1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the IslNodeBuilder, a class to translate an isl AST into
11 // a LLVM-IR AST.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslAst.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/LoopGenerators.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Config/config.h"
23 #include "polly/Options.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/GICHelper.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "polly/Support/ScopHelper.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/RegionInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "isl/aff.h"
54 #include "isl/aff_type.h"
55 #include "isl/ast.h"
56 #include "isl/ast_build.h"
57 #include "isl/isl-noexceptions.h"
58 #include "isl/map.h"
59 #include "isl/set.h"
60 #include "isl/union_map.h"
61 #include "isl/union_set.h"
62 #include "isl/val.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 using namespace polly;
73 
74 #define DEBUG_TYPE "polly-codegen"
75 
76 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
77 
78 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
79 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
80 STATISTIC(VectorLoops, "Number of generated vector for-loops");
81 STATISTIC(IfConditions, "Number of generated if-conditions");
82 
83 static cl::opt<bool> PollyGenerateRTCPrint(
84     "polly-codegen-emit-rtc-print",
85     cl::desc("Emit code that prints the runtime check result dynamically."),
86     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
87 
88 // If this option is set we always use the isl AST generator to regenerate
89 // memory accesses. Without this option set we regenerate expressions using the
90 // original SCEV expressions and only generate new expressions in case the
91 // access relation has been changed and consequently must be regenerated.
92 static cl::opt<bool> PollyGenerateExpressions(
93     "polly-codegen-generate-expressions",
94     cl::desc("Generate AST expressions for unmodified and modified accesses"),
95     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
96 
97 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
98     "polly-target-first-level-cache-line-size",
99     cl::desc("The size of the first level cache line size specified in bytes."),
100     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
101 
102 __isl_give isl_ast_expr *
103 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
104                               ICmpInst::Predicate &Predicate) {
105   isl_id *UBID, *IteratorID;
106   isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
107   isl_ast_op_type Type;
108 
109   Cond = isl_ast_node_for_get_cond(For);
110   Iterator = isl_ast_node_for_get_iterator(For);
111   assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
112          "conditional expression is not an atomic upper bound");
113 
114   Type = isl_ast_expr_get_op_type(Cond);
115 
116   switch (Type) {
117   case isl_ast_op_le:
118     Predicate = ICmpInst::ICMP_SLE;
119     break;
120   case isl_ast_op_lt:
121     Predicate = ICmpInst::ICMP_SLT;
122     break;
123   default:
124     llvm_unreachable("Unexpected comparison type in loop condition");
125   }
126 
127   Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
128 
129   assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
130          "conditional expression is not an atomic upper bound");
131 
132   UBID = isl_ast_expr_get_id(Arg0);
133 
134   assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
135          "Could not get the iterator");
136 
137   IteratorID = isl_ast_expr_get_id(Iterator);
138 
139   assert(UBID == IteratorID &&
140          "conditional expression is not an atomic upper bound");
141 
142   UB = isl_ast_expr_get_op_arg(Cond, 1);
143 
144   isl_ast_expr_free(Cond);
145   isl_ast_expr_free(Iterator);
146   isl_ast_expr_free(Arg0);
147   isl_id_free(IteratorID);
148   isl_id_free(UBID);
149 
150   return UB;
151 }
152 
153 /// Return true if a return value of Predicate is true for the value represented
154 /// by passed isl_ast_expr_int.
155 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
156                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
157   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
158     isl_ast_expr_free(Expr);
159     return false;
160   }
161   auto ExprVal = isl_ast_expr_get_val(Expr);
162   isl_ast_expr_free(Expr);
163   if (Predicate(ExprVal) != isl_bool_true) {
164     isl_val_free(ExprVal);
165     return false;
166   }
167   isl_val_free(ExprVal);
168   return true;
169 }
170 
171 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
172   assert(isl_ast_node_get_type(For) == isl_ast_node_for);
173   auto Body = isl_ast_node_for_get_body(For);
174 
175   // First, check if we can actually handle this code.
176   switch (isl_ast_node_get_type(Body)) {
177   case isl_ast_node_user:
178     break;
179   case isl_ast_node_block: {
180     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
181     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
182       isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
183       int Type = isl_ast_node_get_type(Node);
184       isl_ast_node_free(Node);
185       if (Type != isl_ast_node_user) {
186         isl_ast_node_list_free(List);
187         isl_ast_node_free(Body);
188         return -1;
189       }
190     }
191     isl_ast_node_list_free(List);
192     break;
193   }
194   default:
195     isl_ast_node_free(Body);
196     return -1;
197   }
198   isl_ast_node_free(Body);
199 
200   auto Init = isl_ast_node_for_get_init(For);
201   if (!checkIslAstExprInt(Init, isl_val_is_zero))
202     return -1;
203   auto Inc = isl_ast_node_for_get_inc(For);
204   if (!checkIslAstExprInt(Inc, isl_val_is_one))
205     return -1;
206   CmpInst::Predicate Predicate;
207   auto UB = getUpperBound(For, Predicate);
208   if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
209     isl_ast_expr_free(UB);
210     return -1;
211   }
212   auto UpVal = isl_ast_expr_get_val(UB);
213   isl_ast_expr_free(UB);
214   int NumberIterations = isl_val_get_num_si(UpVal);
215   isl_val_free(UpVal);
216   if (NumberIterations < 0)
217     return -1;
218   if (Predicate == CmpInst::ICMP_SLT)
219     return NumberIterations;
220   else
221     return NumberIterations + 1;
222 }
223 
224 /// Extract the values and SCEVs needed to generate code for a block.
225 static int findReferencesInBlock(struct SubtreeReferences &References,
226                                  const ScopStmt *Stmt, BasicBlock *BB) {
227   for (Instruction &Inst : *BB) {
228     // Include invariant loads
229     if (isa<LoadInst>(Inst))
230       if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
231         References.Values.insert(InvariantLoad);
232 
233     for (Value *SrcVal : Inst.operands()) {
234       auto *Scope = References.LI.getLoopFor(BB);
235       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
236         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
237         continue;
238       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
239         References.Values.insert(NewVal);
240     }
241   }
242   return 0;
243 }
244 
245 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
246                                bool CreateScalarRefs) {
247   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
248 
249   if (Stmt->isBlockStmt())
250     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
251   else {
252     assert(Stmt->isRegionStmt() &&
253            "Stmt was neither block nor region statement");
254     for (BasicBlock *BB : Stmt->getRegion()->blocks())
255       findReferencesInBlock(References, Stmt, BB);
256   }
257 
258   for (auto &Access : *Stmt) {
259     if (References.ParamSpace) {
260       isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
261       (*References.ParamSpace) =
262           References.ParamSpace->align_params(ParamSpace);
263     }
264 
265     if (Access->isLatestArrayKind()) {
266       auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
267       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
268         if (Stmt->getParent()->contains(OpInst))
269           continue;
270 
271       References.Values.insert(BasePtr);
272       continue;
273     }
274 
275     if (CreateScalarRefs)
276       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
277   }
278 
279   return isl_stat_ok;
280 }
281 
282 /// Extract the out-of-scop values and SCEVs referenced from a set describing
283 /// a ScopStmt.
284 ///
285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
286 /// statement and the base pointers of the memory accesses. For scalar
287 /// statements we force the generation of alloca memory locations and list
288 /// these locations in the set of out-of-scop values as well.
289 ///
290 /// @param Set     A set which references the ScopStmt we are interested in.
291 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
292 ///                structure.
293 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
294                                          void *UserPtr) {
295   isl_id *Id = isl_set_get_tuple_id(Set);
296   auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
297   isl_id_free(Id);
298   isl_set_free(Set);
299   return addReferencesFromStmt(Stmt, UserPtr);
300 }
301 
302 /// Extract the out-of-scop values and SCEVs referenced from a union set
303 /// referencing multiple ScopStmts.
304 ///
305 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
306 /// statement and the base pointers of the memory accesses. For scalar
307 /// statements we force the generation of alloca memory locations and list
308 /// these locations in the set of out-of-scop values as well.
309 ///
310 /// @param USet       A union set referencing the ScopStmts we are interested
311 ///                   in.
312 /// @param References The SubtreeReferences data structure through which
313 ///                   results are returned and further information is
314 ///                   provided.
315 static void
316 addReferencesFromStmtUnionSet(isl_union_set *USet,
317                               struct SubtreeReferences &References) {
318   isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
319   isl_union_set_free(USet);
320 }
321 
322 __isl_give isl_union_map *
323 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
324   return IslAstInfo::getSchedule(For);
325 }
326 
327 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
328                                             SetVector<Value *> &Values,
329                                             SetVector<const Loop *> &Loops) {
330   SetVector<const SCEV *> SCEVs;
331   struct SubtreeReferences References = {
332       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
333 
334   for (const auto &I : IDToValue)
335     Values.insert(I.second);
336 
337   // NOTE: this is populated in IslNodeBuilder::addParameters
338   for (const auto &I : OutsideLoopIterations)
339     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
340 
341   isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
342   addReferencesFromStmtUnionSet(Schedule, References);
343 
344   for (const SCEV *Expr : SCEVs) {
345     findValues(Expr, SE, Values);
346     findLoops(Expr, Loops);
347   }
348 
349   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
350 
351   /// Note: Code generation of induction variables of loops outside Scops
352   ///
353   /// Remove loops that contain the scop or that are part of the scop, as they
354   /// are considered local. This leaves only loops that are before the scop, but
355   /// do not contain the scop itself.
356   /// We ignore loops perfectly contained in the Scop because these are already
357   /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
358   /// whose induction variables are referred to by the Scop, but the Scop is not
359   /// fully contained in these Loops. Since there can be many of these,
360   /// we choose to codegen these on-demand.
361   /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
362   Loops.remove_if([this](const Loop *L) {
363     return S.contains(L) || L->contains(S.getEntry());
364   });
365 
366   // Contains Values that may need to be replaced with other values
367   // due to replacements from the ValueMap. We should make sure
368   // that we return correctly remapped values.
369   // NOTE: this code path is tested by:
370   //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
371   //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
372   SetVector<Value *> ReplacedValues;
373   for (Value *V : Values) {
374     ReplacedValues.insert(getLatestValue(V));
375   }
376   Values = ReplacedValues;
377 }
378 
379 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
380   SmallPtrSet<Value *, 5> Inserted;
381 
382   for (const auto &I : IDToValue) {
383     IDToValue[I.first] = NewValues[I.second];
384     Inserted.insert(I.second);
385   }
386 
387   for (const auto &I : NewValues) {
388     if (Inserted.count(I.first))
389       continue;
390 
391     ValueMap[I.first] = I.second;
392   }
393 }
394 
395 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
396   auto It = ValueMap.find(Original);
397   if (It == ValueMap.end())
398     return Original;
399   return It->second;
400 }
401 
402 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
403                                       std::vector<Value *> &IVS,
404                                       __isl_take isl_id *IteratorID,
405                                       __isl_take isl_union_map *Schedule) {
406   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
407   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
408   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
409   isl_ast_expr_free(StmtExpr);
410   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
411   std::vector<LoopToScevMapT> VLTS(IVS.size());
412 
413   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
414   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
415   isl_map *S = isl_map_from_union_map(Schedule);
416 
417   auto *NewAccesses = createNewAccesses(Stmt, User);
418   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
419   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
420   isl_id_to_ast_expr_free(NewAccesses);
421   isl_map_free(S);
422   isl_id_free(Id);
423   isl_ast_node_free(User);
424 }
425 
426 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
427   auto *Id = isl_ast_node_mark_get_id(Node);
428   auto Child = isl_ast_node_mark_get_node(Node);
429   isl_ast_node_free(Node);
430   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
431   // it will be optimized away and we should skip it.
432   if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
433       isl_ast_node_get_type(Child) == isl_ast_node_for) {
434     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
435     int VectorWidth = getNumberOfIterations(Child);
436     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
437       createForVector(Child, VectorWidth);
438     else
439       createForSequential(Child, true);
440     isl_id_free(Id);
441     return;
442   }
443   if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
444     auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
445     Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
446   }
447   create(Child);
448   isl_id_free(Id);
449 }
450 
451 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
452                                      int VectorWidth) {
453   isl_ast_node *Body = isl_ast_node_for_get_body(For);
454   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
455   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
456   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
457   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
458 
459   Value *ValueLB = ExprBuilder.create(Init);
460   Value *ValueInc = ExprBuilder.create(Inc);
461 
462   Type *MaxType = ExprBuilder.getType(Iterator);
463   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
464   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
465 
466   if (MaxType != ValueLB->getType())
467     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
468   if (MaxType != ValueInc->getType())
469     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
470 
471   std::vector<Value *> IVS(VectorWidth);
472   IVS[0] = ValueLB;
473 
474   for (int i = 1; i < VectorWidth; i++)
475     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
476 
477   isl_union_map *Schedule = getScheduleForAstNode(For);
478   assert(Schedule && "For statement annotation does not contain its schedule");
479 
480   IDToValue[IteratorID] = ValueLB;
481 
482   switch (isl_ast_node_get_type(Body)) {
483   case isl_ast_node_user:
484     createUserVector(Body, IVS, isl_id_copy(IteratorID),
485                      isl_union_map_copy(Schedule));
486     break;
487   case isl_ast_node_block: {
488     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
489 
490     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
491       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
492                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
493 
494     isl_ast_node_free(Body);
495     isl_ast_node_list_free(List);
496     break;
497   }
498   default:
499     isl_ast_node_dump(Body);
500     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
501   }
502 
503   IDToValue.erase(IDToValue.find(IteratorID));
504   isl_id_free(IteratorID);
505   isl_union_map_free(Schedule);
506 
507   isl_ast_node_free(For);
508   isl_ast_expr_free(Iterator);
509 
510   VectorLoops++;
511 }
512 
513 /// Restore the initial ordering of dimensions of the band node
514 ///
515 /// In case the band node represents all the dimensions of the iteration
516 /// domain, recreate the band node to restore the initial ordering of the
517 /// dimensions.
518 ///
519 /// @param Node The band node to be modified.
520 /// @return The modified schedule node.
521 static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
522   assert(isl_ast_node_get_type(Node.keep()) == isl_ast_node_for);
523   auto Body = Node.for_get_body();
524   if (isl_ast_node_get_type(Body.keep()) != isl_ast_node_mark)
525     return false;
526   auto Id = Body.mark_get_id();
527   if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
528     return true;
529   return false;
530 }
531 
532 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
533                                          bool MarkParallel) {
534   isl_ast_node *Body;
535   isl_ast_expr *Init, *Inc, *Iterator, *UB;
536   isl_id *IteratorID;
537   Value *ValueLB, *ValueUB, *ValueInc;
538   Type *MaxType;
539   BasicBlock *ExitBlock;
540   Value *IV;
541   CmpInst::Predicate Predicate;
542 
543   bool LoopVectorizerDisabled =
544       IsLoopVectorizerDisabled(isl::manage(isl_ast_node_copy(For)));
545 
546   Body = isl_ast_node_for_get_body(For);
547 
548   // isl_ast_node_for_is_degenerate(For)
549   //
550   // TODO: For degenerated loops we could generate a plain assignment.
551   //       However, for now we just reuse the logic for normal loops, which will
552   //       create a loop with a single iteration.
553 
554   Init = isl_ast_node_for_get_init(For);
555   Inc = isl_ast_node_for_get_inc(For);
556   Iterator = isl_ast_node_for_get_iterator(For);
557   IteratorID = isl_ast_expr_get_id(Iterator);
558   UB = getUpperBound(For, Predicate);
559 
560   ValueLB = ExprBuilder.create(Init);
561   ValueUB = ExprBuilder.create(UB);
562   ValueInc = ExprBuilder.create(Inc);
563 
564   MaxType = ExprBuilder.getType(Iterator);
565   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
566   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
567   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
568 
569   if (MaxType != ValueLB->getType())
570     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
571   if (MaxType != ValueUB->getType())
572     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
573   if (MaxType != ValueInc->getType())
574     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
575 
576   // If we can show that LB <Predicate> UB holds at least once, we can
577   // omit the GuardBB in front of the loop.
578   bool UseGuardBB =
579       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
580   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
581                   Predicate, &Annotator, MarkParallel, UseGuardBB,
582                   LoopVectorizerDisabled);
583   IDToValue[IteratorID] = IV;
584 
585   create(Body);
586 
587   Annotator.popLoop(MarkParallel);
588 
589   IDToValue.erase(IDToValue.find(IteratorID));
590 
591   Builder.SetInsertPoint(&ExitBlock->front());
592 
593   isl_ast_node_free(For);
594   isl_ast_expr_free(Iterator);
595   isl_id_free(IteratorID);
596 
597   SequentialLoops++;
598 }
599 
600 /// Remove the BBs contained in a (sub)function from the dominator tree.
601 ///
602 /// This function removes the basic blocks that are part of a subfunction from
603 /// the dominator tree. Specifically, when generating code it may happen that at
604 /// some point the code generation continues in a new sub-function (e.g., when
605 /// generating OpenMP code). The basic blocks that are created in this
606 /// sub-function are then still part of the dominator tree of the original
607 /// function, such that the dominator tree reaches over function boundaries.
608 /// This is not only incorrect, but also causes crashes. This function now
609 /// removes from the dominator tree all basic blocks that are dominated (and
610 /// consequently reachable) from the entry block of this (sub)function.
611 ///
612 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
613 /// the function/region it runs on. Hence, the pure need for this function shows
614 /// that we do not comply to this rule. At the moment, this does not cause any
615 /// issues, but we should be aware that such issues may appear. Unfortunately
616 /// the current LLVM pass infrastructure does not allow to make Polly a module
617 /// or call-graph pass to solve this issue, as such a pass would not have access
618 /// to the per-function analyses passes needed by Polly. A future pass manager
619 /// infrastructure is supposed to enable such kind of access possibly allowing
620 /// us to create a cleaner solution here.
621 ///
622 /// FIXME: Instead of adding the dominance information and then dropping it
623 /// later on, we should try to just not add it in the first place. This requires
624 /// some careful testing to make sure this does not break in interaction with
625 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
626 /// which may try to update it.
627 ///
628 /// @param F The function which contains the BBs to removed.
629 /// @param DT The dominator tree from which to remove the BBs.
630 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
631   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
632   std::vector<BasicBlock *> Nodes;
633 
634   // We can only remove an element from the dominator tree, if all its children
635   // have been removed. To ensure this we obtain the list of nodes to remove
636   // using a post-order tree traversal.
637   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
638     Nodes.push_back(I->getBlock());
639 
640   for (BasicBlock *BB : Nodes)
641     DT.eraseNode(BB);
642 }
643 
644 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
645   isl_ast_node *Body;
646   isl_ast_expr *Init, *Inc, *Iterator, *UB;
647   isl_id *IteratorID;
648   Value *ValueLB, *ValueUB, *ValueInc;
649   Type *MaxType;
650   Value *IV;
651   CmpInst::Predicate Predicate;
652 
653   // The preamble of parallel code interacts different than normal code with
654   // e.g., scalar initialization. Therefore, we ensure the parallel code is
655   // separated from the last basic block.
656   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
657                                  &*Builder.GetInsertPoint(), &DT, &LI);
658   ParBB->setName("polly.parallel.for");
659   Builder.SetInsertPoint(&ParBB->front());
660 
661   Body = isl_ast_node_for_get_body(For);
662   Init = isl_ast_node_for_get_init(For);
663   Inc = isl_ast_node_for_get_inc(For);
664   Iterator = isl_ast_node_for_get_iterator(For);
665   IteratorID = isl_ast_expr_get_id(Iterator);
666   UB = getUpperBound(For, Predicate);
667 
668   ValueLB = ExprBuilder.create(Init);
669   ValueUB = ExprBuilder.create(UB);
670   ValueInc = ExprBuilder.create(Inc);
671 
672   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
673   // expression, we need to adjust the loop bound by one.
674   if (Predicate == CmpInst::ICMP_SLT)
675     ValueUB = Builder.CreateAdd(
676         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
677 
678   MaxType = ExprBuilder.getType(Iterator);
679   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
680   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
681   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
682 
683   if (MaxType != ValueLB->getType())
684     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
685   if (MaxType != ValueUB->getType())
686     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
687   if (MaxType != ValueInc->getType())
688     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
689 
690   BasicBlock::iterator LoopBody;
691 
692   SetVector<Value *> SubtreeValues;
693   SetVector<const Loop *> Loops;
694 
695   getReferencesInSubtree(For, SubtreeValues, Loops);
696 
697   // Create for all loops we depend on values that contain the current loop
698   // iteration. These values are necessary to generate code for SCEVs that
699   // depend on such loops. As a result we need to pass them to the subfunction.
700   // See [Code generation of induction variables of loops outside Scops]
701   for (const Loop *L : Loops) {
702     Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
703     SubtreeValues.insert(LoopInductionVar);
704   }
705 
706   ValueMapT NewValues;
707   ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL);
708 
709   IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
710                                           SubtreeValues, NewValues, &LoopBody);
711   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
712   Builder.SetInsertPoint(&*LoopBody);
713 
714   // Remember the parallel subfunction
715   ParallelSubfunctions.push_back(LoopBody->getFunction());
716 
717   // Save the current values.
718   auto ValueMapCopy = ValueMap;
719   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
720 
721   updateValues(NewValues);
722   IDToValue[IteratorID] = IV;
723 
724   ValueMapT NewValuesReverse;
725 
726   for (auto P : NewValues)
727     NewValuesReverse[P.second] = P.first;
728 
729   Annotator.addAlternativeAliasBases(NewValuesReverse);
730 
731   create(Body);
732 
733   Annotator.resetAlternativeAliasBases();
734   // Restore the original values.
735   ValueMap = ValueMapCopy;
736   IDToValue = IDToValueCopy;
737 
738   Builder.SetInsertPoint(&*AfterLoop);
739   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
740 
741   for (const Loop *L : Loops)
742     OutsideLoopIterations.erase(L);
743 
744   isl_ast_node_free(For);
745   isl_ast_expr_free(Iterator);
746   isl_id_free(IteratorID);
747 
748   ParallelLoops++;
749 }
750 
751 /// Return whether any of @p Node's statements contain partial accesses.
752 ///
753 /// Partial accesses are not supported by Polly's vector code generator.
754 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
755   return isl_ast_node_foreach_descendant_top_down(
756              Node,
757              [](isl_ast_node *Node, void *User) -> isl_bool {
758                if (isl_ast_node_get_type(Node) != isl_ast_node_user)
759                  return isl_bool_true;
760 
761                isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node));
762                isl::ast_expr StmtExpr =
763                    give(isl_ast_expr_get_op_arg(Expr.keep(), 0));
764                isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep()));
765 
766                ScopStmt *Stmt =
767                    static_cast<ScopStmt *>(isl_id_get_user(Id.keep()));
768                isl::set StmtDom = Stmt->getDomain();
769                for (auto *MA : *Stmt) {
770                  if (MA->isLatestPartialAccess())
771                    return isl_bool_error;
772                }
773                return isl_bool_true;
774              },
775              nullptr) == isl_stat_error;
776 }
777 
778 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
779   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
780 
781   if (Vector && IslAstInfo::isInnermostParallel(For) &&
782       !IslAstInfo::isReductionParallel(For)) {
783     int VectorWidth = getNumberOfIterations(For);
784     if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
785       createForVector(For, VectorWidth);
786       return;
787     }
788   }
789 
790   if (IslAstInfo::isExecutedInParallel(For)) {
791     createForParallel(For);
792     return;
793   }
794   bool Parallel =
795       (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
796   createForSequential(For, Parallel);
797 }
798 
799 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
800   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
801 
802   Function *F = Builder.GetInsertBlock()->getParent();
803   LLVMContext &Context = F->getContext();
804 
805   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
806                                   &*Builder.GetInsertPoint(), &DT, &LI);
807   CondBB->setName("polly.cond");
808   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
809   MergeBB->setName("polly.merge");
810   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
811   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
812 
813   DT.addNewBlock(ThenBB, CondBB);
814   DT.addNewBlock(ElseBB, CondBB);
815   DT.changeImmediateDominator(MergeBB, CondBB);
816 
817   Loop *L = LI.getLoopFor(CondBB);
818   if (L) {
819     L->addBasicBlockToLoop(ThenBB, LI);
820     L->addBasicBlockToLoop(ElseBB, LI);
821   }
822 
823   CondBB->getTerminator()->eraseFromParent();
824 
825   Builder.SetInsertPoint(CondBB);
826   Value *Predicate = ExprBuilder.create(Cond);
827   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
828   Builder.SetInsertPoint(ThenBB);
829   Builder.CreateBr(MergeBB);
830   Builder.SetInsertPoint(ElseBB);
831   Builder.CreateBr(MergeBB);
832   Builder.SetInsertPoint(&ThenBB->front());
833 
834   create(isl_ast_node_if_get_then(If));
835 
836   Builder.SetInsertPoint(&ElseBB->front());
837 
838   if (isl_ast_node_if_has_else(If))
839     create(isl_ast_node_if_get_else(If));
840 
841   Builder.SetInsertPoint(&MergeBB->front());
842 
843   isl_ast_node_free(If);
844 
845   IfConditions++;
846 }
847 
848 __isl_give isl_id_to_ast_expr *
849 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
850                                   __isl_keep isl_ast_node *Node) {
851   isl_id_to_ast_expr *NewAccesses =
852       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0);
853 
854   auto *Build = IslAstInfo::getBuild(Node);
855   assert(Build && "Could not obtain isl_ast_build from user node");
856   Stmt->setAstBuild(isl::manage(isl_ast_build_copy(Build)));
857 
858   for (auto *MA : *Stmt) {
859     if (!MA->hasNewAccessRelation()) {
860       if (PollyGenerateExpressions) {
861         if (!MA->isAffine())
862           continue;
863         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
864           continue;
865 
866         auto *BasePtr =
867             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
868         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
869           continue;
870       } else {
871         continue;
872       }
873     }
874     assert(MA->isAffine() &&
875            "Only affine memory accesses can be code generated");
876 
877     auto Schedule = isl_ast_build_get_schedule(Build);
878 
879 #ifndef NDEBUG
880     if (MA->isRead()) {
881       auto Dom = Stmt->getDomain().release();
882       auto SchedDom = isl_set_from_union_set(
883           isl_union_map_domain(isl_union_map_copy(Schedule)));
884       auto AccDom = isl_map_domain(MA->getAccessRelation().release());
885       Dom = isl_set_intersect_params(Dom,
886                                      Stmt->getParent()->getContext().release());
887       SchedDom = isl_set_intersect_params(
888           SchedDom, Stmt->getParent()->getContext().release());
889       assert(isl_set_is_subset(SchedDom, AccDom) &&
890              "Access relation not defined on full schedule domain");
891       assert(isl_set_is_subset(Dom, AccDom) &&
892              "Access relation not defined on full domain");
893       isl_set_free(AccDom);
894       isl_set_free(SchedDom);
895       isl_set_free(Dom);
896     }
897 #endif
898 
899     auto PWAccRel =
900         MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
901 
902     // isl cannot generate an index expression for access-nothing accesses.
903     isl::set AccDomain =
904         give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
905     if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) {
906       isl_pw_multi_aff_free(PWAccRel);
907       continue;
908     }
909 
910     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
911     NewAccesses =
912         isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
913   }
914 
915   return NewAccesses;
916 }
917 
918 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
919                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
920   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
921          "Expression of type 'op' expected");
922   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
923          "Operation of type 'call' expected");
924   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
925     isl_ast_expr *SubExpr;
926     Value *V;
927 
928     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
929     V = ExprBuilder.create(SubExpr);
930     ScalarEvolution *SE = Stmt->getParent()->getSE();
931     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
932   }
933 
934   isl_ast_expr_free(Expr);
935 }
936 
937 void IslNodeBuilder::createSubstitutionsVector(
938     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
939     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
940     __isl_take isl_id *IteratorID) {
941   int i = 0;
942 
943   Value *OldValue = IDToValue[IteratorID];
944   for (Value *IV : IVS) {
945     IDToValue[IteratorID] = IV;
946     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
947     i++;
948   }
949 
950   IDToValue[IteratorID] = OldValue;
951   isl_id_free(IteratorID);
952   isl_ast_expr_free(Expr);
953 }
954 
955 void IslNodeBuilder::generateCopyStmt(
956     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
957   assert(Stmt->size() == 2);
958   auto ReadAccess = Stmt->begin();
959   auto WriteAccess = ReadAccess++;
960   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
961   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
962          "Accesses use the same data type");
963   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
964   auto *AccessExpr =
965       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
966   auto *LoadValue = ExprBuilder.create(AccessExpr);
967   AccessExpr =
968       isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
969   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
970   Builder.CreateStore(LoadValue, StoreAddr);
971 }
972 
973 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
974   assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
975          "trying to materialize loop induction variable twice");
976   const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
977                                           SE.getUnknown(Builder.getInt64(1)), L,
978                                           SCEV::FlagAnyWrap);
979   Value *V = generateSCEV(OuterLIV);
980   OutsideLoopIterations[L] = SE.getUnknown(V);
981   return V;
982 }
983 
984 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
985   LoopToScevMapT LTS;
986   isl_id *Id;
987   ScopStmt *Stmt;
988 
989   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
990   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
991   Id = isl_ast_expr_get_id(StmtExpr);
992   isl_ast_expr_free(StmtExpr);
993 
994   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
995 
996   Stmt = (ScopStmt *)isl_id_get_user(Id);
997   auto *NewAccesses = createNewAccesses(Stmt, User);
998   if (Stmt->isCopyStmt()) {
999     generateCopyStmt(Stmt, NewAccesses);
1000     isl_ast_expr_free(Expr);
1001   } else {
1002     createSubstitutions(Expr, Stmt, LTS);
1003 
1004     if (Stmt->isBlockStmt())
1005       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
1006     else
1007       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
1008   }
1009 
1010   isl_id_to_ast_expr_free(NewAccesses);
1011   isl_ast_node_free(User);
1012   isl_id_free(Id);
1013 }
1014 
1015 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
1016   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
1017 
1018   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
1019     create(isl_ast_node_list_get_ast_node(List, i));
1020 
1021   isl_ast_node_free(Block);
1022   isl_ast_node_list_free(List);
1023 }
1024 
1025 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
1026   switch (isl_ast_node_get_type(Node)) {
1027   case isl_ast_node_error:
1028     llvm_unreachable("code generation error");
1029   case isl_ast_node_mark:
1030     createMark(Node);
1031     return;
1032   case isl_ast_node_for:
1033     createFor(Node);
1034     return;
1035   case isl_ast_node_if:
1036     createIf(Node);
1037     return;
1038   case isl_ast_node_user:
1039     createUser(Node);
1040     return;
1041   case isl_ast_node_block:
1042     createBlock(Node);
1043     return;
1044   }
1045 
1046   llvm_unreachable("Unknown isl_ast_node type");
1047 }
1048 
1049 bool IslNodeBuilder::materializeValue(isl_id *Id) {
1050   // If the Id is already mapped, skip it.
1051   if (!IDToValue.count(Id)) {
1052     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
1053     Value *V = nullptr;
1054 
1055     // Parameters could refer to invariant loads that need to be
1056     // preloaded before we can generate code for the parameter. Thus,
1057     // check if any value referred to in ParamSCEV is an invariant load
1058     // and if so make sure its equivalence class is preloaded.
1059     SetVector<Value *> Values;
1060     findValues(ParamSCEV, SE, Values);
1061     for (auto *Val : Values) {
1062       // Check if the value is an instruction in a dead block within the SCoP
1063       // and if so do not code generate it.
1064       if (auto *Inst = dyn_cast<Instruction>(Val)) {
1065         if (S.contains(Inst)) {
1066           bool IsDead = true;
1067 
1068           // Check for "undef" loads first, then if there is a statement for
1069           // the parent of Inst and lastly if the parent of Inst has an empty
1070           // domain. In the first and last case the instruction is dead but if
1071           // there is a statement or the domain is not empty Inst is not dead.
1072           auto MemInst = MemAccInst::dyn_cast(Inst);
1073           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
1074           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
1075                              SE.getPointerBase(SE.getSCEV(Address))) {
1076           } else if (S.getStmtFor(Inst)) {
1077             IsDead = false;
1078           } else {
1079             auto *Domain = S.getDomainConditions(Inst->getParent()).release();
1080             IsDead = isl_set_is_empty(Domain);
1081             isl_set_free(Domain);
1082           }
1083 
1084           if (IsDead) {
1085             V = UndefValue::get(ParamSCEV->getType());
1086             break;
1087           }
1088         }
1089       }
1090 
1091       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
1092         // Check if this invariant access class is empty, hence if we never
1093         // actually added a loads instruction to it. In that case it has no
1094         // (meaningful) users and we should not try to code generate it.
1095         if (IAClass->InvariantAccesses.empty())
1096           V = UndefValue::get(ParamSCEV->getType());
1097 
1098         if (!preloadInvariantEquivClass(*IAClass)) {
1099           isl_id_free(Id);
1100           return false;
1101         }
1102       }
1103     }
1104 
1105     V = V ? V : generateSCEV(ParamSCEV);
1106     IDToValue[Id] = V;
1107   }
1108 
1109   isl_id_free(Id);
1110   return true;
1111 }
1112 
1113 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
1114   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
1115     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
1116       continue;
1117     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
1118     if (!materializeValue(Id))
1119       return false;
1120   }
1121   return true;
1122 }
1123 
1124 bool IslNodeBuilder::materializeParameters() {
1125   for (const SCEV *Param : S.parameters()) {
1126     isl_id *Id = S.getIdForParam(Param).release();
1127     if (!materializeValue(Id))
1128       return false;
1129   }
1130   return true;
1131 }
1132 
1133 /// Generate the computation of the size of the outermost dimension from the
1134 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
1135 /// contains the size of the array.
1136 ///
1137 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
1138 /// %desc.dimensionty = type { i64, i64, i64 }
1139 /// @g_arr = global %arrty zeroinitializer, align 32
1140 /// ...
1141 /// %0 = load i64, i64* getelementptr inbounds
1142 ///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
1143 /// %1 = load i64, i64* getelementptr inbounds
1144 ///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
1145 /// %2 = sub nsw i64 %0, %1
1146 /// %size = add nsw i64 %2, 1
1147 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
1148                                              PollyIRBuilder &Builder,
1149                                              std::string ArrayName) {
1150   assert(GlobalDescriptor && "invalid global descriptor given");
1151 
1152   Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1153                       Builder.getInt64(0), Builder.getInt32(2)};
1154   Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
1155                                             ArrayName + "_end_ptr");
1156   Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");
1157 
1158   Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1159                         Builder.getInt64(0), Builder.getInt32(1)};
1160   Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
1161                                               ArrayName + "_begin_ptr");
1162   Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");
1163 
1164   Value *size =
1165       Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
1166   Type *endType = dyn_cast<IntegerType>(end->getType());
1167   assert(endType && "expected type of end to be integral");
1168 
1169   size = Builder.CreateNSWAdd(end,
1170                               ConstantInt::get(endType, 1, /* signed = */ true),
1171                               ArrayName + "_size");
1172 
1173   return size;
1174 }
1175 
1176 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
1177   for (ScopArrayInfo *Array : S.arrays()) {
1178     if (Array->getNumberOfDimensions() == 0)
1179       continue;
1180 
1181     Value *FAD = Array->getFortranArrayDescriptor();
1182     if (!FAD)
1183       continue;
1184 
1185     isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
1186     assert(ParametricPwAff && "parametric pw_aff corresponding "
1187                               "to outermost dimension does not "
1188                               "exist");
1189 
1190     isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
1191     isl_pw_aff_free(ParametricPwAff);
1192 
1193     assert(Id && "pw_aff is not parametric");
1194 
1195     if (IDToValue.count(Id)) {
1196       isl_id_free(Id);
1197       continue;
1198     }
1199 
1200     Value *FinalValue =
1201         buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
1202     assert(FinalValue && "unable to build Fortran array "
1203                          "descriptor load of outermost dimension");
1204     IDToValue[Id] = FinalValue;
1205     isl_id_free(Id);
1206   }
1207   return true;
1208 }
1209 
1210 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1211                                               isl_ast_build *Build,
1212                                               Instruction *AccInst) {
1213   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1214   isl_ast_expr *Access =
1215       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1216   auto *Address = isl_ast_expr_address_of(Access);
1217   auto *AddressValue = ExprBuilder.create(Address);
1218   Value *PreloadVal;
1219 
1220   // Correct the type as the SAI might have a different type than the user
1221   // expects, especially if the base pointer is a struct.
1222   Type *Ty = AccInst->getType();
1223 
1224   auto *Ptr = AddressValue;
1225   auto Name = Ptr->getName();
1226   auto AS = Ptr->getType()->getPointerAddressSpace();
1227   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1228   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1229   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1230     PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
1231 
1232   // TODO: This is only a hot fix for SCoP sequences that use the same load
1233   //       instruction contained and hoisted by one of the SCoPs.
1234   if (SE.isSCEVable(Ty))
1235     SE.forgetValue(AccInst);
1236 
1237   return PreloadVal;
1238 }
1239 
1240 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1241                                             isl_set *Domain) {
1242   isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1243   AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1244 
1245   if (!materializeParameters(AccessRange)) {
1246     isl_set_free(AccessRange);
1247     isl_set_free(Domain);
1248     return nullptr;
1249   }
1250 
1251   auto *Build =
1252       isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1253   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1254   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1255   isl_set_free(Universe);
1256 
1257   Instruction *AccInst = MA.getAccessInstruction();
1258   Type *AccInstTy = AccInst->getType();
1259 
1260   Value *PreloadVal = nullptr;
1261   if (AlwaysExecuted) {
1262     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1263     isl_ast_build_free(Build);
1264     isl_set_free(Domain);
1265     return PreloadVal;
1266   }
1267 
1268   if (!materializeParameters(Domain)) {
1269     isl_ast_build_free(Build);
1270     isl_set_free(AccessRange);
1271     isl_set_free(Domain);
1272     return nullptr;
1273   }
1274 
1275   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1276   Domain = nullptr;
1277 
1278   ExprBuilder.setTrackOverflow(true);
1279   Value *Cond = ExprBuilder.create(DomainCond);
1280   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1281                                               "polly.preload.cond.overflown");
1282   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1283   ExprBuilder.setTrackOverflow(false);
1284 
1285   if (!Cond->getType()->isIntegerTy(1))
1286     Cond = Builder.CreateIsNotNull(Cond);
1287 
1288   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1289                                   &*Builder.GetInsertPoint(), &DT, &LI);
1290   CondBB->setName("polly.preload.cond");
1291 
1292   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1293   MergeBB->setName("polly.preload.merge");
1294 
1295   Function *F = Builder.GetInsertBlock()->getParent();
1296   LLVMContext &Context = F->getContext();
1297   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1298 
1299   DT.addNewBlock(ExecBB, CondBB);
1300   if (Loop *L = LI.getLoopFor(CondBB))
1301     L->addBasicBlockToLoop(ExecBB, LI);
1302 
1303   auto *CondBBTerminator = CondBB->getTerminator();
1304   Builder.SetInsertPoint(CondBBTerminator);
1305   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1306   CondBBTerminator->eraseFromParent();
1307 
1308   Builder.SetInsertPoint(ExecBB);
1309   Builder.CreateBr(MergeBB);
1310 
1311   Builder.SetInsertPoint(ExecBB->getTerminator());
1312   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1313   Builder.SetInsertPoint(MergeBB->getTerminator());
1314   auto *MergePHI = Builder.CreatePHI(
1315       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1316   PreloadVal = MergePHI;
1317 
1318   if (!PreAccInst) {
1319     PreloadVal = nullptr;
1320     PreAccInst = UndefValue::get(AccInstTy);
1321   }
1322 
1323   MergePHI->addIncoming(PreAccInst, ExecBB);
1324   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1325 
1326   isl_ast_build_free(Build);
1327   return PreloadVal;
1328 }
1329 
1330 bool IslNodeBuilder::preloadInvariantEquivClass(
1331     InvariantEquivClassTy &IAClass) {
1332   // For an equivalence class of invariant loads we pre-load the representing
1333   // element with the unified execution context. However, we have to map all
1334   // elements of the class to the one preloaded load as they are referenced
1335   // during the code generation and therefor need to be mapped.
1336   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1337   if (MAs.empty())
1338     return true;
1339 
1340   MemoryAccess *MA = MAs.front();
1341   assert(MA->isArrayKind() && MA->isRead());
1342 
1343   // If the access function was already mapped, the preload of this equivalence
1344   // class was triggered earlier already and doesn't need to be done again.
1345   if (ValueMap.count(MA->getAccessInstruction()))
1346     return true;
1347 
1348   // Check for recursion which can be caused by additional constraints, e.g.,
1349   // non-finite loop constraints. In such a case we have to bail out and insert
1350   // a "false" runtime check that will cause the original code to be executed.
1351   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1352   if (!PreloadedPtrs.insert(PtrId).second)
1353     return false;
1354 
1355   // The execution context of the IAClass.
1356   isl_set *&ExecutionCtx = IAClass.ExecutionContext;
1357 
1358   // If the base pointer of this class is dependent on another one we have to
1359   // make sure it was preloaded already.
1360   auto *SAI = MA->getScopArrayInfo();
1361   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1362     if (!preloadInvariantEquivClass(*BaseIAClass))
1363       return false;
1364 
1365     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1366     // we need to refine the ExecutionCtx.
1367     isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1368     ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1369   }
1370 
1371   // If the size of a dimension is dependent on another class, make sure it is
1372   // preloaded.
1373   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1374     const SCEV *Dim = SAI->getDimensionSize(i);
1375     SetVector<Value *> Values;
1376     findValues(Dim, SE, Values);
1377     for (auto *Val : Values) {
1378       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1379         if (!preloadInvariantEquivClass(*BaseIAClass))
1380           return false;
1381 
1382         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1383         // and we need to refine the ExecutionCtx.
1384         isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1385         ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1386       }
1387     }
1388   }
1389 
1390   Instruction *AccInst = MA->getAccessInstruction();
1391   Type *AccInstTy = AccInst->getType();
1392 
1393   Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx));
1394   if (!PreloadVal)
1395     return false;
1396 
1397   for (const MemoryAccess *MA : MAs) {
1398     Instruction *MAAccInst = MA->getAccessInstruction();
1399     assert(PreloadVal->getType() == MAAccInst->getType());
1400     ValueMap[MAAccInst] = PreloadVal;
1401   }
1402 
1403   if (SE.isSCEVable(AccInstTy)) {
1404     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1405     if (ParamId)
1406       IDToValue[ParamId] = PreloadVal;
1407     isl_id_free(ParamId);
1408   }
1409 
1410   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1411   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1412                                 AccInst->getName() + ".preload.s2a");
1413   Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
1414   Builder.CreateStore(PreloadVal, Alloca);
1415   ValueMapT PreloadedPointer;
1416   PreloadedPointer[PreloadVal] = AccInst;
1417   Annotator.addAlternativeAliasBases(PreloadedPointer);
1418 
1419   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1420     Value *BasePtr = DerivedSAI->getBasePtr();
1421 
1422     for (const MemoryAccess *MA : MAs) {
1423       // As the derived SAI information is quite coarse, any load from the
1424       // current SAI could be the base pointer of the derived SAI, however we
1425       // should only change the base pointer of the derived SAI if we actually
1426       // preloaded it.
1427       if (BasePtr == MA->getOriginalBaseAddr()) {
1428         assert(BasePtr->getType() == PreloadVal->getType());
1429         DerivedSAI->setBasePtr(PreloadVal);
1430       }
1431 
1432       // For scalar derived SAIs we remap the alloca used for the derived value.
1433       if (BasePtr == MA->getAccessInstruction())
1434         ScalarMap[DerivedSAI] = Alloca;
1435     }
1436   }
1437 
1438   for (const MemoryAccess *MA : MAs) {
1439     Instruction *MAAccInst = MA->getAccessInstruction();
1440     // Use the escape system to get the correct value to users outside the SCoP.
1441     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1442     for (auto *U : MAAccInst->users())
1443       if (Instruction *UI = dyn_cast<Instruction>(U))
1444         if (!S.contains(UI))
1445           EscapeUsers.push_back(UI);
1446 
1447     if (EscapeUsers.empty())
1448       continue;
1449 
1450     EscapeMap[MA->getAccessInstruction()] =
1451         std::make_pair(Alloca, std::move(EscapeUsers));
1452   }
1453 
1454   return true;
1455 }
1456 
1457 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1458   for (auto &SAI : S.arrays()) {
1459     if (SAI->getBasePtr())
1460       continue;
1461 
1462     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1463            "The size of the outermost dimension is used to declare newly "
1464            "created arrays that require memory allocation.");
1465 
1466     Type *NewArrayType = nullptr;
1467 
1468     // Get the size of the array = size(dim_1)*...*size(dim_n)
1469     uint64_t ArraySizeInt = 1;
1470     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1471       auto *DimSize = SAI->getDimensionSize(i);
1472       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1473                                      ->getAPInt()
1474                                      .getLimitedValue();
1475 
1476       if (!NewArrayType)
1477         NewArrayType = SAI->getElementType();
1478 
1479       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1480       ArraySizeInt *= UnsignedDimSize;
1481     }
1482 
1483     if (SAI->isOnHeap()) {
1484       LLVMContext &Ctx = NewArrayType->getContext();
1485 
1486       // Get the IntPtrTy from the Datalayout
1487       auto IntPtrTy = DL.getIntPtrType(Ctx);
1488 
1489       // Get the size of the element type in bits
1490       unsigned Size = SAI->getElemSizeInBytes();
1491 
1492       // Insert the malloc call at polly.start
1493       auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
1494       auto *CreatedArray = CallInst::CreateMalloc(
1495           &*InstIt, IntPtrTy, SAI->getElementType(),
1496           ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1497           ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1498           SAI->getName());
1499 
1500       SAI->setBasePtr(CreatedArray);
1501 
1502       // Insert the free call at polly.exiting
1503       CallInst::CreateFree(CreatedArray,
1504                            std::get<1>(StartExitBlocks)->getTerminator());
1505     } else {
1506       auto InstIt = Builder.GetInsertBlock()
1507                         ->getParent()
1508                         ->getEntryBlock()
1509                         .getTerminator();
1510 
1511       auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1512                                           SAI->getName(), &*InstIt);
1513       CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize);
1514       SAI->setBasePtr(CreatedArray);
1515     }
1516   }
1517 }
1518 
1519 bool IslNodeBuilder::preloadInvariantLoads() {
1520   auto &InvariantEquivClasses = S.getInvariantAccesses();
1521   if (InvariantEquivClasses.empty())
1522     return true;
1523 
1524   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1525                                      &*Builder.GetInsertPoint(), &DT, &LI);
1526   PreLoadBB->setName("polly.preload.begin");
1527   Builder.SetInsertPoint(&PreLoadBB->front());
1528 
1529   for (auto &IAClass : InvariantEquivClasses)
1530     if (!preloadInvariantEquivClass(IAClass))
1531       return false;
1532 
1533   return true;
1534 }
1535 
1536 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1537   // Materialize values for the parameters of the SCoP.
1538   materializeParameters();
1539 
1540   // materialize the outermost dimension parameters for a Fortran array.
1541   // NOTE: materializeParameters() does not work since it looks through
1542   // the SCEVs. We don't have a corresponding SCEV for the array size
1543   // parameter
1544   materializeFortranArrayOutermostDimension();
1545 
1546   // Generate values for the current loop iteration for all surrounding loops.
1547   //
1548   // We may also reference loops outside of the scop which do not contain the
1549   // scop itself, but as the number of such scops may be arbitrarily large we do
1550   // not generate code for them here, but only at the point of code generation
1551   // where these values are needed.
1552   Loop *L = LI.getLoopFor(S.getEntry());
1553 
1554   while (L != nullptr && S.contains(L))
1555     L = L->getParentLoop();
1556 
1557   while (L != nullptr) {
1558     materializeNonScopLoopInductionVariable(L);
1559     L = L->getParentLoop();
1560   }
1561 
1562   isl_set_free(Context);
1563 }
1564 
1565 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1566   /// We pass the insert location of our Builder, as Polly ensures during IR
1567   /// generation that there is always a valid CFG into which instructions are
1568   /// inserted. As a result, the insertpoint is known to be always followed by a
1569   /// terminator instruction. This means the insert point may be specified by a
1570   /// terminator instruction, but it can never point to an ->end() iterator
1571   /// which does not have a corresponding instruction. Hence, dereferencing
1572   /// the insertpoint to obtain an instruction is known to be save.
1573   ///
1574   /// We also do not need to update the Builder here, as new instructions are
1575   /// always inserted _before_ the given InsertLocation. As a result, the
1576   /// insert location remains valid.
1577   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1578          "Insert location points after last valid instruction");
1579   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1580   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1581                        InsertLocation, &ValueMap,
1582                        StartBlock->getSinglePredecessor());
1583 }
1584 
1585 /// The AST expression we generate to perform the run-time check assumes
1586 /// computations on integer types of infinite size. As we only use 64-bit
1587 /// arithmetic we check for overflows, in case of which we set the result
1588 /// of this run-time check to false to be conservatively correct,
1589 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1590   auto ExprBuilder = getExprBuilder();
1591 
1592   // In case the AST expression has integers larger than 64 bit, bail out. The
1593   // resulting LLVM-IR will contain operations on types that use more than 64
1594   // bits. These are -- in case wrapping intrinsics are used -- translated to
1595   // runtime library calls that are not available on all systems (e.g., Android)
1596   // and consequently will result in linker errors.
1597   if (ExprBuilder.hasLargeInts(isl::manage(isl_ast_expr_copy(Condition)))) {
1598     isl_ast_expr_free(Condition);
1599     return Builder.getFalse();
1600   }
1601 
1602   ExprBuilder.setTrackOverflow(true);
1603   Value *RTC = ExprBuilder.create(Condition);
1604   if (!RTC->getType()->isIntegerTy(1))
1605     RTC = Builder.CreateIsNotNull(RTC);
1606   Value *OverflowHappened =
1607       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1608 
1609   if (PollyGenerateRTCPrint) {
1610     auto *F = Builder.GetInsertBlock()->getParent();
1611     RuntimeDebugBuilder::createCPUPrinter(
1612         Builder,
1613         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1614             "RTC: ",
1615         RTC, " Overflow: ", OverflowHappened,
1616         "\n"
1617         "  (0 failed, -1 succeeded)\n"
1618         "  (if one or both are 0 falling back to original code, if both are -1 "
1619         "executing Polly code)\n");
1620   }
1621 
1622   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1623   ExprBuilder.setTrackOverflow(false);
1624 
1625   if (!isa<ConstantInt>(RTC))
1626     VersionedScops++;
1627 
1628   return RTC;
1629 }
1630