1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the IslNodeBuilder, a class to translate an isl AST into 10 // a LLVM-IR AST. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/IslNodeBuilder.h" 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/LoopGeneratorsGOMP.h" 20 #include "polly/CodeGen/LoopGeneratorsKMP.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/Options.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/ISLTools.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "polly/Support/ScopHelper.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/RegionInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "isl/aff.h" 53 #include "isl/aff_type.h" 54 #include "isl/ast.h" 55 #include "isl/ast_build.h" 56 #include "isl/isl-noexceptions.h" 57 #include "isl/map.h" 58 #include "isl/set.h" 59 #include "isl/union_map.h" 60 #include "isl/union_set.h" 61 #include "isl/val.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace polly; 72 73 #define DEBUG_TYPE "polly-codegen" 74 75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 76 77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); 78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); 79 STATISTIC(VectorLoops, "Number of generated vector for-loops"); 80 STATISTIC(IfConditions, "Number of generated if-conditions"); 81 82 /// OpenMP backend options 83 enum class OpenMPBackend { GNU, LLVM }; 84 85 static cl::opt<bool> PollyGenerateRTCPrint( 86 "polly-codegen-emit-rtc-print", 87 cl::desc("Emit code that prints the runtime check result dynamically."), 88 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 89 90 // If this option is set we always use the isl AST generator to regenerate 91 // memory accesses. Without this option set we regenerate expressions using the 92 // original SCEV expressions and only generate new expressions in case the 93 // access relation has been changed and consequently must be regenerated. 94 static cl::opt<bool> PollyGenerateExpressions( 95 "polly-codegen-generate-expressions", 96 cl::desc("Generate AST expressions for unmodified and modified accesses"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 98 99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 100 "polly-target-first-level-cache-line-size", 101 cl::desc("The size of the first level cache line size specified in bytes."), 102 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 103 104 static cl::opt<OpenMPBackend> PollyOmpBackend( 105 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), 106 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), 107 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), 108 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); 109 110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For, 111 ICmpInst::Predicate &Predicate) { 112 isl::ast_expr Cond = For.cond(); 113 isl::ast_expr Iterator = For.iterator(); 114 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && 115 "conditional expression is not an atomic upper bound"); 116 117 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); 118 119 switch (OpType) { 120 case isl_ast_op_le: 121 Predicate = ICmpInst::ICMP_SLE; 122 break; 123 case isl_ast_op_lt: 124 Predicate = ICmpInst::ICMP_SLT; 125 break; 126 default: 127 llvm_unreachable("Unexpected comparison type in loop condition"); 128 } 129 130 isl::ast_expr Arg0 = Cond.get_op_arg(0); 131 132 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && 133 "conditional expression is not an atomic upper bound"); 134 135 isl::id UBID = Arg0.get_id(); 136 137 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && 138 "Could not get the iterator"); 139 140 isl::id IteratorID = Iterator.get_id(); 141 142 assert(UBID.get() == IteratorID.get() && 143 "conditional expression is not an atomic upper bound"); 144 145 return Cond.get_op_arg(1); 146 } 147 148 /// Return true if a return value of Predicate is true for the value represented 149 /// by passed isl_ast_expr_int. 150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 151 isl_bool (*Predicate)(__isl_keep isl_val *)) { 152 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 153 isl_ast_expr_free(Expr); 154 return false; 155 } 156 auto ExprVal = isl_ast_expr_get_val(Expr); 157 isl_ast_expr_free(Expr); 158 if (Predicate(ExprVal) != isl_bool_true) { 159 isl_val_free(ExprVal); 160 return false; 161 } 162 isl_val_free(ExprVal); 163 return true; 164 } 165 166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) { 167 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); 168 isl::ast_node Body = For.body(); 169 170 // First, check if we can actually handle this code. 171 switch (isl_ast_node_get_type(Body.get())) { 172 case isl_ast_node_user: 173 break; 174 case isl_ast_node_block: { 175 isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>(); 176 isl::ast_node_list List = BodyBlock.children(); 177 for (isl::ast_node Node : List) { 178 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); 179 if (NodeType != isl_ast_node_user) 180 return -1; 181 } 182 break; 183 } 184 default: 185 return -1; 186 } 187 188 isl::ast_expr Init = For.init(); 189 if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) 190 return -1; 191 isl::ast_expr Inc = For.inc(); 192 if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) 193 return -1; 194 CmpInst::Predicate Predicate; 195 isl::ast_expr UB = getUpperBound(For, Predicate); 196 if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) 197 return -1; 198 isl::val UpVal = UB.get_val(); 199 int NumberIterations = UpVal.get_num_si(); 200 if (NumberIterations < 0) 201 return -1; 202 if (Predicate == CmpInst::ICMP_SLT) 203 return NumberIterations; 204 else 205 return NumberIterations + 1; 206 } 207 208 /// Extract the values and SCEVs needed to generate code for a block. 209 static int findReferencesInBlock(struct SubtreeReferences &References, 210 const ScopStmt *Stmt, BasicBlock *BB) { 211 for (Instruction &Inst : *BB) { 212 // Include invariant loads 213 if (isa<LoadInst>(Inst)) 214 if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) 215 References.Values.insert(InvariantLoad); 216 217 for (Value *SrcVal : Inst.operands()) { 218 auto *Scope = References.LI.getLoopFor(BB); 219 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 220 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 221 continue; 222 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 223 References.Values.insert(NewVal); 224 } 225 } 226 return 0; 227 } 228 229 void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 230 bool CreateScalarRefs) { 231 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 232 233 if (Stmt->isBlockStmt()) 234 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 235 else if (Stmt->isRegionStmt()) { 236 for (BasicBlock *BB : Stmt->getRegion()->blocks()) 237 findReferencesInBlock(References, Stmt, BB); 238 } else { 239 assert(Stmt->isCopyStmt()); 240 // Copy Stmts have no instructions that we need to consider. 241 } 242 243 for (auto &Access : *Stmt) { 244 if (References.ParamSpace) { 245 isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); 246 (*References.ParamSpace) = 247 References.ParamSpace->align_params(ParamSpace); 248 } 249 250 if (Access->isLatestArrayKind()) { 251 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); 252 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 253 if (Stmt->getParent()->contains(OpInst)) 254 continue; 255 256 References.Values.insert(BasePtr); 257 continue; 258 } 259 260 if (CreateScalarRefs) 261 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 262 } 263 } 264 265 /// Extract the out-of-scop values and SCEVs referenced from a set describing 266 /// a ScopStmt. 267 /// 268 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 269 /// statement and the base pointers of the memory accesses. For scalar 270 /// statements we force the generation of alloca memory locations and list 271 /// these locations in the set of out-of-scop values as well. 272 /// 273 /// @param Set A set which references the ScopStmt we are interested in. 274 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 275 /// structure. 276 static void addReferencesFromStmtSet(isl::set Set, 277 struct SubtreeReferences *UserPtr) { 278 isl::id Id = Set.get_tuple_id(); 279 auto *Stmt = static_cast<const ScopStmt *>(Id.get_user()); 280 return addReferencesFromStmt(Stmt, UserPtr); 281 } 282 283 /// Extract the out-of-scop values and SCEVs referenced from a union set 284 /// referencing multiple ScopStmts. 285 /// 286 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 287 /// statement and the base pointers of the memory accesses. For scalar 288 /// statements we force the generation of alloca memory locations and list 289 /// these locations in the set of out-of-scop values as well. 290 /// 291 /// @param USet A union set referencing the ScopStmts we are interested 292 /// in. 293 /// @param References The SubtreeReferences data structure through which 294 /// results are returned and further information is 295 /// provided. 296 static void 297 addReferencesFromStmtUnionSet(isl::union_set USet, 298 struct SubtreeReferences &References) { 299 300 for (isl::set Set : USet.get_set_list()) 301 addReferencesFromStmtSet(Set, &References); 302 } 303 304 isl::union_map 305 IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { 306 return IslAstInfo::getSchedule(Node); 307 } 308 309 void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, 310 SetVector<Value *> &Values, 311 SetVector<const Loop *> &Loops) { 312 SetVector<const SCEV *> SCEVs; 313 struct SubtreeReferences References = { 314 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; 315 316 for (const auto &I : IDToValue) 317 Values.insert(I.second); 318 319 // NOTE: this is populated in IslNodeBuilder::addParameters 320 for (const auto &I : OutsideLoopIterations) 321 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 322 323 isl::union_set Schedule = getScheduleForAstNode(For).domain(); 324 addReferencesFromStmtUnionSet(Schedule, References); 325 326 for (const SCEV *Expr : SCEVs) { 327 findValues(Expr, SE, Values); 328 findLoops(Expr, Loops); 329 } 330 331 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 332 333 /// Note: Code generation of induction variables of loops outside Scops 334 /// 335 /// Remove loops that contain the scop or that are part of the scop, as they 336 /// are considered local. This leaves only loops that are before the scop, but 337 /// do not contain the scop itself. 338 /// We ignore loops perfectly contained in the Scop because these are already 339 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops 340 /// whose induction variables are referred to by the Scop, but the Scop is not 341 /// fully contained in these Loops. Since there can be many of these, 342 /// we choose to codegen these on-demand. 343 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. 344 Loops.remove_if([this](const Loop *L) { 345 return S.contains(L) || L->contains(S.getEntry()); 346 }); 347 348 // Contains Values that may need to be replaced with other values 349 // due to replacements from the ValueMap. We should make sure 350 // that we return correctly remapped values. 351 // NOTE: this code path is tested by: 352 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 353 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 354 SetVector<Value *> ReplacedValues; 355 for (Value *V : Values) { 356 ReplacedValues.insert(getLatestValue(V)); 357 } 358 Values = ReplacedValues; 359 } 360 361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 362 SmallPtrSet<Value *, 5> Inserted; 363 364 for (const auto &I : IDToValue) { 365 IDToValue[I.first] = NewValues[I.second]; 366 Inserted.insert(I.second); 367 } 368 369 for (const auto &I : NewValues) { 370 if (Inserted.count(I.first)) 371 continue; 372 373 ValueMap[I.first] = I.second; 374 } 375 } 376 377 Value *IslNodeBuilder::getLatestValue(Value *Original) const { 378 auto It = ValueMap.find(Original); 379 if (It == ValueMap.end()) 380 return Original; 381 return It->second; 382 } 383 384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 385 std::vector<Value *> &IVS, 386 __isl_take isl_id *IteratorID, 387 __isl_take isl_union_map *Schedule) { 388 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 389 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 390 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 391 isl_ast_expr_free(StmtExpr); 392 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 393 std::vector<LoopToScevMapT> VLTS(IVS.size()); 394 395 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); 396 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 397 isl_map *S = isl_map_from_union_map(Schedule); 398 399 auto *NewAccesses = createNewAccesses(Stmt, User); 400 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 401 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 402 isl_id_to_ast_expr_free(NewAccesses); 403 isl_map_free(S); 404 isl_id_free(Id); 405 isl_ast_node_free(User); 406 } 407 408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 409 auto *Id = isl_ast_node_mark_get_id(Node); 410 auto Child = isl_ast_node_mark_get_node(Node); 411 isl_ast_node_free(Node); 412 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 413 // it will be optimized away and we should skip it. 414 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && 415 isl_ast_node_get_type(Child) == isl_ast_node_for) { 416 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 417 int VectorWidth = 418 getNumberOfIterations(isl::manage_copy(Child).as<isl::ast_node_for>()); 419 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 420 createForVector(Child, VectorWidth); 421 else 422 createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true); 423 isl_id_free(Id); 424 return; 425 } 426 427 BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id)); 428 BandAttr *AncestorLoopAttr; 429 if (ChildLoopAttr) { 430 // Save current LoopAttr environment to restore again when leaving this 431 // subtree. This means there was no loop between the ancestor LoopAttr and 432 // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This 433 // can happen e.g. if the AST build peeled or unrolled the loop. 434 AncestorLoopAttr = Annotator.getStagingAttrEnv(); 435 436 Annotator.getStagingAttrEnv() = ChildLoopAttr; 437 } 438 439 create(Child); 440 441 if (ChildLoopAttr) { 442 assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && 443 "Nest must not overwrite loop attr environment"); 444 Annotator.getStagingAttrEnv() = AncestorLoopAttr; 445 } 446 447 isl_id_free(Id); 448 } 449 450 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 451 int VectorWidth) { 452 isl_ast_node *Body = isl_ast_node_for_get_body(For); 453 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 454 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 455 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 456 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 457 458 Value *ValueLB = ExprBuilder.create(Init); 459 Value *ValueInc = ExprBuilder.create(Inc); 460 461 Type *MaxType = ExprBuilder.getType(Iterator); 462 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 463 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 464 465 if (MaxType != ValueLB->getType()) 466 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 467 if (MaxType != ValueInc->getType()) 468 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 469 470 std::vector<Value *> IVS(VectorWidth); 471 IVS[0] = ValueLB; 472 473 for (int i = 1; i < VectorWidth; i++) 474 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 475 476 isl::union_map Schedule = getScheduleForAstNode(isl::manage_copy(For)); 477 assert(!Schedule.is_null() && 478 "For statement annotation does not contain its schedule"); 479 480 IDToValue[IteratorID] = ValueLB; 481 482 switch (isl_ast_node_get_type(Body)) { 483 case isl_ast_node_user: 484 createUserVector(Body, IVS, isl_id_copy(IteratorID), Schedule.copy()); 485 break; 486 case isl_ast_node_block: { 487 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 488 489 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 490 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 491 isl_id_copy(IteratorID), Schedule.copy()); 492 493 isl_ast_node_free(Body); 494 isl_ast_node_list_free(List); 495 break; 496 } 497 default: 498 isl_ast_node_dump(Body); 499 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 500 } 501 502 IDToValue.erase(IDToValue.find(IteratorID)); 503 isl_id_free(IteratorID); 504 505 isl_ast_node_free(For); 506 isl_ast_expr_free(Iterator); 507 508 VectorLoops++; 509 } 510 511 /// Restore the initial ordering of dimensions of the band node 512 /// 513 /// In case the band node represents all the dimensions of the iteration 514 /// domain, recreate the band node to restore the initial ordering of the 515 /// dimensions. 516 /// 517 /// @param Node The band node to be modified. 518 /// @return The modified schedule node. 519 static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) { 520 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); 521 isl::ast_node Body = Node.body(); 522 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) 523 return false; 524 525 isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>(); 526 auto Id = BodyMark.id(); 527 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) 528 return true; 529 return false; 530 } 531 532 void IslNodeBuilder::createForSequential(isl::ast_node_for For, 533 bool MarkParallel) { 534 Value *ValueLB, *ValueUB, *ValueInc; 535 Type *MaxType; 536 BasicBlock *ExitBlock; 537 Value *IV; 538 CmpInst::Predicate Predicate; 539 540 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); 541 542 isl::ast_node Body = For.body(); 543 544 // isl_ast_node_for_is_degenerate(For) 545 // 546 // TODO: For degenerated loops we could generate a plain assignment. 547 // However, for now we just reuse the logic for normal loops, which will 548 // create a loop with a single iteration. 549 550 isl::ast_expr Init = For.init(); 551 isl::ast_expr Inc = For.inc(); 552 isl::ast_expr Iterator = For.iterator(); 553 isl::id IteratorID = Iterator.get_id(); 554 isl::ast_expr UB = getUpperBound(For, Predicate); 555 556 ValueLB = ExprBuilder.create(Init.release()); 557 ValueUB = ExprBuilder.create(UB.release()); 558 ValueInc = ExprBuilder.create(Inc.release()); 559 560 MaxType = ExprBuilder.getType(Iterator.get()); 561 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 562 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 563 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 564 565 if (MaxType != ValueLB->getType()) 566 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 567 if (MaxType != ValueUB->getType()) 568 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 569 if (MaxType != ValueInc->getType()) 570 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 571 572 // If we can show that LB <Predicate> UB holds at least once, we can 573 // omit the GuardBB in front of the loop. 574 bool UseGuardBB = 575 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 576 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 577 Predicate, &Annotator, MarkParallel, UseGuardBB, 578 LoopVectorizerDisabled); 579 IDToValue[IteratorID.get()] = IV; 580 581 create(Body.release()); 582 583 Annotator.popLoop(MarkParallel); 584 585 IDToValue.erase(IDToValue.find(IteratorID.get())); 586 587 Builder.SetInsertPoint(&ExitBlock->front()); 588 589 SequentialLoops++; 590 } 591 592 /// Remove the BBs contained in a (sub)function from the dominator tree. 593 /// 594 /// This function removes the basic blocks that are part of a subfunction from 595 /// the dominator tree. Specifically, when generating code it may happen that at 596 /// some point the code generation continues in a new sub-function (e.g., when 597 /// generating OpenMP code). The basic blocks that are created in this 598 /// sub-function are then still part of the dominator tree of the original 599 /// function, such that the dominator tree reaches over function boundaries. 600 /// This is not only incorrect, but also causes crashes. This function now 601 /// removes from the dominator tree all basic blocks that are dominated (and 602 /// consequently reachable) from the entry block of this (sub)function. 603 /// 604 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 605 /// the function/region it runs on. Hence, the pure need for this function shows 606 /// that we do not comply to this rule. At the moment, this does not cause any 607 /// issues, but we should be aware that such issues may appear. Unfortunately 608 /// the current LLVM pass infrastructure does not allow to make Polly a module 609 /// or call-graph pass to solve this issue, as such a pass would not have access 610 /// to the per-function analyses passes needed by Polly. A future pass manager 611 /// infrastructure is supposed to enable such kind of access possibly allowing 612 /// us to create a cleaner solution here. 613 /// 614 /// FIXME: Instead of adding the dominance information and then dropping it 615 /// later on, we should try to just not add it in the first place. This requires 616 /// some careful testing to make sure this does not break in interaction with 617 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 618 /// which may try to update it. 619 /// 620 /// @param F The function which contains the BBs to removed. 621 /// @param DT The dominator tree from which to remove the BBs. 622 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 623 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 624 std::vector<BasicBlock *> Nodes; 625 626 // We can only remove an element from the dominator tree, if all its children 627 // have been removed. To ensure this we obtain the list of nodes to remove 628 // using a post-order tree traversal. 629 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 630 Nodes.push_back(I->getBlock()); 631 632 for (BasicBlock *BB : Nodes) 633 DT.eraseNode(BB); 634 } 635 636 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 637 isl_ast_node *Body; 638 isl_ast_expr *Init, *Inc, *Iterator, *UB; 639 isl_id *IteratorID; 640 Value *ValueLB, *ValueUB, *ValueInc; 641 Type *MaxType; 642 Value *IV; 643 CmpInst::Predicate Predicate; 644 645 // The preamble of parallel code interacts different than normal code with 646 // e.g., scalar initialization. Therefore, we ensure the parallel code is 647 // separated from the last basic block. 648 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 649 &*Builder.GetInsertPoint(), &DT, &LI); 650 ParBB->setName("polly.parallel.for"); 651 Builder.SetInsertPoint(&ParBB->front()); 652 653 Body = isl_ast_node_for_get_body(For); 654 Init = isl_ast_node_for_get_init(For); 655 Inc = isl_ast_node_for_get_inc(For); 656 Iterator = isl_ast_node_for_get_iterator(For); 657 IteratorID = isl_ast_expr_get_id(Iterator); 658 UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate) 659 .release(); 660 661 ValueLB = ExprBuilder.create(Init); 662 ValueUB = ExprBuilder.create(UB); 663 ValueInc = ExprBuilder.create(Inc); 664 665 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 666 // expression, we need to adjust the loop bound by one. 667 if (Predicate == CmpInst::ICMP_SLT) 668 ValueUB = Builder.CreateAdd( 669 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 670 671 MaxType = ExprBuilder.getType(Iterator); 672 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 673 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 674 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 675 676 if (MaxType != ValueLB->getType()) 677 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 678 if (MaxType != ValueUB->getType()) 679 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 680 if (MaxType != ValueInc->getType()) 681 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 682 683 BasicBlock::iterator LoopBody; 684 685 SetVector<Value *> SubtreeValues; 686 SetVector<const Loop *> Loops; 687 688 getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops); 689 690 // Create for all loops we depend on values that contain the current loop 691 // iteration. These values are necessary to generate code for SCEVs that 692 // depend on such loops. As a result we need to pass them to the subfunction. 693 // See [Code generation of induction variables of loops outside Scops] 694 for (const Loop *L : Loops) { 695 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); 696 SubtreeValues.insert(LoopInductionVar); 697 } 698 699 ValueMapT NewValues; 700 701 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; 702 703 switch (PollyOmpBackend) { 704 case OpenMPBackend::GNU: 705 ParallelLoopGenPtr.reset( 706 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); 707 break; 708 case OpenMPBackend::LLVM: 709 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); 710 break; 711 } 712 713 IV = ParallelLoopGenPtr->createParallelLoop( 714 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); 715 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 716 Builder.SetInsertPoint(&*LoopBody); 717 718 // Remember the parallel subfunction 719 ParallelSubfunctions.push_back(LoopBody->getFunction()); 720 721 // Save the current values. 722 auto ValueMapCopy = ValueMap; 723 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 724 725 updateValues(NewValues); 726 IDToValue[IteratorID] = IV; 727 728 ValueMapT NewValuesReverse; 729 730 for (auto P : NewValues) 731 NewValuesReverse[P.second] = P.first; 732 733 Annotator.addAlternativeAliasBases(NewValuesReverse); 734 735 create(Body); 736 737 Annotator.resetAlternativeAliasBases(); 738 // Restore the original values. 739 ValueMap = ValueMapCopy; 740 IDToValue = IDToValueCopy; 741 742 Builder.SetInsertPoint(&*AfterLoop); 743 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 744 745 for (const Loop *L : Loops) 746 OutsideLoopIterations.erase(L); 747 748 isl_ast_node_free(For); 749 isl_ast_expr_free(Iterator); 750 isl_id_free(IteratorID); 751 752 ParallelLoops++; 753 } 754 755 /// Return whether any of @p Node's statements contain partial accesses. 756 /// 757 /// Partial accesses are not supported by Polly's vector code generator. 758 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 759 return isl_ast_node_foreach_descendant_top_down( 760 Node, 761 [](isl_ast_node *Node, void *User) -> isl_bool { 762 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 763 return isl_bool_true; 764 765 isl::ast_expr Expr = 766 isl::manage(isl_ast_node_user_get_expr(Node)); 767 isl::ast_expr StmtExpr = Expr.get_op_arg(0); 768 isl::id Id = StmtExpr.get_id(); 769 770 ScopStmt *Stmt = 771 static_cast<ScopStmt *>(isl_id_get_user(Id.get())); 772 isl::set StmtDom = Stmt->getDomain(); 773 for (auto *MA : *Stmt) { 774 if (MA->isLatestPartialAccess()) 775 return isl_bool_error; 776 } 777 return isl_bool_true; 778 }, 779 nullptr) == isl_stat_error; 780 } 781 782 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 783 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 784 785 if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) && 786 !IslAstInfo::isReductionParallel(isl::manage_copy(For))) { 787 int VectorWidth = 788 getNumberOfIterations(isl::manage_copy(For).as<isl::ast_node_for>()); 789 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 790 createForVector(For, VectorWidth); 791 return; 792 } 793 } 794 795 if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) { 796 createForParallel(For); 797 return; 798 } 799 bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) && 800 !IslAstInfo::isReductionParallel(isl::manage_copy(For))); 801 createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel); 802 } 803 804 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 805 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 806 807 Function *F = Builder.GetInsertBlock()->getParent(); 808 LLVMContext &Context = F->getContext(); 809 810 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 811 &*Builder.GetInsertPoint(), &DT, &LI); 812 CondBB->setName("polly.cond"); 813 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 814 MergeBB->setName("polly.merge"); 815 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 816 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 817 818 DT.addNewBlock(ThenBB, CondBB); 819 DT.addNewBlock(ElseBB, CondBB); 820 DT.changeImmediateDominator(MergeBB, CondBB); 821 822 Loop *L = LI.getLoopFor(CondBB); 823 if (L) { 824 L->addBasicBlockToLoop(ThenBB, LI); 825 L->addBasicBlockToLoop(ElseBB, LI); 826 } 827 828 CondBB->getTerminator()->eraseFromParent(); 829 830 Builder.SetInsertPoint(CondBB); 831 Value *Predicate = ExprBuilder.create(Cond); 832 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 833 Builder.SetInsertPoint(ThenBB); 834 Builder.CreateBr(MergeBB); 835 Builder.SetInsertPoint(ElseBB); 836 Builder.CreateBr(MergeBB); 837 Builder.SetInsertPoint(&ThenBB->front()); 838 839 create(isl_ast_node_if_get_then(If)); 840 841 Builder.SetInsertPoint(&ElseBB->front()); 842 843 if (isl_ast_node_if_has_else(If)) 844 create(isl_ast_node_if_get_else(If)); 845 846 Builder.SetInsertPoint(&MergeBB->front()); 847 848 isl_ast_node_free(If); 849 850 IfConditions++; 851 } 852 853 __isl_give isl_id_to_ast_expr * 854 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 855 __isl_keep isl_ast_node *Node) { 856 isl::id_to_ast_expr NewAccesses = 857 isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0); 858 859 isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node)); 860 assert(!Build.is_null() && "Could not obtain isl_ast_build from user node"); 861 Stmt->setAstBuild(Build); 862 863 for (auto *MA : *Stmt) { 864 if (!MA->hasNewAccessRelation()) { 865 if (PollyGenerateExpressions) { 866 if (!MA->isAffine()) 867 continue; 868 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 869 continue; 870 871 auto *BasePtr = 872 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 873 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 874 continue; 875 } else { 876 continue; 877 } 878 } 879 assert(MA->isAffine() && 880 "Only affine memory accesses can be code generated"); 881 882 isl::union_map Schedule = Build.get_schedule(); 883 884 #ifndef NDEBUG 885 if (MA->isRead()) { 886 auto Dom = Stmt->getDomain().release(); 887 auto SchedDom = isl_set_from_union_set(Schedule.domain().release()); 888 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 889 Dom = isl_set_intersect_params(Dom, 890 Stmt->getParent()->getContext().release()); 891 SchedDom = isl_set_intersect_params( 892 SchedDom, Stmt->getParent()->getContext().release()); 893 assert(isl_set_is_subset(SchedDom, AccDom) && 894 "Access relation not defined on full schedule domain"); 895 assert(isl_set_is_subset(Dom, AccDom) && 896 "Access relation not defined on full domain"); 897 isl_set_free(AccDom); 898 isl_set_free(SchedDom); 899 isl_set_free(Dom); 900 } 901 #endif 902 903 isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 904 905 // isl cannot generate an index expression for access-nothing accesses. 906 isl::set AccDomain = PWAccRel.domain(); 907 isl::set Context = S.getContext(); 908 AccDomain = AccDomain.intersect_params(Context); 909 if (AccDomain.is_empty()) 910 continue; 911 912 isl::ast_expr AccessExpr = Build.access_from(PWAccRel); 913 NewAccesses = NewAccesses.set(MA->getId(), AccessExpr); 914 } 915 916 return NewAccesses.release(); 917 } 918 919 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 920 ScopStmt *Stmt, LoopToScevMapT <S) { 921 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 922 "Expression of type 'op' expected"); 923 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 924 "Operation of type 'call' expected"); 925 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 926 isl_ast_expr *SubExpr; 927 Value *V; 928 929 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 930 V = ExprBuilder.create(SubExpr); 931 ScalarEvolution *SE = Stmt->getParent()->getSE(); 932 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 933 } 934 935 isl_ast_expr_free(Expr); 936 } 937 938 void IslNodeBuilder::createSubstitutionsVector( 939 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 940 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 941 __isl_take isl_id *IteratorID) { 942 int i = 0; 943 944 Value *OldValue = IDToValue[IteratorID]; 945 for (Value *IV : IVS) { 946 IDToValue[IteratorID] = IV; 947 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 948 i++; 949 } 950 951 IDToValue[IteratorID] = OldValue; 952 isl_id_free(IteratorID); 953 isl_ast_expr_free(Expr); 954 } 955 956 void IslNodeBuilder::generateCopyStmt( 957 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 958 assert(Stmt->size() == 2); 959 auto ReadAccess = Stmt->begin(); 960 auto WriteAccess = ReadAccess++; 961 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 962 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 963 "Accesses use the same data type"); 964 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 965 auto *AccessExpr = 966 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 967 auto *LoadValue = ExprBuilder.create(AccessExpr); 968 AccessExpr = 969 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 970 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first; 971 Builder.CreateStore(LoadValue, StoreAddr); 972 } 973 974 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { 975 assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && 976 "trying to materialize loop induction variable twice"); 977 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 978 SE.getUnknown(Builder.getInt64(1)), L, 979 SCEV::FlagAnyWrap); 980 Value *V = generateSCEV(OuterLIV); 981 OutsideLoopIterations[L] = SE.getUnknown(V); 982 return V; 983 } 984 985 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 986 LoopToScevMapT LTS; 987 isl_id *Id; 988 ScopStmt *Stmt; 989 990 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 991 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 992 Id = isl_ast_expr_get_id(StmtExpr); 993 isl_ast_expr_free(StmtExpr); 994 995 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 996 997 Stmt = (ScopStmt *)isl_id_get_user(Id); 998 auto *NewAccesses = createNewAccesses(Stmt, User); 999 if (Stmt->isCopyStmt()) { 1000 generateCopyStmt(Stmt, NewAccesses); 1001 isl_ast_expr_free(Expr); 1002 } else { 1003 createSubstitutions(Expr, Stmt, LTS); 1004 1005 if (Stmt->isBlockStmt()) 1006 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 1007 else 1008 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 1009 } 1010 1011 isl_id_to_ast_expr_free(NewAccesses); 1012 isl_ast_node_free(User); 1013 isl_id_free(Id); 1014 } 1015 1016 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 1017 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 1018 1019 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 1020 create(isl_ast_node_list_get_ast_node(List, i)); 1021 1022 isl_ast_node_free(Block); 1023 isl_ast_node_list_free(List); 1024 } 1025 1026 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 1027 switch (isl_ast_node_get_type(Node)) { 1028 case isl_ast_node_error: 1029 llvm_unreachable("code generation error"); 1030 case isl_ast_node_mark: 1031 createMark(Node); 1032 return; 1033 case isl_ast_node_for: 1034 createFor(Node); 1035 return; 1036 case isl_ast_node_if: 1037 createIf(Node); 1038 return; 1039 case isl_ast_node_user: 1040 createUser(Node); 1041 return; 1042 case isl_ast_node_block: 1043 createBlock(Node); 1044 return; 1045 } 1046 1047 llvm_unreachable("Unknown isl_ast_node type"); 1048 } 1049 1050 bool IslNodeBuilder::materializeValue(isl_id *Id) { 1051 // If the Id is already mapped, skip it. 1052 if (!IDToValue.count(Id)) { 1053 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 1054 Value *V = nullptr; 1055 1056 // Parameters could refer to invariant loads that need to be 1057 // preloaded before we can generate code for the parameter. Thus, 1058 // check if any value referred to in ParamSCEV is an invariant load 1059 // and if so make sure its equivalence class is preloaded. 1060 SetVector<Value *> Values; 1061 findValues(ParamSCEV, SE, Values); 1062 for (auto *Val : Values) { 1063 // Check if the value is an instruction in a dead block within the SCoP 1064 // and if so do not code generate it. 1065 if (auto *Inst = dyn_cast<Instruction>(Val)) { 1066 if (S.contains(Inst)) { 1067 bool IsDead = true; 1068 1069 // Check for "undef" loads first, then if there is a statement for 1070 // the parent of Inst and lastly if the parent of Inst has an empty 1071 // domain. In the first and last case the instruction is dead but if 1072 // there is a statement or the domain is not empty Inst is not dead. 1073 auto MemInst = MemAccInst::dyn_cast(Inst); 1074 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 1075 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 1076 SE.getPointerBase(SE.getSCEV(Address))) { 1077 } else if (S.getStmtFor(Inst)) { 1078 IsDead = false; 1079 } else { 1080 auto *Domain = S.getDomainConditions(Inst->getParent()).release(); 1081 IsDead = isl_set_is_empty(Domain); 1082 isl_set_free(Domain); 1083 } 1084 1085 if (IsDead) { 1086 V = UndefValue::get(ParamSCEV->getType()); 1087 break; 1088 } 1089 } 1090 } 1091 1092 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1093 // Check if this invariant access class is empty, hence if we never 1094 // actually added a loads instruction to it. In that case it has no 1095 // (meaningful) users and we should not try to code generate it. 1096 if (IAClass->InvariantAccesses.empty()) 1097 V = UndefValue::get(ParamSCEV->getType()); 1098 1099 if (!preloadInvariantEquivClass(*IAClass)) { 1100 isl_id_free(Id); 1101 return false; 1102 } 1103 } 1104 } 1105 1106 V = V ? V : generateSCEV(ParamSCEV); 1107 IDToValue[Id] = V; 1108 } 1109 1110 isl_id_free(Id); 1111 return true; 1112 } 1113 1114 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1115 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1116 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1117 continue; 1118 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1119 if (!materializeValue(Id)) 1120 return false; 1121 } 1122 return true; 1123 } 1124 1125 bool IslNodeBuilder::materializeParameters() { 1126 for (const SCEV *Param : S.parameters()) { 1127 isl_id *Id = S.getIdForParam(Param).release(); 1128 if (!materializeValue(Id)) 1129 return false; 1130 } 1131 return true; 1132 } 1133 1134 /// Generate the computation of the size of the outermost dimension from the 1135 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1136 /// contains the size of the array. 1137 /// 1138 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1139 /// %desc.dimensionty = type { i64, i64, i64 } 1140 /// @g_arr = global %arrty zeroinitializer, align 32 1141 /// ... 1142 /// %0 = load i64, i64* getelementptr inbounds 1143 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1144 /// %1 = load i64, i64* getelementptr inbounds 1145 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1146 /// %2 = sub nsw i64 %0, %1 1147 /// %size = add nsw i64 %2, 1 1148 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1149 PollyIRBuilder &Builder, 1150 std::string ArrayName) { 1151 assert(GlobalDescriptor && "invalid global descriptor given"); 1152 Type *Ty = GlobalDescriptor->getType()->getPointerElementType(); 1153 1154 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1155 Builder.getInt64(0), Builder.getInt32(2)}; 1156 Value *endPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, endIdx, 1157 ArrayName + "_end_ptr"); 1158 Type *type = cast<GEPOperator>(endPtr)->getResultElementType(); 1159 assert(isa<IntegerType>(type) && "expected type of end to be integral"); 1160 1161 Value *end = Builder.CreateLoad(type, endPtr, ArrayName + "_end"); 1162 1163 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1164 Builder.getInt64(0), Builder.getInt32(1)}; 1165 Value *beginPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, beginIdx, 1166 ArrayName + "_begin_ptr"); 1167 Value *begin = Builder.CreateLoad(type, beginPtr, ArrayName + "_begin"); 1168 1169 Value *size = 1170 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1171 1172 size = Builder.CreateNSWAdd( 1173 end, ConstantInt::get(type, 1, /* signed = */ true), ArrayName + "_size"); 1174 1175 return size; 1176 } 1177 1178 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1179 for (ScopArrayInfo *Array : S.arrays()) { 1180 if (Array->getNumberOfDimensions() == 0) 1181 continue; 1182 1183 Value *FAD = Array->getFortranArrayDescriptor(); 1184 if (!FAD) 1185 continue; 1186 1187 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1188 assert(ParametricPwAff && "parametric pw_aff corresponding " 1189 "to outermost dimension does not " 1190 "exist"); 1191 1192 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1193 isl_pw_aff_free(ParametricPwAff); 1194 1195 assert(Id && "pw_aff is not parametric"); 1196 1197 if (IDToValue.count(Id)) { 1198 isl_id_free(Id); 1199 continue; 1200 } 1201 1202 Value *FinalValue = 1203 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1204 assert(FinalValue && "unable to build Fortran array " 1205 "descriptor load of outermost dimension"); 1206 IDToValue[Id] = FinalValue; 1207 isl_id_free(Id); 1208 } 1209 return true; 1210 } 1211 1212 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1213 isl_ast_build *Build, 1214 Instruction *AccInst) { 1215 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1216 isl_ast_expr *Access = 1217 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1218 auto *Address = isl_ast_expr_address_of(Access); 1219 auto *AddressValue = ExprBuilder.create(Address); 1220 Value *PreloadVal; 1221 1222 // Correct the type as the SAI might have a different type than the user 1223 // expects, especially if the base pointer is a struct. 1224 Type *Ty = AccInst->getType(); 1225 1226 auto *Ptr = AddressValue; 1227 auto Name = Ptr->getName(); 1228 auto AS = Ptr->getType()->getPointerAddressSpace(); 1229 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1230 PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load"); 1231 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1232 PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign()); 1233 1234 // TODO: This is only a hot fix for SCoP sequences that use the same load 1235 // instruction contained and hoisted by one of the SCoPs. 1236 if (SE.isSCEVable(Ty)) 1237 SE.forgetValue(AccInst); 1238 1239 return PreloadVal; 1240 } 1241 1242 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1243 isl_set *Domain) { 1244 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1245 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); 1246 1247 if (!materializeParameters(AccessRange)) { 1248 isl_set_free(AccessRange); 1249 isl_set_free(Domain); 1250 return nullptr; 1251 } 1252 1253 auto *Build = 1254 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); 1255 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1256 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1257 isl_set_free(Universe); 1258 1259 Instruction *AccInst = MA.getAccessInstruction(); 1260 Type *AccInstTy = AccInst->getType(); 1261 1262 Value *PreloadVal = nullptr; 1263 if (AlwaysExecuted) { 1264 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1265 isl_ast_build_free(Build); 1266 isl_set_free(Domain); 1267 return PreloadVal; 1268 } 1269 1270 if (!materializeParameters(Domain)) { 1271 isl_ast_build_free(Build); 1272 isl_set_free(AccessRange); 1273 isl_set_free(Domain); 1274 return nullptr; 1275 } 1276 1277 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1278 Domain = nullptr; 1279 1280 ExprBuilder.setTrackOverflow(true); 1281 Value *Cond = ExprBuilder.create(DomainCond); 1282 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1283 "polly.preload.cond.overflown"); 1284 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1285 ExprBuilder.setTrackOverflow(false); 1286 1287 if (!Cond->getType()->isIntegerTy(1)) 1288 Cond = Builder.CreateIsNotNull(Cond); 1289 1290 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1291 &*Builder.GetInsertPoint(), &DT, &LI); 1292 CondBB->setName("polly.preload.cond"); 1293 1294 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1295 MergeBB->setName("polly.preload.merge"); 1296 1297 Function *F = Builder.GetInsertBlock()->getParent(); 1298 LLVMContext &Context = F->getContext(); 1299 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1300 1301 DT.addNewBlock(ExecBB, CondBB); 1302 if (Loop *L = LI.getLoopFor(CondBB)) 1303 L->addBasicBlockToLoop(ExecBB, LI); 1304 1305 auto *CondBBTerminator = CondBB->getTerminator(); 1306 Builder.SetInsertPoint(CondBBTerminator); 1307 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1308 CondBBTerminator->eraseFromParent(); 1309 1310 Builder.SetInsertPoint(ExecBB); 1311 Builder.CreateBr(MergeBB); 1312 1313 Builder.SetInsertPoint(ExecBB->getTerminator()); 1314 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1315 Builder.SetInsertPoint(MergeBB->getTerminator()); 1316 auto *MergePHI = Builder.CreatePHI( 1317 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1318 PreloadVal = MergePHI; 1319 1320 if (!PreAccInst) { 1321 PreloadVal = nullptr; 1322 PreAccInst = UndefValue::get(AccInstTy); 1323 } 1324 1325 MergePHI->addIncoming(PreAccInst, ExecBB); 1326 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1327 1328 isl_ast_build_free(Build); 1329 return PreloadVal; 1330 } 1331 1332 bool IslNodeBuilder::preloadInvariantEquivClass( 1333 InvariantEquivClassTy &IAClass) { 1334 // For an equivalence class of invariant loads we pre-load the representing 1335 // element with the unified execution context. However, we have to map all 1336 // elements of the class to the one preloaded load as they are referenced 1337 // during the code generation and therefor need to be mapped. 1338 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1339 if (MAs.empty()) 1340 return true; 1341 1342 MemoryAccess *MA = MAs.front(); 1343 assert(MA->isArrayKind() && MA->isRead()); 1344 1345 // If the access function was already mapped, the preload of this equivalence 1346 // class was triggered earlier already and doesn't need to be done again. 1347 if (ValueMap.count(MA->getAccessInstruction())) 1348 return true; 1349 1350 // Check for recursion which can be caused by additional constraints, e.g., 1351 // non-finite loop constraints. In such a case we have to bail out and insert 1352 // a "false" runtime check that will cause the original code to be executed. 1353 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1354 if (!PreloadedPtrs.insert(PtrId).second) 1355 return false; 1356 1357 // The execution context of the IAClass. 1358 isl::set &ExecutionCtx = IAClass.ExecutionContext; 1359 1360 // If the base pointer of this class is dependent on another one we have to 1361 // make sure it was preloaded already. 1362 auto *SAI = MA->getScopArrayInfo(); 1363 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1364 if (!preloadInvariantEquivClass(*BaseIAClass)) 1365 return false; 1366 1367 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1368 // we need to refine the ExecutionCtx. 1369 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1370 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1371 } 1372 1373 // If the size of a dimension is dependent on another class, make sure it is 1374 // preloaded. 1375 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1376 const SCEV *Dim = SAI->getDimensionSize(i); 1377 SetVector<Value *> Values; 1378 findValues(Dim, SE, Values); 1379 for (auto *Val : Values) { 1380 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1381 if (!preloadInvariantEquivClass(*BaseIAClass)) 1382 return false; 1383 1384 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1385 // and we need to refine the ExecutionCtx. 1386 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; 1387 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); 1388 } 1389 } 1390 } 1391 1392 Instruction *AccInst = MA->getAccessInstruction(); 1393 Type *AccInstTy = AccInst->getType(); 1394 1395 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); 1396 if (!PreloadVal) 1397 return false; 1398 1399 for (const MemoryAccess *MA : MAs) { 1400 Instruction *MAAccInst = MA->getAccessInstruction(); 1401 assert(PreloadVal->getType() == MAAccInst->getType()); 1402 ValueMap[MAAccInst] = PreloadVal; 1403 } 1404 1405 if (SE.isSCEVable(AccInstTy)) { 1406 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); 1407 if (ParamId) 1408 IDToValue[ParamId] = PreloadVal; 1409 isl_id_free(ParamId); 1410 } 1411 1412 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1413 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1414 AccInst->getName() + ".preload.s2a", 1415 &*EntryBB->getFirstInsertionPt()); 1416 Builder.CreateStore(PreloadVal, Alloca); 1417 ValueMapT PreloadedPointer; 1418 PreloadedPointer[PreloadVal] = AccInst; 1419 Annotator.addAlternativeAliasBases(PreloadedPointer); 1420 1421 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1422 Value *BasePtr = DerivedSAI->getBasePtr(); 1423 1424 for (const MemoryAccess *MA : MAs) { 1425 // As the derived SAI information is quite coarse, any load from the 1426 // current SAI could be the base pointer of the derived SAI, however we 1427 // should only change the base pointer of the derived SAI if we actually 1428 // preloaded it. 1429 if (BasePtr == MA->getOriginalBaseAddr()) { 1430 assert(BasePtr->getType() == PreloadVal->getType()); 1431 DerivedSAI->setBasePtr(PreloadVal); 1432 } 1433 1434 // For scalar derived SAIs we remap the alloca used for the derived value. 1435 if (BasePtr == MA->getAccessInstruction()) 1436 ScalarMap[DerivedSAI] = Alloca; 1437 } 1438 } 1439 1440 for (const MemoryAccess *MA : MAs) { 1441 Instruction *MAAccInst = MA->getAccessInstruction(); 1442 // Use the escape system to get the correct value to users outside the SCoP. 1443 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1444 for (auto *U : MAAccInst->users()) 1445 if (Instruction *UI = dyn_cast<Instruction>(U)) 1446 if (!S.contains(UI)) 1447 EscapeUsers.push_back(UI); 1448 1449 if (EscapeUsers.empty()) 1450 continue; 1451 1452 EscapeMap[MA->getAccessInstruction()] = 1453 std::make_pair(Alloca, std::move(EscapeUsers)); 1454 } 1455 1456 return true; 1457 } 1458 1459 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1460 for (auto &SAI : S.arrays()) { 1461 if (SAI->getBasePtr()) 1462 continue; 1463 1464 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1465 "The size of the outermost dimension is used to declare newly " 1466 "created arrays that require memory allocation."); 1467 1468 Type *NewArrayType = nullptr; 1469 1470 // Get the size of the array = size(dim_1)*...*size(dim_n) 1471 uint64_t ArraySizeInt = 1; 1472 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1473 auto *DimSize = SAI->getDimensionSize(i); 1474 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1475 ->getAPInt() 1476 .getLimitedValue(); 1477 1478 if (!NewArrayType) 1479 NewArrayType = SAI->getElementType(); 1480 1481 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1482 ArraySizeInt *= UnsignedDimSize; 1483 } 1484 1485 if (SAI->isOnHeap()) { 1486 LLVMContext &Ctx = NewArrayType->getContext(); 1487 1488 // Get the IntPtrTy from the Datalayout 1489 auto IntPtrTy = DL.getIntPtrType(Ctx); 1490 1491 // Get the size of the element type in bits 1492 unsigned Size = SAI->getElemSizeInBytes(); 1493 1494 // Insert the malloc call at polly.start 1495 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1496 auto *CreatedArray = CallInst::CreateMalloc( 1497 &*InstIt, IntPtrTy, SAI->getElementType(), 1498 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1499 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1500 SAI->getName()); 1501 1502 SAI->setBasePtr(CreatedArray); 1503 1504 // Insert the free call at polly.exiting 1505 CallInst::CreateFree(CreatedArray, 1506 std::get<1>(StartExitBlocks)->getTerminator()); 1507 } else { 1508 auto InstIt = Builder.GetInsertBlock() 1509 ->getParent() 1510 ->getEntryBlock() 1511 .getTerminator(); 1512 1513 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1514 SAI->getName(), &*InstIt); 1515 if (PollyTargetFirstLevelCacheLineSize) 1516 CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); 1517 SAI->setBasePtr(CreatedArray); 1518 } 1519 } 1520 } 1521 1522 bool IslNodeBuilder::preloadInvariantLoads() { 1523 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1524 if (InvariantEquivClasses.empty()) 1525 return true; 1526 1527 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1528 &*Builder.GetInsertPoint(), &DT, &LI); 1529 PreLoadBB->setName("polly.preload.begin"); 1530 Builder.SetInsertPoint(&PreLoadBB->front()); 1531 1532 for (auto &IAClass : InvariantEquivClasses) 1533 if (!preloadInvariantEquivClass(IAClass)) 1534 return false; 1535 1536 return true; 1537 } 1538 1539 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1540 // Materialize values for the parameters of the SCoP. 1541 materializeParameters(); 1542 1543 // materialize the outermost dimension parameters for a Fortran array. 1544 // NOTE: materializeParameters() does not work since it looks through 1545 // the SCEVs. We don't have a corresponding SCEV for the array size 1546 // parameter 1547 materializeFortranArrayOutermostDimension(); 1548 1549 // Generate values for the current loop iteration for all surrounding loops. 1550 // 1551 // We may also reference loops outside of the scop which do not contain the 1552 // scop itself, but as the number of such scops may be arbitrarily large we do 1553 // not generate code for them here, but only at the point of code generation 1554 // where these values are needed. 1555 Loop *L = LI.getLoopFor(S.getEntry()); 1556 1557 while (L != nullptr && S.contains(L)) 1558 L = L->getParentLoop(); 1559 1560 while (L != nullptr) { 1561 materializeNonScopLoopInductionVariable(L); 1562 L = L->getParentLoop(); 1563 } 1564 1565 isl_set_free(Context); 1566 } 1567 1568 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1569 /// We pass the insert location of our Builder, as Polly ensures during IR 1570 /// generation that there is always a valid CFG into which instructions are 1571 /// inserted. As a result, the insertpoint is known to be always followed by a 1572 /// terminator instruction. This means the insert point may be specified by a 1573 /// terminator instruction, but it can never point to an ->end() iterator 1574 /// which does not have a corresponding instruction. Hence, dereferencing 1575 /// the insertpoint to obtain an instruction is known to be save. 1576 /// 1577 /// We also do not need to update the Builder here, as new instructions are 1578 /// always inserted _before_ the given InsertLocation. As a result, the 1579 /// insert location remains valid. 1580 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1581 "Insert location points after last valid instruction"); 1582 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1583 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1584 InsertLocation, &ValueMap, 1585 StartBlock->getSinglePredecessor()); 1586 } 1587 1588 /// The AST expression we generate to perform the run-time check assumes 1589 /// computations on integer types of infinite size. As we only use 64-bit 1590 /// arithmetic we check for overflows, in case of which we set the result 1591 /// of this run-time check to false to be conservatively correct, 1592 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1593 auto ExprBuilder = getExprBuilder(); 1594 1595 // In case the AST expression has integers larger than 64 bit, bail out. The 1596 // resulting LLVM-IR will contain operations on types that use more than 64 1597 // bits. These are -- in case wrapping intrinsics are used -- translated to 1598 // runtime library calls that are not available on all systems (e.g., Android) 1599 // and consequently will result in linker errors. 1600 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { 1601 isl_ast_expr_free(Condition); 1602 return Builder.getFalse(); 1603 } 1604 1605 ExprBuilder.setTrackOverflow(true); 1606 Value *RTC = ExprBuilder.create(Condition); 1607 if (!RTC->getType()->isIntegerTy(1)) 1608 RTC = Builder.CreateIsNotNull(RTC); 1609 Value *OverflowHappened = 1610 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1611 1612 if (PollyGenerateRTCPrint) { 1613 auto *F = Builder.GetInsertBlock()->getParent(); 1614 RuntimeDebugBuilder::createCPUPrinter( 1615 Builder, 1616 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1617 "RTC: ", 1618 RTC, " Overflow: ", OverflowHappened, 1619 "\n" 1620 " (0 failed, -1 succeeded)\n" 1621 " (if one or both are 0 falling back to original code, if both are -1 " 1622 "executing Polly code)\n"); 1623 } 1624 1625 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1626 ExprBuilder.setTrackOverflow(false); 1627 1628 if (!isa<ConstantInt>(RTC)) 1629 VersionedScops++; 1630 1631 return RTC; 1632 } 1633