1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/Utils.h" 22 #include "polly/Config/config.h" 23 #include "polly/DependenceInfo.h" 24 #include "polly/LinkAllPasses.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/GICHelper.h" 27 #include "polly/Support/SCEVValidator.h" 28 #include "polly/Support/ScopHelper.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/aff.h" 40 #include "isl/ast.h" 41 #include "isl/ast_build.h" 42 #include "isl/list.h" 43 #include "isl/map.h" 44 #include "isl/set.h" 45 #include "isl/union_map.h" 46 #include "isl/union_set.h" 47 48 using namespace polly; 49 using namespace llvm; 50 51 // The maximal number of dimensions we allow during invariant load construction. 52 // More complex access ranges will result in very high compile time and are also 53 // unlikely to result in good code. This value is very high and should only 54 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 55 static int const MaxDimensionsInAccessRange = 9; 56 57 __isl_give isl_ast_expr * 58 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 59 ICmpInst::Predicate &Predicate) { 60 isl_id *UBID, *IteratorID; 61 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 62 isl_ast_op_type Type; 63 64 Cond = isl_ast_node_for_get_cond(For); 65 Iterator = isl_ast_node_for_get_iterator(For); 66 isl_ast_expr_get_type(Cond); 67 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 68 "conditional expression is not an atomic upper bound"); 69 70 Type = isl_ast_expr_get_op_type(Cond); 71 72 switch (Type) { 73 case isl_ast_op_le: 74 Predicate = ICmpInst::ICMP_SLE; 75 break; 76 case isl_ast_op_lt: 77 Predicate = ICmpInst::ICMP_SLT; 78 break; 79 default: 80 llvm_unreachable("Unexpected comparision type in loop conditon"); 81 } 82 83 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 84 85 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 86 "conditional expression is not an atomic upper bound"); 87 88 UBID = isl_ast_expr_get_id(Arg0); 89 90 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 91 "Could not get the iterator"); 92 93 IteratorID = isl_ast_expr_get_id(Iterator); 94 95 assert(UBID == IteratorID && 96 "conditional expression is not an atomic upper bound"); 97 98 UB = isl_ast_expr_get_op_arg(Cond, 1); 99 100 isl_ast_expr_free(Cond); 101 isl_ast_expr_free(Iterator); 102 isl_ast_expr_free(Arg0); 103 isl_id_free(IteratorID); 104 isl_id_free(UBID); 105 106 return UB; 107 } 108 109 /// @brief Return true if a return value of Predicate is true for the value 110 /// represented by passed isl_ast_expr_int. 111 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 112 isl_bool (*Predicate)(__isl_keep isl_val *)) { 113 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 114 isl_ast_expr_free(Expr); 115 return false; 116 } 117 auto ExprVal = isl_ast_expr_get_val(Expr); 118 isl_ast_expr_free(Expr); 119 if (Predicate(ExprVal) != true) { 120 isl_val_free(ExprVal); 121 return false; 122 } 123 isl_val_free(ExprVal); 124 return true; 125 } 126 127 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 128 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 129 auto Body = isl_ast_node_for_get_body(For); 130 131 // First, check if we can actually handle this code 132 switch (isl_ast_node_get_type(Body)) { 133 case isl_ast_node_user: 134 break; 135 case isl_ast_node_block: { 136 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 137 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 138 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 139 int Type = isl_ast_node_get_type(Node); 140 isl_ast_node_free(Node); 141 if (Type != isl_ast_node_user) { 142 isl_ast_node_list_free(List); 143 isl_ast_node_free(Body); 144 return -1; 145 } 146 } 147 isl_ast_node_list_free(List); 148 break; 149 } 150 default: 151 isl_ast_node_free(Body); 152 return -1; 153 } 154 isl_ast_node_free(Body); 155 156 auto Init = isl_ast_node_for_get_init(For); 157 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 158 return -1; 159 auto Inc = isl_ast_node_for_get_inc(For); 160 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 161 return -1; 162 CmpInst::Predicate Predicate; 163 auto UB = getUpperBound(For, Predicate); 164 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 165 isl_ast_expr_free(UB); 166 return -1; 167 } 168 auto UpVal = isl_ast_expr_get_val(UB); 169 isl_ast_expr_free(UB); 170 int NumberIterations = isl_val_get_num_si(UpVal); 171 isl_val_free(UpVal); 172 if (NumberIterations < 0) 173 return -1; 174 if (Predicate == CmpInst::ICMP_SLT) 175 return NumberIterations; 176 else 177 return NumberIterations + 1; 178 } 179 180 /// @brief Extract the values and SCEVs needed to generate code for a block. 181 static int findReferencesInBlock(struct SubtreeReferences &References, 182 const ScopStmt *Stmt, const BasicBlock *BB) { 183 for (const Instruction &Inst : *BB) 184 for (Value *SrcVal : Inst.operands()) { 185 auto *Scope = References.LI.getLoopFor(BB); 186 if (canSynthesize(SrcVal, References.S, &References.LI, &References.SE, 187 Scope)) { 188 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 189 continue; 190 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 191 References.Values.insert(NewVal); 192 } 193 return 0; 194 } 195 196 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 197 bool CreateScalarRefs) { 198 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 199 200 if (Stmt->isBlockStmt()) 201 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 202 else { 203 assert(Stmt->isRegionStmt() && 204 "Stmt was neither block nor region statement"); 205 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 206 findReferencesInBlock(References, Stmt, BB); 207 } 208 209 for (auto &Access : *Stmt) { 210 if (Access->isArrayKind()) { 211 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 212 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 213 if (Stmt->getParent()->contains(OpInst)) 214 continue; 215 216 References.Values.insert(BasePtr); 217 continue; 218 } 219 220 if (CreateScalarRefs) 221 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 222 } 223 224 return isl_stat_ok; 225 } 226 227 /// Extract the out-of-scop values and SCEVs referenced from a set describing 228 /// a ScopStmt. 229 /// 230 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 231 /// statement and the base pointers of the memory accesses. For scalar 232 /// statements we force the generation of alloca memory locations and list 233 /// these locations in the set of out-of-scop values as well. 234 /// 235 /// @param Set A set which references the ScopStmt we are interested in. 236 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 237 /// structure. 238 static isl_stat addReferencesFromStmtSet(isl_set *Set, void *UserPtr) { 239 isl_id *Id = isl_set_get_tuple_id(Set); 240 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 241 isl_id_free(Id); 242 isl_set_free(Set); 243 return addReferencesFromStmt(Stmt, UserPtr); 244 } 245 246 /// Extract the out-of-scop values and SCEVs referenced from a union set 247 /// referencing multiple ScopStmts. 248 /// 249 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 250 /// statement and the base pointers of the memory accesses. For scalar 251 /// statements we force the generation of alloca memory locations and list 252 /// these locations in the set of out-of-scop values as well. 253 /// 254 /// @param USet A union set referencing the ScopStmts we are interested 255 /// in. 256 /// @param References The SubtreeReferences data structure through which 257 /// results are returned and further information is 258 /// provided. 259 static void 260 addReferencesFromStmtUnionSet(isl_union_set *USet, 261 struct SubtreeReferences &References) { 262 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 263 isl_union_set_free(USet); 264 } 265 266 __isl_give isl_union_map * 267 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 268 return IslAstInfo::getSchedule(For); 269 } 270 271 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 272 SetVector<Value *> &Values, 273 SetVector<const Loop *> &Loops) { 274 275 SetVector<const SCEV *> SCEVs; 276 struct SubtreeReferences References = { 277 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 278 279 for (const auto &I : IDToValue) 280 Values.insert(I.second); 281 282 for (const auto &I : OutsideLoopIterations) 283 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 284 285 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 286 addReferencesFromStmtUnionSet(Schedule, References); 287 288 for (const SCEV *Expr : SCEVs) { 289 findValues(Expr, SE, Values); 290 findLoops(Expr, Loops); 291 } 292 293 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 294 295 /// Remove loops that contain the scop or that are part of the scop, as they 296 /// are considered local. This leaves only loops that are before the scop, but 297 /// do not contain the scop itself. 298 Loops.remove_if([this](const Loop *L) { 299 return S.contains(L) || L->contains(S.getEntry()); 300 }); 301 } 302 303 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 304 SmallPtrSet<Value *, 5> Inserted; 305 306 for (const auto &I : IDToValue) { 307 IDToValue[I.first] = NewValues[I.second]; 308 Inserted.insert(I.second); 309 } 310 311 for (const auto &I : NewValues) { 312 if (Inserted.count(I.first)) 313 continue; 314 315 ValueMap[I.first] = I.second; 316 } 317 } 318 319 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 320 std::vector<Value *> &IVS, 321 __isl_take isl_id *IteratorID, 322 __isl_take isl_union_map *Schedule) { 323 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 324 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 325 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 326 isl_ast_expr_free(StmtExpr); 327 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 328 std::vector<LoopToScevMapT> VLTS(IVS.size()); 329 330 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 331 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 332 isl_map *S = isl_map_from_union_map(Schedule); 333 334 auto *NewAccesses = createNewAccesses(Stmt, User); 335 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 336 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 337 isl_id_to_ast_expr_free(NewAccesses); 338 isl_map_free(S); 339 isl_id_free(Id); 340 isl_ast_node_free(User); 341 } 342 343 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 344 auto *Id = isl_ast_node_mark_get_id(Node); 345 auto Child = isl_ast_node_mark_get_node(Node); 346 isl_ast_node_free(Node); 347 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 348 // it will be optimized away and we should skip it. 349 if (!strcmp(isl_id_get_name(Id), "SIMD") && 350 isl_ast_node_get_type(Child) == isl_ast_node_for) { 351 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 352 int VectorWidth = getNumberOfIterations(Child); 353 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 354 createForVector(Child, VectorWidth); 355 else 356 createForSequential(Child, true); 357 isl_id_free(Id); 358 return; 359 } 360 create(Child); 361 isl_id_free(Id); 362 } 363 364 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 365 int VectorWidth) { 366 isl_ast_node *Body = isl_ast_node_for_get_body(For); 367 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 368 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 369 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 370 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 371 372 Value *ValueLB = ExprBuilder.create(Init); 373 Value *ValueInc = ExprBuilder.create(Inc); 374 375 Type *MaxType = ExprBuilder.getType(Iterator); 376 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 377 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 378 379 if (MaxType != ValueLB->getType()) 380 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 381 if (MaxType != ValueInc->getType()) 382 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 383 384 std::vector<Value *> IVS(VectorWidth); 385 IVS[0] = ValueLB; 386 387 for (int i = 1; i < VectorWidth; i++) 388 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 389 390 isl_union_map *Schedule = getScheduleForAstNode(For); 391 assert(Schedule && "For statement annotation does not contain its schedule"); 392 393 IDToValue[IteratorID] = ValueLB; 394 395 switch (isl_ast_node_get_type(Body)) { 396 case isl_ast_node_user: 397 createUserVector(Body, IVS, isl_id_copy(IteratorID), 398 isl_union_map_copy(Schedule)); 399 break; 400 case isl_ast_node_block: { 401 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 402 403 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 404 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 405 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 406 407 isl_ast_node_free(Body); 408 isl_ast_node_list_free(List); 409 break; 410 } 411 default: 412 isl_ast_node_dump(Body); 413 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 414 } 415 416 IDToValue.erase(IDToValue.find(IteratorID)); 417 isl_id_free(IteratorID); 418 isl_union_map_free(Schedule); 419 420 isl_ast_node_free(For); 421 isl_ast_expr_free(Iterator); 422 } 423 424 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 425 bool KnownParallel) { 426 isl_ast_node *Body; 427 isl_ast_expr *Init, *Inc, *Iterator, *UB; 428 isl_id *IteratorID; 429 Value *ValueLB, *ValueUB, *ValueInc; 430 Type *MaxType; 431 BasicBlock *ExitBlock; 432 Value *IV; 433 CmpInst::Predicate Predicate; 434 bool Parallel; 435 436 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 437 !IslAstInfo::isReductionParallel(For)); 438 439 Body = isl_ast_node_for_get_body(For); 440 441 // isl_ast_node_for_is_degenerate(For) 442 // 443 // TODO: For degenerated loops we could generate a plain assignment. 444 // However, for now we just reuse the logic for normal loops, which will 445 // create a loop with a single iteration. 446 447 Init = isl_ast_node_for_get_init(For); 448 Inc = isl_ast_node_for_get_inc(For); 449 Iterator = isl_ast_node_for_get_iterator(For); 450 IteratorID = isl_ast_expr_get_id(Iterator); 451 UB = getUpperBound(For, Predicate); 452 453 ValueLB = ExprBuilder.create(Init); 454 ValueUB = ExprBuilder.create(UB); 455 ValueInc = ExprBuilder.create(Inc); 456 457 MaxType = ExprBuilder.getType(Iterator); 458 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 459 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 460 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 461 462 if (MaxType != ValueLB->getType()) 463 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 464 if (MaxType != ValueUB->getType()) 465 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 466 if (MaxType != ValueInc->getType()) 467 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 468 469 // If we can show that LB <Predicate> UB holds at least once, we can 470 // omit the GuardBB in front of the loop. 471 bool UseGuardBB = 472 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 473 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock, 474 Predicate, &Annotator, Parallel, UseGuardBB); 475 IDToValue[IteratorID] = IV; 476 477 create(Body); 478 479 Annotator.popLoop(Parallel); 480 481 IDToValue.erase(IDToValue.find(IteratorID)); 482 483 Builder.SetInsertPoint(&ExitBlock->front()); 484 485 isl_ast_node_free(For); 486 isl_ast_expr_free(Iterator); 487 isl_id_free(IteratorID); 488 } 489 490 /// @brief Remove the BBs contained in a (sub)function from the dominator tree. 491 /// 492 /// This function removes the basic blocks that are part of a subfunction from 493 /// the dominator tree. Specifically, when generating code it may happen that at 494 /// some point the code generation continues in a new sub-function (e.g., when 495 /// generating OpenMP code). The basic blocks that are created in this 496 /// sub-function are then still part of the dominator tree of the original 497 /// function, such that the dominator tree reaches over function boundaries. 498 /// This is not only incorrect, but also causes crashes. This function now 499 /// removes from the dominator tree all basic blocks that are dominated (and 500 /// consequently reachable) from the entry block of this (sub)function. 501 /// 502 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 503 /// the function/region it runs on. Hence, the pure need for this function shows 504 /// that we do not comply to this rule. At the moment, this does not cause any 505 /// issues, but we should be aware that such issues may appear. Unfortunately 506 /// the current LLVM pass infrastructure does not allow to make Polly a module 507 /// or call-graph pass to solve this issue, as such a pass would not have access 508 /// to the per-function analyses passes needed by Polly. A future pass manager 509 /// infrastructure is supposed to enable such kind of access possibly allowing 510 /// us to create a cleaner solution here. 511 /// 512 /// FIXME: Instead of adding the dominance information and then dropping it 513 /// later on, we should try to just not add it in the first place. This requires 514 /// some careful testing to make sure this does not break in interaction with 515 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 516 /// which may try to update it. 517 /// 518 /// @param F The function which contains the BBs to removed. 519 /// @param DT The dominator tree from which to remove the BBs. 520 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 521 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 522 std::vector<BasicBlock *> Nodes; 523 524 // We can only remove an element from the dominator tree, if all its children 525 // have been removed. To ensure this we obtain the list of nodes to remove 526 // using a post-order tree traversal. 527 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 528 Nodes.push_back(I->getBlock()); 529 530 for (BasicBlock *BB : Nodes) 531 DT.eraseNode(BB); 532 } 533 534 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 535 isl_ast_node *Body; 536 isl_ast_expr *Init, *Inc, *Iterator, *UB; 537 isl_id *IteratorID; 538 Value *ValueLB, *ValueUB, *ValueInc; 539 Type *MaxType; 540 Value *IV; 541 CmpInst::Predicate Predicate; 542 543 // The preamble of parallel code interacts different than normal code with 544 // e.g., scalar initialization. Therefore, we ensure the parallel code is 545 // separated from the last basic block. 546 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 547 &*Builder.GetInsertPoint(), &DT, &LI); 548 ParBB->setName("polly.parallel.for"); 549 Builder.SetInsertPoint(&ParBB->front()); 550 551 Body = isl_ast_node_for_get_body(For); 552 Init = isl_ast_node_for_get_init(For); 553 Inc = isl_ast_node_for_get_inc(For); 554 Iterator = isl_ast_node_for_get_iterator(For); 555 IteratorID = isl_ast_expr_get_id(Iterator); 556 UB = getUpperBound(For, Predicate); 557 558 ValueLB = ExprBuilder.create(Init); 559 ValueUB = ExprBuilder.create(UB); 560 ValueInc = ExprBuilder.create(Inc); 561 562 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 563 // expression, we need to adjust the loop blound by one. 564 if (Predicate == CmpInst::ICMP_SLT) 565 ValueUB = Builder.CreateAdd( 566 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 567 568 MaxType = ExprBuilder.getType(Iterator); 569 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 570 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 571 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 572 573 if (MaxType != ValueLB->getType()) 574 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 575 if (MaxType != ValueUB->getType()) 576 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 577 if (MaxType != ValueInc->getType()) 578 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 579 580 BasicBlock::iterator LoopBody; 581 582 SetVector<Value *> SubtreeValues; 583 SetVector<const Loop *> Loops; 584 585 getReferencesInSubtree(For, SubtreeValues, Loops); 586 587 // Create for all loops we depend on values that contain the current loop 588 // iteration. These values are necessary to generate code for SCEVs that 589 // depend on such loops. As a result we need to pass them to the subfunction. 590 for (const Loop *L : Loops) { 591 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 592 SE.getUnknown(Builder.getInt64(1)), 593 L, SCEV::FlagAnyWrap); 594 Value *V = generateSCEV(OuterLIV); 595 OutsideLoopIterations[L] = SE.getUnknown(V); 596 SubtreeValues.insert(V); 597 } 598 599 ValueMapT NewValues; 600 ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL); 601 602 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 603 SubtreeValues, NewValues, &LoopBody); 604 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 605 Builder.SetInsertPoint(&*LoopBody); 606 607 // Remember the parallel subfunction 608 ParallelSubfunctions.push_back(LoopBody->getFunction()); 609 610 // Save the current values. 611 auto ValueMapCopy = ValueMap; 612 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 613 614 updateValues(NewValues); 615 IDToValue[IteratorID] = IV; 616 617 ValueMapT NewValuesReverse; 618 619 for (auto P : NewValues) 620 NewValuesReverse[P.second] = P.first; 621 622 Annotator.addAlternativeAliasBases(NewValuesReverse); 623 624 create(Body); 625 626 Annotator.resetAlternativeAliasBases(); 627 // Restore the original values. 628 ValueMap = ValueMapCopy; 629 IDToValue = IDToValueCopy; 630 631 Builder.SetInsertPoint(&*AfterLoop); 632 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 633 634 for (const Loop *L : Loops) 635 OutsideLoopIterations.erase(L); 636 637 isl_ast_node_free(For); 638 isl_ast_expr_free(Iterator); 639 isl_id_free(IteratorID); 640 } 641 642 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 643 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 644 645 if (Vector && IslAstInfo::isInnermostParallel(For) && 646 !IslAstInfo::isReductionParallel(For)) { 647 int VectorWidth = getNumberOfIterations(For); 648 if (1 < VectorWidth && VectorWidth <= 16) { 649 createForVector(For, VectorWidth); 650 return; 651 } 652 } 653 654 if (IslAstInfo::isExecutedInParallel(For)) { 655 createForParallel(For); 656 return; 657 } 658 createForSequential(For, false); 659 } 660 661 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 662 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 663 664 Function *F = Builder.GetInsertBlock()->getParent(); 665 LLVMContext &Context = F->getContext(); 666 667 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 668 &*Builder.GetInsertPoint(), &DT, &LI); 669 CondBB->setName("polly.cond"); 670 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 671 MergeBB->setName("polly.merge"); 672 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 673 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 674 675 DT.addNewBlock(ThenBB, CondBB); 676 DT.addNewBlock(ElseBB, CondBB); 677 DT.changeImmediateDominator(MergeBB, CondBB); 678 679 Loop *L = LI.getLoopFor(CondBB); 680 if (L) { 681 L->addBasicBlockToLoop(ThenBB, LI); 682 L->addBasicBlockToLoop(ElseBB, LI); 683 } 684 685 CondBB->getTerminator()->eraseFromParent(); 686 687 Builder.SetInsertPoint(CondBB); 688 Value *Predicate = ExprBuilder.create(Cond); 689 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 690 Builder.SetInsertPoint(ThenBB); 691 Builder.CreateBr(MergeBB); 692 Builder.SetInsertPoint(ElseBB); 693 Builder.CreateBr(MergeBB); 694 Builder.SetInsertPoint(&ThenBB->front()); 695 696 create(isl_ast_node_if_get_then(If)); 697 698 Builder.SetInsertPoint(&ElseBB->front()); 699 700 if (isl_ast_node_if_has_else(If)) 701 create(isl_ast_node_if_get_else(If)); 702 703 Builder.SetInsertPoint(&MergeBB->front()); 704 705 isl_ast_node_free(If); 706 } 707 708 __isl_give isl_id_to_ast_expr * 709 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 710 __isl_keep isl_ast_node *Node) { 711 isl_id_to_ast_expr *NewAccesses = 712 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 713 714 auto *Build = IslAstInfo::getBuild(Node); 715 assert(Build && "Could not obtain isl_ast_build from user node"); 716 Stmt->setAstBuild(Build); 717 718 for (auto *MA : *Stmt) { 719 if (!MA->hasNewAccessRelation()) 720 continue; 721 722 auto Schedule = isl_ast_build_get_schedule(Build); 723 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 724 725 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 726 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 727 } 728 729 return NewAccesses; 730 } 731 732 void IslNodeBuilder::createSubstitutions(isl_ast_expr *Expr, ScopStmt *Stmt, 733 LoopToScevMapT <S) { 734 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 735 "Expression of type 'op' expected"); 736 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 737 "Opertation of type 'call' expected"); 738 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 739 isl_ast_expr *SubExpr; 740 Value *V; 741 742 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 743 V = ExprBuilder.create(SubExpr); 744 ScalarEvolution *SE = Stmt->getParent()->getSE(); 745 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 746 } 747 748 isl_ast_expr_free(Expr); 749 } 750 751 void IslNodeBuilder::createSubstitutionsVector( 752 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 753 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 754 __isl_take isl_id *IteratorID) { 755 int i = 0; 756 757 Value *OldValue = IDToValue[IteratorID]; 758 for (Value *IV : IVS) { 759 IDToValue[IteratorID] = IV; 760 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 761 i++; 762 } 763 764 IDToValue[IteratorID] = OldValue; 765 isl_id_free(IteratorID); 766 isl_ast_expr_free(Expr); 767 } 768 769 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 770 LoopToScevMapT LTS; 771 isl_id *Id; 772 ScopStmt *Stmt; 773 774 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 775 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 776 Id = isl_ast_expr_get_id(StmtExpr); 777 isl_ast_expr_free(StmtExpr); 778 779 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 780 781 Stmt = (ScopStmt *)isl_id_get_user(Id); 782 auto *NewAccesses = createNewAccesses(Stmt, User); 783 createSubstitutions(Expr, Stmt, LTS); 784 785 if (Stmt->isBlockStmt()) 786 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 787 else 788 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 789 790 isl_id_to_ast_expr_free(NewAccesses); 791 isl_ast_node_free(User); 792 isl_id_free(Id); 793 } 794 795 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 796 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 797 798 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 799 create(isl_ast_node_list_get_ast_node(List, i)); 800 801 isl_ast_node_free(Block); 802 isl_ast_node_list_free(List); 803 } 804 805 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 806 switch (isl_ast_node_get_type(Node)) { 807 case isl_ast_node_error: 808 llvm_unreachable("code generation error"); 809 case isl_ast_node_mark: 810 createMark(Node); 811 return; 812 case isl_ast_node_for: 813 createFor(Node); 814 return; 815 case isl_ast_node_if: 816 createIf(Node); 817 return; 818 case isl_ast_node_user: 819 createUser(Node); 820 return; 821 case isl_ast_node_block: 822 createBlock(Node); 823 return; 824 } 825 826 llvm_unreachable("Unknown isl_ast_node type"); 827 } 828 829 bool IslNodeBuilder::materializeValue(isl_id *Id) { 830 // If the Id is already mapped, skip it. 831 if (!IDToValue.count(Id)) { 832 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 833 Value *V = nullptr; 834 835 // Parameters could refere to invariant loads that need to be 836 // preloaded before we can generate code for the parameter. Thus, 837 // check if any value refered to in ParamSCEV is an invariant load 838 // and if so make sure its equivalence class is preloaded. 839 SetVector<Value *> Values; 840 findValues(ParamSCEV, SE, Values); 841 for (auto *Val : Values) { 842 843 // Check if the value is an instruction in a dead block within the SCoP 844 // and if so do not code generate it. 845 if (auto *Inst = dyn_cast<Instruction>(Val)) { 846 if (S.contains(Inst)) { 847 bool IsDead = true; 848 849 // Check for "undef" loads first, then if there is a statement for 850 // the parent of Inst and lastly if the parent of Inst has an empty 851 // domain. In the first and last case the instruction is dead but if 852 // there is a statement or the domain is not empty Inst is not dead. 853 auto MemInst = MemAccInst::dyn_cast(Inst); 854 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 855 if (Address && 856 SE.getUnknown(UndefValue::get(Address->getType())) == 857 SE.getPointerBase(SE.getSCEV(Address))) { 858 } else if (S.getStmtFor(Inst)) { 859 IsDead = false; 860 } else { 861 auto *Domain = S.getDomainConditions(Inst->getParent()); 862 IsDead = isl_set_is_empty(Domain); 863 isl_set_free(Domain); 864 } 865 866 if (IsDead) { 867 V = UndefValue::get(ParamSCEV->getType()); 868 break; 869 } 870 } 871 } 872 873 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 874 875 // Check if this invariant access class is empty, hence if we never 876 // actually added a loads instruction to it. In that case it has no 877 // (meaningful) users and we should not try to code generate it. 878 if (IAClass->InvariantAccesses.empty()) 879 V = UndefValue::get(ParamSCEV->getType()); 880 881 if (!preloadInvariantEquivClass(*IAClass)) { 882 isl_id_free(Id); 883 return false; 884 } 885 } 886 } 887 888 V = V ? V : generateSCEV(ParamSCEV); 889 IDToValue[Id] = V; 890 } 891 892 isl_id_free(Id); 893 return true; 894 } 895 896 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) { 897 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 898 if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1)) 899 continue; 900 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 901 if (!materializeValue(Id)) 902 return false; 903 } 904 return true; 905 } 906 907 /// @brief Add the number of dimensions in @p BS to @p U. 908 static isl_stat countTotalDims(isl_basic_set *BS, void *U) { 909 unsigned *NumTotalDim = static_cast<unsigned *>(U); 910 *NumTotalDim += isl_basic_set_total_dim(BS); 911 isl_basic_set_free(BS); 912 return isl_stat_ok; 913 } 914 915 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 916 isl_ast_build *Build, 917 Instruction *AccInst) { 918 919 // TODO: This check could be performed in the ScopInfo already. 920 unsigned NumTotalDim = 0; 921 isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim); 922 if (NumTotalDim > MaxDimensionsInAccessRange) { 923 isl_set_free(AccessRange); 924 return nullptr; 925 } 926 927 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 928 isl_ast_expr *Access = 929 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 930 auto *Address = isl_ast_expr_address_of(Access); 931 auto *AddressValue = ExprBuilder.create(Address); 932 Value *PreloadVal; 933 934 // Correct the type as the SAI might have a different type than the user 935 // expects, especially if the base pointer is a struct. 936 Type *Ty = AccInst->getType(); 937 938 auto *Ptr = AddressValue; 939 auto Name = Ptr->getName(); 940 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast"); 941 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 942 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 943 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 944 945 // TODO: This is only a hot fix for SCoP sequences that use the same load 946 // instruction contained and hoisted by one of the SCoPs. 947 if (SE.isSCEVable(Ty)) 948 SE.forgetValue(AccInst); 949 950 return PreloadVal; 951 } 952 953 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 954 isl_set *Domain) { 955 956 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 957 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 958 959 if (!materializeParameters(AccessRange, false)) { 960 isl_set_free(AccessRange); 961 isl_set_free(Domain); 962 return nullptr; 963 } 964 965 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 966 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 967 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 968 isl_set_free(Universe); 969 970 Instruction *AccInst = MA.getAccessInstruction(); 971 Type *AccInstTy = AccInst->getType(); 972 973 Value *PreloadVal = nullptr; 974 if (AlwaysExecuted) { 975 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 976 isl_ast_build_free(Build); 977 isl_set_free(Domain); 978 return PreloadVal; 979 } 980 981 if (!materializeParameters(Domain, false)) { 982 isl_ast_build_free(Build); 983 isl_set_free(AccessRange); 984 isl_set_free(Domain); 985 return nullptr; 986 } 987 988 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 989 Domain = nullptr; 990 991 ExprBuilder.setTrackOverflow(true); 992 Value *Cond = ExprBuilder.create(DomainCond); 993 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 994 "polly.preload.cond.overflown"); 995 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 996 ExprBuilder.setTrackOverflow(false); 997 998 if (!Cond->getType()->isIntegerTy(1)) 999 Cond = Builder.CreateIsNotNull(Cond); 1000 1001 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1002 &*Builder.GetInsertPoint(), &DT, &LI); 1003 CondBB->setName("polly.preload.cond"); 1004 1005 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1006 MergeBB->setName("polly.preload.merge"); 1007 1008 Function *F = Builder.GetInsertBlock()->getParent(); 1009 LLVMContext &Context = F->getContext(); 1010 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1011 1012 DT.addNewBlock(ExecBB, CondBB); 1013 if (Loop *L = LI.getLoopFor(CondBB)) 1014 L->addBasicBlockToLoop(ExecBB, LI); 1015 1016 auto *CondBBTerminator = CondBB->getTerminator(); 1017 Builder.SetInsertPoint(CondBBTerminator); 1018 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1019 CondBBTerminator->eraseFromParent(); 1020 1021 Builder.SetInsertPoint(ExecBB); 1022 Builder.CreateBr(MergeBB); 1023 1024 Builder.SetInsertPoint(ExecBB->getTerminator()); 1025 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1026 Builder.SetInsertPoint(MergeBB->getTerminator()); 1027 auto *MergePHI = Builder.CreatePHI( 1028 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1029 PreloadVal = MergePHI; 1030 1031 if (!PreAccInst) { 1032 PreloadVal = nullptr; 1033 PreAccInst = UndefValue::get(AccInstTy); 1034 } 1035 1036 MergePHI->addIncoming(PreAccInst, ExecBB); 1037 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1038 1039 isl_ast_build_free(Build); 1040 return PreloadVal; 1041 } 1042 1043 bool IslNodeBuilder::preloadInvariantEquivClass( 1044 InvariantEquivClassTy &IAClass) { 1045 // For an equivalence class of invariant loads we pre-load the representing 1046 // element with the unified execution context. However, we have to map all 1047 // elements of the class to the one preloaded load as they are referenced 1048 // during the code generation and therefor need to be mapped. 1049 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1050 if (MAs.empty()) 1051 return true; 1052 1053 MemoryAccess *MA = MAs.front(); 1054 assert(MA->isArrayKind() && MA->isRead()); 1055 1056 // If the access function was already mapped, the preload of this equivalence 1057 // class was triggered earlier already and doesn't need to be done again. 1058 if (ValueMap.count(MA->getAccessInstruction())) 1059 return true; 1060 1061 // Check for recursion which can be caused by additional constraints, e.g., 1062 // non-finite loop constraints. In such a case we have to bail out and insert 1063 // a "false" runtime check that will cause the original code to be executed. 1064 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1065 if (!PreloadedPtrs.insert(PtrId).second) 1066 return false; 1067 1068 // The execution context of the IAClass. 1069 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1070 1071 // If the base pointer of this class is dependent on another one we have to 1072 // make sure it was preloaded already. 1073 auto *SAI = MA->getScopArrayInfo(); 1074 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1075 if (!preloadInvariantEquivClass(*BaseIAClass)) 1076 return false; 1077 1078 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1079 // we need to refine the ExecutionCtx. 1080 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1081 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1082 } 1083 1084 Instruction *AccInst = MA->getAccessInstruction(); 1085 Type *AccInstTy = AccInst->getType(); 1086 1087 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1088 if (!PreloadVal) 1089 return false; 1090 1091 for (const MemoryAccess *MA : MAs) { 1092 Instruction *MAAccInst = MA->getAccessInstruction(); 1093 assert(PreloadVal->getType() == MAAccInst->getType()); 1094 ValueMap[MAAccInst] = PreloadVal; 1095 } 1096 1097 if (SE.isSCEVable(AccInstTy)) { 1098 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1099 if (ParamId) 1100 IDToValue[ParamId] = PreloadVal; 1101 isl_id_free(ParamId); 1102 } 1103 1104 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1105 auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a"); 1106 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1107 Builder.CreateStore(PreloadVal, Alloca); 1108 1109 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1110 Value *BasePtr = DerivedSAI->getBasePtr(); 1111 1112 for (const MemoryAccess *MA : MAs) { 1113 // As the derived SAI information is quite coarse, any load from the 1114 // current SAI could be the base pointer of the derived SAI, however we 1115 // should only change the base pointer of the derived SAI if we actually 1116 // preloaded it. 1117 if (BasePtr == MA->getBaseAddr()) { 1118 assert(BasePtr->getType() == PreloadVal->getType()); 1119 DerivedSAI->setBasePtr(PreloadVal); 1120 } 1121 1122 // For scalar derived SAIs we remap the alloca used for the derived value. 1123 if (BasePtr == MA->getAccessInstruction()) { 1124 if (DerivedSAI->isPHIKind()) 1125 PHIOpMap[BasePtr] = Alloca; 1126 else 1127 ScalarMap[BasePtr] = Alloca; 1128 } 1129 } 1130 } 1131 1132 for (const MemoryAccess *MA : MAs) { 1133 1134 Instruction *MAAccInst = MA->getAccessInstruction(); 1135 // Use the escape system to get the correct value to users outside the SCoP. 1136 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1137 for (auto *U : MAAccInst->users()) 1138 if (Instruction *UI = dyn_cast<Instruction>(U)) 1139 if (!S.contains(UI)) 1140 EscapeUsers.push_back(UI); 1141 1142 if (EscapeUsers.empty()) 1143 continue; 1144 1145 EscapeMap[MA->getAccessInstruction()] = 1146 std::make_pair(Alloca, std::move(EscapeUsers)); 1147 } 1148 1149 return true; 1150 } 1151 1152 void IslNodeBuilder::allocateNewArrays() { 1153 for (auto &SAI : S.arrays()) { 1154 if (SAI->getBasePtr()) 1155 continue; 1156 1157 Type *NewArrayType = nullptr; 1158 for (unsigned i = SAI->getNumberOfDimensions() - 1; i >= 1; i--) { 1159 auto *DimSize = SAI->getDimensionSize(i); 1160 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1161 ->getAPInt() 1162 .getLimitedValue(); 1163 1164 if (!NewArrayType) 1165 NewArrayType = SAI->getElementType(); 1166 1167 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1168 } 1169 1170 auto InstIt = 1171 Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator(); 1172 Value *CreatedArray = 1173 new AllocaInst(NewArrayType, SAI->getName(), &*InstIt); 1174 SAI->setBasePtr(CreatedArray); 1175 } 1176 } 1177 1178 bool IslNodeBuilder::preloadInvariantLoads() { 1179 1180 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1181 if (InvariantEquivClasses.empty()) 1182 return true; 1183 1184 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1185 &*Builder.GetInsertPoint(), &DT, &LI); 1186 PreLoadBB->setName("polly.preload.begin"); 1187 Builder.SetInsertPoint(&PreLoadBB->front()); 1188 1189 for (auto &IAClass : InvariantEquivClasses) 1190 if (!preloadInvariantEquivClass(IAClass)) 1191 return false; 1192 1193 return true; 1194 } 1195 1196 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1197 1198 // Materialize values for the parameters of the SCoP. 1199 materializeParameters(Context, /* all */ true); 1200 1201 // Generate values for the current loop iteration for all surrounding loops. 1202 // 1203 // We may also reference loops outside of the scop which do not contain the 1204 // scop itself, but as the number of such scops may be arbitrarily large we do 1205 // not generate code for them here, but only at the point of code generation 1206 // where these values are needed. 1207 Loop *L = LI.getLoopFor(S.getEntry()); 1208 1209 while (L != nullptr && S.contains(L)) 1210 L = L->getParentLoop(); 1211 1212 while (L != nullptr) { 1213 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1214 SE.getUnknown(Builder.getInt64(1)), 1215 L, SCEV::FlagAnyWrap); 1216 Value *V = generateSCEV(OuterLIV); 1217 OutsideLoopIterations[L] = SE.getUnknown(V); 1218 L = L->getParentLoop(); 1219 } 1220 1221 isl_set_free(Context); 1222 } 1223 1224 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1225 /// We pass the insert location of our Builder, as Polly ensures during IR 1226 /// generation that there is always a valid CFG into which instructions are 1227 /// inserted. As a result, the insertpoint is known to be always followed by a 1228 /// terminator instruction. This means the insert point may be specified by a 1229 /// terminator instruction, but it can never point to an ->end() iterator 1230 /// which does not have a corresponding instruction. Hence, dereferencing 1231 /// the insertpoint to obtain an instruction is known to be save. 1232 /// 1233 /// We also do not need to update the Builder here, as new instructions are 1234 /// always inserted _before_ the given InsertLocation. As a result, the 1235 /// insert location remains valid. 1236 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1237 "Insert location points after last valid instruction"); 1238 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1239 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1240 InsertLocation, &ValueMap); 1241 } 1242 1243 /// The AST expression we generate to perform the run-time check assumes 1244 /// computations on integer types of infinite size. As we only use 64-bit 1245 /// arithmetic we check for overflows, in case of which we set the result 1246 /// of this run-time check to false to be cosnservatively correct, 1247 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1248 auto ExprBuilder = getExprBuilder(); 1249 ExprBuilder.setTrackOverflow(true); 1250 Value *RTC = ExprBuilder.create(Condition); 1251 if (!RTC->getType()->isIntegerTy(1)) 1252 RTC = Builder.CreateIsNotNull(RTC); 1253 Value *OverflowHappened = 1254 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1255 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1256 ExprBuilder.setTrackOverflow(false); 1257 return RTC; 1258 } 1259