Node); 411 auto Child = isl_ast_node_mark_get_node(Node); 412 isl_ast_node_free(Node); 413 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 414 // it will be optimized away and we should skip it. 415 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 416 isl_ast_node_get_type(Child) == isl_ast_node_for) { 417 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 418 int VectorWidth = getNumberOfIterations(isl::manage_copy(Child)); 419 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 420 createForVector(Child, VectorWidth); 421 else 422 createForSequential(isl::manage(Child), true); 423 isl_id_free(Id); 424 return; 425 } 426 if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { 427 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 428 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 429 } 430 create(Child); 431 isl_id_free(Id); 432 } 433 434 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 435 int VectorWidth) { 436 isl_ast_node *Body = isl_ast_node_for_get_body(For); 437 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 438 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 439 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 440 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 441 442 Value *ValueLB = ExprBuilder.create(Init); 443 Value *ValueInc = ExprBuilder.create(Inc); 444 445 Type *MaxType = ExprBuilder.getType(Iterator); 446 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 447 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 448 449 if (MaxType != ValueLB->getType()) 450 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 451 if (MaxType != ValueInc->getType()) 452 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 453 454 std::vector<Value *> IVS(VectorWidth); 455 IVS[0] = ValueLB; 456 457 for (int i = 1; i < VectorWidth; i++) 458 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 459 460 isl_union_map *Schedule = getScheduleForAstNode(For); 461 assert(Schedule && "For statement annotation does not contain its schedule"); 462 463 IDToValue[IteratorID] = ValueLB; 464 465 switch (isl_ast_node_get_type(Body)) { 466 case isl_ast_node_user: 467 createUserVector(Body, IVS, isl_id_copy(IteratorID), 468 isl_union_map_copy(Schedule)); 469 break; 470 case isl_ast_node_block: { 471 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 472 473 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 474 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 475 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 476 477 isl_ast_node_free(Body); 478 isl_ast_node_list_free(List); 479 break; 480 } 481 default: 482 isl_ast_node_dump(Body); 483 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 484 } 485 486 IDToValue.erase(IDToValue.find(IteratorID)); 487 isl_id_free(IteratorID); 488 isl_union_map_free(Schedule); 489 490 isl_ast_node_free(For); 491 isl_ast_expr_free(Iterator); 492 493 VectorLoops++; 494 } 495 496 /// Restore the initial ordering of dimensions of the band node 497 /// 498 /// In case the band node represents all the dimensions of the iteration 499 /// domain, recreate the band node to restore the initial ordering of the 500 /// dimensions. 501 /// 502 /// @param Node The band node to be modified. 503 /// @return The modified schedule node. 504 static bool IsLoopVectorizerDisabled(isl::ast_node Node) { 505 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 506 auto Body = Node.for_get_body(); 507 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 508 return false; 509 auto Id = Body.mark_get_id(); 510 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 511 return true; 512 return false; 513 } 514 515 void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) { 516 Value *ValueLB, *ValueUB, *ValueInc; 517 Type *MaxType; 518 BasicBlock *ExitBlock; 519 Value *IV; 520 CmpInst::Predicate Predicate; 521 522 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 523 524 isl::ast_node Body = For.for_get_body(); 525 526 // isl_ast_node_for_is_degenerate(For) 527 // 528 // TODO: For degenerated loops we could generate a plain assignment. 529 // However, for now we just reuse the logic for normal loops, which will 530 // create a loop with a single iteration. 531 532 isl::ast_expr Init = For.for_get_init(); 533 isl::ast_expr Inc = For.for_get_inc(); 534 isl::ast_expr Iterator = For.for_get_iterator(); 535 isl::id IteratorID = Iterator.get_id(); 536 isl::ast_expr UB = getUpperBound(For, Predicate); 537 538 ValueLB = ExprBuilder.create(Init.release()); 539 ValueUB = ExprBuilder.create(UB.release()); 540 ValueInc = ExprBuilder.create(Inc.release()); 541 542 MaxType = ExprBuilder.getType(Iterator.get()); 543 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 544 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 545 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 546 547 if (MaxType != ValueLB->getType()) 548 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 549 if (MaxType != ValueUB->getType()) 550 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 551 if (MaxType != ValueInc->getType()) 552 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 553 554 // If we can show that LB <Predicate> UB holds at least once, we can 555 // omit the GuardBB in front of the loop. 556 bool UseGuardBB = 557 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 558 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 559 Predicate, &Annotator, MarkParallel, UseGuardBB, 560 LoopVectorizerDisabled); 561 IDToValue[IteratorID.get()] = IV; 562 563 create(Body.release()); 564 565 Annotator.popLoop(MarkParallel); 566 567 IDToValue.erase(IDToValue.find(IteratorID.get())); 568 569 Builder.SetInsertPoint(&ExitBlock->front()); 570 571 SequentialLoops++; 572 } 573 574 /// Remove the BBs contained in a (sub)function from the dominator tree. 575 /// 576 /// This function removes the basic blocks that are part of a subfunction from 577 /// the dominator tree. Specifically, when generating code it may happen that at 578 /// some point the code generation continues in a new sub-function (e.g., when 579 /// generating OpenMP code). The basic blocks that are created in this 580 /// sub-function are then still part of the dominator tree of the original 581 /// function, such that the dominator tree reaches over function boundaries. 582 /// This is not only incorrect, but also causes crashes. This function now 583 /// removes from the dominator tree all basic blocks that are dominated (and 584 /// consequently reachable) from the entry block of this (sub)function. 585 /// 586 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 587 /// the function/region it runs on. Hence, the pure need for this function shows 588 /// that we do not comply to this rule. At the moment, this does not cause any 589 /// issues, but we should be aware that such issues may appear. Unfortunately 590 /// the current LLVM pass infrastructure does not allow to make Polly a module 591 /// or call-graph pass to solve this issue, as such a pass would not have access 592 /// to the per-function analyses passes needed by Polly. A future pass manager 593 /// infrastructure is supposed to enable such kind of access possibly allowing 594 /// us to create a cleaner solution here. 595 /// 596 /// FIXME: Instead of adding the dominance information and then dropping it 597 /// later on, we should try to just not add it in the first place. This requires 598 /// some careful testing to make sure this does not break in interaction with 599 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 600 /// which may try to update it. 601 /// 602 /// @param F The function which contains the BBs to removed. 603 /// @param DT The dominator tree from which to remove the BBs. 604 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 605 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 606 std::vector<BasicBlock *> Nodes; 607 608 // We can only remove an element from the dominator tree, if all its children 609 // have been removed. To ensure this we obtain the list of nodes to remove 610 // using a post-order tree traversal. 611 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 612 Nodes.push_back(I->getBlock()); 613 614 for (BasicBlock *BB : Nodes) 615 DT.eraseNode(BB); 616 } 617 618 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 619 isl_ast_node *Body; 620 isl_ast_expr *Init, *Inc, *Iterator, *UB; 621 isl_id *IteratorID; 622 Value *ValueLB, *ValueUB, *ValueInc; 623 Type *MaxType; 624 Value *IV; 625 CmpInst::Predicate Predicate; 626 627 // The preamble of parallel code interacts different than normal code with 628 // e.g., scalar initialization. Therefore, we ensure the parallel code is 629 // separated from the last basic block. 630 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 631 &*Builder.GetInsertPoint(), &DT, &LI); 632 ParBB->setName("polly.parallel.for"); 633 Builder.SetInsertPoint(&ParBB->front()); 634 635 Body = isl_ast_node_for_get_body(For); 636 Init = isl_ast_node_for_get_init(For); 637 Inc = isl_ast_node_for_get_inc(For); 638 Iterator = isl_ast_node_for_get_iterator(For); 639 IteratorID = isl_ast_expr_get_id(Iterator); 640 UB = getUpperBound(isl::manage_copy(For), Predicate).release(); 641 642 ValueLB = ExprBuilder.create(Init); 643 ValueUB = ExprBuilder.create(UB); 644 ValueInc = ExprBuilder.create(Inc); 645 646 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 647 // expression, we need to adjust the loop bound by one. 648 if (Predicate == CmpInst::ICMP_SLT) 649 ValueUB = Builder.CreateAdd( 650 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 651 652 MaxType = ExprBuilder.getType(Iterator); 653 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 654 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 655 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 656 657 if (MaxType != ValueLB->getType()) 658 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 659 if (MaxType != ValueUB->getType()) 660 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 661 if (MaxType != ValueInc->getType()) 662 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 663 664 BasicBlock::iterator LoopBody; 665 666 SetVector<Value *> SubtreeValues; 667 SetVector<const Loop *> Loops; 668 669 getReferencesInSubtree(For, SubtreeValues, Loops); 670 671 // Create for all loops we depend on values that contain the current loop 672 // iteration. These values are necessary to generate code for SCEVs that 673 // depend on such loops. As a result we need to pass them to the subfunction. 674 // See [Code generation of induction variables of loops outside Scops] 675 for (const Loop *L : Loops) { 676 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 677 SubtreeValues.insert(LoopInductionVar); 678 } 679 680 ValueMapT NewValues; 681 682 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 683 684 switch (PollyOmpBackend) { 685 case OpenMPBackend::GNU: 686 ParallelLoopGenPtr.reset( 687 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 688 break; 689 case OpenMPBackend::LLVM: 690 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 691 break; 692 } 693 694 IV = ParallelLoopGenPtr->createParallelLoop( 695 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 696 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 697 Builder.SetInsertPoint(&*LoopBody); 698 699 // Remember the parallel subfunction 700 ParallelSubfunctions.push_back(LoopBody->getFunction()); 701 702 // Save the current values. 703 auto ValueMapCopy = ValueMap; 704 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 705 706 updateValues(NewValues); 707 IDToValue[IteratorID] = IV; 708 709 ValueMapT NewValuesReverse; 710 711 for (auto P : NewValues) 712 NewValuesReverse[P.second] = P.first; 713 714 Annotator.addAlternativeAliasBases(NewValuesReverse); 715 716 create(Body); 717 718 Annotator.resetAlternativeAliasBases(); 719 // Restore the original values. 720 ValueMap = ValueMapCopy; 721 IDToValue = IDToValueCopy; 722 723 Builder.SetInsertPoint(&*AfterLoop); 724 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 725 726 for (const Loop *L : Loops) 727 OutsideLoopIterations.erase(L); 728 729 isl_ast_node_free(For); 730 isl_ast_expr_free(Iterator); 731 isl_id_free(IteratorID); 732 733 ParallelLoops++; 734 } 735 736 /// Return whether any of @p Node's statements contain partial accesses. 737 /// 738 /// Partial accesses are not supported by Polly's vector code generator. 739 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 740 return isl_ast_node_foreach_descendant_top_down( 741 Node, 742 [](isl_ast_node *Node, void *User) -> isl_bool { 743 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 744 return isl_bool_true; 745 746 isl::ast_expr Expr = 747 isl::manage(isl_ast_node_user_get_expr(Node)); 748 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 749 isl::id Id = StmtExpr.get_id(); 750 751 ScopStmt *Stmt = 752 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 753 isl::set StmtDom = Stmt->getDomain(); 754 for (auto *MA : *Stmt) { 755 if (MA->isLatestPartialAccess()) 756 return isl_bool_error; 757 } 758 return isl_bool_true; 759 }, 760 nullptr) == isl_stat_error; 761 } 762 763 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 764 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 765 766 if (Vector && IslAstInfo::isInnermostParallel(For) && 767 !IslAstInfo::isReductionParallel(For)) { 768 int VectorWidth = getNumberOfIterations(isl::manage_copy(For)); 769 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 770 createForVector(For, VectorWidth); 771 return; 772 } 773 } 774 775 if (IslAstInfo::isExecutedInParallel(For)) { 776 createForParallel(For); 777 return; 778 } 779 bool Parallel = 780 (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For)); 781 createForSequential(isl::manage(For), Parallel); 782 } 783 784 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 785 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 786 787 Function *F = Builder.GetInsertBlock()->getParent(); 788 LLVMContext &Context = F->getContext(); 789 790 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 791 &*Builder.GetInsertPoint(), &DT, &LI); 792 CondBB->setName("polly.cond"); 793 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 794 MergeBB->setName("polly.merge"); 795 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 796 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 797 798 DT.addNewBlock(ThenBB, CondBB); 799 DT.addNewBlock(ElseBB, CondBB); 800 DT.changeImmediateDominator(MergeBB, CondBB); 801 802 Loop *L = LI.getLoopFor(CondBB); 803 if (L) { 804 L->addBasicBlockToLoop(ThenBB, LI); 805 L->addBasicBlockToLoop(ElseBB, LI); 806 } 807 808 CondBB->getTerminator()->eraseFromParent(); 809 810 Builder.SetInsertPoint(CondBB); 811 Value *Predicate = ExprBuilder.create(Cond); 812 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 813 Builder.SetInsertPoint(ThenBB); 814 Builder.CreateBr(MergeBB); 815 Builder.SetInsertPoint(ElseBB); 816 Builder.CreateBr(MergeBB); 817 Builder.SetInsertPoint(&ThenBB->front()); 818 819 create(isl_ast_node_if_get_then(If)); 820 821 Builder.SetInsertPoint(&ElseBB->front()); 822 823 if (isl_ast_node_if_has_else(If)) 824 create(isl_ast_node_if_get_else(If)); 825 826 Builder.SetInsertPoint(&MergeBB->front()); 827 828 isl_ast_node_free(If); 829 830 IfConditions++; 831 } 832 833 __isl_give isl_id_to_ast_expr * 834 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 835 __isl_keep isl_ast_node *Node) { 836 isl_id_to_ast_expr *NewAccesses = 837 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0); 838 839 auto *Build = IslAstInfo::getBuild(Node); 840 assert(Build && "Could not obtain isl_ast_build from user node"); 841 Stmt->setAstBuild(isl::manage_copy(Build)); 842 843 for (auto *MA : *Stmt) { 844 if (!MA->hasNewAccessRelation()) { 845 if (PollyGenerateExpressions) { 846 if (!MA->isAffine()) 847 continue; 848 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 849 continue; 850 851 auto *BasePtr = 852 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 853 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 854 continue; 855 } else { 856 continue; 857 } 858 } 859 assert(MA->isAffine() && 860 "Only affine memory accesses can be code generated"); 861 862 auto Schedule = isl_ast_build_get_schedule(Build); 863 864 #ifndef NDEBUG 865 if (MA->isRead()) { 866 auto Dom = Stmt->getDomain().release(); 867 auto SchedDom = isl_set_from_union_set( 868 isl_union_map_domain(isl_union_map_copy(Schedule))); 869 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 870 Dom = isl_set_intersect_params(Dom, 871 Stmt->getParent()->getContext().release()); 872 SchedDom = isl_set_intersect_params( 873 SchedDom, Stmt->getParent()->getContext().release()); 874 assert(isl_set_is_subset(SchedDom, AccDom) && 875 "Access relation not defined on full schedule domain"); 876 assert(isl_set_is_subset(Dom, AccDom) && 877 "Access relation not defined on full domain"); 878 isl_set_free(AccDom); 879 isl_set_free(SchedDom); 880 isl_set_free(Dom); 881 } 882 #endif 883 884 auto PWAccRel = 885 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 886 887 // isl cannot generate an index expression for access-nothing accesses. 888 isl::set AccDomain = 889 isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 890 isl::set Context = S.getContext(); 891 AccDomain = AccDomain.intersect_params(Context); 892 if (AccDomain.is_empty()) { 893 isl_pw_multi_aff_free(PWAccRel); 894 continue; 895 } 896 897 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 898 NewAccesses = 899 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 900 } 901 902 return NewAccesses; 903 } 904 905 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 906 ScopStmt *Stmt, LoopToScevMapT <S) { 907 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 908 "Expression of type 'op' expected"); 909 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 910 "Operation of type 'call' expected"); 911 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 912 isl_ast_expr *SubExpr; 913 Value *V; 914 915 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 916 V = ExprBuilder.create(SubExpr); 917 ScalarEvolution *SE = Stmt->getParent()->getSE(); 918 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 919 } 920 921 isl_ast_expr_free(Expr); 922 } 923 924 void IslNodeBuilder::createSubstitutionsVector( 925 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 926 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 927 __isl_take isl_id *IteratorID) { 928 int i = 0; 929 930 Value *OldValue = IDToValue[IteratorID]; 931 for (Value *IV : IVS) { 932 IDToValue[IteratorID] = IV; 933 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 934 i++; 935 } 936 937 IDToValue[IteratorID] = OldValue; 938 isl_id_free(IteratorID); 939 isl_ast_expr_free(Expr); 940 } 941 942 void IslNodeBuilder::generateCopyStmt( 943 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 944 assert(Stmt->size() == 2); 945 auto ReadAccess = Stmt->begin(); 946 auto WriteAccess = ReadAccess++; 947 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 948 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 949 "Accesses use the same data type"); 950 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 951 auto *AccessExpr = 952 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 953 auto *LoadValue = ExprBuilder.create(AccessExpr); 954 AccessExpr = 955 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 956 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 957 Builder.CreateStore(LoadValue, StoreAddr); 958 } 959 960 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 961 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 962 "trying to materialize loop induction variable twice"); 963 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 964 SE.getUnknown(Builder.getInt64(1)), L, 965 SCEV::FlagAnyWrap); 966 Value *V = generateSCEV(OuterLIV); 967 OutsideLoopIterations[L] = SE.getUnknown(V); 968 return V; 969 } 970 971 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 972 LoopToScevMapT LTS; 973 isl_id *Id; 974 ScopStmt *Stmt; 975 976 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 977 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 978 Id = isl_ast_expr_get_id(StmtExpr); 979 isl_ast_expr_free(StmtExpr); 980 981 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 982 983 Stmt = (ScopStmt *)isl_id_get_user(Id); 984 auto *NewAccesses = createNewAccesses(Stmt, User); 985 if (Stmt->isCopyStmt()) { 986 generateCopyStmt(Stmt, NewAccesses); 987 isl_ast_expr_free(Expr); 988 } else { 989 createSubstitutions(Expr, Stmt, LTS); 990 991 if (Stmt->isBlockStmt()) 992 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 993 else 994 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 995 } 996 997 isl_id_to_ast_expr_free(NewAccesses); 998 isl_ast_node_free(User); 999 isl_id_free(Id); 1000 } 1001 1002 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1003 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1004 1005 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1006 create(isl_ast_node_list_get_ast_node(List, i)); 1007 1008 isl_ast_node_free(Block); 1009 isl_ast_node_list_free(List); 1010 } 1011 1012 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1013 switch (isl_ast_node_get_type(Node)) { 1014 case isl_ast_node_error: 1015 llvm_unreachable("code generation error"); 1016 case isl_ast_node_mark: 1017 createMark(Node); 1018 return; 1019 case isl_ast_node_for: 1020 createFor(Node); 1021 return; 1022 case isl_ast_node_if: 1023 createIf(Node); 1024 return; 1025 case isl_ast_node_user: 1026 createUser(Node); 1027 return; 1028 case isl_ast_node_block: 1029 createBlock(Node); 1030 return; 1031 } 1032 1033 llvm_unreachable("Unknown isl_ast_node type"); 1034 } 1035 1036 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1037 // If the Id is already mapped, skip it. 1038 if (!IDToValue.count(Id)) { 1039 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1040 Value *V = nullptr; 1041 1042 // Parameters could refer to invariant loads that need to be 1043 // preloaded before we can generate code for the parameter. Thus, 1044 // check if any value referred to in ParamSCEV is an invariant load 1045 // and if so make sure its equivalence class is preloaded. 1046 SetVector<Value *> Values; 1047 findValues(ParamSCEV, SE, Values); 1048 for (auto *Val : Values) { 1049 // Check if the value is an instruction in a dead block within the SCoP 1050 // and if so do not code generate it. 1051 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1052 if (S.contains(Inst)) { 1053 bool IsDead = true; 1054 1055 // Check for "undef" loads first, then if there is a statement for 1056 // the parent of Inst and lastly if the parent of Inst has an empty 1057 // domain. In the first and last case the instruction is dead but if 1058 // there is a statement or the domain is not empty Inst is not dead. 1059 auto MemInst = MemAccInst::dyn_cast(Inst); 1060 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1061 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1062 SE.getPointerBase(SE.getSCEV(Address))) { 1063 } else if (S.getStmtFor(Inst)) { 1064 IsDead = false; 1065 } else { 1066 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1067 IsDead = isl_set_is_empty(Domain); 1068 isl_set_free(Domain); 1069 } 1070 1071 if (IsDead) { 1072 V = UndefValue::get(ParamSCEV->getType()); 1073 break; 1074 } 1075 } 1076 } 1077 1078 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1079 // Check if this invariant access class is empty, hence if we never 1080 // actually added a loads instruction to it. In that case it has no 1081 // (meaningful) users and we should not try to code generate it. 1082 if (IAClass->InvariantAccesses.empty()) 1083 V = UndefValue::get(ParamSCEV->getType()); 1084 1085 if (!preloadInvariantEquivClass(*IAClass)) { 1086 isl_id_free(Id); 1087 return false; 1088 } 1089 } 1090 } 1091 1092 V = V ? V : generateSCEV(ParamSCEV); 1093 IDToValue[Id] = V; 1094 } 1095 1096 isl_id_free(Id); 1097 return true; 1098 } 1099 1100 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1101 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1102 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1103 continue; 1104 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1105 if (!materializeValue(Id)) 1106 return false; 1107 } 1108 return true; 1109 } 1110 1111 bool IslNodeBuilder::materializeParameters() { 1112 for (const SCEV *Param : S.parameters()) { 1113 isl_id *Id = S.getIdForParam(Param).release(); 1114 if (!materializeValue(Id)) 1115 return false; 1116 } 1117 return true; 1118 } 1119 1120 /// Generate the computation of the size of the outermost dimension from the 1121 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1122 /// contains the size of the array. 1123 /// 1124 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1125 /// %desc.dimensionty = type { i64, i64, i64 } 1126 /// @g_arr = global %arrty zeroinitializer, align 32 1127 /// ... 1128 /// %0 = load i64, i64* getelementptr inbounds 1129 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1130 /// %1 = load i64, i64* getelementptr inbounds 1131 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1132 /// %2 = sub nsw i64 %0, %1 1133 /// %size = add nsw i64 %2, 1 1134 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1135 PollyIRBuilder &Builder, 1136 std::string ArrayName) { 1137 assert(GlobalDescriptor && "invalid global descriptor given"); 1138 1139 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1140 Builder.getInt64(0), Builder.getInt32(2)}; 1141 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1142 ArrayName + "_end_ptr"); 1143 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1144 1145 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1146 Builder.getInt64(0), Builder.getInt32(1)}; 1147 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1148 ArrayName + "_begin_ptr"); 1149 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1150 1151 Value *size = 1152 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1153 Type *endType = dyn_cast<IntegerType>(end->getType()); 1154 assert(endType && "expected type of end to be integral"); 1155 1156 size = Builder.CreateNSWAdd(end, 1157 ConstantInt::get(endType, 1, /* signed = */ true), 1158 ArrayName + "_size"); 1159 1160 return size; 1161 } 1162 1163 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1164 for (ScopArrayInfo *Array : S.arrays()) { 1165 if (Array->getNumberOfDimensions() == 0) 1166 continue; 1167 1168 Value *FAD = Array->getFortranArrayDescriptor(); 1169 if (!FAD) 1170 continue; 1171 1172 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1173 assert(ParametricPwAff && "parametric pw_aff corresponding " 1174 "to outermost dimension does not " 1175 "exist"); 1176 1177 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1178 isl_pw_aff_free(ParametricPwAff); 1179 1180 assert(Id && "pw_aff is not parametric"); 1181 1182 if (IDToValue.count(Id)) { 1183 isl_id_free(Id); 1184 continue; 1185 } 1186 1187 Value *FinalValue = 1188 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1189 assert(FinalValue && "unable to build Fortran array " 1190 "descriptor load of outermost dimension"); 1191 IDToValue[Id] = FinalValue; 1192 isl_id_free(Id); 1193 } 1194 return true; 1195 } 1196 1197 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1198 isl_ast_build *Build, 1199 Instruction *AccInst) { 1200 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1201 isl_ast_expr *Access = 1202 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1203 auto *Address = isl_ast_expr_address_of(Access); 1204 auto *AddressValue = ExprBuilder.create(Address); 1205 Value *PreloadVal; 1206 1207 // Correct the type as the SAI might have a different type than the user 1208 // expects, especially if the base pointer is a struct. 1209 Type *Ty = AccInst->getType(); 1210 1211 auto *Ptr = AddressValue; 1212 auto Name = Ptr->getName(); 1213 auto AS = Ptr->getType()->getPointerAddressSpace(); 1214 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1215 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1216 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1217 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1218 1219 // TODO: This is only a hot fix for SCoP sequences that use the same load 1220 // instruction contained and hoisted by one of the SCoPs. 1221 if (SE.isSCEVable(Ty)) 1222 SE.forgetValue(AccInst); 1223 1224 return PreloadVal; 1225 } 1226 1227 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1228 isl_set *Domain) { 1229 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1230 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1231 1232 if (!materializeParameters(AccessRange)) { 1233 isl_set_free(AccessRange); 1234 isl_set_free(Domain); 1235 return nullptr; 1236 } 1237 1238 auto *Build = 1239 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1240 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1241 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1242 isl_set_free(Universe); 1243 1244 Instruction *AccInst = MA.getAccessInstruction(); 1245 Type *AccInstTy = AccInst->getType(); 1246 1247 Value *PreloadVal = nullptr; 1248 if (AlwaysExecuted) { 1249 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1250 isl_ast_build_free(Build); 1251 isl_set_free(Domain); 1252 return PreloadVal; 1253 } 1254 1255 if (!materializeParameters(Domain)) { 1256 isl_ast_build_free(Build); 1257 isl_set_free(AccessRange); 1258 isl_set_free(Domain); 1259 return nullptr; 1260 } 1261 1262 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1263 Domain = nullptr; 1264 1265 ExprBuilder.setTrackOverflow(true); 1266 Value *Cond = ExprBuilder.create(DomainCond); 1267 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1268 "polly.preload.cond.overflown"); 1269 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1270 ExprBuilder.setTrackOverflow(false); 1271 1272 if (!Cond->getType()->isIntegerTy(1)) 1273 Cond = Builder.CreateIsNotNull(Cond); 1274 1275 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1276 &*Builder.GetInsertPoint(), &DT, &LI); 1277 CondBB->setName("polly.preload.cond"); 1278 1279 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1280 MergeBB->setName("polly.preload.merge"); 1281 1282 Function *F = Builder.GetInsertBlock()->getParent(); 1283 LLVMContext &Context = F->getContext(); 1284 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1285 1286 DT.addNewBlock(ExecBB, CondBB); 1287 if (Loop *L = LI.getLoopFor(CondBB)) 1288 L->addBasicBlockToLoop(ExecBB, LI); 1289 1290 auto *CondBBTerminator = CondBB->getTerminator(); 1291 Builder.SetInsertPoint(CondBBTerminator); 1292 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1293 CondBBTerminator->eraseFromParent(); 1294 1295 Builder.SetInsertPoint(ExecBB); 1296 Builder.CreateBr(MergeBB); 1297 1298 Builder.SetInsertPoint(ExecBB->getTerminator()); 1299 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1300 Builder.SetInsertPoint(MergeBB->getTerminator()); 1301 auto *MergePHI = Builder.CreatePHI( 1302 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1303 PreloadVal = MergePHI; 1304 1305 if (!PreAccInst) { 1306 PreloadVal = nullptr; 1307 PreAccInst = UndefValue::get(AccInstTy); 1308 } 1309 1310 MergePHI->addIncoming(PreAccInst, ExecBB); 1311 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1312 1313 isl_ast_build_free(Build); 1314 return PreloadVal; 1315 } 1316 1317 bool IslNodeBuilder::preloadInvariantEquivClass( 1318 InvariantEquivClassTy &IAClass) { 1319 // For an equivalence class of invariant loads we pre-load the representing 1320 // element with the unified execution context. However, we have to map all 1321 // elements of the class to the one preloaded load as they are referenced 1322 // during the code generation and therefor need to be mapped. 1323 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1324 if (MAs.empty()) 1325 return true; 1326 1327 MemoryAccess *MA = MAs.front(); 1328 assert(MA->isArrayKind() && MA->isRead()); 1329 1330 // If the access function was already mapped, the preload of this equivalence 1331 // class was triggered earlier already and doesn't need to be done again. 1332 if (ValueMap.count(MA->getAccessInstruction())) 1333 return true; 1334 1335 // Check for recursion which can be caused by additional constraints, e.g., 1336 // non-finite loop constraints. In such a case we have to bail out and insert 1337 // a "false" runtime check that will cause the original code to be executed. 1338 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1339 if (!PreloadedPtrs.insert(PtrId).second) 1340 return false; 1341 1342 // The execution context of the IAClass. 1343 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1344 1345 // If the base pointer of this class is dependent on another one we have to 1346 // make sure it was preloaded already. 1347 auto *SAI = MA->getScopArrayInfo(); 1348 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1349 if (!preloadInvariantEquivClass(*BaseIAClass)) 1350 return false; 1351 1352 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1353 // we need to refine the ExecutionCtx. 1354 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1355 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1356 } 1357 1358 // If the size of a dimension is dependent on another class, make sure it is 1359 // preloaded. 1360 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1361 const SCEV *Dim = SAI->getDimensionSize(i); 1362 SetVector<Value *> Values; 1363 findValues(Dim, SE, Values); 1364 for (auto *Val : Values) { 1365 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1366 if (!preloadInvariantEquivClass(*BaseIAClass)) 1367 return false; 1368 1369 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1370 // and we need to refine the ExecutionCtx. 1371 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1372 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1373 } 1374 } 1375 } 1376 1377 Instruction *AccInst = MA->getAccessInstruction(); 1378 Type *AccInstTy = AccInst->getType(); 1379 1380 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1381 if (!PreloadVal) 1382 return false; 1383 1384 for (const MemoryAccess *MA : MAs) { 1385 Instruction *MAAccInst = MA->getAccessInstruction(); 1386 assert(PreloadVal->getType() == MAAccInst->getType()); 1387 ValueMap[MAAccInst] = PreloadVal; 1388 } 1389 1390 if (SE.isSCEVable(AccInstTy)) { 1391 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1392 if (ParamId) 1393 IDToValue[ParamId] = PreloadVal; 1394 isl_id_free(ParamId); 1395 } 1396 1397 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1398 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1399 AccInst->getName() + ".preload.s2a"); 1400 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1401 Builder.CreateStore(PreloadVal, Alloca); 1402 ValueMapT PreloadedPointer; 1403 PreloadedPointer[PreloadVal] = AccInst; 1404 Annotator.addAlternativeAliasBases(PreloadedPointer); 1405 1406 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1407 Value *BasePtr = DerivedSAI->getBasePtr(); 1408 1409 for (const MemoryAccess *MA : MAs) { 1410 // As the derived SAI information is quite coarse, any load from the 1411 // current SAI could be the base pointer of the derived SAI, however we 1412 // should only change the base pointer of the derived SAI if we actually 1413 // preloaded it. 1414 if (BasePtr == MA->getOriginalBaseAddr()) { 1415 assert(BasePtr->getType() == PreloadVal->getType()); 1416 DerivedSAI->setBasePtr(PreloadVal); 1417 } 1418 1419 // For scalar derived SAIs we remap the alloca used for the derived value. 1420 if (BasePtr == MA->getAccessInstruction()) 1421 ScalarMap[DerivedSAI] = Alloca; 1422 } 1423 } 1424 1425 for (const MemoryAccess *MA : MAs) { 1426 Instruction *MAAccInst = MA->getAccessInstruction(); 1427 // Use the escape system to get the correct value to users outside the SCoP. 1428 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1429 for (auto *U : MAAccInst->users()) 1430 if (Instruction *UI = dyn_cast<Instruction>(U)) 1431 if (!S.contains(UI)) 1432 EscapeUsers.push_back(UI); 1433 1434 if (EscapeUsers.empty()) 1435 continue; 1436 1437 EscapeMap[MA->getAccessInstruction()] = 1438 std::make_pair(Alloca, std::move(EscapeUsers)); 1439 } 1440 1441 return true; 1442 } 1443 1444 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1445 for (auto &SAI : S.arrays()) { 1446 if (SAI->getBasePtr()) 1447 continue; 1448 1449 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1450 "The size of the outermost dimension is used to declare newly " 1451 "created arrays that require memory allocation."); 1452 1453 Type *NewArrayType = nullptr; 1454 1455 // Get the size of the array = size(dim_1)*...*size(dim_n) 1456 uint64_t ArraySizeInt = 1; 1457 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1458 auto *DimSize = SAI->getDimensionSize(i); 1459 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1460 ->getAPInt() 1461 .getLimitedValue(); 1462 1463 if (!NewArrayType) 1464 NewArrayType = SAI->getElementType(); 1465 1466 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1467 ArraySizeInt *= UnsignedDimSize; 1468 } 1469 1470 if (SAI->isOnHeap()) { 1471 LLVMContext &Ctx = NewArrayType->getContext(); 1472 1473 // Get the IntPtrTy from the Datalayout 1474 auto IntPtrTy = DL.getIntPtrType(Ctx); 1475 1476 // Get the size of the element type in bits 1477 unsigned Size = SAI->getElemSizeInBytes(); 1478 1479 // Insert the malloc call at polly.start 1480 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1481 auto *CreatedArray = CallInst::CreateMalloc( 1482 &*InstIt, IntPtrTy, SAI->getElementType(), 1483 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1484 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1485 SAI->getName()); 1486 1487 SAI->setBasePtr(CreatedArray); 1488 1489 // Insert the free call at polly.exiting 1490 CallInst::CreateFree(CreatedArray, 1491 std::get<1>(StartExitBlocks)->getTerminator()); 1492 } else { 1493 auto InstIt = Builder.GetInsertBlock() 1494 ->getParent() 1495 ->getEntryBlock() 1496 .getTerminator(); 1497 1498 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1499 SAI->getName(), &*InstIt); 1500 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1501 SAI->setBasePtr(CreatedArray); 1502 } 1503 } 1504 } 1505 1506 bool IslNodeBuilder::preloadInvariantLoads() { 1507 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1508 if (InvariantEquivClasses.empty()) 1509 return true; 1510 1511 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1512 &*Builder.GetInsertPoint(), &DT, &LI); 1513 PreLoadBB->setName("polly.preload.begin"); 1514 Builder.SetInsertPoint(&PreLoadBB->front()); 1515 1516 for (auto &IAClass : InvariantEquivClasses) 1517 if (!preloadInvariantEquivClass(IAClass)) 1518 return false; 1519 1520 return true; 1521 } 1522 1523 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1524 // Materialize values for the parameters of the SCoP. 1525 materializeParameters(); 1526 1527 // materialize the outermost dimension parameters for a Fortran array. 1528 // NOTE: materializeParameters() does not work since it looks through 1529 // the SCEVs. We don't have a corresponding SCEV for the array size 1530 // parameter 1531 materializeFortranArrayOutermostDimension(); 1532 1533 // Generate values for the current loop iteration for all surrounding loops. 1534 // 1535 // We may also reference loops outside of the scop which do not contain the 1536 // scop itself, but as the number of such scops may be arbitrarily large we do 1537 // not generate code for them here, but only at the point of code generation 1538 // where these values are needed. 1539 Loop *L = LI.getLoopFor(S.getEntry()); 1540 1541 while (L != nullptr && S.contains(L)) 1542 L = L->getParentLoop(); 1543 1544 while (L != nullptr) { 1545 materializeNonScopLoopInductionVariable(L); 1546 L = L->getParentLoop(); 1547 } 1548 1549 isl_set_free(Context); 1550 } 1551 1552 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1553 /// We pass the insert location of our Builder, as Polly ensures during IR 1554 /// generation that there is always a valid CFG into which instructions are 1555 /// inserted. As a result, the insertpoint is known to be always followed by a 1556 /// terminator instruction. This means the insert point may be specified by a 1557 /// terminator instruction, but it can never point to an ->end() iterator 1558 /// which does not have a corresponding instruction. Hence, dereferencing 1559 /// the insertpoint to obtain an instruction is known to be save. 1560 /// 1561 /// We also do not need to update the Builder here, as new instructions are 1562 /// always inserted _before_ the given InsertLocation. As a result, the 1563 /// insert location remains valid. 1564 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1565 "Insert location points after last valid instruction"); 1566 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1567 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1568 InsertLocation, &ValueMap, 1569 StartBlock->getSinglePredecessor()); 1570 } 1571 1572 /// The AST expression we generate to perform the run-time check assumes 1573 /// computations on integer types of infinite size. As we only use 64-bit 1574 /// arithmetic we check for overflows, in case of which we set the result 1575 /// of this run-time check to false to be conservatively correct, 1576 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1577 auto ExprBuilder = getExprBuilder(); 1578 1579 // In case the AST expression has integers larger than 64 bit, bail out. The 1580 // resulting LLVM-IR will contain operations on types that use more than 64 1581 // bits. These are -- in case wrapping intrinsics are used -- translated to 1582 // runtime library calls that are not available on all systems (e.g., Android) 1583 // and consequently will result in linker errors. 1584 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1585 isl_ast_expr_free(Condition); 1586 return Builder.getFalse(); 1587 } 1588 1589 ExprBuilder.setTrackOverflow(true); 1590 Value *RTC = ExprBuilder.create(Condition); 1591 if (!RTC->getType()->isIntegerTy(1)) 1592 RTC = Builder.CreateIsNotNull(RTC); 1593 Value *OverflowHappened = 1594 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1595 1596 if (PollyGenerateRTCPrint) { 1597 auto *F = Builder.GetInsertBlock()->getParent(); 1598 RuntimeDebugBuilder::createCPUPrinter( 1599 Builder, 1600 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1601 "RTC: ", 1602 RTC, " Overflow: ", OverflowHappened, 1603 "\n" 1604 " (0 failed, -1 succeeded)\n" 1605 " (if one or both are 0 falling back to original code, if both are -1 " 1606 "executing Polly code)\n"); 1607 } 1608 1609 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1610 ExprBuilder.setTrackOverflow(false); 1611 1612 if (!isa<ConstantInt>(RTC)) 1613 VersionedScops++; 1614 1615 return RTC; 1616 } 1617