1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the IslNodeBuilder, a class to translate an isl AST into
10 // a LLVM-IR AST.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/CodeGen/IslNodeBuilder.h"
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/LoopGeneratorsGOMP.h"
20 #include "polly/CodeGen/LoopGeneratorsKMP.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Options.h"
23 #include "polly/ScopInfo.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "polly/Support/ScopHelper.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/RegionInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "isl/aff.h"
53 #include "isl/aff_type.h"
54 #include "isl/ast.h"
55 #include "isl/ast_build.h"
56 #include "isl/isl-noexceptions.h"
57 #include "isl/map.h"
58 #include "isl/set.h"
59 #include "isl/union_map.h"
60 #include "isl/union_set.h"
61 #include "isl/val.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstring>
66 #include <string>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace polly;
72 
73 #define DEBUG_TYPE "polly-codegen"
74 
75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
76 
77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
79 STATISTIC(VectorLoops, "Number of generated vector for-loops");
80 STATISTIC(IfConditions, "Number of generated if-conditions");
81 
82 /// OpenMP backend options
83 enum class OpenMPBackend { GNU, LLVM };
84 
85 static cl::opt<bool> PollyGenerateRTCPrint(
86     "polly-codegen-emit-rtc-print",
87     cl::desc("Emit code that prints the runtime check result dynamically."),
88     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
89 
90 // If this option is set we always use the isl AST generator to regenerate
91 // memory accesses. Without this option set we regenerate expressions using the
92 // original SCEV expressions and only generate new expressions in case the
93 // access relation has been changed and consequently must be regenerated.
94 static cl::opt<bool> PollyGenerateExpressions(
95     "polly-codegen-generate-expressions",
96     cl::desc("Generate AST expressions for unmodified and modified accesses"),
97     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
98 
99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
100     "polly-target-first-level-cache-line-size",
101     cl::desc("The size of the first level cache line size specified in bytes."),
102     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
103 
104 static cl::opt<OpenMPBackend> PollyOmpBackend(
105     "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
106     cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
107                clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
108     cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));
109 
110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For,
111                                             ICmpInst::Predicate &Predicate) {
112   isl::ast_expr Cond = For.cond();
113   isl::ast_expr Iterator = For.iterator();
114   assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
115          "conditional expression is not an atomic upper bound");
116 
117   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());
118 
119   switch (OpType) {
120   case isl_ast_op_le:
121     Predicate = ICmpInst::ICMP_SLE;
122     break;
123   case isl_ast_op_lt:
124     Predicate = ICmpInst::ICMP_SLT;
125     break;
126   default:
127     llvm_unreachable("Unexpected comparison type in loop condition");
128   }
129 
130   isl::ast_expr Arg0 = Cond.get_op_arg(0);
131 
132   assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
133          "conditional expression is not an atomic upper bound");
134 
135   isl::id UBID = Arg0.get_id();
136 
137   assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
138          "Could not get the iterator");
139 
140   isl::id IteratorID = Iterator.get_id();
141 
142   assert(UBID.get() == IteratorID.get() &&
143          "conditional expression is not an atomic upper bound");
144 
145   return Cond.get_op_arg(1);
146 }
147 
148 /// Return true if a return value of Predicate is true for the value represented
149 /// by passed isl_ast_expr_int.
150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
151                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
152   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
153     isl_ast_expr_free(Expr);
154     return false;
155   }
156   auto ExprVal = isl_ast_expr_get_val(Expr);
157   isl_ast_expr_free(Expr);
158   if (Predicate(ExprVal) != isl_bool_true) {
159     isl_val_free(ExprVal);
160     return false;
161   }
162   isl_val_free(ExprVal);
163   return true;
164 }
165 
166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) {
167   assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
168   isl::ast_node Body = For.body();
169 
170   // First, check if we can actually handle this code.
171   switch (isl_ast_node_get_type(Body.get())) {
172   case isl_ast_node_user:
173     break;
174   case isl_ast_node_block: {
175     isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>();
176     isl::ast_node_list List = BodyBlock.children();
177     for (isl::ast_node Node : List) {
178       isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
179       if (NodeType != isl_ast_node_user)
180         return -1;
181     }
182     break;
183   }
184   default:
185     return -1;
186   }
187 
188   isl::ast_expr Init = For.init();
189   if (!checkIslAstExprInt(Init.release(), isl_val_is_zero))
190     return -1;
191   isl::ast_expr Inc = For.inc();
192   if (!checkIslAstExprInt(Inc.release(), isl_val_is_one))
193     return -1;
194   CmpInst::Predicate Predicate;
195   isl::ast_expr UB = getUpperBound(For, Predicate);
196   if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int)
197     return -1;
198   isl::val UpVal = UB.get_val();
199   int NumberIterations = UpVal.get_num_si();
200   if (NumberIterations < 0)
201     return -1;
202   if (Predicate == CmpInst::ICMP_SLT)
203     return NumberIterations;
204   else
205     return NumberIterations + 1;
206 }
207 
208 /// Extract the values and SCEVs needed to generate code for a block.
209 static int findReferencesInBlock(struct SubtreeReferences &References,
210                                  const ScopStmt *Stmt, BasicBlock *BB) {
211   for (Instruction &Inst : *BB) {
212     // Include invariant loads
213     if (isa<LoadInst>(Inst))
214       if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
215         References.Values.insert(InvariantLoad);
216 
217     for (Value *SrcVal : Inst.operands()) {
218       auto *Scope = References.LI.getLoopFor(BB);
219       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
220         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
221         continue;
222       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
223         References.Values.insert(NewVal);
224     }
225   }
226   return 0;
227 }
228 
229 void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
230                                   bool CreateScalarRefs) {
231   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
232 
233   if (Stmt->isBlockStmt())
234     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
235   else if (Stmt->isRegionStmt()) {
236     for (BasicBlock *BB : Stmt->getRegion()->blocks())
237       findReferencesInBlock(References, Stmt, BB);
238   } else {
239     assert(Stmt->isCopyStmt());
240     // Copy Stmts have no instructions that we need to consider.
241   }
242 
243   for (auto &Access : *Stmt) {
244     if (References.ParamSpace) {
245       isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
246       (*References.ParamSpace) =
247           References.ParamSpace->align_params(ParamSpace);
248     }
249 
250     if (Access->isLatestArrayKind()) {
251       auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
252       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
253         if (Stmt->getParent()->contains(OpInst))
254           continue;
255 
256       References.Values.insert(BasePtr);
257       continue;
258     }
259 
260     if (CreateScalarRefs)
261       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
262   }
263 }
264 
265 /// Extract the out-of-scop values and SCEVs referenced from a set describing
266 /// a ScopStmt.
267 ///
268 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
269 /// statement and the base pointers of the memory accesses. For scalar
270 /// statements we force the generation of alloca memory locations and list
271 /// these locations in the set of out-of-scop values as well.
272 ///
273 /// @param Set     A set which references the ScopStmt we are interested in.
274 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
275 ///                structure.
276 static void addReferencesFromStmtSet(isl::set Set,
277                                      struct SubtreeReferences *UserPtr) {
278   isl::id Id = Set.get_tuple_id();
279   auto *Stmt = static_cast<const ScopStmt *>(Id.get_user());
280   return addReferencesFromStmt(Stmt, UserPtr);
281 }
282 
283 /// Extract the out-of-scop values and SCEVs referenced from a union set
284 /// referencing multiple ScopStmts.
285 ///
286 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
287 /// statement and the base pointers of the memory accesses. For scalar
288 /// statements we force the generation of alloca memory locations and list
289 /// these locations in the set of out-of-scop values as well.
290 ///
291 /// @param USet       A union set referencing the ScopStmts we are interested
292 ///                   in.
293 /// @param References The SubtreeReferences data structure through which
294 ///                   results are returned and further information is
295 ///                   provided.
296 static void
297 addReferencesFromStmtUnionSet(isl::union_set USet,
298                               struct SubtreeReferences &References) {
299 
300   for (isl::set Set : USet.get_set_list())
301     addReferencesFromStmtSet(Set, &References);
302 }
303 
304 isl::union_map
305 IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) {
306   return IslAstInfo::getSchedule(Node);
307 }
308 
309 void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For,
310                                             SetVector<Value *> &Values,
311                                             SetVector<const Loop *> &Loops) {
312   SetVector<const SCEV *> SCEVs;
313   struct SubtreeReferences References = {
314       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
315 
316   for (const auto &I : IDToValue)
317     Values.insert(I.second);
318 
319   // NOTE: this is populated in IslNodeBuilder::addParameters
320   for (const auto &I : OutsideLoopIterations)
321     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
322 
323   isl::union_set Schedule = getScheduleForAstNode(For).domain();
324   addReferencesFromStmtUnionSet(Schedule, References);
325 
326   for (const SCEV *Expr : SCEVs) {
327     findValues(Expr, SE, Values);
328     findLoops(Expr, Loops);
329   }
330 
331   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
332 
333   /// Note: Code generation of induction variables of loops outside Scops
334   ///
335   /// Remove loops that contain the scop or that are part of the scop, as they
336   /// are considered local. This leaves only loops that are before the scop, but
337   /// do not contain the scop itself.
338   /// We ignore loops perfectly contained in the Scop because these are already
339   /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
340   /// whose induction variables are referred to by the Scop, but the Scop is not
341   /// fully contained in these Loops. Since there can be many of these,
342   /// we choose to codegen these on-demand.
343   /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
344   Loops.remove_if([this](const Loop *L) {
345     return S.contains(L) || L->contains(S.getEntry());
346   });
347 
348   // Contains Values that may need to be replaced with other values
349   // due to replacements from the ValueMap. We should make sure
350   // that we return correctly remapped values.
351   // NOTE: this code path is tested by:
352   //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
353   //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
354   SetVector<Value *> ReplacedValues;
355   for (Value *V : Values) {
356     ReplacedValues.insert(getLatestValue(V));
357   }
358   Values = ReplacedValues;
359 }
360 
361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
362   SmallPtrSet<Value *, 5> Inserted;
363 
364   for (const auto &I : IDToValue) {
365     IDToValue[I.first] = NewValues[I.second];
366     Inserted.insert(I.second);
367   }
368 
369   for (const auto &I : NewValues) {
370     if (Inserted.count(I.first))
371       continue;
372 
373     ValueMap[I.first] = I.second;
374   }
375 }
376 
377 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
378   auto It = ValueMap.find(Original);
379   if (It == ValueMap.end())
380     return Original;
381   return It->second;
382 }
383 
384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
385                                       std::vector<Value *> &IVS,
386                                       __isl_take isl_id *IteratorID,
387                                       __isl_take isl_union_map *Schedule) {
388   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
389   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
390   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
391   isl_ast_expr_free(StmtExpr);
392   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
393   std::vector<LoopToScevMapT> VLTS(IVS.size());
394 
395   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
396   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
397   isl_map *S = isl_map_from_union_map(Schedule);
398 
399   auto *NewAccesses = createNewAccesses(Stmt, User);
400   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
401   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
402   isl_id_to_ast_expr_free(NewAccesses);
403   isl_map_free(S);
404   isl_id_free(Id);
405   isl_ast_node_free(User);
406 }
407 
408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
409   auto *Id = isl_ast_node_mark_get_id(Node);
410   auto Child = isl_ast_node_mark_get_node(Node);
411   isl_ast_node_free(Node);
412   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
413   // it will be optimized away and we should skip it.
414   if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
415       isl_ast_node_get_type(Child) == isl_ast_node_for) {
416     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
417     int VectorWidth =
418         getNumberOfIterations(isl::manage_copy(Child).as<isl::ast_node_for>());
419     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
420       createForVector(Child, VectorWidth);
421     else
422       createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true);
423     isl_id_free(Id);
424     return;
425   }
426 
427   BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id));
428   BandAttr *AncestorLoopAttr;
429   if (ChildLoopAttr) {
430     // Save current LoopAttr environment to restore again when leaving this
431     // subtree. This means there was no loop between the ancestor LoopAttr and
432     // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This
433     // can happen e.g. if the AST build peeled or unrolled the loop.
434     AncestorLoopAttr = Annotator.getStagingAttrEnv();
435 
436     Annotator.getStagingAttrEnv() = ChildLoopAttr;
437   }
438 
439   create(Child);
440 
441   if (ChildLoopAttr) {
442     assert(Annotator.getStagingAttrEnv() == ChildLoopAttr &&
443            "Nest must not overwrite loop attr environment");
444     Annotator.getStagingAttrEnv() = AncestorLoopAttr;
445   }
446 
447   isl_id_free(Id);
448 }
449 
450 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
451                                      int VectorWidth) {
452   isl_ast_node *Body = isl_ast_node_for_get_body(For);
453   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
454   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
455   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
456   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
457 
458   Value *ValueLB = ExprBuilder.create(Init);
459   Value *ValueInc = ExprBuilder.create(Inc);
460 
461   Type *MaxType = ExprBuilder.getType(Iterator);
462   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
463   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
464 
465   if (MaxType != ValueLB->getType())
466     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
467   if (MaxType != ValueInc->getType())
468     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
469 
470   std::vector<Value *> IVS(VectorWidth);
471   IVS[0] = ValueLB;
472 
473   for (int i = 1; i < VectorWidth; i++)
474     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
475 
476   isl::union_map Schedule = getScheduleForAstNode(isl::manage_copy(For));
477   assert(!Schedule.is_null() &&
478          "For statement annotation does not contain its schedule");
479 
480   IDToValue[IteratorID] = ValueLB;
481 
482   switch (isl_ast_node_get_type(Body)) {
483   case isl_ast_node_user:
484     createUserVector(Body, IVS, isl_id_copy(IteratorID), Schedule.copy());
485     break;
486   case isl_ast_node_block: {
487     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
488 
489     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
490       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
491                        isl_id_copy(IteratorID), Schedule.copy());
492 
493     isl_ast_node_free(Body);
494     isl_ast_node_list_free(List);
495     break;
496   }
497   default:
498     isl_ast_node_dump(Body);
499     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
500   }
501 
502   IDToValue.erase(IDToValue.find(IteratorID));
503   isl_id_free(IteratorID);
504 
505   isl_ast_node_free(For);
506   isl_ast_expr_free(Iterator);
507 
508   VectorLoops++;
509 }
510 
511 /// Restore the initial ordering of dimensions of the band node
512 ///
513 /// In case the band node represents all the dimensions of the iteration
514 /// domain, recreate the band node to restore the initial ordering of the
515 /// dimensions.
516 ///
517 /// @param Node The band node to be modified.
518 /// @return The modified schedule node.
519 static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) {
520   assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
521   isl::ast_node Body = Node.body();
522   if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
523     return false;
524 
525   isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>();
526   auto Id = BodyMark.id();
527   if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
528     return true;
529   return false;
530 }
531 
532 void IslNodeBuilder::createForSequential(isl::ast_node_for For,
533                                          bool MarkParallel) {
534   Value *ValueLB, *ValueUB, *ValueInc;
535   Type *MaxType;
536   BasicBlock *ExitBlock;
537   Value *IV;
538   CmpInst::Predicate Predicate;
539 
540   bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);
541 
542   isl::ast_node Body = For.body();
543 
544   // isl_ast_node_for_is_degenerate(For)
545   //
546   // TODO: For degenerated loops we could generate a plain assignment.
547   //       However, for now we just reuse the logic for normal loops, which will
548   //       create a loop with a single iteration.
549 
550   isl::ast_expr Init = For.init();
551   isl::ast_expr Inc = For.inc();
552   isl::ast_expr Iterator = For.iterator();
553   isl::id IteratorID = Iterator.get_id();
554   isl::ast_expr UB = getUpperBound(For, Predicate);
555 
556   ValueLB = ExprBuilder.create(Init.release());
557   ValueUB = ExprBuilder.create(UB.release());
558   ValueInc = ExprBuilder.create(Inc.release());
559 
560   MaxType = ExprBuilder.getType(Iterator.get());
561   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
562   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
563   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
564 
565   if (MaxType != ValueLB->getType())
566     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
567   if (MaxType != ValueUB->getType())
568     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
569   if (MaxType != ValueInc->getType())
570     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
571 
572   // If we can show that LB <Predicate> UB holds at least once, we can
573   // omit the GuardBB in front of the loop.
574   bool UseGuardBB =
575       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
576   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
577                   Predicate, &Annotator, MarkParallel, UseGuardBB,
578                   LoopVectorizerDisabled);
579   IDToValue[IteratorID.get()] = IV;
580 
581   create(Body.release());
582 
583   Annotator.popLoop(MarkParallel);
584 
585   IDToValue.erase(IDToValue.find(IteratorID.get()));
586 
587   Builder.SetInsertPoint(&ExitBlock->front());
588 
589   SequentialLoops++;
590 }
591 
592 /// Remove the BBs contained in a (sub)function from the dominator tree.
593 ///
594 /// This function removes the basic blocks that are part of a subfunction from
595 /// the dominator tree. Specifically, when generating code it may happen that at
596 /// some point the code generation continues in a new sub-function (e.g., when
597 /// generating OpenMP code). The basic blocks that are created in this
598 /// sub-function are then still part of the dominator tree of the original
599 /// function, such that the dominator tree reaches over function boundaries.
600 /// This is not only incorrect, but also causes crashes. This function now
601 /// removes from the dominator tree all basic blocks that are dominated (and
602 /// consequently reachable) from the entry block of this (sub)function.
603 ///
604 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
605 /// the function/region it runs on. Hence, the pure need for this function shows
606 /// that we do not comply to this rule. At the moment, this does not cause any
607 /// issues, but we should be aware that such issues may appear. Unfortunately
608 /// the current LLVM pass infrastructure does not allow to make Polly a module
609 /// or call-graph pass to solve this issue, as such a pass would not have access
610 /// to the per-function analyses passes needed by Polly. A future pass manager
611 /// infrastructure is supposed to enable such kind of access possibly allowing
612 /// us to create a cleaner solution here.
613 ///
614 /// FIXME: Instead of adding the dominance information and then dropping it
615 /// later on, we should try to just not add it in the first place. This requires
616 /// some careful testing to make sure this does not break in interaction with
617 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
618 /// which may try to update it.
619 ///
620 /// @param F The function which contains the BBs to removed.
621 /// @param DT The dominator tree from which to remove the BBs.
622 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
623   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
624   std::vector<BasicBlock *> Nodes;
625 
626   // We can only remove an element from the dominator tree, if all its children
627   // have been removed. To ensure this we obtain the list of nodes to remove
628   // using a post-order tree traversal.
629   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
630     Nodes.push_back(I->getBlock());
631 
632   for (BasicBlock *BB : Nodes)
633     DT.eraseNode(BB);
634 }
635 
636 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
637   isl_ast_node *Body;
638   isl_ast_expr *Init, *Inc, *Iterator, *UB;
639   isl_id *IteratorID;
640   Value *ValueLB, *ValueUB, *ValueInc;
641   Type *MaxType;
642   Value *IV;
643   CmpInst::Predicate Predicate;
644 
645   // The preamble of parallel code interacts different than normal code with
646   // e.g., scalar initialization. Therefore, we ensure the parallel code is
647   // separated from the last basic block.
648   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
649                                  &*Builder.GetInsertPoint(), &DT, &LI);
650   ParBB->setName("polly.parallel.for");
651   Builder.SetInsertPoint(&ParBB->front());
652 
653   Body = isl_ast_node_for_get_body(For);
654   Init = isl_ast_node_for_get_init(For);
655   Inc = isl_ast_node_for_get_inc(For);
656   Iterator = isl_ast_node_for_get_iterator(For);
657   IteratorID = isl_ast_expr_get_id(Iterator);
658   UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate)
659            .release();
660 
661   ValueLB = ExprBuilder.create(Init);
662   ValueUB = ExprBuilder.create(UB);
663   ValueInc = ExprBuilder.create(Inc);
664 
665   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
666   // expression, we need to adjust the loop bound by one.
667   if (Predicate == CmpInst::ICMP_SLT)
668     ValueUB = Builder.CreateAdd(
669         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
670 
671   MaxType = ExprBuilder.getType(Iterator);
672   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
673   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
674   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
675 
676   if (MaxType != ValueLB->getType())
677     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
678   if (MaxType != ValueUB->getType())
679     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
680   if (MaxType != ValueInc->getType())
681     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
682 
683   BasicBlock::iterator LoopBody;
684 
685   SetVector<Value *> SubtreeValues;
686   SetVector<const Loop *> Loops;
687 
688   getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops);
689 
690   // Create for all loops we depend on values that contain the current loop
691   // iteration. These values are necessary to generate code for SCEVs that
692   // depend on such loops. As a result we need to pass them to the subfunction.
693   // See [Code generation of induction variables of loops outside Scops]
694   for (const Loop *L : Loops) {
695     Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
696     SubtreeValues.insert(LoopInductionVar);
697   }
698 
699   ValueMapT NewValues;
700 
701   std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;
702 
703   switch (PollyOmpBackend) {
704   case OpenMPBackend::GNU:
705     ParallelLoopGenPtr.reset(
706         new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
707     break;
708   case OpenMPBackend::LLVM:
709     ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
710     break;
711   }
712 
713   IV = ParallelLoopGenPtr->createParallelLoop(
714       ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
715   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
716   Builder.SetInsertPoint(&*LoopBody);
717 
718   // Remember the parallel subfunction
719   ParallelSubfunctions.push_back(LoopBody->getFunction());
720 
721   // Save the current values.
722   auto ValueMapCopy = ValueMap;
723   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
724 
725   updateValues(NewValues);
726   IDToValue[IteratorID] = IV;
727 
728   ValueMapT NewValuesReverse;
729 
730   for (auto P : NewValues)
731     NewValuesReverse[P.second] = P.first;
732 
733   Annotator.addAlternativeAliasBases(NewValuesReverse);
734 
735   create(Body);
736 
737   Annotator.resetAlternativeAliasBases();
738   // Restore the original values.
739   ValueMap = ValueMapCopy;
740   IDToValue = IDToValueCopy;
741 
742   Builder.SetInsertPoint(&*AfterLoop);
743   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
744 
745   for (const Loop *L : Loops)
746     OutsideLoopIterations.erase(L);
747 
748   isl_ast_node_free(For);
749   isl_ast_expr_free(Iterator);
750   isl_id_free(IteratorID);
751 
752   ParallelLoops++;
753 }
754 
755 /// Return whether any of @p Node's statements contain partial accesses.
756 ///
757 /// Partial accesses are not supported by Polly's vector code generator.
758 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
759   return isl_ast_node_foreach_descendant_top_down(
760              Node,
761              [](isl_ast_node *Node, void *User) -> isl_bool {
762                if (isl_ast_node_get_type(Node) != isl_ast_node_user)
763                  return isl_bool_true;
764 
765                isl::ast_expr Expr =
766                    isl::manage(isl_ast_node_user_get_expr(Node));
767                isl::ast_expr StmtExpr = Expr.get_op_arg(0);
768                isl::id Id = StmtExpr.get_id();
769 
770                ScopStmt *Stmt =
771                    static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
772                isl::set StmtDom = Stmt->getDomain();
773                for (auto *MA : *Stmt) {
774                  if (MA->isLatestPartialAccess())
775                    return isl_bool_error;
776                }
777                return isl_bool_true;
778              },
779              nullptr) == isl_stat_error;
780 }
781 
782 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
783   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
784 
785   if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) &&
786       !IslAstInfo::isReductionParallel(isl::manage_copy(For))) {
787     int VectorWidth =
788         getNumberOfIterations(isl::manage_copy(For).as<isl::ast_node_for>());
789     if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
790       createForVector(For, VectorWidth);
791       return;
792     }
793   }
794 
795   if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) {
796     createForParallel(For);
797     return;
798   }
799   bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) &&
800                    !IslAstInfo::isReductionParallel(isl::manage_copy(For)));
801   createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel);
802 }
803 
804 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
805   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
806 
807   Function *F = Builder.GetInsertBlock()->getParent();
808   LLVMContext &Context = F->getContext();
809 
810   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
811                                   &*Builder.GetInsertPoint(), &DT, &LI);
812   CondBB->setName("polly.cond");
813   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
814   MergeBB->setName("polly.merge");
815   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
816   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
817 
818   DT.addNewBlock(ThenBB, CondBB);
819   DT.addNewBlock(ElseBB, CondBB);
820   DT.changeImmediateDominator(MergeBB, CondBB);
821 
822   Loop *L = LI.getLoopFor(CondBB);
823   if (L) {
824     L->addBasicBlockToLoop(ThenBB, LI);
825     L->addBasicBlockToLoop(ElseBB, LI);
826   }
827 
828   CondBB->getTerminator()->eraseFromParent();
829 
830   Builder.SetInsertPoint(CondBB);
831   Value *Predicate = ExprBuilder.create(Cond);
832   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
833   Builder.SetInsertPoint(ThenBB);
834   Builder.CreateBr(MergeBB);
835   Builder.SetInsertPoint(ElseBB);
836   Builder.CreateBr(MergeBB);
837   Builder.SetInsertPoint(&ThenBB->front());
838 
839   create(isl_ast_node_if_get_then(If));
840 
841   Builder.SetInsertPoint(&ElseBB->front());
842 
843   if (isl_ast_node_if_has_else(If))
844     create(isl_ast_node_if_get_else(If));
845 
846   Builder.SetInsertPoint(&MergeBB->front());
847 
848   isl_ast_node_free(If);
849 
850   IfConditions++;
851 }
852 
853 __isl_give isl_id_to_ast_expr *
854 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
855                                   __isl_keep isl_ast_node *Node) {
856   isl::id_to_ast_expr NewAccesses =
857       isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0);
858 
859   isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node));
860   assert(!Build.is_null() && "Could not obtain isl_ast_build from user node");
861   Stmt->setAstBuild(Build);
862 
863   for (auto *MA : *Stmt) {
864     if (!MA->hasNewAccessRelation()) {
865       if (PollyGenerateExpressions) {
866         if (!MA->isAffine())
867           continue;
868         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
869           continue;
870 
871         auto *BasePtr =
872             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
873         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
874           continue;
875       } else {
876         continue;
877       }
878     }
879     assert(MA->isAffine() &&
880            "Only affine memory accesses can be code generated");
881 
882     isl::union_map Schedule = Build.get_schedule();
883 
884 #ifndef NDEBUG
885     if (MA->isRead()) {
886       auto Dom = Stmt->getDomain().release();
887       auto SchedDom = isl_set_from_union_set(Schedule.domain().release());
888       auto AccDom = isl_map_domain(MA->getAccessRelation().release());
889       Dom = isl_set_intersect_params(Dom,
890                                      Stmt->getParent()->getContext().release());
891       SchedDom = isl_set_intersect_params(
892           SchedDom, Stmt->getParent()->getContext().release());
893       assert(isl_set_is_subset(SchedDom, AccDom) &&
894              "Access relation not defined on full schedule domain");
895       assert(isl_set_is_subset(Dom, AccDom) &&
896              "Access relation not defined on full domain");
897       isl_set_free(AccDom);
898       isl_set_free(SchedDom);
899       isl_set_free(Dom);
900     }
901 #endif
902 
903     isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule);
904 
905     // isl cannot generate an index expression for access-nothing accesses.
906     isl::set AccDomain = PWAccRel.domain();
907     isl::set Context = S.getContext();
908     AccDomain = AccDomain.intersect_params(Context);
909     if (AccDomain.is_empty())
910       continue;
911 
912     isl::ast_expr AccessExpr = Build.access_from(PWAccRel);
913     NewAccesses = NewAccesses.set(MA->getId(), AccessExpr);
914   }
915 
916   return NewAccesses.release();
917 }
918 
919 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
920                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
921   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
922          "Expression of type 'op' expected");
923   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
924          "Operation of type 'call' expected");
925   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
926     isl_ast_expr *SubExpr;
927     Value *V;
928 
929     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
930     V = ExprBuilder.create(SubExpr);
931     ScalarEvolution *SE = Stmt->getParent()->getSE();
932     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
933   }
934 
935   isl_ast_expr_free(Expr);
936 }
937 
938 void IslNodeBuilder::createSubstitutionsVector(
939     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
940     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
941     __isl_take isl_id *IteratorID) {
942   int i = 0;
943 
944   Value *OldValue = IDToValue[IteratorID];
945   for (Value *IV : IVS) {
946     IDToValue[IteratorID] = IV;
947     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
948     i++;
949   }
950 
951   IDToValue[IteratorID] = OldValue;
952   isl_id_free(IteratorID);
953   isl_ast_expr_free(Expr);
954 }
955 
956 void IslNodeBuilder::generateCopyStmt(
957     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
958   assert(Stmt->size() == 2);
959   auto ReadAccess = Stmt->begin();
960   auto WriteAccess = ReadAccess++;
961   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
962   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
963          "Accesses use the same data type");
964   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
965   auto *AccessExpr =
966       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
967   auto *LoadValue = ExprBuilder.create(AccessExpr);
968   AccessExpr =
969       isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
970   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first;
971   Builder.CreateStore(LoadValue, StoreAddr);
972 }
973 
974 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
975   assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
976          "trying to materialize loop induction variable twice");
977   const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
978                                           SE.getUnknown(Builder.getInt64(1)), L,
979                                           SCEV::FlagAnyWrap);
980   Value *V = generateSCEV(OuterLIV);
981   OutsideLoopIterations[L] = SE.getUnknown(V);
982   return V;
983 }
984 
985 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
986   LoopToScevMapT LTS;
987   isl_id *Id;
988   ScopStmt *Stmt;
989 
990   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
991   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
992   Id = isl_ast_expr_get_id(StmtExpr);
993   isl_ast_expr_free(StmtExpr);
994 
995   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
996 
997   Stmt = (ScopStmt *)isl_id_get_user(Id);
998   auto *NewAccesses = createNewAccesses(Stmt, User);
999   if (Stmt->isCopyStmt()) {
1000     generateCopyStmt(Stmt, NewAccesses);
1001     isl_ast_expr_free(Expr);
1002   } else {
1003     createSubstitutions(Expr, Stmt, LTS);
1004 
1005     if (Stmt->isBlockStmt())
1006       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
1007     else
1008       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
1009   }
1010 
1011   isl_id_to_ast_expr_free(NewAccesses);
1012   isl_ast_node_free(User);
1013   isl_id_free(Id);
1014 }
1015 
1016 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
1017   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
1018 
1019   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
1020     create(isl_ast_node_list_get_ast_node(List, i));
1021 
1022   isl_ast_node_free(Block);
1023   isl_ast_node_list_free(List);
1024 }
1025 
1026 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
1027   switch (isl_ast_node_get_type(Node)) {
1028   case isl_ast_node_error:
1029     llvm_unreachable("code generation error");
1030   case isl_ast_node_mark:
1031     createMark(Node);
1032     return;
1033   case isl_ast_node_for:
1034     createFor(Node);
1035     return;
1036   case isl_ast_node_if:
1037     createIf(Node);
1038     return;
1039   case isl_ast_node_user:
1040     createUser(Node);
1041     return;
1042   case isl_ast_node_block:
1043     createBlock(Node);
1044     return;
1045   }
1046 
1047   llvm_unreachable("Unknown isl_ast_node type");
1048 }
1049 
1050 bool IslNodeBuilder::materializeValue(isl_id *Id) {
1051   // If the Id is already mapped, skip it.
1052   if (!IDToValue.count(Id)) {
1053     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
1054     Value *V = nullptr;
1055 
1056     // Parameters could refer to invariant loads that need to be
1057     // preloaded before we can generate code for the parameter. Thus,
1058     // check if any value referred to in ParamSCEV is an invariant load
1059     // and if so make sure its equivalence class is preloaded.
1060     SetVector<Value *> Values;
1061     findValues(ParamSCEV, SE, Values);
1062     for (auto *Val : Values) {
1063       // Check if the value is an instruction in a dead block within the SCoP
1064       // and if so do not code generate it.
1065       if (auto *Inst = dyn_cast<Instruction>(Val)) {
1066         if (S.contains(Inst)) {
1067           bool IsDead = true;
1068 
1069           // Check for "undef" loads first, then if there is a statement for
1070           // the parent of Inst and lastly if the parent of Inst has an empty
1071           // domain. In the first and last case the instruction is dead but if
1072           // there is a statement or the domain is not empty Inst is not dead.
1073           auto MemInst = MemAccInst::dyn_cast(Inst);
1074           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
1075           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
1076                              SE.getPointerBase(SE.getSCEV(Address))) {
1077           } else if (S.getStmtFor(Inst)) {
1078             IsDead = false;
1079           } else {
1080             auto *Domain = S.getDomainConditions(Inst->getParent()).release();
1081             IsDead = isl_set_is_empty(Domain);
1082             isl_set_free(Domain);
1083           }
1084 
1085           if (IsDead) {
1086             V = UndefValue::get(ParamSCEV->getType());
1087             break;
1088           }
1089         }
1090       }
1091 
1092       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
1093         // Check if this invariant access class is empty, hence if we never
1094         // actually added a loads instruction to it. In that case it has no
1095         // (meaningful) users and we should not try to code generate it.
1096         if (IAClass->InvariantAccesses.empty())
1097           V = UndefValue::get(ParamSCEV->getType());
1098 
1099         if (!preloadInvariantEquivClass(*IAClass)) {
1100           isl_id_free(Id);
1101           return false;
1102         }
1103       }
1104     }
1105 
1106     V = V ? V : generateSCEV(ParamSCEV);
1107     IDToValue[Id] = V;
1108   }
1109 
1110   isl_id_free(Id);
1111   return true;
1112 }
1113 
1114 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
1115   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
1116     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
1117       continue;
1118     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
1119     if (!materializeValue(Id))
1120       return false;
1121   }
1122   return true;
1123 }
1124 
1125 bool IslNodeBuilder::materializeParameters() {
1126   for (const SCEV *Param : S.parameters()) {
1127     isl_id *Id = S.getIdForParam(Param).release();
1128     if (!materializeValue(Id))
1129       return false;
1130   }
1131   return true;
1132 }
1133 
1134 /// Generate the computation of the size of the outermost dimension from the
1135 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
1136 /// contains the size of the array.
1137 ///
1138 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
1139 /// %desc.dimensionty = type { i64, i64, i64 }
1140 /// @g_arr = global %arrty zeroinitializer, align 32
1141 /// ...
1142 /// %0 = load i64, i64* getelementptr inbounds
1143 ///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
1144 /// %1 = load i64, i64* getelementptr inbounds
1145 ///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
1146 /// %2 = sub nsw i64 %0, %1
1147 /// %size = add nsw i64 %2, 1
1148 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
1149                                              PollyIRBuilder &Builder,
1150                                              std::string ArrayName) {
1151   assert(GlobalDescriptor && "invalid global descriptor given");
1152   Type *Ty = GlobalDescriptor->getType()->getPointerElementType();
1153 
1154   Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1155                       Builder.getInt64(0), Builder.getInt32(2)};
1156   Value *endPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, endIdx,
1157                                             ArrayName + "_end_ptr");
1158   Type *type = cast<GEPOperator>(endPtr)->getResultElementType();
1159   assert(isa<IntegerType>(type) && "expected type of end to be integral");
1160 
1161   Value *end = Builder.CreateLoad(type, endPtr, ArrayName + "_end");
1162 
1163   Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1164                         Builder.getInt64(0), Builder.getInt32(1)};
1165   Value *beginPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, beginIdx,
1166                                               ArrayName + "_begin_ptr");
1167   Value *begin = Builder.CreateLoad(type, beginPtr, ArrayName + "_begin");
1168 
1169   Value *size =
1170       Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
1171 
1172   size = Builder.CreateNSWAdd(
1173       end, ConstantInt::get(type, 1, /* signed = */ true), ArrayName + "_size");
1174 
1175   return size;
1176 }
1177 
1178 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
1179   for (ScopArrayInfo *Array : S.arrays()) {
1180     if (Array->getNumberOfDimensions() == 0)
1181       continue;
1182 
1183     Value *FAD = Array->getFortranArrayDescriptor();
1184     if (!FAD)
1185       continue;
1186 
1187     isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
1188     assert(ParametricPwAff && "parametric pw_aff corresponding "
1189                               "to outermost dimension does not "
1190                               "exist");
1191 
1192     isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
1193     isl_pw_aff_free(ParametricPwAff);
1194 
1195     assert(Id && "pw_aff is not parametric");
1196 
1197     if (IDToValue.count(Id)) {
1198       isl_id_free(Id);
1199       continue;
1200     }
1201 
1202     Value *FinalValue =
1203         buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
1204     assert(FinalValue && "unable to build Fortran array "
1205                          "descriptor load of outermost dimension");
1206     IDToValue[Id] = FinalValue;
1207     isl_id_free(Id);
1208   }
1209   return true;
1210 }
1211 
1212 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1213                                               isl_ast_build *Build,
1214                                               Instruction *AccInst) {
1215   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1216   isl_ast_expr *Access =
1217       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1218   auto *Address = isl_ast_expr_address_of(Access);
1219   auto *AddressValue = ExprBuilder.create(Address);
1220   Value *PreloadVal;
1221 
1222   // Correct the type as the SAI might have a different type than the user
1223   // expects, especially if the base pointer is a struct.
1224   Type *Ty = AccInst->getType();
1225 
1226   auto *Ptr = AddressValue;
1227   auto Name = Ptr->getName();
1228   auto AS = Ptr->getType()->getPointerAddressSpace();
1229   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1230   PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load");
1231   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1232     PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());
1233 
1234   // TODO: This is only a hot fix for SCoP sequences that use the same load
1235   //       instruction contained and hoisted by one of the SCoPs.
1236   if (SE.isSCEVable(Ty))
1237     SE.forgetValue(AccInst);
1238 
1239   return PreloadVal;
1240 }
1241 
1242 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1243                                             isl_set *Domain) {
1244   isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1245   AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1246 
1247   if (!materializeParameters(AccessRange)) {
1248     isl_set_free(AccessRange);
1249     isl_set_free(Domain);
1250     return nullptr;
1251   }
1252 
1253   auto *Build =
1254       isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1255   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1256   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1257   isl_set_free(Universe);
1258 
1259   Instruction *AccInst = MA.getAccessInstruction();
1260   Type *AccInstTy = AccInst->getType();
1261 
1262   Value *PreloadVal = nullptr;
1263   if (AlwaysExecuted) {
1264     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1265     isl_ast_build_free(Build);
1266     isl_set_free(Domain);
1267     return PreloadVal;
1268   }
1269 
1270   if (!materializeParameters(Domain)) {
1271     isl_ast_build_free(Build);
1272     isl_set_free(AccessRange);
1273     isl_set_free(Domain);
1274     return nullptr;
1275   }
1276 
1277   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1278   Domain = nullptr;
1279 
1280   ExprBuilder.setTrackOverflow(true);
1281   Value *Cond = ExprBuilder.create(DomainCond);
1282   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1283                                               "polly.preload.cond.overflown");
1284   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1285   ExprBuilder.setTrackOverflow(false);
1286 
1287   if (!Cond->getType()->isIntegerTy(1))
1288     Cond = Builder.CreateIsNotNull(Cond);
1289 
1290   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1291                                   &*Builder.GetInsertPoint(), &DT, &LI);
1292   CondBB->setName("polly.preload.cond");
1293 
1294   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1295   MergeBB->setName("polly.preload.merge");
1296 
1297   Function *F = Builder.GetInsertBlock()->getParent();
1298   LLVMContext &Context = F->getContext();
1299   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1300 
1301   DT.addNewBlock(ExecBB, CondBB);
1302   if (Loop *L = LI.getLoopFor(CondBB))
1303     L->addBasicBlockToLoop(ExecBB, LI);
1304 
1305   auto *CondBBTerminator = CondBB->getTerminator();
1306   Builder.SetInsertPoint(CondBBTerminator);
1307   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1308   CondBBTerminator->eraseFromParent();
1309 
1310   Builder.SetInsertPoint(ExecBB);
1311   Builder.CreateBr(MergeBB);
1312 
1313   Builder.SetInsertPoint(ExecBB->getTerminator());
1314   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1315   Builder.SetInsertPoint(MergeBB->getTerminator());
1316   auto *MergePHI = Builder.CreatePHI(
1317       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1318   PreloadVal = MergePHI;
1319 
1320   if (!PreAccInst) {
1321     PreloadVal = nullptr;
1322     PreAccInst = UndefValue::get(AccInstTy);
1323   }
1324 
1325   MergePHI->addIncoming(PreAccInst, ExecBB);
1326   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1327 
1328   isl_ast_build_free(Build);
1329   return PreloadVal;
1330 }
1331 
1332 bool IslNodeBuilder::preloadInvariantEquivClass(
1333     InvariantEquivClassTy &IAClass) {
1334   // For an equivalence class of invariant loads we pre-load the representing
1335   // element with the unified execution context. However, we have to map all
1336   // elements of the class to the one preloaded load as they are referenced
1337   // during the code generation and therefor need to be mapped.
1338   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1339   if (MAs.empty())
1340     return true;
1341 
1342   MemoryAccess *MA = MAs.front();
1343   assert(MA->isArrayKind() && MA->isRead());
1344 
1345   // If the access function was already mapped, the preload of this equivalence
1346   // class was triggered earlier already and doesn't need to be done again.
1347   if (ValueMap.count(MA->getAccessInstruction()))
1348     return true;
1349 
1350   // Check for recursion which can be caused by additional constraints, e.g.,
1351   // non-finite loop constraints. In such a case we have to bail out and insert
1352   // a "false" runtime check that will cause the original code to be executed.
1353   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1354   if (!PreloadedPtrs.insert(PtrId).second)
1355     return false;
1356 
1357   // The execution context of the IAClass.
1358   isl::set &ExecutionCtx = IAClass.ExecutionContext;
1359 
1360   // If the base pointer of this class is dependent on another one we have to
1361   // make sure it was preloaded already.
1362   auto *SAI = MA->getScopArrayInfo();
1363   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1364     if (!preloadInvariantEquivClass(*BaseIAClass))
1365       return false;
1366 
1367     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1368     // we need to refine the ExecutionCtx.
1369     isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1370     ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1371   }
1372 
1373   // If the size of a dimension is dependent on another class, make sure it is
1374   // preloaded.
1375   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1376     const SCEV *Dim = SAI->getDimensionSize(i);
1377     SetVector<Value *> Values;
1378     findValues(Dim, SE, Values);
1379     for (auto *Val : Values) {
1380       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1381         if (!preloadInvariantEquivClass(*BaseIAClass))
1382           return false;
1383 
1384         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1385         // and we need to refine the ExecutionCtx.
1386         isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1387         ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1388       }
1389     }
1390   }
1391 
1392   Instruction *AccInst = MA->getAccessInstruction();
1393   Type *AccInstTy = AccInst->getType();
1394 
1395   Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
1396   if (!PreloadVal)
1397     return false;
1398 
1399   for (const MemoryAccess *MA : MAs) {
1400     Instruction *MAAccInst = MA->getAccessInstruction();
1401     assert(PreloadVal->getType() == MAAccInst->getType());
1402     ValueMap[MAAccInst] = PreloadVal;
1403   }
1404 
1405   if (SE.isSCEVable(AccInstTy)) {
1406     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1407     if (ParamId)
1408       IDToValue[ParamId] = PreloadVal;
1409     isl_id_free(ParamId);
1410   }
1411 
1412   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1413   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1414                                 AccInst->getName() + ".preload.s2a",
1415                                 &*EntryBB->getFirstInsertionPt());
1416   Builder.CreateStore(PreloadVal, Alloca);
1417   ValueMapT PreloadedPointer;
1418   PreloadedPointer[PreloadVal] = AccInst;
1419   Annotator.addAlternativeAliasBases(PreloadedPointer);
1420 
1421   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1422     Value *BasePtr = DerivedSAI->getBasePtr();
1423 
1424     for (const MemoryAccess *MA : MAs) {
1425       // As the derived SAI information is quite coarse, any load from the
1426       // current SAI could be the base pointer of the derived SAI, however we
1427       // should only change the base pointer of the derived SAI if we actually
1428       // preloaded it.
1429       if (BasePtr == MA->getOriginalBaseAddr()) {
1430         assert(BasePtr->getType() == PreloadVal->getType());
1431         DerivedSAI->setBasePtr(PreloadVal);
1432       }
1433 
1434       // For scalar derived SAIs we remap the alloca used for the derived value.
1435       if (BasePtr == MA->getAccessInstruction())
1436         ScalarMap[DerivedSAI] = Alloca;
1437     }
1438   }
1439 
1440   for (const MemoryAccess *MA : MAs) {
1441     Instruction *MAAccInst = MA->getAccessInstruction();
1442     // Use the escape system to get the correct value to users outside the SCoP.
1443     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1444     for (auto *U : MAAccInst->users())
1445       if (Instruction *UI = dyn_cast<Instruction>(U))
1446         if (!S.contains(UI))
1447           EscapeUsers.push_back(UI);
1448 
1449     if (EscapeUsers.empty())
1450       continue;
1451 
1452     EscapeMap[MA->getAccessInstruction()] =
1453         std::make_pair(Alloca, std::move(EscapeUsers));
1454   }
1455 
1456   return true;
1457 }
1458 
1459 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1460   for (auto &SAI : S.arrays()) {
1461     if (SAI->getBasePtr())
1462       continue;
1463 
1464     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1465            "The size of the outermost dimension is used to declare newly "
1466            "created arrays that require memory allocation.");
1467 
1468     Type *NewArrayType = nullptr;
1469 
1470     // Get the size of the array = size(dim_1)*...*size(dim_n)
1471     uint64_t ArraySizeInt = 1;
1472     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1473       auto *DimSize = SAI->getDimensionSize(i);
1474       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1475                                      ->getAPInt()
1476                                      .getLimitedValue();
1477 
1478       if (!NewArrayType)
1479         NewArrayType = SAI->getElementType();
1480 
1481       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1482       ArraySizeInt *= UnsignedDimSize;
1483     }
1484 
1485     if (SAI->isOnHeap()) {
1486       LLVMContext &Ctx = NewArrayType->getContext();
1487 
1488       // Get the IntPtrTy from the Datalayout
1489       auto IntPtrTy = DL.getIntPtrType(Ctx);
1490 
1491       // Get the size of the element type in bits
1492       unsigned Size = SAI->getElemSizeInBytes();
1493 
1494       // Insert the malloc call at polly.start
1495       auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
1496       auto *CreatedArray = CallInst::CreateMalloc(
1497           &*InstIt, IntPtrTy, SAI->getElementType(),
1498           ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1499           ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1500           SAI->getName());
1501 
1502       SAI->setBasePtr(CreatedArray);
1503 
1504       // Insert the free call at polly.exiting
1505       CallInst::CreateFree(CreatedArray,
1506                            std::get<1>(StartExitBlocks)->getTerminator());
1507     } else {
1508       auto InstIt = Builder.GetInsertBlock()
1509                         ->getParent()
1510                         ->getEntryBlock()
1511                         .getTerminator();
1512 
1513       auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1514                                           SAI->getName(), &*InstIt);
1515       if (PollyTargetFirstLevelCacheLineSize)
1516         CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
1517       SAI->setBasePtr(CreatedArray);
1518     }
1519   }
1520 }
1521 
1522 bool IslNodeBuilder::preloadInvariantLoads() {
1523   auto &InvariantEquivClasses = S.getInvariantAccesses();
1524   if (InvariantEquivClasses.empty())
1525     return true;
1526 
1527   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1528                                      &*Builder.GetInsertPoint(), &DT, &LI);
1529   PreLoadBB->setName("polly.preload.begin");
1530   Builder.SetInsertPoint(&PreLoadBB->front());
1531 
1532   for (auto &IAClass : InvariantEquivClasses)
1533     if (!preloadInvariantEquivClass(IAClass))
1534       return false;
1535 
1536   return true;
1537 }
1538 
1539 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1540   // Materialize values for the parameters of the SCoP.
1541   materializeParameters();
1542 
1543   // materialize the outermost dimension parameters for a Fortran array.
1544   // NOTE: materializeParameters() does not work since it looks through
1545   // the SCEVs. We don't have a corresponding SCEV for the array size
1546   // parameter
1547   materializeFortranArrayOutermostDimension();
1548 
1549   // Generate values for the current loop iteration for all surrounding loops.
1550   //
1551   // We may also reference loops outside of the scop which do not contain the
1552   // scop itself, but as the number of such scops may be arbitrarily large we do
1553   // not generate code for them here, but only at the point of code generation
1554   // where these values are needed.
1555   Loop *L = LI.getLoopFor(S.getEntry());
1556 
1557   while (L != nullptr && S.contains(L))
1558     L = L->getParentLoop();
1559 
1560   while (L != nullptr) {
1561     materializeNonScopLoopInductionVariable(L);
1562     L = L->getParentLoop();
1563   }
1564 
1565   isl_set_free(Context);
1566 }
1567 
1568 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1569   /// We pass the insert location of our Builder, as Polly ensures during IR
1570   /// generation that there is always a valid CFG into which instructions are
1571   /// inserted. As a result, the insertpoint is known to be always followed by a
1572   /// terminator instruction. This means the insert point may be specified by a
1573   /// terminator instruction, but it can never point to an ->end() iterator
1574   /// which does not have a corresponding instruction. Hence, dereferencing
1575   /// the insertpoint to obtain an instruction is known to be save.
1576   ///
1577   /// We also do not need to update the Builder here, as new instructions are
1578   /// always inserted _before_ the given InsertLocation. As a result, the
1579   /// insert location remains valid.
1580   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1581          "Insert location points after last valid instruction");
1582   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1583   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1584                        InsertLocation, &ValueMap,
1585                        StartBlock->getSinglePredecessor());
1586 }
1587 
1588 /// The AST expression we generate to perform the run-time check assumes
1589 /// computations on integer types of infinite size. As we only use 64-bit
1590 /// arithmetic we check for overflows, in case of which we set the result
1591 /// of this run-time check to false to be conservatively correct,
1592 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1593   auto ExprBuilder = getExprBuilder();
1594 
1595   // In case the AST expression has integers larger than 64 bit, bail out. The
1596   // resulting LLVM-IR will contain operations on types that use more than 64
1597   // bits. These are -- in case wrapping intrinsics are used -- translated to
1598   // runtime library calls that are not available on all systems (e.g., Android)
1599   // and consequently will result in linker errors.
1600   if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
1601     isl_ast_expr_free(Condition);
1602     return Builder.getFalse();
1603   }
1604 
1605   ExprBuilder.setTrackOverflow(true);
1606   Value *RTC = ExprBuilder.create(Condition);
1607   if (!RTC->getType()->isIntegerTy(1))
1608     RTC = Builder.CreateIsNotNull(RTC);
1609   Value *OverflowHappened =
1610       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1611 
1612   if (PollyGenerateRTCPrint) {
1613     auto *F = Builder.GetInsertBlock()->getParent();
1614     RuntimeDebugBuilder::createCPUPrinter(
1615         Builder,
1616         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1617             "RTC: ",
1618         RTC, " Overflow: ", OverflowHappened,
1619         "\n"
1620         "  (0 failed, -1 succeeded)\n"
1621         "  (if one or both are 0 falling back to original code, if both are -1 "
1622         "executing Polly code)\n");
1623   }
1624 
1625   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1626   ExprBuilder.setTrackOverflow(false);
1627 
1628   if (!isa<ConstantInt>(RTC))
1629     VersionedScops++;
1630 
1631   return RTC;
1632 }
1633