1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/CodeGen/Utils.h" 23 #include "polly/Config/config.h" 24 #include "polly/DependenceInfo.h" 25 #include "polly/LinkAllPasses.h" 26 #include "polly/Options.h" 27 #include "polly/ScopInfo.h" 28 #include "polly/Support/GICHelper.h" 29 #include "polly/Support/SCEVValidator.h" 30 #include "polly/Support/ScopHelper.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/aff.h" 41 #include "isl/ast.h" 42 #include "isl/ast_build.h" 43 #include "isl/list.h" 44 #include "isl/map.h" 45 #include "isl/set.h" 46 #include "isl/union_map.h" 47 #include "isl/union_set.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen" 53 54 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 55 56 static cl::opt<bool> PollyGenerateRTCPrint( 57 "polly-codegen-emit-rtc-print", 58 cl::desc("Emit code that prints the runtime check result dynamically."), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 60 61 // If this option is set we always use the isl AST generator to regenerate 62 // memory accesses. Without this option set we regenerate expressions using the 63 // original SCEV expressions and only generate new expressions in case the 64 // access relation has been changed and consequently must be regenerated. 65 static cl::opt<bool> PollyGenerateExpressions( 66 "polly-codegen-generate-expressions", 67 cl::desc("Generate AST expressions for unmodified and modified accesses"), 68 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 71 "polly-target-first-level-cache-line-size", 72 cl::desc("The size of the first level cache line size specified in bytes."), 73 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 74 75 __isl_give isl_ast_expr * 76 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 77 ICmpInst::Predicate &Predicate) { 78 isl_id *UBID, *IteratorID; 79 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 80 isl_ast_op_type Type; 81 82 Cond = isl_ast_node_for_get_cond(For); 83 Iterator = isl_ast_node_for_get_iterator(For); 84 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 85 "conditional expression is not an atomic upper bound"); 86 87 Type = isl_ast_expr_get_op_type(Cond); 88 89 switch (Type) { 90 case isl_ast_op_le: 91 Predicate = ICmpInst::ICMP_SLE; 92 break; 93 case isl_ast_op_lt: 94 Predicate = ICmpInst::ICMP_SLT; 95 break; 96 default: 97 llvm_unreachable("Unexpected comparison type in loop condition"); 98 } 99 100 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 101 102 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 103 "conditional expression is not an atomic upper bound"); 104 105 UBID = isl_ast_expr_get_id(Arg0); 106 107 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 108 "Could not get the iterator"); 109 110 IteratorID = isl_ast_expr_get_id(Iterator); 111 112 assert(UBID == IteratorID && 113 "conditional expression is not an atomic upper bound"); 114 115 UB = isl_ast_expr_get_op_arg(Cond, 1); 116 117 isl_ast_expr_free(Cond); 118 isl_ast_expr_free(Iterator); 119 isl_ast_expr_free(Arg0); 120 isl_id_free(IteratorID); 121 isl_id_free(UBID); 122 123 return UB; 124 } 125 126 /// Return true if a return value of Predicate is true for the value represented 127 /// by passed isl_ast_expr_int. 128 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 129 isl_bool (*Predicate)(__isl_keep isl_val *)) { 130 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 131 isl_ast_expr_free(Expr); 132 return false; 133 } 134 auto ExprVal = isl_ast_expr_get_val(Expr); 135 isl_ast_expr_free(Expr); 136 if (Predicate(ExprVal) != true) { 137 isl_val_free(ExprVal); 138 return false; 139 } 140 isl_val_free(ExprVal); 141 return true; 142 } 143 144 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 145 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 146 auto Body = isl_ast_node_for_get_body(For); 147 148 // First, check if we can actually handle this code. 149 switch (isl_ast_node_get_type(Body)) { 150 case isl_ast_node_user: 151 break; 152 case isl_ast_node_block: { 153 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 154 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 155 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 156 int Type = isl_ast_node_get_type(Node); 157 isl_ast_node_free(Node); 158 if (Type != isl_ast_node_user) { 159 isl_ast_node_list_free(List); 160 isl_ast_node_free(Body); 161 return -1; 162 } 163 } 164 isl_ast_node_list_free(List); 165 break; 166 } 167 default: 168 isl_ast_node_free(Body); 169 return -1; 170 } 171 isl_ast_node_free(Body); 172 173 auto Init = isl_ast_node_for_get_init(For); 174 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 175 return -1; 176 auto Inc = isl_ast_node_for_get_inc(For); 177 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 178 return -1; 179 CmpInst::Predicate Predicate; 180 auto UB = getUpperBound(For, Predicate); 181 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 182 isl_ast_expr_free(UB); 183 return -1; 184 } 185 auto UpVal = isl_ast_expr_get_val(UB); 186 isl_ast_expr_free(UB); 187 int NumberIterations = isl_val_get_num_si(UpVal); 188 isl_val_free(UpVal); 189 if (NumberIterations < 0) 190 return -1; 191 if (Predicate == CmpInst::ICMP_SLT) 192 return NumberIterations; 193 else 194 return NumberIterations + 1; 195 } 196 197 /// Extract the values and SCEVs needed to generate code for a block. 198 static int findReferencesInBlock(struct SubtreeReferences &References, 199 const ScopStmt *Stmt, const BasicBlock *BB) { 200 for (const Instruction &Inst : *BB) 201 for (Value *SrcVal : Inst.operands()) { 202 auto *Scope = References.LI.getLoopFor(BB); 203 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 204 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 205 continue; 206 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 207 References.Values.insert(NewVal); 208 } 209 return 0; 210 } 211 212 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 213 bool CreateScalarRefs) { 214 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 215 216 if (Stmt->isBlockStmt()) 217 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 218 else { 219 assert(Stmt->isRegionStmt() && 220 "Stmt was neither block nor region statement"); 221 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 222 findReferencesInBlock(References, Stmt, BB); 223 } 224 225 for (auto &Access : *Stmt) { 226 if (Access->isLatestArrayKind()) { 227 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 228 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 229 if (Stmt->getParent()->contains(OpInst)) 230 continue; 231 232 References.Values.insert(BasePtr); 233 continue; 234 } 235 236 if (CreateScalarRefs) 237 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 238 } 239 240 return isl_stat_ok; 241 } 242 243 /// Extract the out-of-scop values and SCEVs referenced from a set describing 244 /// a ScopStmt. 245 /// 246 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 247 /// statement and the base pointers of the memory accesses. For scalar 248 /// statements we force the generation of alloca memory locations and list 249 /// these locations in the set of out-of-scop values as well. 250 /// 251 /// @param Set A set which references the ScopStmt we are interested in. 252 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 253 /// structure. 254 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 255 void *UserPtr) { 256 isl_id *Id = isl_set_get_tuple_id(Set); 257 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 258 isl_id_free(Id); 259 isl_set_free(Set); 260 return addReferencesFromStmt(Stmt, UserPtr); 261 } 262 263 /// Extract the out-of-scop values and SCEVs referenced from a union set 264 /// referencing multiple ScopStmts. 265 /// 266 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 267 /// statement and the base pointers of the memory accesses. For scalar 268 /// statements we force the generation of alloca memory locations and list 269 /// these locations in the set of out-of-scop values as well. 270 /// 271 /// @param USet A union set referencing the ScopStmts we are interested 272 /// in. 273 /// @param References The SubtreeReferences data structure through which 274 /// results are returned and further information is 275 /// provided. 276 static void 277 addReferencesFromStmtUnionSet(isl_union_set *USet, 278 struct SubtreeReferences &References) { 279 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 280 isl_union_set_free(USet); 281 } 282 283 __isl_give isl_union_map * 284 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 285 return IslAstInfo::getSchedule(For); 286 } 287 288 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 289 SetVector<Value *> &Values, 290 SetVector<const Loop *> &Loops) { 291 292 SetVector<const SCEV *> SCEVs; 293 struct SubtreeReferences References = { 294 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 295 296 for (const auto &I : IDToValue) 297 Values.insert(I.second); 298 299 // NOTE: this is populated in IslNodeBuilder::addParameters 300 for (const auto &I : OutsideLoopIterations) 301 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 302 303 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 304 addReferencesFromStmtUnionSet(Schedule, References); 305 306 for (const SCEV *Expr : SCEVs) { 307 findValues(Expr, SE, Values); 308 findLoops(Expr, Loops); 309 } 310 311 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 312 313 /// Note: Code generation of induction variables of loops outside Scops 314 /// 315 /// Remove loops that contain the scop or that are part of the scop, as they 316 /// are considered local. This leaves only loops that are before the scop, but 317 /// do not contain the scop itself. 318 /// We ignore loops perfectly contained in the Scop because these are already 319 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 320 /// whose induction variables are referred to by the Scop, but the Scop is not 321 /// fully contained in these Loops. Since there can be many of these, 322 /// we choose to codegen these on-demand. 323 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 324 Loops.remove_if([this](const Loop *L) { 325 return S.contains(L) || L->contains(S.getEntry()); 326 }); 327 328 // Contains Values that may need to be replaced with other values 329 // due to replacements from the ValueMap. We should make sure 330 // that we return correctly remapped values. 331 // NOTE: this code path is tested by: 332 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 333 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 334 SetVector<Value *> ReplacedValues; 335 for (Value *V : Values) { 336 ReplacedValues.insert(getLatestValue(V)); 337 } 338 Values = ReplacedValues; 339 } 340 341 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 342 SmallPtrSet<Value *, 5> Inserted; 343 344 for (const auto &I : IDToValue) { 345 IDToValue[I.first] = NewValues[I.second]; 346 Inserted.insert(I.second); 347 } 348 349 for (const auto &I : NewValues) { 350 if (Inserted.count(I.first)) 351 continue; 352 353 ValueMap[I.first] = I.second; 354 } 355 } 356 357 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 358 auto It = ValueMap.find(Original); 359 if (It == ValueMap.end()) 360 return Original; 361 return It->second; 362 } 363 364 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 365 std::vector<Value *> &IVS, 366 __isl_take isl_id *IteratorID, 367 __isl_take isl_union_map *Schedule) { 368 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 369 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 370 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 371 isl_ast_expr_free(StmtExpr); 372 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 373 std::vector<LoopToScevMapT> VLTS(IVS.size()); 374 375 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 376 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 377 isl_map *S = isl_map_from_union_map(Schedule); 378 379 auto *NewAccesses = createNewAccesses(Stmt, User); 380 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 381 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 382 isl_id_to_ast_expr_free(NewAccesses); 383 isl_map_free(S); 384 isl_id_free(Id); 385 isl_ast_node_free(User); 386 } 387 388 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 389 auto *Id = isl_ast_node_mark_get_id(Node); 390 auto Child = isl_ast_node_mark_get_node(Node); 391 isl_ast_node_free(Node); 392 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 393 // it will be optimized away and we should skip it. 394 if (!strcmp(isl_id_get_name(Id), "SIMD") && 395 isl_ast_node_get_type(Child) == isl_ast_node_for) { 396 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 397 int VectorWidth = getNumberOfIterations(Child); 398 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 399 createForVector(Child, VectorWidth); 400 else 401 createForSequential(Child, true); 402 isl_id_free(Id); 403 return; 404 } 405 if (!strcmp(isl_id_get_name(Id), "Inter iteration alias-free")) { 406 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 407 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 408 } 409 create(Child); 410 isl_id_free(Id); 411 } 412 413 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 414 int VectorWidth) { 415 isl_ast_node *Body = isl_ast_node_for_get_body(For); 416 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 417 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 418 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 419 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 420 421 Value *ValueLB = ExprBuilder.create(Init); 422 Value *ValueInc = ExprBuilder.create(Inc); 423 424 Type *MaxType = ExprBuilder.getType(Iterator); 425 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 426 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 427 428 if (MaxType != ValueLB->getType()) 429 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 430 if (MaxType != ValueInc->getType()) 431 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 432 433 std::vector<Value *> IVS(VectorWidth); 434 IVS[0] = ValueLB; 435 436 for (int i = 1; i < VectorWidth; i++) 437 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 438 439 isl_union_map *Schedule = getScheduleForAstNode(For); 440 assert(Schedule && "For statement annotation does not contain its schedule"); 441 442 IDToValue[IteratorID] = ValueLB; 443 444 switch (isl_ast_node_get_type(Body)) { 445 case isl_ast_node_user: 446 createUserVector(Body, IVS, isl_id_copy(IteratorID), 447 isl_union_map_copy(Schedule)); 448 break; 449 case isl_ast_node_block: { 450 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 451 452 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 453 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 454 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 455 456 isl_ast_node_free(Body); 457 isl_ast_node_list_free(List); 458 break; 459 } 460 default: 461 isl_ast_node_dump(Body); 462 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 463 } 464 465 IDToValue.erase(IDToValue.find(IteratorID)); 466 isl_id_free(IteratorID); 467 isl_union_map_free(Schedule); 468 469 isl_ast_node_free(For); 470 isl_ast_expr_free(Iterator); 471 } 472 473 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 474 bool KnownParallel) { 475 isl_ast_node *Body; 476 isl_ast_expr *Init, *Inc, *Iterator, *UB; 477 isl_id *IteratorID; 478 Value *ValueLB, *ValueUB, *ValueInc; 479 Type *MaxType; 480 BasicBlock *ExitBlock; 481 Value *IV; 482 CmpInst::Predicate Predicate; 483 bool Parallel; 484 485 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 486 !IslAstInfo::isReductionParallel(For)); 487 488 Body = isl_ast_node_for_get_body(For); 489 490 // isl_ast_node_for_is_degenerate(For) 491 // 492 // TODO: For degenerated loops we could generate a plain assignment. 493 // However, for now we just reuse the logic for normal loops, which will 494 // create a loop with a single iteration. 495 496 Init = isl_ast_node_for_get_init(For); 497 Inc = isl_ast_node_for_get_inc(For); 498 Iterator = isl_ast_node_for_get_iterator(For); 499 IteratorID = isl_ast_expr_get_id(Iterator); 500 UB = getUpperBound(For, Predicate); 501 502 ValueLB = ExprBuilder.create(Init); 503 ValueUB = ExprBuilder.create(UB); 504 ValueInc = ExprBuilder.create(Inc); 505 506 MaxType = ExprBuilder.getType(Iterator); 507 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 508 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 509 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 510 511 if (MaxType != ValueLB->getType()) 512 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 513 if (MaxType != ValueUB->getType()) 514 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 515 if (MaxType != ValueInc->getType()) 516 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 517 518 // If we can show that LB <Predicate> UB holds at least once, we can 519 // omit the GuardBB in front of the loop. 520 bool UseGuardBB = 521 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 522 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 523 Predicate, &Annotator, Parallel, UseGuardBB); 524 IDToValue[IteratorID] = IV; 525 526 create(Body); 527 528 Annotator.popLoop(Parallel); 529 530 IDToValue.erase(IDToValue.find(IteratorID)); 531 532 Builder.SetInsertPoint(&ExitBlock->front()); 533 534 isl_ast_node_free(For); 535 isl_ast_expr_free(Iterator); 536 isl_id_free(IteratorID); 537 } 538 539 /// Remove the BBs contained in a (sub)function from the dominator tree. 540 /// 541 /// This function removes the basic blocks that are part of a subfunction from 542 /// the dominator tree. Specifically, when generating code it may happen that at 543 /// some point the code generation continues in a new sub-function (e.g., when 544 /// generating OpenMP code). The basic blocks that are created in this 545 /// sub-function are then still part of the dominator tree of the original 546 /// function, such that the dominator tree reaches over function boundaries. 547 /// This is not only incorrect, but also causes crashes. This function now 548 /// removes from the dominator tree all basic blocks that are dominated (and 549 /// consequently reachable) from the entry block of this (sub)function. 550 /// 551 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 552 /// the function/region it runs on. Hence, the pure need for this function shows 553 /// that we do not comply to this rule. At the moment, this does not cause any 554 /// issues, but we should be aware that such issues may appear. Unfortunately 555 /// the current LLVM pass infrastructure does not allow to make Polly a module 556 /// or call-graph pass to solve this issue, as such a pass would not have access 557 /// to the per-function analyses passes needed by Polly. A future pass manager 558 /// infrastructure is supposed to enable such kind of access possibly allowing 559 /// us to create a cleaner solution here. 560 /// 561 /// FIXME: Instead of adding the dominance information and then dropping it 562 /// later on, we should try to just not add it in the first place. This requires 563 /// some careful testing to make sure this does not break in interaction with 564 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 565 /// which may try to update it. 566 /// 567 /// @param F The function which contains the BBs to removed. 568 /// @param DT The dominator tree from which to remove the BBs. 569 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 570 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 571 std::vector<BasicBlock *> Nodes; 572 573 // We can only remove an element from the dominator tree, if all its children 574 // have been removed. To ensure this we obtain the list of nodes to remove 575 // using a post-order tree traversal. 576 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 577 Nodes.push_back(I->getBlock()); 578 579 for (BasicBlock *BB : Nodes) 580 DT.eraseNode(BB); 581 } 582 583 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 584 isl_ast_node *Body; 585 isl_ast_expr *Init, *Inc, *Iterator, *UB; 586 isl_id *IteratorID; 587 Value *ValueLB, *ValueUB, *ValueInc; 588 Type *MaxType; 589 Value *IV; 590 CmpInst::Predicate Predicate; 591 592 // The preamble of parallel code interacts different than normal code with 593 // e.g., scalar initialization. Therefore, we ensure the parallel code is 594 // separated from the last basic block. 595 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 596 &*Builder.GetInsertPoint(), &DT, &LI); 597 ParBB->setName("polly.parallel.for"); 598 Builder.SetInsertPoint(&ParBB->front()); 599 600 Body = isl_ast_node_for_get_body(For); 601 Init = isl_ast_node_for_get_init(For); 602 Inc = isl_ast_node_for_get_inc(For); 603 Iterator = isl_ast_node_for_get_iterator(For); 604 IteratorID = isl_ast_expr_get_id(Iterator); 605 UB = getUpperBound(For, Predicate); 606 607 ValueLB = ExprBuilder.create(Init); 608 ValueUB = ExprBuilder.create(UB); 609 ValueInc = ExprBuilder.create(Inc); 610 611 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 612 // expression, we need to adjust the loop bound by one. 613 if (Predicate == CmpInst::ICMP_SLT) 614 ValueUB = Builder.CreateAdd( 615 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 616 617 MaxType = ExprBuilder.getType(Iterator); 618 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 619 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 620 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 621 622 if (MaxType != ValueLB->getType()) 623 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 624 if (MaxType != ValueUB->getType()) 625 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 626 if (MaxType != ValueInc->getType()) 627 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 628 629 BasicBlock::iterator LoopBody; 630 631 SetVector<Value *> SubtreeValues; 632 SetVector<const Loop *> Loops; 633 634 getReferencesInSubtree(For, SubtreeValues, Loops); 635 636 // Create for all loops we depend on values that contain the current loop 637 // iteration. These values are necessary to generate code for SCEVs that 638 // depend on such loops. As a result we need to pass them to the subfunction. 639 // See [Code generation of induction variables of loops outside Scops] 640 for (const Loop *L : Loops) { 641 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 642 SubtreeValues.insert(LoopInductionVar); 643 } 644 645 ValueMapT NewValues; 646 ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL); 647 648 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 649 SubtreeValues, NewValues, &LoopBody); 650 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 651 Builder.SetInsertPoint(&*LoopBody); 652 653 // Remember the parallel subfunction 654 ParallelSubfunctions.push_back(LoopBody->getFunction()); 655 656 // Save the current values. 657 auto ValueMapCopy = ValueMap; 658 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 659 660 updateValues(NewValues); 661 IDToValue[IteratorID] = IV; 662 663 ValueMapT NewValuesReverse; 664 665 for (auto P : NewValues) 666 NewValuesReverse[P.second] = P.first; 667 668 Annotator.addAlternativeAliasBases(NewValuesReverse); 669 670 create(Body); 671 672 Annotator.resetAlternativeAliasBases(); 673 // Restore the original values. 674 ValueMap = ValueMapCopy; 675 IDToValue = IDToValueCopy; 676 677 Builder.SetInsertPoint(&*AfterLoop); 678 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 679 680 for (const Loop *L : Loops) 681 OutsideLoopIterations.erase(L); 682 683 isl_ast_node_free(For); 684 isl_ast_expr_free(Iterator); 685 isl_id_free(IteratorID); 686 } 687 688 /// Return whether any of @p Node's statements contain partial accesses. 689 /// 690 /// Partial accesses are not supported by Polly's vector code generator. 691 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 692 return isl_ast_node_foreach_descendant_top_down( 693 Node, 694 [](isl_ast_node *Node, void *User) -> isl_bool { 695 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 696 return isl_bool_true; 697 698 isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node)); 699 isl::ast_expr StmtExpr = 700 give(isl_ast_expr_get_op_arg(Expr.keep(), 0)); 701 isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep())); 702 703 ScopStmt *Stmt = 704 static_cast<ScopStmt *>(isl_id_get_user(Id.keep())); 705 isl::set StmtDom = Stmt->getDomain(); 706 for (auto *MA : *Stmt) { 707 if (MA->isLatestPartialAccess()) 708 return isl_bool_error; 709 } 710 return isl_bool_true; 711 }, 712 nullptr) == isl_stat_error; 713 } 714 715 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 716 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 717 718 if (Vector && IslAstInfo::isInnermostParallel(For) && 719 !IslAstInfo::isReductionParallel(For)) { 720 int VectorWidth = getNumberOfIterations(For); 721 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 722 createForVector(For, VectorWidth); 723 return; 724 } 725 } 726 727 if (IslAstInfo::isExecutedInParallel(For)) { 728 createForParallel(For); 729 return; 730 } 731 createForSequential(For, false); 732 } 733 734 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 735 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 736 737 Function *F = Builder.GetInsertBlock()->getParent(); 738 LLVMContext &Context = F->getContext(); 739 740 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 741 &*Builder.GetInsertPoint(), &DT, &LI); 742 CondBB->setName("polly.cond"); 743 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 744 MergeBB->setName("polly.merge"); 745 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 746 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 747 748 DT.addNewBlock(ThenBB, CondBB); 749 DT.addNewBlock(ElseBB, CondBB); 750 DT.changeImmediateDominator(MergeBB, CondBB); 751 752 Loop *L = LI.getLoopFor(CondBB); 753 if (L) { 754 L->addBasicBlockToLoop(ThenBB, LI); 755 L->addBasicBlockToLoop(ElseBB, LI); 756 } 757 758 CondBB->getTerminator()->eraseFromParent(); 759 760 Builder.SetInsertPoint(CondBB); 761 Value *Predicate = ExprBuilder.create(Cond); 762 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 763 Builder.SetInsertPoint(ThenBB); 764 Builder.CreateBr(MergeBB); 765 Builder.SetInsertPoint(ElseBB); 766 Builder.CreateBr(MergeBB); 767 Builder.SetInsertPoint(&ThenBB->front()); 768 769 create(isl_ast_node_if_get_then(If)); 770 771 Builder.SetInsertPoint(&ElseBB->front()); 772 773 if (isl_ast_node_if_has_else(If)) 774 create(isl_ast_node_if_get_else(If)); 775 776 Builder.SetInsertPoint(&MergeBB->front()); 777 778 isl_ast_node_free(If); 779 } 780 781 __isl_give isl_id_to_ast_expr * 782 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 783 __isl_keep isl_ast_node *Node) { 784 isl_id_to_ast_expr *NewAccesses = 785 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 786 787 auto *Build = IslAstInfo::getBuild(Node); 788 assert(Build && "Could not obtain isl_ast_build from user node"); 789 Stmt->setAstBuild(isl::manage(isl_ast_build_copy(Build))); 790 791 for (auto *MA : *Stmt) { 792 if (!MA->hasNewAccessRelation()) { 793 if (PollyGenerateExpressions) { 794 if (!MA->isAffine()) 795 continue; 796 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 797 continue; 798 799 auto *BasePtr = 800 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 801 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 802 continue; 803 } else { 804 continue; 805 } 806 } 807 assert(MA->isAffine() && 808 "Only affine memory accesses can be code generated"); 809 810 auto Schedule = isl_ast_build_get_schedule(Build); 811 812 #ifndef NDEBUG 813 if (MA->isRead()) { 814 auto Dom = Stmt->getDomain().release(); 815 auto SchedDom = isl_set_from_union_set( 816 isl_union_map_domain(isl_union_map_copy(Schedule))); 817 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 818 Dom = isl_set_intersect_params(Dom, 819 Stmt->getParent()->getContext().release()); 820 SchedDom = isl_set_intersect_params( 821 SchedDom, Stmt->getParent()->getContext().release()); 822 assert(isl_set_is_subset(SchedDom, AccDom) && 823 "Access relation not defined on full schedule domain"); 824 assert(isl_set_is_subset(Dom, AccDom) && 825 "Access relation not defined on full domain"); 826 isl_set_free(AccDom); 827 isl_set_free(SchedDom); 828 isl_set_free(Dom); 829 } 830 #endif 831 832 auto PWAccRel = 833 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 834 835 // isl cannot generate an index expression for access-nothing accesses. 836 isl::set AccDomain = 837 give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 838 if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) { 839 isl_pw_multi_aff_free(PWAccRel); 840 continue; 841 } 842 843 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 844 NewAccesses = 845 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 846 } 847 848 return NewAccesses; 849 } 850 851 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 852 ScopStmt *Stmt, LoopToScevMapT <S) { 853 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 854 "Expression of type 'op' expected"); 855 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 856 "Operation of type 'call' expected"); 857 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 858 isl_ast_expr *SubExpr; 859 Value *V; 860 861 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 862 V = ExprBuilder.create(SubExpr); 863 ScalarEvolution *SE = Stmt->getParent()->getSE(); 864 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 865 } 866 867 isl_ast_expr_free(Expr); 868 } 869 870 void IslNodeBuilder::createSubstitutionsVector( 871 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 872 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 873 __isl_take isl_id *IteratorID) { 874 int i = 0; 875 876 Value *OldValue = IDToValue[IteratorID]; 877 for (Value *IV : IVS) { 878 IDToValue[IteratorID] = IV; 879 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 880 i++; 881 } 882 883 IDToValue[IteratorID] = OldValue; 884 isl_id_free(IteratorID); 885 isl_ast_expr_free(Expr); 886 } 887 888 void IslNodeBuilder::generateCopyStmt( 889 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 890 assert(Stmt->size() == 2); 891 auto ReadAccess = Stmt->begin(); 892 auto WriteAccess = ReadAccess++; 893 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 894 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 895 "Accesses use the same data type"); 896 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 897 auto *AccessExpr = 898 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 899 auto *LoadValue = ExprBuilder.create(AccessExpr); 900 AccessExpr = 901 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 902 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 903 Builder.CreateStore(LoadValue, StoreAddr); 904 } 905 906 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 907 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 908 "trying to materialize loop induction variable twice"); 909 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 910 SE.getUnknown(Builder.getInt64(1)), L, 911 SCEV::FlagAnyWrap); 912 Value *V = generateSCEV(OuterLIV); 913 OutsideLoopIterations[L] = SE.getUnknown(V); 914 return V; 915 } 916 917 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 918 LoopToScevMapT LTS; 919 isl_id *Id; 920 ScopStmt *Stmt; 921 922 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 923 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 924 Id = isl_ast_expr_get_id(StmtExpr); 925 isl_ast_expr_free(StmtExpr); 926 927 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 928 929 Stmt = (ScopStmt *)isl_id_get_user(Id); 930 auto *NewAccesses = createNewAccesses(Stmt, User); 931 if (Stmt->isCopyStmt()) { 932 generateCopyStmt(Stmt, NewAccesses); 933 isl_ast_expr_free(Expr); 934 } else { 935 createSubstitutions(Expr, Stmt, LTS); 936 937 if (Stmt->isBlockStmt()) 938 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 939 else 940 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 941 } 942 943 isl_id_to_ast_expr_free(NewAccesses); 944 isl_ast_node_free(User); 945 isl_id_free(Id); 946 } 947 948 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 949 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 950 951 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 952 create(isl_ast_node_list_get_ast_node(List, i)); 953 954 isl_ast_node_free(Block); 955 isl_ast_node_list_free(List); 956 } 957 958 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 959 switch (isl_ast_node_get_type(Node)) { 960 case isl_ast_node_error: 961 llvm_unreachable("code generation error"); 962 case isl_ast_node_mark: 963 createMark(Node); 964 return; 965 case isl_ast_node_for: 966 createFor(Node); 967 return; 968 case isl_ast_node_if: 969 createIf(Node); 970 return; 971 case isl_ast_node_user: 972 createUser(Node); 973 return; 974 case isl_ast_node_block: 975 createBlock(Node); 976 return; 977 } 978 979 llvm_unreachable("Unknown isl_ast_node type"); 980 } 981 982 bool IslNodeBuilder::materializeValue(isl_id *Id) { 983 // If the Id is already mapped, skip it. 984 if (!IDToValue.count(Id)) { 985 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 986 Value *V = nullptr; 987 988 // Parameters could refer to invariant loads that need to be 989 // preloaded before we can generate code for the parameter. Thus, 990 // check if any value referred to in ParamSCEV is an invariant load 991 // and if so make sure its equivalence class is preloaded. 992 SetVector<Value *> Values; 993 findValues(ParamSCEV, SE, Values); 994 for (auto *Val : Values) { 995 996 // Check if the value is an instruction in a dead block within the SCoP 997 // and if so do not code generate it. 998 if (auto *Inst = dyn_cast<Instruction>(Val)) { 999 if (S.contains(Inst)) { 1000 bool IsDead = true; 1001 1002 // Check for "undef" loads first, then if there is a statement for 1003 // the parent of Inst and lastly if the parent of Inst has an empty 1004 // domain. In the first and last case the instruction is dead but if 1005 // there is a statement or the domain is not empty Inst is not dead. 1006 auto MemInst = MemAccInst::dyn_cast(Inst); 1007 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1008 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1009 SE.getPointerBase(SE.getSCEV(Address))) { 1010 } else if (S.getStmtFor(Inst)) { 1011 IsDead = false; 1012 } else { 1013 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1014 IsDead = isl_set_is_empty(Domain); 1015 isl_set_free(Domain); 1016 } 1017 1018 if (IsDead) { 1019 V = UndefValue::get(ParamSCEV->getType()); 1020 break; 1021 } 1022 } 1023 } 1024 1025 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1026 1027 // Check if this invariant access class is empty, hence if we never 1028 // actually added a loads instruction to it. In that case it has no 1029 // (meaningful) users and we should not try to code generate it. 1030 if (IAClass->InvariantAccesses.empty()) 1031 V = UndefValue::get(ParamSCEV->getType()); 1032 1033 if (!preloadInvariantEquivClass(*IAClass)) { 1034 isl_id_free(Id); 1035 return false; 1036 } 1037 } 1038 } 1039 1040 V = V ? V : generateSCEV(ParamSCEV); 1041 IDToValue[Id] = V; 1042 } 1043 1044 isl_id_free(Id); 1045 return true; 1046 } 1047 1048 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1049 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1050 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1051 continue; 1052 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1053 if (!materializeValue(Id)) 1054 return false; 1055 } 1056 return true; 1057 } 1058 1059 bool IslNodeBuilder::materializeParameters() { 1060 for (const SCEV *Param : S.parameters()) { 1061 isl_id *Id = S.getIdForParam(Param).release(); 1062 if (!materializeValue(Id)) 1063 return false; 1064 } 1065 return true; 1066 } 1067 1068 /// Generate the computation of the size of the outermost dimension from the 1069 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1070 /// contains the size of the array. 1071 /// 1072 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1073 /// %desc.dimensionty = type { i64, i64, i64 } 1074 /// @g_arr = global %arrty zeroinitializer, align 32 1075 /// ... 1076 /// %0 = load i64, i64* getelementptr inbounds 1077 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1078 /// %1 = load i64, i64* getelementptr inbounds 1079 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1080 /// %2 = sub nsw i64 %0, %1 1081 /// %size = add nsw i64 %2, 1 1082 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1083 PollyIRBuilder &Builder, 1084 std::string ArrayName) { 1085 assert(GlobalDescriptor && "invalid global descriptor given"); 1086 1087 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1088 Builder.getInt64(0), Builder.getInt32(2)}; 1089 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1090 ArrayName + "_end_ptr"); 1091 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1092 1093 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1094 Builder.getInt64(0), Builder.getInt32(1)}; 1095 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1096 ArrayName + "_begin_ptr"); 1097 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1098 1099 Value *size = 1100 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1101 Type *endType = dyn_cast<IntegerType>(end->getType()); 1102 assert(endType && "expected type of end to be integral"); 1103 1104 size = Builder.CreateNSWAdd(end, 1105 ConstantInt::get(endType, 1, /* signed = */ true), 1106 ArrayName + "_size"); 1107 1108 return size; 1109 } 1110 1111 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1112 for (const ScopStmt &Stmt : S) { 1113 for (const MemoryAccess *Access : Stmt) { 1114 if (!Access->isArrayKind()) 1115 continue; 1116 1117 const ScopArrayInfo *Array = Access->getScopArrayInfo(); 1118 if (!Array) 1119 continue; 1120 1121 if (Array->getNumberOfDimensions() == 0) 1122 continue; 1123 1124 Value *FAD = Access->getFortranArrayDescriptor(); 1125 if (!FAD) 1126 continue; 1127 1128 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1129 assert(ParametricPwAff && "parametric pw_aff corresponding " 1130 "to outermost dimension does not " 1131 "exist"); 1132 1133 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1134 isl_pw_aff_free(ParametricPwAff); 1135 1136 assert(Id && "pw_aff is not parametric"); 1137 1138 if (IDToValue.count(Id)) { 1139 isl_id_free(Id); 1140 continue; 1141 } 1142 1143 Value *FinalValue = 1144 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1145 assert(FinalValue && "unable to build Fortran array " 1146 "descriptor load of outermost dimension"); 1147 IDToValue[Id] = FinalValue; 1148 isl_id_free(Id); 1149 } 1150 } 1151 return true; 1152 } 1153 1154 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1155 isl_ast_build *Build, 1156 Instruction *AccInst) { 1157 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1158 isl_ast_expr *Access = 1159 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1160 auto *Address = isl_ast_expr_address_of(Access); 1161 auto *AddressValue = ExprBuilder.create(Address); 1162 Value *PreloadVal; 1163 1164 // Correct the type as the SAI might have a different type than the user 1165 // expects, especially if the base pointer is a struct. 1166 Type *Ty = AccInst->getType(); 1167 1168 auto *Ptr = AddressValue; 1169 auto Name = Ptr->getName(); 1170 auto AS = Ptr->getType()->getPointerAddressSpace(); 1171 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1172 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1173 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1174 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1175 1176 // TODO: This is only a hot fix for SCoP sequences that use the same load 1177 // instruction contained and hoisted by one of the SCoPs. 1178 if (SE.isSCEVable(Ty)) 1179 SE.forgetValue(AccInst); 1180 1181 return PreloadVal; 1182 } 1183 1184 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1185 isl_set *Domain) { 1186 1187 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1188 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1189 1190 if (!materializeParameters(AccessRange)) { 1191 isl_set_free(AccessRange); 1192 isl_set_free(Domain); 1193 return nullptr; 1194 } 1195 1196 auto *Build = 1197 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1198 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1199 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1200 isl_set_free(Universe); 1201 1202 Instruction *AccInst = MA.getAccessInstruction(); 1203 Type *AccInstTy = AccInst->getType(); 1204 1205 Value *PreloadVal = nullptr; 1206 if (AlwaysExecuted) { 1207 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1208 isl_ast_build_free(Build); 1209 isl_set_free(Domain); 1210 return PreloadVal; 1211 } 1212 1213 if (!materializeParameters(Domain)) { 1214 isl_ast_build_free(Build); 1215 isl_set_free(AccessRange); 1216 isl_set_free(Domain); 1217 return nullptr; 1218 } 1219 1220 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1221 Domain = nullptr; 1222 1223 ExprBuilder.setTrackOverflow(true); 1224 Value *Cond = ExprBuilder.create(DomainCond); 1225 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1226 "polly.preload.cond.overflown"); 1227 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1228 ExprBuilder.setTrackOverflow(false); 1229 1230 if (!Cond->getType()->isIntegerTy(1)) 1231 Cond = Builder.CreateIsNotNull(Cond); 1232 1233 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1234 &*Builder.GetInsertPoint(), &DT, &LI); 1235 CondBB->setName("polly.preload.cond"); 1236 1237 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1238 MergeBB->setName("polly.preload.merge"); 1239 1240 Function *F = Builder.GetInsertBlock()->getParent(); 1241 LLVMContext &Context = F->getContext(); 1242 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1243 1244 DT.addNewBlock(ExecBB, CondBB); 1245 if (Loop *L = LI.getLoopFor(CondBB)) 1246 L->addBasicBlockToLoop(ExecBB, LI); 1247 1248 auto *CondBBTerminator = CondBB->getTerminator(); 1249 Builder.SetInsertPoint(CondBBTerminator); 1250 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1251 CondBBTerminator->eraseFromParent(); 1252 1253 Builder.SetInsertPoint(ExecBB); 1254 Builder.CreateBr(MergeBB); 1255 1256 Builder.SetInsertPoint(ExecBB->getTerminator()); 1257 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1258 Builder.SetInsertPoint(MergeBB->getTerminator()); 1259 auto *MergePHI = Builder.CreatePHI( 1260 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1261 PreloadVal = MergePHI; 1262 1263 if (!PreAccInst) { 1264 PreloadVal = nullptr; 1265 PreAccInst = UndefValue::get(AccInstTy); 1266 } 1267 1268 MergePHI->addIncoming(PreAccInst, ExecBB); 1269 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1270 1271 isl_ast_build_free(Build); 1272 return PreloadVal; 1273 } 1274 1275 bool IslNodeBuilder::preloadInvariantEquivClass( 1276 InvariantEquivClassTy &IAClass) { 1277 // For an equivalence class of invariant loads we pre-load the representing 1278 // element with the unified execution context. However, we have to map all 1279 // elements of the class to the one preloaded load as they are referenced 1280 // during the code generation and therefor need to be mapped. 1281 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1282 if (MAs.empty()) 1283 return true; 1284 1285 MemoryAccess *MA = MAs.front(); 1286 assert(MA->isArrayKind() && MA->isRead()); 1287 1288 // If the access function was already mapped, the preload of this equivalence 1289 // class was triggered earlier already and doesn't need to be done again. 1290 if (ValueMap.count(MA->getAccessInstruction())) 1291 return true; 1292 1293 // Check for recursion which can be caused by additional constraints, e.g., 1294 // non-finite loop constraints. In such a case we have to bail out and insert 1295 // a "false" runtime check that will cause the original code to be executed. 1296 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1297 if (!PreloadedPtrs.insert(PtrId).second) 1298 return false; 1299 1300 // The execution context of the IAClass. 1301 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1302 1303 // If the base pointer of this class is dependent on another one we have to 1304 // make sure it was preloaded already. 1305 auto *SAI = MA->getScopArrayInfo(); 1306 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1307 if (!preloadInvariantEquivClass(*BaseIAClass)) 1308 return false; 1309 1310 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1311 // we need to refine the ExecutionCtx. 1312 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1313 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1314 } 1315 1316 // If the size of a dimension is dependent on another class, make sure it is 1317 // preloaded. 1318 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1319 const SCEV *Dim = SAI->getDimensionSize(i); 1320 SetVector<Value *> Values; 1321 findValues(Dim, SE, Values); 1322 for (auto *Val : Values) { 1323 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1324 if (!preloadInvariantEquivClass(*BaseIAClass)) 1325 return false; 1326 1327 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1328 // and we need to refine the ExecutionCtx. 1329 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1330 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1331 } 1332 } 1333 } 1334 1335 Instruction *AccInst = MA->getAccessInstruction(); 1336 Type *AccInstTy = AccInst->getType(); 1337 1338 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1339 if (!PreloadVal) 1340 return false; 1341 1342 for (const MemoryAccess *MA : MAs) { 1343 Instruction *MAAccInst = MA->getAccessInstruction(); 1344 assert(PreloadVal->getType() == MAAccInst->getType()); 1345 ValueMap[MAAccInst] = PreloadVal; 1346 } 1347 1348 if (SE.isSCEVable(AccInstTy)) { 1349 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1350 if (ParamId) 1351 IDToValue[ParamId] = PreloadVal; 1352 isl_id_free(ParamId); 1353 } 1354 1355 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1356 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1357 AccInst->getName() + ".preload.s2a"); 1358 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1359 Builder.CreateStore(PreloadVal, Alloca); 1360 ValueMapT PreloadedPointer; 1361 PreloadedPointer[PreloadVal] = AccInst; 1362 Annotator.addAlternativeAliasBases(PreloadedPointer); 1363 1364 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1365 Value *BasePtr = DerivedSAI->getBasePtr(); 1366 1367 for (const MemoryAccess *MA : MAs) { 1368 // As the derived SAI information is quite coarse, any load from the 1369 // current SAI could be the base pointer of the derived SAI, however we 1370 // should only change the base pointer of the derived SAI if we actually 1371 // preloaded it. 1372 if (BasePtr == MA->getOriginalBaseAddr()) { 1373 assert(BasePtr->getType() == PreloadVal->getType()); 1374 DerivedSAI->setBasePtr(PreloadVal); 1375 } 1376 1377 // For scalar derived SAIs we remap the alloca used for the derived value. 1378 if (BasePtr == MA->getAccessInstruction()) 1379 ScalarMap[DerivedSAI] = Alloca; 1380 } 1381 } 1382 1383 for (const MemoryAccess *MA : MAs) { 1384 1385 Instruction *MAAccInst = MA->getAccessInstruction(); 1386 // Use the escape system to get the correct value to users outside the SCoP. 1387 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1388 for (auto *U : MAAccInst->users()) 1389 if (Instruction *UI = dyn_cast<Instruction>(U)) 1390 if (!S.contains(UI)) 1391 EscapeUsers.push_back(UI); 1392 1393 if (EscapeUsers.empty()) 1394 continue; 1395 1396 EscapeMap[MA->getAccessInstruction()] = 1397 std::make_pair(Alloca, std::move(EscapeUsers)); 1398 } 1399 1400 return true; 1401 } 1402 1403 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1404 for (auto &SAI : S.arrays()) { 1405 if (SAI->getBasePtr()) 1406 continue; 1407 1408 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1409 "The size of the outermost dimension is used to declare newly " 1410 "created arrays that require memory allocation."); 1411 1412 Type *NewArrayType = nullptr; 1413 1414 // Get the size of the array = size(dim_1)*...*size(dim_n) 1415 uint64_t ArraySizeInt = 1; 1416 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1417 auto *DimSize = SAI->getDimensionSize(i); 1418 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1419 ->getAPInt() 1420 .getLimitedValue(); 1421 1422 if (!NewArrayType) 1423 NewArrayType = SAI->getElementType(); 1424 1425 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1426 ArraySizeInt *= UnsignedDimSize; 1427 } 1428 1429 if (SAI->isOnHeap()) { 1430 LLVMContext &Ctx = NewArrayType->getContext(); 1431 1432 // Get the IntPtrTy from the Datalayout 1433 auto IntPtrTy = DL.getIntPtrType(Ctx); 1434 1435 // Get the size of the element type in bits 1436 unsigned Size = SAI->getElemSizeInBytes(); 1437 1438 // Insert the malloc call at polly.start 1439 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1440 auto *CreatedArray = CallInst::CreateMalloc( 1441 &*InstIt, IntPtrTy, SAI->getElementType(), 1442 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1443 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1444 SAI->getName()); 1445 1446 SAI->setBasePtr(CreatedArray); 1447 1448 // Insert the free call at polly.exiting 1449 CallInst::CreateFree(CreatedArray, 1450 std::get<1>(StartExitBlocks)->getTerminator()); 1451 1452 } else { 1453 auto InstIt = Builder.GetInsertBlock() 1454 ->getParent() 1455 ->getEntryBlock() 1456 .getTerminator(); 1457 1458 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1459 SAI->getName(), &*InstIt); 1460 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1461 SAI->setBasePtr(CreatedArray); 1462 } 1463 } 1464 } 1465 1466 bool IslNodeBuilder::preloadInvariantLoads() { 1467 1468 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1469 if (InvariantEquivClasses.empty()) 1470 return true; 1471 1472 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1473 &*Builder.GetInsertPoint(), &DT, &LI); 1474 PreLoadBB->setName("polly.preload.begin"); 1475 Builder.SetInsertPoint(&PreLoadBB->front()); 1476 1477 for (auto &IAClass : InvariantEquivClasses) 1478 if (!preloadInvariantEquivClass(IAClass)) 1479 return false; 1480 1481 return true; 1482 } 1483 1484 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1485 // Materialize values for the parameters of the SCoP. 1486 materializeParameters(); 1487 1488 // materialize the outermost dimension parameters for a Fortran array. 1489 // NOTE: materializeParameters() does not work since it looks through 1490 // the SCEVs. We don't have a corresponding SCEV for the array size 1491 // parameter 1492 materializeFortranArrayOutermostDimension(); 1493 1494 // Generate values for the current loop iteration for all surrounding loops. 1495 // 1496 // We may also reference loops outside of the scop which do not contain the 1497 // scop itself, but as the number of such scops may be arbitrarily large we do 1498 // not generate code for them here, but only at the point of code generation 1499 // where these values are needed. 1500 Loop *L = LI.getLoopFor(S.getEntry()); 1501 1502 while (L != nullptr && S.contains(L)) 1503 L = L->getParentLoop(); 1504 1505 while (L != nullptr) { 1506 materializeNonScopLoopInductionVariable(L); 1507 L = L->getParentLoop(); 1508 } 1509 1510 isl_set_free(Context); 1511 } 1512 1513 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1514 /// We pass the insert location of our Builder, as Polly ensures during IR 1515 /// generation that there is always a valid CFG into which instructions are 1516 /// inserted. As a result, the insertpoint is known to be always followed by a 1517 /// terminator instruction. This means the insert point may be specified by a 1518 /// terminator instruction, but it can never point to an ->end() iterator 1519 /// which does not have a corresponding instruction. Hence, dereferencing 1520 /// the insertpoint to obtain an instruction is known to be save. 1521 /// 1522 /// We also do not need to update the Builder here, as new instructions are 1523 /// always inserted _before_ the given InsertLocation. As a result, the 1524 /// insert location remains valid. 1525 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1526 "Insert location points after last valid instruction"); 1527 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1528 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1529 InsertLocation, &ValueMap, 1530 StartBlock->getSinglePredecessor()); 1531 } 1532 1533 /// The AST expression we generate to perform the run-time check assumes 1534 /// computations on integer types of infinite size. As we only use 64-bit 1535 /// arithmetic we check for overflows, in case of which we set the result 1536 /// of this run-time check to false to be conservatively correct, 1537 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1538 auto ExprBuilder = getExprBuilder(); 1539 ExprBuilder.setTrackOverflow(true); 1540 Value *RTC = ExprBuilder.create(Condition); 1541 if (!RTC->getType()->isIntegerTy(1)) 1542 RTC = Builder.CreateIsNotNull(RTC); 1543 Value *OverflowHappened = 1544 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1545 1546 if (PollyGenerateRTCPrint) { 1547 auto *F = Builder.GetInsertBlock()->getParent(); 1548 RuntimeDebugBuilder::createCPUPrinter( 1549 Builder, 1550 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1551 " __RTC: ", 1552 RTC, " Overflow: ", OverflowHappened, "\n"); 1553 } 1554 1555 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1556 ExprBuilder.setTrackOverflow(false); 1557 1558 if (!isa<ConstantInt>(RTC)) 1559 VersionedScops++; 1560 1561 return RTC; 1562 } 1563