1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Options.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/ISLTools.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "polly/Support/ScopHelper.h" 27 #include "polly/Support/VirtualInstruction.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/RegionInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "isl/aff.h" 54 #include "isl/aff_type.h" 55 #include "isl/ast.h" 56 #include "isl/ast_build.h" 57 #include "isl/isl-noexceptions.h" 58 #include "isl/map.h" 59 #include "isl/set.h" 60 #include "isl/union_map.h" 61 #include "isl/union_set.h" 62 #include "isl/val.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <cstring> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace polly; 73 74 #define DEBUG_TYPE "polly-codegen" 75 76 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 77 78 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 79 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 80 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 81 STATISTIC(IfConditions, "Number of generated if-conditions"); 82 83 /// OpenMP backend options 84 enum class OpenMPBackend { GNU, LLVM }; 85 86 static cl::opt<bool> PollyGenerateRTCPrint( 87 "polly-codegen-emit-rtc-print", 88 cl::desc("Emit code that prints the runtime check result dynamically."), 89 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 90 91 // If this option is set we always use the isl AST generator to regenerate 92 // memory accesses. Without this option set we regenerate expressions using the 93 // original SCEV expressions and only generate new expressions in case the 94 // access relation has been changed and consequently must be regenerated. 95 static cl::opt<bool> PollyGenerateExpressions( 96 "polly-codegen-generate-expressions", 97 cl::desc("Generate AST expressions for unmodified and modified accesses"), 98 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 99 100 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 101 "polly-target-first-level-cache-line-size", 102 cl::desc("The size of the first level cache line size specified in bytes."), 103 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 104 105 static cl::opt<OpenMPBackend> PollyOmpBackend( 106 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 107 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 108 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 109 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 110 111 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For, 112 ICmpInst::Predicate &Predicate) { 113 isl::ast_expr Cond = For.cond(); 114 isl::ast_expr Iterator = For.iterator(); 115 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 116 "conditional expression is not an atomic upper bound"); 117 118 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 119 120 switch (OpType) { 121 case isl_ast_op_le: 122 Predicate = ICmpInst::ICMP_SLE; 123 break; 124 case isl_ast_op_lt: 125 Predicate = ICmpInst::ICMP_SLT; 126 break; 127 default: 128 llvm_unreachable("Unexpected comparison type in loop condition"); 129 } 130 131 isl::ast_expr Arg0 = Cond.get_op_arg(0); 132 133 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 134 "conditional expression is not an atomic upper bound"); 135 136 isl::id UBID = Arg0.get_id(); 137 138 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 139 "Could not get the iterator"); 140 141 isl::id IteratorID = Iterator.get_id(); 142 143 assert(UBID.get() == IteratorID.get() && 144 "conditional expression is not an atomic upper bound"); 145 146 return Cond.get_op_arg(1); 147 } 148 149 int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) { 150 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 151 isl::ast_node Body = For.body(); 152 153 // First, check if we can actually handle this code. 154 switch (isl_ast_node_get_type(Body.get())) { 155 case isl_ast_node_user: 156 break; 157 case isl_ast_node_block: { 158 isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>(); 159 isl::ast_node_list List = BodyBlock.children(); 160 for (isl::ast_node Node : List) { 161 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 162 if (NodeType != isl_ast_node_user) 163 return -1; 164 } 165 break; 166 } 167 default: 168 return -1; 169 } 170 171 isl::ast_expr Init = For.init(); 172 if (!Init.isa<isl::ast_expr_int>() || !Init.val().is_zero()) 173 return -1; 174 isl::ast_expr Inc = For.inc(); 175 if (!Inc.isa<isl::ast_expr_int>() || !Inc.val().is_one()) 176 return -1; 177 CmpInst::Predicate Predicate; 178 isl::ast_expr UB = getUpperBound(For, Predicate); 179 if (!UB.isa<isl::ast_expr_int>()) 180 return -1; 181 isl::val UpVal = UB.get_val(); 182 int NumberIterations = UpVal.get_num_si(); 183 if (NumberIterations < 0) 184 return -1; 185 if (Predicate == CmpInst::ICMP_SLT) 186 return NumberIterations; 187 else 188 return NumberIterations + 1; 189 } 190 191 static void findReferencesByUse(Value *SrcVal, ScopStmt *UserStmt, 192 Loop *UserScope, const ValueMapT &GlobalMap, 193 SetVector<Value *> &Values, 194 SetVector<const SCEV *> &SCEVs) { 195 VirtualUse VUse = VirtualUse::create(UserStmt, UserScope, SrcVal, true); 196 switch (VUse.getKind()) { 197 case VirtualUse::Constant: 198 // When accelerator-offloading, GlobalValue is a host address whose content 199 // must still be transferred to the GPU. 200 if (isa<GlobalValue>(SrcVal)) 201 Values.insert(SrcVal); 202 break; 203 204 case VirtualUse::Synthesizable: 205 SCEVs.insert(VUse.getScevExpr()); 206 return; 207 208 case VirtualUse::Block: 209 case VirtualUse::ReadOnly: 210 case VirtualUse::Hoisted: 211 case VirtualUse::Intra: 212 case VirtualUse::Inter: 213 break; 214 } 215 216 if (Value *NewVal = GlobalMap.lookup(SrcVal)) 217 Values.insert(NewVal); 218 } 219 220 static void findReferencesInInst(Instruction *Inst, ScopStmt *UserStmt, 221 Loop *UserScope, const ValueMapT &GlobalMap, 222 SetVector<Value *> &Values, 223 SetVector<const SCEV *> &SCEVs) { 224 for (Use &U : Inst->operands()) 225 findReferencesByUse(U.get(), UserStmt, UserScope, GlobalMap, Values, SCEVs); 226 } 227 228 static void findReferencesInStmt(ScopStmt *Stmt, SetVector<Value *> &Values, 229 ValueMapT &GlobalMap, 230 SetVector<const SCEV *> &SCEVs) { 231 LoopInfo *LI = Stmt->getParent()->getLI(); 232 233 BasicBlock *BB = Stmt->getBasicBlock(); 234 Loop *Scope = LI->getLoopFor(BB); 235 for (Instruction *Inst : Stmt->getInstructions()) 236 findReferencesInInst(Inst, Stmt, Scope, GlobalMap, Values, SCEVs); 237 238 if (Stmt->isRegionStmt()) { 239 for (BasicBlock *BB : Stmt->getRegion()->blocks()) { 240 Loop *Scope = LI->getLoopFor(BB); 241 for (Instruction &Inst : *BB) 242 findReferencesInInst(&Inst, Stmt, Scope, GlobalMap, Values, SCEVs); 243 } 244 } 245 } 246 247 void polly::addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr, 248 bool CreateScalarRefs) { 249 auto &References = *static_cast<SubtreeReferences *>(UserPtr); 250 251 findReferencesInStmt(Stmt, References.Values, References.GlobalMap, 252 References.SCEVs); 253 254 for (auto &Access : *Stmt) { 255 if (References.ParamSpace) { 256 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 257 (*References.ParamSpace) = 258 References.ParamSpace->align_params(ParamSpace); 259 } 260 261 if (Access->isLatestArrayKind()) { 262 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 263 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 264 if (Stmt->getParent()->contains(OpInst)) 265 continue; 266 267 References.Values.insert(BasePtr); 268 continue; 269 } 270 271 if (CreateScalarRefs) 272 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 273 } 274 } 275 276 /// Extract the out-of-scop values and SCEVs referenced from a set describing 277 /// a ScopStmt. 278 /// 279 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 280 /// statement and the base pointers of the memory accesses. For scalar 281 /// statements we force the generation of alloca memory locations and list 282 /// these locations in the set of out-of-scop values as well. 283 /// 284 /// @param Set A set which references the ScopStmt we are interested in. 285 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 286 /// structure. 287 static void addReferencesFromStmtSet(isl::set Set, SubtreeReferences *UserPtr) { 288 isl::id Id = Set.get_tuple_id(); 289 auto *Stmt = static_cast<ScopStmt *>(Id.get_user()); 290 addReferencesFromStmt(Stmt, UserPtr); 291 } 292 293 /// Extract the out-of-scop values and SCEVs referenced from a union set 294 /// referencing multiple ScopStmts. 295 /// 296 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 297 /// statement and the base pointers of the memory accesses. For scalar 298 /// statements we force the generation of alloca memory locations and list 299 /// these locations in the set of out-of-scop values as well. 300 /// 301 /// @param USet A union set referencing the ScopStmts we are interested 302 /// in. 303 /// @param References The SubtreeReferences data structure through which 304 /// results are returned and further information is 305 /// provided. 306 static void addReferencesFromStmtUnionSet(isl::union_set USet, 307 SubtreeReferences &References) { 308 309 for (isl::set Set : USet.get_set_list()) 310 addReferencesFromStmtSet(Set, &References); 311 } 312 313 isl::union_map 314 IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { 315 return IslAstInfo::getSchedule(Node); 316 } 317 318 void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, 319 SetVector<Value *> &Values, 320 SetVector<const Loop *> &Loops) { 321 SetVector<const SCEV *> SCEVs; 322 SubtreeReferences References = { 323 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 324 325 for (const auto &I : IDToValue) 326 Values.insert(I.second); 327 328 // NOTE: this is populated in IslNodeBuilder::addParameters 329 for (const auto &I : OutsideLoopIterations) 330 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 331 332 isl::union_set Schedule = getScheduleForAstNode(For).domain(); 333 addReferencesFromStmtUnionSet(Schedule, References); 334 335 for (const SCEV *Expr : SCEVs) { 336 findValues(Expr, SE, Values); 337 findLoops(Expr, Loops); 338 } 339 340 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 341 342 /// Note: Code generation of induction variables of loops outside Scops 343 /// 344 /// Remove loops that contain the scop or that are part of the scop, as they 345 /// are considered local. This leaves only loops that are before the scop, but 346 /// do not contain the scop itself. 347 /// We ignore loops perfectly contained in the Scop because these are already 348 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 349 /// whose induction variables are referred to by the Scop, but the Scop is not 350 /// fully contained in these Loops. Since there can be many of these, 351 /// we choose to codegen these on-demand. 352 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 353 Loops.remove_if([this](const Loop *L) { 354 return S.contains(L) || L->contains(S.getEntry()); 355 }); 356 357 // Contains Values that may need to be replaced with other values 358 // due to replacements from the ValueMap. We should make sure 359 // that we return correctly remapped values. 360 // NOTE: this code path is tested by: 361 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 362 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 363 SetVector<Value *> ReplacedValues; 364 for (Value *V : Values) { 365 ReplacedValues.insert(getLatestValue(V)); 366 } 367 Values = ReplacedValues; 368 } 369 370 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 371 SmallPtrSet<Value *, 5> Inserted; 372 373 for (const auto &I : IDToValue) { 374 IDToValue[I.first] = NewValues[I.second]; 375 Inserted.insert(I.second); 376 } 377 378 for (const auto &I : NewValues) { 379 if (Inserted.count(I.first)) 380 continue; 381 382 ValueMap[I.first] = I.second; 383 } 384 } 385 386 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 387 auto It = ValueMap.find(Original); 388 if (It == ValueMap.end()) 389 return Original; 390 return It->second; 391 } 392 393 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 394 std::vector<Value *> &IVS, 395 __isl_take isl_id *IteratorID, 396 __isl_take isl_union_map *Schedule) { 397 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 398 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 399 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 400 isl_ast_expr_free(StmtExpr); 401 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 402 std::vector<LoopToScevMapT> VLTS(IVS.size()); 403 404 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 405 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 406 isl_map *S = isl_map_from_union_map(Schedule); 407 408 auto *NewAccesses = createNewAccesses(Stmt, User); 409 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 410 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 411 isl_id_to_ast_expr_free(NewAccesses); 412 isl_map_free(S); 413 isl_id_free(Id); 414 isl_ast_node_free(User); 415 } 416 417 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 418 auto *Id = isl_ast_node_mark_get_id(Node); 419 auto Child = isl_ast_node_mark_get_node(Node); 420 isl_ast_node_free(Node); 421 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 422 // it will be optimized away and we should skip it. 423 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 424 isl_ast_node_get_type(Child) == isl_ast_node_for) { 425 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 426 int VectorWidth = 427 getNumberOfIterations(isl::manage_copy(Child).as<isl::ast_node_for>()); 428 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 429 createForVector(Child, VectorWidth); 430 else 431 createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true); 432 isl_id_free(Id); 433 return; 434 } 435 436 BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id)); 437 BandAttr *AncestorLoopAttr; 438 if (ChildLoopAttr) { 439 // Save current LoopAttr environment to restore again when leaving this 440 // subtree. This means there was no loop between the ancestor LoopAttr and 441 // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This 442 // can happen e.g. if the AST build peeled or unrolled the loop. 443 AncestorLoopAttr = Annotator.getStagingAttrEnv(); 444 445 Annotator.getStagingAttrEnv() = ChildLoopAttr; 446 } 447 448 create(Child); 449 450 if (ChildLoopAttr) { 451 assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && 452 "Nest must not overwrite loop attr environment"); 453 Annotator.getStagingAttrEnv() = AncestorLoopAttr; 454 } 455 456 isl_id_free(Id); 457 } 458 459 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 460 int VectorWidth) { 461 isl_ast_node *Body = isl_ast_node_for_get_body(For); 462 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 463 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 464 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 465 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 466 467 Value *ValueLB = ExprBuilder.create(Init); 468 Value *ValueInc = ExprBuilder.create(Inc); 469 470 Type *MaxType = ExprBuilder.getType(Iterator); 471 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 472 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 473 474 if (MaxType != ValueLB->getType()) 475 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 476 if (MaxType != ValueInc->getType()) 477 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 478 479 std::vector<Value *> IVS(VectorWidth); 480 IVS[0] = ValueLB; 481 482 for (int i = 1; i < VectorWidth; i++) 483 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 484 485 isl::union_map Schedule = getScheduleForAstNode(isl::manage_copy(For)); 486 assert(!Schedule.is_null() && 487 "For statement annotation does not contain its schedule"); 488 489 IDToValue[IteratorID] = ValueLB; 490 491 switch (isl_ast_node_get_type(Body)) { 492 case isl_ast_node_user: 493 createUserVector(Body, IVS, isl_id_copy(IteratorID), Schedule.copy()); 494 break; 495 case isl_ast_node_block: { 496 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 497 498 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 499 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 500 isl_id_copy(IteratorID), Schedule.copy()); 501 502 isl_ast_node_free(Body); 503 isl_ast_node_list_free(List); 504 break; 505 } 506 default: 507 isl_ast_node_dump(Body); 508 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 509 } 510 511 IDToValue.erase(IDToValue.find(IteratorID)); 512 isl_id_free(IteratorID); 513 514 isl_ast_node_free(For); 515 isl_ast_expr_free(Iterator); 516 517 VectorLoops++; 518 } 519 520 /// Restore the initial ordering of dimensions of the band node 521 /// 522 /// In case the band node represents all the dimensions of the iteration 523 /// domain, recreate the band node to restore the initial ordering of the 524 /// dimensions. 525 /// 526 /// @param Node The band node to be modified. 527 /// @return The modified schedule node. 528 static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) { 529 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 530 isl::ast_node Body = Node.body(); 531 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 532 return false; 533 534 isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>(); 535 auto Id = BodyMark.id(); 536 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 537 return true; 538 return false; 539 } 540 541 void IslNodeBuilder::createForSequential(isl::ast_node_for For, 542 bool MarkParallel) { 543 Value *ValueLB, *ValueUB, *ValueInc; 544 Type *MaxType; 545 BasicBlock *ExitBlock; 546 Value *IV; 547 CmpInst::Predicate Predicate; 548 549 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 550 551 isl::ast_node Body = For.body(); 552 553 // isl_ast_node_for_is_degenerate(For) 554 // 555 // TODO: For degenerated loops we could generate a plain assignment. 556 // However, for now we just reuse the logic for normal loops, which will 557 // create a loop with a single iteration. 558 559 isl::ast_expr Init = For.init(); 560 isl::ast_expr Inc = For.inc(); 561 isl::ast_expr Iterator = For.iterator(); 562 isl::id IteratorID = Iterator.get_id(); 563 isl::ast_expr UB = getUpperBound(For, Predicate); 564 565 ValueLB = ExprBuilder.create(Init.release()); 566 ValueUB = ExprBuilder.create(UB.release()); 567 ValueInc = ExprBuilder.create(Inc.release()); 568 569 MaxType = ExprBuilder.getType(Iterator.get()); 570 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 571 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 572 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 573 574 if (MaxType != ValueLB->getType()) 575 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 576 if (MaxType != ValueUB->getType()) 577 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 578 if (MaxType != ValueInc->getType()) 579 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 580 581 // If we can show that LB <Predicate> UB holds at least once, we can 582 // omit the GuardBB in front of the loop. 583 bool UseGuardBB = 584 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 585 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 586 Predicate, &Annotator, MarkParallel, UseGuardBB, 587 LoopVectorizerDisabled); 588 IDToValue[IteratorID.get()] = IV; 589 590 create(Body.release()); 591 592 Annotator.popLoop(MarkParallel); 593 594 IDToValue.erase(IDToValue.find(IteratorID.get())); 595 596 Builder.SetInsertPoint(&ExitBlock->front()); 597 598 SequentialLoops++; 599 } 600 601 /// Remove the BBs contained in a (sub)function from the dominator tree. 602 /// 603 /// This function removes the basic blocks that are part of a subfunction from 604 /// the dominator tree. Specifically, when generating code it may happen that at 605 /// some point the code generation continues in a new sub-function (e.g., when 606 /// generating OpenMP code). The basic blocks that are created in this 607 /// sub-function are then still part of the dominator tree of the original 608 /// function, such that the dominator tree reaches over function boundaries. 609 /// This is not only incorrect, but also causes crashes. This function now 610 /// removes from the dominator tree all basic blocks that are dominated (and 611 /// consequently reachable) from the entry block of this (sub)function. 612 /// 613 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 614 /// the function/region it runs on. Hence, the pure need for this function shows 615 /// that we do not comply to this rule. At the moment, this does not cause any 616 /// issues, but we should be aware that such issues may appear. Unfortunately 617 /// the current LLVM pass infrastructure does not allow to make Polly a module 618 /// or call-graph pass to solve this issue, as such a pass would not have access 619 /// to the per-function analyses passes needed by Polly. A future pass manager 620 /// infrastructure is supposed to enable such kind of access possibly allowing 621 /// us to create a cleaner solution here. 622 /// 623 /// FIXME: Instead of adding the dominance information and then dropping it 624 /// later on, we should try to just not add it in the first place. This requires 625 /// some careful testing to make sure this does not break in interaction with 626 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 627 /// which may try to update it. 628 /// 629 /// @param F The function which contains the BBs to removed. 630 /// @param DT The dominator tree from which to remove the BBs. 631 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 632 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 633 std::vector<BasicBlock *> Nodes; 634 635 // We can only remove an element from the dominator tree, if all its children 636 // have been removed. To ensure this we obtain the list of nodes to remove 637 // using a post-order tree traversal. 638 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 639 Nodes.push_back(I->getBlock()); 640 641 for (BasicBlock *BB : Nodes) 642 DT.eraseNode(BB); 643 } 644 645 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 646 isl_ast_node *Body; 647 isl_ast_expr *Init, *Inc, *Iterator, *UB; 648 isl_id *IteratorID; 649 Value *ValueLB, *ValueUB, *ValueInc; 650 Type *MaxType; 651 Value *IV; 652 CmpInst::Predicate Predicate; 653 654 // The preamble of parallel code interacts different than normal code with 655 // e.g., scalar initialization. Therefore, we ensure the parallel code is 656 // separated from the last basic block. 657 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 658 &*Builder.GetInsertPoint(), &DT, &LI); 659 ParBB->setName("polly.parallel.for"); 660 Builder.SetInsertPoint(&ParBB->front()); 661 662 Body = isl_ast_node_for_get_body(For); 663 Init = isl_ast_node_for_get_init(For); 664 Inc = isl_ast_node_for_get_inc(For); 665 Iterator = isl_ast_node_for_get_iterator(For); 666 IteratorID = isl_ast_expr_get_id(Iterator); 667 UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate) 668 .release(); 669 670 ValueLB = ExprBuilder.create(Init); 671 ValueUB = ExprBuilder.create(UB); 672 ValueInc = ExprBuilder.create(Inc); 673 674 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 675 // expression, we need to adjust the loop bound by one. 676 if (Predicate == CmpInst::ICMP_SLT) 677 ValueUB = Builder.CreateAdd( 678 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 679 680 MaxType = ExprBuilder.getType(Iterator); 681 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 682 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 683 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 684 685 if (MaxType != ValueLB->getType()) 686 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 687 if (MaxType != ValueUB->getType()) 688 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 689 if (MaxType != ValueInc->getType()) 690 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 691 692 BasicBlock::iterator LoopBody; 693 694 SetVector<Value *> SubtreeValues; 695 SetVector<const Loop *> Loops; 696 697 getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops); 698 699 // Create for all loops we depend on values that contain the current loop 700 // iteration. These values are necessary to generate code for SCEVs that 701 // depend on such loops. As a result we need to pass them to the subfunction. 702 // See [Code generation of induction variables of loops outside Scops] 703 for (const Loop *L : Loops) { 704 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 705 SubtreeValues.insert(LoopInductionVar); 706 } 707 708 ValueMapT NewValues; 709 710 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 711 712 switch (PollyOmpBackend) { 713 case OpenMPBackend::GNU: 714 ParallelLoopGenPtr.reset( 715 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 716 break; 717 case OpenMPBackend::LLVM: 718 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 719 break; 720 } 721 722 IV = ParallelLoopGenPtr->createParallelLoop( 723 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 724 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 725 Builder.SetInsertPoint(&*LoopBody); 726 727 // Remember the parallel subfunction 728 ParallelSubfunctions.push_back(LoopBody->getFunction()); 729 730 // Save the current values. 731 auto ValueMapCopy = ValueMap; 732 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 733 734 updateValues(NewValues); 735 IDToValue[IteratorID] = IV; 736 737 ValueMapT NewValuesReverse; 738 739 for (auto P : NewValues) 740 NewValuesReverse[P.second] = P.first; 741 742 Annotator.addAlternativeAliasBases(NewValuesReverse); 743 744 create(Body); 745 746 Annotator.resetAlternativeAliasBases(); 747 // Restore the original values. 748 ValueMap = ValueMapCopy; 749 IDToValue = IDToValueCopy; 750 751 Builder.SetInsertPoint(&*AfterLoop); 752 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 753 754 for (const Loop *L : Loops) 755 OutsideLoopIterations.erase(L); 756 757 isl_ast_node_free(For); 758 isl_ast_expr_free(Iterator); 759 isl_id_free(IteratorID); 760 761 ParallelLoops++; 762 } 763 764 /// Return whether any of @p Node's statements contain partial accesses. 765 /// 766 /// Partial accesses are not supported by Polly's vector code generator. 767 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 768 return isl_ast_node_foreach_descendant_top_down( 769 Node, 770 [](isl_ast_node *Node, void *User) -> isl_bool { 771 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 772 return isl_bool_true; 773 774 isl::ast_expr Expr = 775 isl::manage(isl_ast_node_user_get_expr(Node)); 776 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 777 isl::id Id = StmtExpr.get_id(); 778 779 ScopStmt *Stmt = 780 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 781 isl::set StmtDom = Stmt->getDomain(); 782 for (auto *MA : *Stmt) { 783 if (MA->isLatestPartialAccess()) 784 return isl_bool_error; 785 } 786 return isl_bool_true; 787 }, 788 nullptr) == isl_stat_error; 789 } 790 791 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 792 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 793 794 if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) && 795 !IslAstInfo::isReductionParallel(isl::manage_copy(For))) { 796 int VectorWidth = 797 getNumberOfIterations(isl::manage_copy(For).as<isl::ast_node_for>()); 798 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 799 createForVector(For, VectorWidth); 800 return; 801 } 802 } 803 804 if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) { 805 createForParallel(For); 806 return; 807 } 808 bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) && 809 !IslAstInfo::isReductionParallel(isl::manage_copy(For))); 810 createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel); 811 } 812 813 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 814 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 815 816 Function *F = Builder.GetInsertBlock()->getParent(); 817 LLVMContext &Context = F->getContext(); 818 819 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 820 &*Builder.GetInsertPoint(), &DT, &LI); 821 CondBB->setName("polly.cond"); 822 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 823 MergeBB->setName("polly.merge"); 824 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 825 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 826 827 DT.addNewBlock(ThenBB, CondBB); 828 DT.addNewBlock(ElseBB, CondBB); 829 DT.changeImmediateDominator(MergeBB, CondBB); 830 831 Loop *L = LI.getLoopFor(CondBB); 832 if (L) { 833 L->addBasicBlockToLoop(ThenBB, LI); 834 L->addBasicBlockToLoop(ElseBB, LI); 835 } 836 837 CondBB->getTerminator()->eraseFromParent(); 838 839 Builder.SetInsertPoint(CondBB); 840 Value *Predicate = ExprBuilder.create(Cond); 841 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 842 Builder.SetInsertPoint(ThenBB); 843 Builder.CreateBr(MergeBB); 844 Builder.SetInsertPoint(ElseBB); 845 Builder.CreateBr(MergeBB); 846 Builder.SetInsertPoint(&ThenBB->front()); 847 848 create(isl_ast_node_if_get_then(If)); 849 850 Builder.SetInsertPoint(&ElseBB->front()); 851 852 if (isl_ast_node_if_has_else(If)) 853 create(isl_ast_node_if_get_else(If)); 854 855 Builder.SetInsertPoint(&MergeBB->front()); 856 857 isl_ast_node_free(If); 858 859 IfConditions++; 860 } 861 862 __isl_give isl_id_to_ast_expr * 863 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 864 __isl_keep isl_ast_node *Node) { 865 isl::id_to_ast_expr NewAccesses = 866 isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0); 867 868 isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node)); 869 assert(!Build.is_null() && "Could not obtain isl_ast_build from user node"); 870 Stmt->setAstBuild(Build); 871 872 for (auto *MA : *Stmt) { 873 if (!MA->hasNewAccessRelation()) { 874 if (PollyGenerateExpressions) { 875 if (!MA->isAffine()) 876 continue; 877 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 878 continue; 879 880 auto *BasePtr = 881 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 882 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 883 continue; 884 } else { 885 continue; 886 } 887 } 888 assert(MA->isAffine() && 889 "Only affine memory accesses can be code generated"); 890 891 isl::union_map Schedule = Build.get_schedule(); 892 893 #ifndef NDEBUG 894 if (MA->isRead()) { 895 auto Dom = Stmt->getDomain().release(); 896 auto SchedDom = isl_set_from_union_set(Schedule.domain().release()); 897 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 898 Dom = isl_set_intersect_params(Dom, 899 Stmt->getParent()->getContext().release()); 900 SchedDom = isl_set_intersect_params( 901 SchedDom, Stmt->getParent()->getContext().release()); 902 assert(isl_set_is_subset(SchedDom, AccDom) && 903 "Access relation not defined on full schedule domain"); 904 assert(isl_set_is_subset(Dom, AccDom) && 905 "Access relation not defined on full domain"); 906 isl_set_free(AccDom); 907 isl_set_free(SchedDom); 908 isl_set_free(Dom); 909 } 910 #endif 911 912 isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 913 914 // isl cannot generate an index expression for access-nothing accesses. 915 isl::set AccDomain = PWAccRel.domain(); 916 isl::set Context = S.getContext(); 917 AccDomain = AccDomain.intersect_params(Context); 918 if (AccDomain.is_empty()) 919 continue; 920 921 isl::ast_expr AccessExpr = Build.access_from(PWAccRel); 922 NewAccesses = NewAccesses.set(MA->getId(), AccessExpr); 923 } 924 925 return NewAccesses.release(); 926 } 927 928 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 929 ScopStmt *Stmt, LoopToScevMapT <S) { 930 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 931 "Expression of type 'op' expected"); 932 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 933 "Operation of type 'call' expected"); 934 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 935 isl_ast_expr *SubExpr; 936 Value *V; 937 938 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 939 V = ExprBuilder.create(SubExpr); 940 ScalarEvolution *SE = Stmt->getParent()->getSE(); 941 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 942 } 943 944 isl_ast_expr_free(Expr); 945 } 946 947 void IslNodeBuilder::createSubstitutionsVector( 948 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 949 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 950 __isl_take isl_id *IteratorID) { 951 int i = 0; 952 953 Value *OldValue = IDToValue[IteratorID]; 954 for (Value *IV : IVS) { 955 IDToValue[IteratorID] = IV; 956 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 957 i++; 958 } 959 960 IDToValue[IteratorID] = OldValue; 961 isl_id_free(IteratorID); 962 isl_ast_expr_free(Expr); 963 } 964 965 void IslNodeBuilder::generateCopyStmt( 966 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 967 assert(Stmt->size() == 2); 968 auto ReadAccess = Stmt->begin(); 969 auto WriteAccess = ReadAccess++; 970 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 971 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 972 "Accesses use the same data type"); 973 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 974 auto *AccessExpr = 975 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 976 auto *LoadValue = ExprBuilder.create(AccessExpr); 977 AccessExpr = 978 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 979 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first; 980 Builder.CreateStore(LoadValue, StoreAddr); 981 } 982 983 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 984 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 985 "trying to materialize loop induction variable twice"); 986 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 987 SE.getUnknown(Builder.getInt64(1)), L, 988 SCEV::FlagAnyWrap); 989 Value *V = generateSCEV(OuterLIV); 990 OutsideLoopIterations[L] = SE.getUnknown(V); 991 return V; 992 } 993 994 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 995 LoopToScevMapT LTS; 996 isl_id *Id; 997 ScopStmt *Stmt; 998 999 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 1000 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1001 Id = isl_ast_expr_get_id(StmtExpr); 1002 isl_ast_expr_free(StmtExpr); 1003 1004 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1005 1006 Stmt = (ScopStmt *)isl_id_get_user(Id); 1007 auto *NewAccesses = createNewAccesses(Stmt, User); 1008 if (Stmt->isCopyStmt()) { 1009 generateCopyStmt(Stmt, NewAccesses); 1010 isl_ast_expr_free(Expr); 1011 } else { 1012 createSubstitutions(Expr, Stmt, LTS); 1013 1014 if (Stmt->isBlockStmt()) 1015 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 1016 else 1017 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 1018 } 1019 1020 isl_id_to_ast_expr_free(NewAccesses); 1021 isl_ast_node_free(User); 1022 isl_id_free(Id); 1023 } 1024 1025 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1026 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1027 1028 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1029 create(isl_ast_node_list_get_ast_node(List, i)); 1030 1031 isl_ast_node_free(Block); 1032 isl_ast_node_list_free(List); 1033 } 1034 1035 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1036 switch (isl_ast_node_get_type(Node)) { 1037 case isl_ast_node_error: 1038 llvm_unreachable("code generation error"); 1039 case isl_ast_node_mark: 1040 createMark(Node); 1041 return; 1042 case isl_ast_node_for: 1043 createFor(Node); 1044 return; 1045 case isl_ast_node_if: 1046 createIf(Node); 1047 return; 1048 case isl_ast_node_user: 1049 createUser(Node); 1050 return; 1051 case isl_ast_node_block: 1052 createBlock(Node); 1053 return; 1054 } 1055 1056 llvm_unreachable("Unknown isl_ast_node type"); 1057 } 1058 1059 bool IslNodeBuilder::materializeValue(__isl_take isl_id *Id) { 1060 // If the Id is already mapped, skip it. 1061 if (!IDToValue.count(Id)) { 1062 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1063 Value *V = nullptr; 1064 1065 // Parameters could refer to invariant loads that need to be 1066 // preloaded before we can generate code for the parameter. Thus, 1067 // check if any value referred to in ParamSCEV is an invariant load 1068 // and if so make sure its equivalence class is preloaded. 1069 SetVector<Value *> Values; 1070 findValues(ParamSCEV, SE, Values); 1071 for (auto *Val : Values) { 1072 // Check if the value is an instruction in a dead block within the SCoP 1073 // and if so do not code generate it. 1074 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1075 if (S.contains(Inst)) { 1076 bool IsDead = true; 1077 1078 // Check for "undef" loads first, then if there is a statement for 1079 // the parent of Inst and lastly if the parent of Inst has an empty 1080 // domain. In the first and last case the instruction is dead but if 1081 // there is a statement or the domain is not empty Inst is not dead. 1082 auto MemInst = MemAccInst::dyn_cast(Inst); 1083 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1084 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1085 SE.getPointerBase(SE.getSCEV(Address))) { 1086 } else if (S.getStmtFor(Inst)) { 1087 IsDead = false; 1088 } else { 1089 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1090 IsDead = isl_set_is_empty(Domain); 1091 isl_set_free(Domain); 1092 } 1093 1094 if (IsDead) { 1095 V = UndefValue::get(ParamSCEV->getType()); 1096 break; 1097 } 1098 } 1099 } 1100 1101 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1102 // Check if this invariant access class is empty, hence if we never 1103 // actually added a loads instruction to it. In that case it has no 1104 // (meaningful) users and we should not try to code generate it. 1105 if (IAClass->InvariantAccesses.empty()) 1106 V = UndefValue::get(ParamSCEV->getType()); 1107 1108 if (!preloadInvariantEquivClass(*IAClass)) { 1109 isl_id_free(Id); 1110 return false; 1111 } 1112 } 1113 } 1114 1115 V = V ? V : generateSCEV(ParamSCEV); 1116 IDToValue[Id] = V; 1117 } 1118 1119 isl_id_free(Id); 1120 return true; 1121 } 1122 1123 bool IslNodeBuilder::materializeParameters(__isl_take isl_set *Set) { 1124 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1125 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1126 continue; 1127 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1128 if (!materializeValue(Id)) 1129 return false; 1130 } 1131 return true; 1132 } 1133 1134 bool IslNodeBuilder::materializeParameters() { 1135 for (const SCEV *Param : S.parameters()) { 1136 isl_id *Id = S.getIdForParam(Param).release(); 1137 if (!materializeValue(Id)) 1138 return false; 1139 } 1140 return true; 1141 } 1142 1143 Value *IslNodeBuilder::preloadUnconditionally(__isl_take isl_set *AccessRange, 1144 isl_ast_build *Build, 1145 Instruction *AccInst) { 1146 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1147 isl_ast_expr *Access = 1148 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1149 auto *Address = isl_ast_expr_address_of(Access); 1150 auto *AddressValue = ExprBuilder.create(Address); 1151 Value *PreloadVal; 1152 1153 // Correct the type as the SAI might have a different type than the user 1154 // expects, especially if the base pointer is a struct. 1155 Type *Ty = AccInst->getType(); 1156 1157 auto *Ptr = AddressValue; 1158 auto Name = Ptr->getName(); 1159 auto AS = Ptr->getType()->getPointerAddressSpace(); 1160 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1161 PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load"); 1162 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1163 PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign()); 1164 1165 // TODO: This is only a hot fix for SCoP sequences that use the same load 1166 // instruction contained and hoisted by one of the SCoPs. 1167 if (SE.isSCEVable(Ty)) 1168 SE.forgetValue(AccInst); 1169 1170 return PreloadVal; 1171 } 1172 1173 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1174 __isl_take isl_set *Domain) { 1175 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1176 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1177 1178 if (!materializeParameters(AccessRange)) { 1179 isl_set_free(AccessRange); 1180 isl_set_free(Domain); 1181 return nullptr; 1182 } 1183 1184 auto *Build = 1185 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1186 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1187 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1188 isl_set_free(Universe); 1189 1190 Instruction *AccInst = MA.getAccessInstruction(); 1191 Type *AccInstTy = AccInst->getType(); 1192 1193 Value *PreloadVal = nullptr; 1194 if (AlwaysExecuted) { 1195 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1196 isl_ast_build_free(Build); 1197 isl_set_free(Domain); 1198 return PreloadVal; 1199 } 1200 1201 if (!materializeParameters(Domain)) { 1202 isl_ast_build_free(Build); 1203 isl_set_free(AccessRange); 1204 isl_set_free(Domain); 1205 return nullptr; 1206 } 1207 1208 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1209 Domain = nullptr; 1210 1211 ExprBuilder.setTrackOverflow(true); 1212 Value *Cond = ExprBuilder.create(DomainCond); 1213 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1214 "polly.preload.cond.overflown"); 1215 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1216 ExprBuilder.setTrackOverflow(false); 1217 1218 if (!Cond->getType()->isIntegerTy(1)) 1219 Cond = Builder.CreateIsNotNull(Cond); 1220 1221 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1222 &*Builder.GetInsertPoint(), &DT, &LI); 1223 CondBB->setName("polly.preload.cond"); 1224 1225 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1226 MergeBB->setName("polly.preload.merge"); 1227 1228 Function *F = Builder.GetInsertBlock()->getParent(); 1229 LLVMContext &Context = F->getContext(); 1230 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1231 1232 DT.addNewBlock(ExecBB, CondBB); 1233 if (Loop *L = LI.getLoopFor(CondBB)) 1234 L->addBasicBlockToLoop(ExecBB, LI); 1235 1236 auto *CondBBTerminator = CondBB->getTerminator(); 1237 Builder.SetInsertPoint(CondBBTerminator); 1238 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1239 CondBBTerminator->eraseFromParent(); 1240 1241 Builder.SetInsertPoint(ExecBB); 1242 Builder.CreateBr(MergeBB); 1243 1244 Builder.SetInsertPoint(ExecBB->getTerminator()); 1245 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1246 Builder.SetInsertPoint(MergeBB->getTerminator()); 1247 auto *MergePHI = Builder.CreatePHI( 1248 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1249 PreloadVal = MergePHI; 1250 1251 if (!PreAccInst) { 1252 PreloadVal = nullptr; 1253 PreAccInst = UndefValue::get(AccInstTy); 1254 } 1255 1256 MergePHI->addIncoming(PreAccInst, ExecBB); 1257 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1258 1259 isl_ast_build_free(Build); 1260 return PreloadVal; 1261 } 1262 1263 bool IslNodeBuilder::preloadInvariantEquivClass( 1264 InvariantEquivClassTy &IAClass) { 1265 // For an equivalence class of invariant loads we pre-load the representing 1266 // element with the unified execution context. However, we have to map all 1267 // elements of the class to the one preloaded load as they are referenced 1268 // during the code generation and therefor need to be mapped. 1269 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1270 if (MAs.empty()) 1271 return true; 1272 1273 MemoryAccess *MA = MAs.front(); 1274 assert(MA->isArrayKind() && MA->isRead()); 1275 1276 // If the access function was already mapped, the preload of this equivalence 1277 // class was triggered earlier already and doesn't need to be done again. 1278 if (ValueMap.count(MA->getAccessInstruction())) 1279 return true; 1280 1281 // Check for recursion which can be caused by additional constraints, e.g., 1282 // non-finite loop constraints. In such a case we have to bail out and insert 1283 // a "false" runtime check that will cause the original code to be executed. 1284 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1285 if (!PreloadedPtrs.insert(PtrId).second) 1286 return false; 1287 1288 // The execution context of the IAClass. 1289 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1290 1291 // If the base pointer of this class is dependent on another one we have to 1292 // make sure it was preloaded already. 1293 auto *SAI = MA->getScopArrayInfo(); 1294 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1295 if (!preloadInvariantEquivClass(*BaseIAClass)) 1296 return false; 1297 1298 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1299 // we need to refine the ExecutionCtx. 1300 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1301 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1302 } 1303 1304 // If the size of a dimension is dependent on another class, make sure it is 1305 // preloaded. 1306 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1307 const SCEV *Dim = SAI->getDimensionSize(i); 1308 SetVector<Value *> Values; 1309 findValues(Dim, SE, Values); 1310 for (auto *Val : Values) { 1311 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1312 if (!preloadInvariantEquivClass(*BaseIAClass)) 1313 return false; 1314 1315 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1316 // and we need to refine the ExecutionCtx. 1317 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1318 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1319 } 1320 } 1321 } 1322 1323 Instruction *AccInst = MA->getAccessInstruction(); 1324 Type *AccInstTy = AccInst->getType(); 1325 1326 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1327 if (!PreloadVal) 1328 return false; 1329 1330 for (const MemoryAccess *MA : MAs) { 1331 Instruction *MAAccInst = MA->getAccessInstruction(); 1332 assert(PreloadVal->getType() == MAAccInst->getType()); 1333 ValueMap[MAAccInst] = PreloadVal; 1334 } 1335 1336 if (SE.isSCEVable(AccInstTy)) { 1337 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1338 if (ParamId) 1339 IDToValue[ParamId] = PreloadVal; 1340 isl_id_free(ParamId); 1341 } 1342 1343 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1344 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1345 AccInst->getName() + ".preload.s2a", 1346 &*EntryBB->getFirstInsertionPt()); 1347 Builder.CreateStore(PreloadVal, Alloca); 1348 ValueMapT PreloadedPointer; 1349 PreloadedPointer[PreloadVal] = AccInst; 1350 Annotator.addAlternativeAliasBases(PreloadedPointer); 1351 1352 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1353 Value *BasePtr = DerivedSAI->getBasePtr(); 1354 1355 for (const MemoryAccess *MA : MAs) { 1356 // As the derived SAI information is quite coarse, any load from the 1357 // current SAI could be the base pointer of the derived SAI, however we 1358 // should only change the base pointer of the derived SAI if we actually 1359 // preloaded it. 1360 if (BasePtr == MA->getOriginalBaseAddr()) { 1361 assert(BasePtr->getType() == PreloadVal->getType()); 1362 DerivedSAI->setBasePtr(PreloadVal); 1363 } 1364 1365 // For scalar derived SAIs we remap the alloca used for the derived value. 1366 if (BasePtr == MA->getAccessInstruction()) 1367 ScalarMap[DerivedSAI] = Alloca; 1368 } 1369 } 1370 1371 for (const MemoryAccess *MA : MAs) { 1372 Instruction *MAAccInst = MA->getAccessInstruction(); 1373 // Use the escape system to get the correct value to users outside the SCoP. 1374 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1375 for (auto *U : MAAccInst->users()) 1376 if (Instruction *UI = dyn_cast<Instruction>(U)) 1377 if (!S.contains(UI)) 1378 EscapeUsers.push_back(UI); 1379 1380 if (EscapeUsers.empty()) 1381 continue; 1382 1383 EscapeMap[MA->getAccessInstruction()] = 1384 std::make_pair(Alloca, std::move(EscapeUsers)); 1385 } 1386 1387 return true; 1388 } 1389 1390 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1391 for (auto &SAI : S.arrays()) { 1392 if (SAI->getBasePtr()) 1393 continue; 1394 1395 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1396 "The size of the outermost dimension is used to declare newly " 1397 "created arrays that require memory allocation."); 1398 1399 Type *NewArrayType = nullptr; 1400 1401 // Get the size of the array = size(dim_1)*...*size(dim_n) 1402 uint64_t ArraySizeInt = 1; 1403 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1404 auto *DimSize = SAI->getDimensionSize(i); 1405 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1406 ->getAPInt() 1407 .getLimitedValue(); 1408 1409 if (!NewArrayType) 1410 NewArrayType = SAI->getElementType(); 1411 1412 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1413 ArraySizeInt *= UnsignedDimSize; 1414 } 1415 1416 if (SAI->isOnHeap()) { 1417 LLVMContext &Ctx = NewArrayType->getContext(); 1418 1419 // Get the IntPtrTy from the Datalayout 1420 auto IntPtrTy = DL.getIntPtrType(Ctx); 1421 1422 // Get the size of the element type in bits 1423 unsigned Size = SAI->getElemSizeInBytes(); 1424 1425 // Insert the malloc call at polly.start 1426 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1427 auto *CreatedArray = CallInst::CreateMalloc( 1428 &*InstIt, IntPtrTy, SAI->getElementType(), 1429 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1430 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1431 SAI->getName()); 1432 1433 SAI->setBasePtr(CreatedArray); 1434 1435 // Insert the free call at polly.exiting 1436 CallInst::CreateFree(CreatedArray, 1437 std::get<1>(StartExitBlocks)->getTerminator()); 1438 } else { 1439 auto InstIt = Builder.GetInsertBlock() 1440 ->getParent() 1441 ->getEntryBlock() 1442 .getTerminator(); 1443 1444 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1445 SAI->getName(), &*InstIt); 1446 if (PollyTargetFirstLevelCacheLineSize) 1447 CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); 1448 SAI->setBasePtr(CreatedArray); 1449 } 1450 } 1451 } 1452 1453 bool IslNodeBuilder::preloadInvariantLoads() { 1454 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1455 if (InvariantEquivClasses.empty()) 1456 return true; 1457 1458 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1459 &*Builder.GetInsertPoint(), &DT, &LI); 1460 PreLoadBB->setName("polly.preload.begin"); 1461 Builder.SetInsertPoint(&PreLoadBB->front()); 1462 1463 for (auto &IAClass : InvariantEquivClasses) 1464 if (!preloadInvariantEquivClass(IAClass)) 1465 return false; 1466 1467 return true; 1468 } 1469 1470 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1471 // Materialize values for the parameters of the SCoP. 1472 materializeParameters(); 1473 1474 // Generate values for the current loop iteration for all surrounding loops. 1475 // 1476 // We may also reference loops outside of the scop which do not contain the 1477 // scop itself, but as the number of such scops may be arbitrarily large we do 1478 // not generate code for them here, but only at the point of code generation 1479 // where these values are needed. 1480 Loop *L = LI.getLoopFor(S.getEntry()); 1481 1482 while (L != nullptr && S.contains(L)) 1483 L = L->getParentLoop(); 1484 1485 while (L != nullptr) { 1486 materializeNonScopLoopInductionVariable(L); 1487 L = L->getParentLoop(); 1488 } 1489 1490 isl_set_free(Context); 1491 } 1492 1493 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1494 /// We pass the insert location of our Builder, as Polly ensures during IR 1495 /// generation that there is always a valid CFG into which instructions are 1496 /// inserted. As a result, the insertpoint is known to be always followed by a 1497 /// terminator instruction. This means the insert point may be specified by a 1498 /// terminator instruction, but it can never point to an ->end() iterator 1499 /// which does not have a corresponding instruction. Hence, dereferencing 1500 /// the insertpoint to obtain an instruction is known to be save. 1501 /// 1502 /// We also do not need to update the Builder here, as new instructions are 1503 /// always inserted _before_ the given InsertLocation. As a result, the 1504 /// insert location remains valid. 1505 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1506 "Insert location points after last valid instruction"); 1507 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1508 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1509 InsertLocation, &ValueMap, 1510 StartBlock->getSinglePredecessor()); 1511 } 1512 1513 /// The AST expression we generate to perform the run-time check assumes 1514 /// computations on integer types of infinite size. As we only use 64-bit 1515 /// arithmetic we check for overflows, in case of which we set the result 1516 /// of this run-time check to false to be conservatively correct, 1517 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1518 auto ExprBuilder = getExprBuilder(); 1519 1520 // In case the AST expression has integers larger than 64 bit, bail out. The 1521 // resulting LLVM-IR will contain operations on types that use more than 64 1522 // bits. These are -- in case wrapping intrinsics are used -- translated to 1523 // runtime library calls that are not available on all systems (e.g., Android) 1524 // and consequently will result in linker errors. 1525 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1526 isl_ast_expr_free(Condition); 1527 return Builder.getFalse(); 1528 } 1529 1530 ExprBuilder.setTrackOverflow(true); 1531 Value *RTC = ExprBuilder.create(Condition); 1532 if (!RTC->getType()->isIntegerTy(1)) 1533 RTC = Builder.CreateIsNotNull(RTC); 1534 Value *OverflowHappened = 1535 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1536 1537 if (PollyGenerateRTCPrint) { 1538 auto *F = Builder.GetInsertBlock()->getParent(); 1539 RuntimeDebugBuilder::createCPUPrinter( 1540 Builder, 1541 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1542 "RTC: ", 1543 RTC, " Overflow: ", OverflowHappened, 1544 "\n" 1545 " (0 failed, -1 succeeded)\n" 1546 " (if one or both are 0 falling back to original code, if both are -1 " 1547 "executing Polly code)\n"); 1548 } 1549 1550 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1551 ExprBuilder.setTrackOverflow(false); 1552 1553 if (!isa<ConstantInt>(RTC)) 1554 VersionedScops++; 1555 1556 return RTC; 1557 } 1558