1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the IslNodeBuilder, a class to translate an isl AST into
10 // a LLVM-IR AST.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/CodeGen/IslNodeBuilder.h"
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/LoopGeneratorsGOMP.h"
20 #include "polly/CodeGen/LoopGeneratorsKMP.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Options.h"
23 #include "polly/ScopInfo.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "polly/Support/ScopHelper.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/RegionInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "isl/aff.h"
53 #include "isl/aff_type.h"
54 #include "isl/ast.h"
55 #include "isl/ast_build.h"
56 #include "isl/isl-noexceptions.h"
57 #include "isl/map.h"
58 #include "isl/set.h"
59 #include "isl/union_map.h"
60 #include "isl/union_set.h"
61 #include "isl/val.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstring>
66 #include <string>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace polly;
72 
73 #define DEBUG_TYPE "polly-codegen"
74 
75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
76 
77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
79 STATISTIC(VectorLoops, "Number of generated vector for-loops");
80 STATISTIC(IfConditions, "Number of generated if-conditions");
81 
82 /// OpenMP backend options
83 enum class OpenMPBackend { GNU, LLVM };
84 
85 static cl::opt<bool> PollyGenerateRTCPrint(
86     "polly-codegen-emit-rtc-print",
87     cl::desc("Emit code that prints the runtime check result dynamically."),
88     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
89 
90 // If this option is set we always use the isl AST generator to regenerate
91 // memory accesses. Without this option set we regenerate expressions using the
92 // original SCEV expressions and only generate new expressions in case the
93 // access relation has been changed and consequently must be regenerated.
94 static cl::opt<bool> PollyGenerateExpressions(
95     "polly-codegen-generate-expressions",
96     cl::desc("Generate AST expressions for unmodified and modified accesses"),
97     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
98 
99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
100     "polly-target-first-level-cache-line-size",
101     cl::desc("The size of the first level cache line size specified in bytes."),
102     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
103 
104 static cl::opt<OpenMPBackend> PollyOmpBackend(
105     "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
106     cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
107                clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
108     cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));
109 
110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For,
111                                             ICmpInst::Predicate &Predicate) {
112   isl::ast_expr Cond = For.for_get_cond();
113   isl::ast_expr Iterator = For.for_get_iterator();
114   assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
115          "conditional expression is not an atomic upper bound");
116 
117   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());
118 
119   switch (OpType) {
120   case isl_ast_op_le:
121     Predicate = ICmpInst::ICMP_SLE;
122     break;
123   case isl_ast_op_lt:
124     Predicate = ICmpInst::ICMP_SLT;
125     break;
126   default:
127     llvm_unreachable("Unexpected comparison type in loop condition");
128   }
129 
130   isl::ast_expr Arg0 = Cond.get_op_arg(0);
131 
132   assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
133          "conditional expression is not an atomic upper bound");
134 
135   isl::id UBID = Arg0.get_id();
136 
137   assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
138          "Could not get the iterator");
139 
140   isl::id IteratorID = Iterator.get_id();
141 
142   assert(UBID.get() == IteratorID.get() &&
143          "conditional expression is not an atomic upper bound");
144 
145   return Cond.get_op_arg(1);
146 }
147 
148 /// Return true if a return value of Predicate is true for the value represented
149 /// by passed isl_ast_expr_int.
150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
151                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
152   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
153     isl_ast_expr_free(Expr);
154     return false;
155   }
156   auto ExprVal = isl_ast_expr_get_val(Expr);
157   isl_ast_expr_free(Expr);
158   if (Predicate(ExprVal) != isl_bool_true) {
159     isl_val_free(ExprVal);
160     return false;
161   }
162   isl_val_free(ExprVal);
163   return true;
164 }
165 
166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) {
167   assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
168   isl::ast_node Body = For.for_get_body();
169 
170   // First, check if we can actually handle this code.
171   switch (isl_ast_node_get_type(Body.get())) {
172   case isl_ast_node_user:
173     break;
174   case isl_ast_node_block: {
175     isl::ast_node_list List = Body.block_get_children();
176     for (isl::ast_node Node : List) {
177       isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
178       if (NodeType != isl_ast_node_user)
179         return -1;
180     }
181     break;
182   }
183   default:
184     return -1;
185   }
186 
187   isl::ast_expr Init = For.for_get_init();
188   if (!checkIslAstExprInt(Init.release(), isl_val_is_zero))
189     return -1;
190   isl::ast_expr Inc = For.for_get_inc();
191   if (!checkIslAstExprInt(Inc.release(), isl_val_is_one))
192     return -1;
193   CmpInst::Predicate Predicate;
194   isl::ast_expr UB = getUpperBound(For, Predicate);
195   if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int)
196     return -1;
197   isl::val UpVal = UB.get_val();
198   int NumberIterations = UpVal.get_num_si();
199   if (NumberIterations < 0)
200     return -1;
201   if (Predicate == CmpInst::ICMP_SLT)
202     return NumberIterations;
203   else
204     return NumberIterations + 1;
205 }
206 
207 /// Extract the values and SCEVs needed to generate code for a block.
208 static int findReferencesInBlock(struct SubtreeReferences &References,
209                                  const ScopStmt *Stmt, BasicBlock *BB) {
210   for (Instruction &Inst : *BB) {
211     // Include invariant loads
212     if (isa<LoadInst>(Inst))
213       if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
214         References.Values.insert(InvariantLoad);
215 
216     for (Value *SrcVal : Inst.operands()) {
217       auto *Scope = References.LI.getLoopFor(BB);
218       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
219         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
220         continue;
221       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
222         References.Values.insert(NewVal);
223     }
224   }
225   return 0;
226 }
227 
228 void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
229                                   bool CreateScalarRefs) {
230   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
231 
232   if (Stmt->isBlockStmt())
233     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
234   else if (Stmt->isRegionStmt()) {
235     for (BasicBlock *BB : Stmt->getRegion()->blocks())
236       findReferencesInBlock(References, Stmt, BB);
237   } else {
238     assert(Stmt->isCopyStmt());
239     // Copy Stmts have no instructions that we need to consider.
240   }
241 
242   for (auto &Access : *Stmt) {
243     if (References.ParamSpace) {
244       isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
245       (*References.ParamSpace) =
246           References.ParamSpace->align_params(ParamSpace);
247     }
248 
249     if (Access->isLatestArrayKind()) {
250       auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
251       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
252         if (Stmt->getParent()->contains(OpInst))
253           continue;
254 
255       References.Values.insert(BasePtr);
256       continue;
257     }
258 
259     if (CreateScalarRefs)
260       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
261   }
262 }
263 
264 /// Extract the out-of-scop values and SCEVs referenced from a set describing
265 /// a ScopStmt.
266 ///
267 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
268 /// statement and the base pointers of the memory accesses. For scalar
269 /// statements we force the generation of alloca memory locations and list
270 /// these locations in the set of out-of-scop values as well.
271 ///
272 /// @param Set     A set which references the ScopStmt we are interested in.
273 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
274 ///                structure.
275 static void addReferencesFromStmtSet(isl::set Set,
276                                      struct SubtreeReferences *UserPtr) {
277   isl::id Id = Set.get_tuple_id();
278   auto *Stmt = static_cast<const ScopStmt *>(Id.get_user());
279   return addReferencesFromStmt(Stmt, UserPtr);
280 }
281 
282 /// Extract the out-of-scop values and SCEVs referenced from a union set
283 /// referencing multiple ScopStmts.
284 ///
285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
286 /// statement and the base pointers of the memory accesses. For scalar
287 /// statements we force the generation of alloca memory locations and list
288 /// these locations in the set of out-of-scop values as well.
289 ///
290 /// @param USet       A union set referencing the ScopStmts we are interested
291 ///                   in.
292 /// @param References The SubtreeReferences data structure through which
293 ///                   results are returned and further information is
294 ///                   provided.
295 static void
296 addReferencesFromStmtUnionSet(isl::union_set USet,
297                               struct SubtreeReferences &References) {
298 
299   for (isl::set Set : USet.get_set_list())
300     addReferencesFromStmtSet(Set, &References);
301 }
302 
303 __isl_give isl_union_map *
304 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
305   return IslAstInfo::getSchedule(For);
306 }
307 
308 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
309                                             SetVector<Value *> &Values,
310                                             SetVector<const Loop *> &Loops) {
311   SetVector<const SCEV *> SCEVs;
312   struct SubtreeReferences References = {
313       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
314 
315   for (const auto &I : IDToValue)
316     Values.insert(I.second);
317 
318   // NOTE: this is populated in IslNodeBuilder::addParameters
319   for (const auto &I : OutsideLoopIterations)
320     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
321 
322   isl::union_set Schedule =
323       isl::manage(isl_union_map_domain(getScheduleForAstNode(For)));
324   addReferencesFromStmtUnionSet(Schedule, References);
325 
326   for (const SCEV *Expr : SCEVs) {
327     findValues(Expr, SE, Values);
328     findLoops(Expr, Loops);
329   }
330 
331   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
332 
333   /// Note: Code generation of induction variables of loops outside Scops
334   ///
335   /// Remove loops that contain the scop or that are part of the scop, as they
336   /// are considered local. This leaves only loops that are before the scop, but
337   /// do not contain the scop itself.
338   /// We ignore loops perfectly contained in the Scop because these are already
339   /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
340   /// whose induction variables are referred to by the Scop, but the Scop is not
341   /// fully contained in these Loops. Since there can be many of these,
342   /// we choose to codegen these on-demand.
343   /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
344   Loops.remove_if([this](const Loop *L) {
345     return S.contains(L) || L->contains(S.getEntry());
346   });
347 
348   // Contains Values that may need to be replaced with other values
349   // due to replacements from the ValueMap. We should make sure
350   // that we return correctly remapped values.
351   // NOTE: this code path is tested by:
352   //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
353   //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
354   SetVector<Value *> ReplacedValues;
355   for (Value *V : Values) {
356     ReplacedValues.insert(getLatestValue(V));
357   }
358   Values = ReplacedValues;
359 }
360 
361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
362   SmallPtrSet<Value *, 5> Inserted;
363 
364   for (const auto &I : IDToValue) {
365     IDToValue[I.first] = NewValues[I.second];
366     Inserted.insert(I.second);
367   }
368 
369   for (const auto &I : NewValues) {
370     if (Inserted.count(I.first))
371       continue;
372 
373     ValueMap[I.first] = I.second;
374   }
375 }
376 
377 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
378   auto It = ValueMap.find(Original);
379   if (It == ValueMap.end())
380     return Original;
381   return It->second;
382 }
383 
384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
385                                       std::vector<Value *> &IVS,
386                                       __isl_take isl_id *IteratorID,
387                                       __isl_take isl_union_map *Schedule) {
388   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
389   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
390   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
391   isl_ast_expr_free(StmtExpr);
392   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
393   std::vector<LoopToScevMapT> VLTS(IVS.size());
394 
395   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
396   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
397   isl_map *S = isl_map_from_union_map(Schedule);
398 
399   auto *NewAccesses = createNewAccesses(Stmt, User);
400   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
401   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
402   isl_id_to_ast_expr_free(NewAccesses);
403   isl_map_free(S);
404   isl_id_free(Id);
405   isl_ast_node_free(User);
406 }
407 
408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
409   auto *Id = isl_ast_node_mark_get_id(Node);
410   auto Child = isl_ast_node_mark_get_node(Node);
411   isl_ast_node_free(Node);
412   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
413   // it will be optimized away and we should skip it.
414   if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
415       isl_ast_node_get_type(Child) == isl_ast_node_for) {
416     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
417     int VectorWidth = getNumberOfIterations(isl::manage_copy(Child));
418     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
419       createForVector(Child, VectorWidth);
420     else
421       createForSequential(isl::manage(Child), true);
422     isl_id_free(Id);
423     return;
424   }
425   if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
426     auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
427     Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
428   }
429 
430   BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id));
431   BandAttr *AncestorLoopAttr;
432   if (ChildLoopAttr) {
433     // Save current LoopAttr environment to restore again when leaving this
434     // subtree. This means there was no loop between the ancestor LoopAttr and
435     // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This
436     // can happen e.g. if the AST build peeled or unrolled the loop.
437     AncestorLoopAttr = Annotator.getStagingAttrEnv();
438 
439     Annotator.getStagingAttrEnv() = ChildLoopAttr;
440   }
441 
442   create(Child);
443 
444   if (ChildLoopAttr) {
445     assert(Annotator.getStagingAttrEnv() == ChildLoopAttr &&
446            "Nest must not overwrite loop attr environment");
447     Annotator.getStagingAttrEnv() = AncestorLoopAttr;
448   }
449 
450   isl_id_free(Id);
451 }
452 
453 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
454                                      int VectorWidth) {
455   isl_ast_node *Body = isl_ast_node_for_get_body(For);
456   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
457   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
458   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
459   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
460 
461   Value *ValueLB = ExprBuilder.create(Init);
462   Value *ValueInc = ExprBuilder.create(Inc);
463 
464   Type *MaxType = ExprBuilder.getType(Iterator);
465   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
466   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
467 
468   if (MaxType != ValueLB->getType())
469     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
470   if (MaxType != ValueInc->getType())
471     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
472 
473   std::vector<Value *> IVS(VectorWidth);
474   IVS[0] = ValueLB;
475 
476   for (int i = 1; i < VectorWidth; i++)
477     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
478 
479   isl_union_map *Schedule = getScheduleForAstNode(For);
480   assert(Schedule && "For statement annotation does not contain its schedule");
481 
482   IDToValue[IteratorID] = ValueLB;
483 
484   switch (isl_ast_node_get_type(Body)) {
485   case isl_ast_node_user:
486     createUserVector(Body, IVS, isl_id_copy(IteratorID),
487                      isl_union_map_copy(Schedule));
488     break;
489   case isl_ast_node_block: {
490     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
491 
492     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
493       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
494                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
495 
496     isl_ast_node_free(Body);
497     isl_ast_node_list_free(List);
498     break;
499   }
500   default:
501     isl_ast_node_dump(Body);
502     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
503   }
504 
505   IDToValue.erase(IDToValue.find(IteratorID));
506   isl_id_free(IteratorID);
507   isl_union_map_free(Schedule);
508 
509   isl_ast_node_free(For);
510   isl_ast_expr_free(Iterator);
511 
512   VectorLoops++;
513 }
514 
515 /// Restore the initial ordering of dimensions of the band node
516 ///
517 /// In case the band node represents all the dimensions of the iteration
518 /// domain, recreate the band node to restore the initial ordering of the
519 /// dimensions.
520 ///
521 /// @param Node The band node to be modified.
522 /// @return The modified schedule node.
523 static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
524   assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
525   auto Body = Node.for_get_body();
526   if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
527     return false;
528   auto Id = Body.mark_get_id();
529   if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
530     return true;
531   return false;
532 }
533 
534 void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) {
535   Value *ValueLB, *ValueUB, *ValueInc;
536   Type *MaxType;
537   BasicBlock *ExitBlock;
538   Value *IV;
539   CmpInst::Predicate Predicate;
540 
541   bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);
542 
543   isl::ast_node Body = For.for_get_body();
544 
545   // isl_ast_node_for_is_degenerate(For)
546   //
547   // TODO: For degenerated loops we could generate a plain assignment.
548   //       However, for now we just reuse the logic for normal loops, which will
549   //       create a loop with a single iteration.
550 
551   isl::ast_expr Init = For.for_get_init();
552   isl::ast_expr Inc = For.for_get_inc();
553   isl::ast_expr Iterator = For.for_get_iterator();
554   isl::id IteratorID = Iterator.get_id();
555   isl::ast_expr UB = getUpperBound(For, Predicate);
556 
557   ValueLB = ExprBuilder.create(Init.release());
558   ValueUB = ExprBuilder.create(UB.release());
559   ValueInc = ExprBuilder.create(Inc.release());
560 
561   MaxType = ExprBuilder.getType(Iterator.get());
562   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
563   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
564   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
565 
566   if (MaxType != ValueLB->getType())
567     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
568   if (MaxType != ValueUB->getType())
569     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
570   if (MaxType != ValueInc->getType())
571     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
572 
573   // If we can show that LB <Predicate> UB holds at least once, we can
574   // omit the GuardBB in front of the loop.
575   bool UseGuardBB =
576       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
577   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
578                   Predicate, &Annotator, MarkParallel, UseGuardBB,
579                   LoopVectorizerDisabled);
580   IDToValue[IteratorID.get()] = IV;
581 
582   create(Body.release());
583 
584   Annotator.popLoop(MarkParallel);
585 
586   IDToValue.erase(IDToValue.find(IteratorID.get()));
587 
588   Builder.SetInsertPoint(&ExitBlock->front());
589 
590   SequentialLoops++;
591 }
592 
593 /// Remove the BBs contained in a (sub)function from the dominator tree.
594 ///
595 /// This function removes the basic blocks that are part of a subfunction from
596 /// the dominator tree. Specifically, when generating code it may happen that at
597 /// some point the code generation continues in a new sub-function (e.g., when
598 /// generating OpenMP code). The basic blocks that are created in this
599 /// sub-function are then still part of the dominator tree of the original
600 /// function, such that the dominator tree reaches over function boundaries.
601 /// This is not only incorrect, but also causes crashes. This function now
602 /// removes from the dominator tree all basic blocks that are dominated (and
603 /// consequently reachable) from the entry block of this (sub)function.
604 ///
605 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
606 /// the function/region it runs on. Hence, the pure need for this function shows
607 /// that we do not comply to this rule. At the moment, this does not cause any
608 /// issues, but we should be aware that such issues may appear. Unfortunately
609 /// the current LLVM pass infrastructure does not allow to make Polly a module
610 /// or call-graph pass to solve this issue, as such a pass would not have access
611 /// to the per-function analyses passes needed by Polly. A future pass manager
612 /// infrastructure is supposed to enable such kind of access possibly allowing
613 /// us to create a cleaner solution here.
614 ///
615 /// FIXME: Instead of adding the dominance information and then dropping it
616 /// later on, we should try to just not add it in the first place. This requires
617 /// some careful testing to make sure this does not break in interaction with
618 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
619 /// which may try to update it.
620 ///
621 /// @param F The function which contains the BBs to removed.
622 /// @param DT The dominator tree from which to remove the BBs.
623 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
624   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
625   std::vector<BasicBlock *> Nodes;
626 
627   // We can only remove an element from the dominator tree, if all its children
628   // have been removed. To ensure this we obtain the list of nodes to remove
629   // using a post-order tree traversal.
630   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
631     Nodes.push_back(I->getBlock());
632 
633   for (BasicBlock *BB : Nodes)
634     DT.eraseNode(BB);
635 }
636 
637 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
638   isl_ast_node *Body;
639   isl_ast_expr *Init, *Inc, *Iterator, *UB;
640   isl_id *IteratorID;
641   Value *ValueLB, *ValueUB, *ValueInc;
642   Type *MaxType;
643   Value *IV;
644   CmpInst::Predicate Predicate;
645 
646   // The preamble of parallel code interacts different than normal code with
647   // e.g., scalar initialization. Therefore, we ensure the parallel code is
648   // separated from the last basic block.
649   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
650                                  &*Builder.GetInsertPoint(), &DT, &LI);
651   ParBB->setName("polly.parallel.for");
652   Builder.SetInsertPoint(&ParBB->front());
653 
654   Body = isl_ast_node_for_get_body(For);
655   Init = isl_ast_node_for_get_init(For);
656   Inc = isl_ast_node_for_get_inc(For);
657   Iterator = isl_ast_node_for_get_iterator(For);
658   IteratorID = isl_ast_expr_get_id(Iterator);
659   UB = getUpperBound(isl::manage_copy(For), Predicate).release();
660 
661   ValueLB = ExprBuilder.create(Init);
662   ValueUB = ExprBuilder.create(UB);
663   ValueInc = ExprBuilder.create(Inc);
664 
665   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
666   // expression, we need to adjust the loop bound by one.
667   if (Predicate == CmpInst::ICMP_SLT)
668     ValueUB = Builder.CreateAdd(
669         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
670 
671   MaxType = ExprBuilder.getType(Iterator);
672   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
673   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
674   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
675 
676   if (MaxType != ValueLB->getType())
677     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
678   if (MaxType != ValueUB->getType())
679     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
680   if (MaxType != ValueInc->getType())
681     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
682 
683   BasicBlock::iterator LoopBody;
684 
685   SetVector<Value *> SubtreeValues;
686   SetVector<const Loop *> Loops;
687 
688   getReferencesInSubtree(For, SubtreeValues, Loops);
689 
690   // Create for all loops we depend on values that contain the current loop
691   // iteration. These values are necessary to generate code for SCEVs that
692   // depend on such loops. As a result we need to pass them to the subfunction.
693   // See [Code generation of induction variables of loops outside Scops]
694   for (const Loop *L : Loops) {
695     Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
696     SubtreeValues.insert(LoopInductionVar);
697   }
698 
699   ValueMapT NewValues;
700 
701   std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;
702 
703   switch (PollyOmpBackend) {
704   case OpenMPBackend::GNU:
705     ParallelLoopGenPtr.reset(
706         new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
707     break;
708   case OpenMPBackend::LLVM:
709     ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
710     break;
711   }
712 
713   IV = ParallelLoopGenPtr->createParallelLoop(
714       ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
715   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
716   Builder.SetInsertPoint(&*LoopBody);
717 
718   // Remember the parallel subfunction
719   ParallelSubfunctions.push_back(LoopBody->getFunction());
720 
721   // Save the current values.
722   auto ValueMapCopy = ValueMap;
723   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
724 
725   updateValues(NewValues);
726   IDToValue[IteratorID] = IV;
727 
728   ValueMapT NewValuesReverse;
729 
730   for (auto P : NewValues)
731     NewValuesReverse[P.second] = P.first;
732 
733   Annotator.addAlternativeAliasBases(NewValuesReverse);
734 
735   create(Body);
736 
737   Annotator.resetAlternativeAliasBases();
738   // Restore the original values.
739   ValueMap = ValueMapCopy;
740   IDToValue = IDToValueCopy;
741 
742   Builder.SetInsertPoint(&*AfterLoop);
743   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
744 
745   for (const Loop *L : Loops)
746     OutsideLoopIterations.erase(L);
747 
748   isl_ast_node_free(For);
749   isl_ast_expr_free(Iterator);
750   isl_id_free(IteratorID);
751 
752   ParallelLoops++;
753 }
754 
755 /// Return whether any of @p Node's statements contain partial accesses.
756 ///
757 /// Partial accesses are not supported by Polly's vector code generator.
758 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
759   return isl_ast_node_foreach_descendant_top_down(
760              Node,
761              [](isl_ast_node *Node, void *User) -> isl_bool {
762                if (isl_ast_node_get_type(Node) != isl_ast_node_user)
763                  return isl_bool_true;
764 
765                isl::ast_expr Expr =
766                    isl::manage(isl_ast_node_user_get_expr(Node));
767                isl::ast_expr StmtExpr = Expr.get_op_arg(0);
768                isl::id Id = StmtExpr.get_id();
769 
770                ScopStmt *Stmt =
771                    static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
772                isl::set StmtDom = Stmt->getDomain();
773                for (auto *MA : *Stmt) {
774                  if (MA->isLatestPartialAccess())
775                    return isl_bool_error;
776                }
777                return isl_bool_true;
778              },
779              nullptr) == isl_stat_error;
780 }
781 
782 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
783   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
784 
785   if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) &&
786       !IslAstInfo::isReductionParallel(For)) {
787     int VectorWidth = getNumberOfIterations(isl::manage_copy(For));
788     if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
789       createForVector(For, VectorWidth);
790       return;
791     }
792   }
793 
794   if (IslAstInfo::isExecutedInParallel(For)) {
795     createForParallel(For);
796     return;
797   }
798   bool Parallel =
799       (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
800   createForSequential(isl::manage(For), Parallel);
801 }
802 
803 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
804   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
805 
806   Function *F = Builder.GetInsertBlock()->getParent();
807   LLVMContext &Context = F->getContext();
808 
809   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
810                                   &*Builder.GetInsertPoint(), &DT, &LI);
811   CondBB->setName("polly.cond");
812   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
813   MergeBB->setName("polly.merge");
814   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
815   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
816 
817   DT.addNewBlock(ThenBB, CondBB);
818   DT.addNewBlock(ElseBB, CondBB);
819   DT.changeImmediateDominator(MergeBB, CondBB);
820 
821   Loop *L = LI.getLoopFor(CondBB);
822   if (L) {
823     L->addBasicBlockToLoop(ThenBB, LI);
824     L->addBasicBlockToLoop(ElseBB, LI);
825   }
826 
827   CondBB->getTerminator()->eraseFromParent();
828 
829   Builder.SetInsertPoint(CondBB);
830   Value *Predicate = ExprBuilder.create(Cond);
831   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
832   Builder.SetInsertPoint(ThenBB);
833   Builder.CreateBr(MergeBB);
834   Builder.SetInsertPoint(ElseBB);
835   Builder.CreateBr(MergeBB);
836   Builder.SetInsertPoint(&ThenBB->front());
837 
838   create(isl_ast_node_if_get_then(If));
839 
840   Builder.SetInsertPoint(&ElseBB->front());
841 
842   if (isl_ast_node_if_has_else(If))
843     create(isl_ast_node_if_get_else(If));
844 
845   Builder.SetInsertPoint(&MergeBB->front());
846 
847   isl_ast_node_free(If);
848 
849   IfConditions++;
850 }
851 
852 __isl_give isl_id_to_ast_expr *
853 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
854                                   __isl_keep isl_ast_node *Node) {
855   isl_id_to_ast_expr *NewAccesses =
856       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);
857 
858   auto *Build = IslAstInfo::getBuild(Node);
859   assert(Build && "Could not obtain isl_ast_build from user node");
860   Stmt->setAstBuild(isl::manage_copy(Build));
861 
862   for (auto *MA : *Stmt) {
863     if (!MA->hasNewAccessRelation()) {
864       if (PollyGenerateExpressions) {
865         if (!MA->isAffine())
866           continue;
867         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
868           continue;
869 
870         auto *BasePtr =
871             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
872         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
873           continue;
874       } else {
875         continue;
876       }
877     }
878     assert(MA->isAffine() &&
879            "Only affine memory accesses can be code generated");
880 
881     auto Schedule = isl_ast_build_get_schedule(Build);
882 
883 #ifndef NDEBUG
884     if (MA->isRead()) {
885       auto Dom = Stmt->getDomain().release();
886       auto SchedDom = isl_set_from_union_set(
887           isl_union_map_domain(isl_union_map_copy(Schedule)));
888       auto AccDom = isl_map_domain(MA->getAccessRelation().release());
889       Dom = isl_set_intersect_params(Dom,
890                                      Stmt->getParent()->getContext().release());
891       SchedDom = isl_set_intersect_params(
892           SchedDom, Stmt->getParent()->getContext().release());
893       assert(isl_set_is_subset(SchedDom, AccDom) &&
894              "Access relation not defined on full schedule domain");
895       assert(isl_set_is_subset(Dom, AccDom) &&
896              "Access relation not defined on full domain");
897       isl_set_free(AccDom);
898       isl_set_free(SchedDom);
899       isl_set_free(Dom);
900     }
901 #endif
902 
903     auto PWAccRel =
904         MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
905 
906     // isl cannot generate an index expression for access-nothing accesses.
907     isl::set AccDomain =
908         isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
909     isl::set Context = S.getContext();
910     AccDomain = AccDomain.intersect_params(Context);
911     if (AccDomain.is_empty()) {
912       isl_pw_multi_aff_free(PWAccRel);
913       continue;
914     }
915 
916     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
917     NewAccesses =
918         isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
919   }
920 
921   return NewAccesses;
922 }
923 
924 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
925                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
926   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
927          "Expression of type 'op' expected");
928   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
929          "Operation of type 'call' expected");
930   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
931     isl_ast_expr *SubExpr;
932     Value *V;
933 
934     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
935     V = ExprBuilder.create(SubExpr);
936     ScalarEvolution *SE = Stmt->getParent()->getSE();
937     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
938   }
939 
940   isl_ast_expr_free(Expr);
941 }
942 
943 void IslNodeBuilder::createSubstitutionsVector(
944     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
945     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
946     __isl_take isl_id *IteratorID) {
947   int i = 0;
948 
949   Value *OldValue = IDToValue[IteratorID];
950   for (Value *IV : IVS) {
951     IDToValue[IteratorID] = IV;
952     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
953     i++;
954   }
955 
956   IDToValue[IteratorID] = OldValue;
957   isl_id_free(IteratorID);
958   isl_ast_expr_free(Expr);
959 }
960 
961 void IslNodeBuilder::generateCopyStmt(
962     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
963   assert(Stmt->size() == 2);
964   auto ReadAccess = Stmt->begin();
965   auto WriteAccess = ReadAccess++;
966   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
967   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
968          "Accesses use the same data type");
969   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
970   auto *AccessExpr =
971       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
972   auto *LoadValue = ExprBuilder.create(AccessExpr);
973   AccessExpr =
974       isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
975   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first;
976   Builder.CreateStore(LoadValue, StoreAddr);
977 }
978 
979 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
980   assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
981          "trying to materialize loop induction variable twice");
982   const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
983                                           SE.getUnknown(Builder.getInt64(1)), L,
984                                           SCEV::FlagAnyWrap);
985   Value *V = generateSCEV(OuterLIV);
986   OutsideLoopIterations[L] = SE.getUnknown(V);
987   return V;
988 }
989 
990 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
991   LoopToScevMapT LTS;
992   isl_id *Id;
993   ScopStmt *Stmt;
994 
995   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
996   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
997   Id = isl_ast_expr_get_id(StmtExpr);
998   isl_ast_expr_free(StmtExpr);
999 
1000   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1001 
1002   Stmt = (ScopStmt *)isl_id_get_user(Id);
1003   auto *NewAccesses = createNewAccesses(Stmt, User);
1004   if (Stmt->isCopyStmt()) {
1005     generateCopyStmt(Stmt, NewAccesses);
1006     isl_ast_expr_free(Expr);
1007   } else {
1008     createSubstitutions(Expr, Stmt, LTS);
1009 
1010     if (Stmt->isBlockStmt())
1011       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
1012     else
1013       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
1014   }
1015 
1016   isl_id_to_ast_expr_free(NewAccesses);
1017   isl_ast_node_free(User);
1018   isl_id_free(Id);
1019 }
1020 
1021 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
1022   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
1023 
1024   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
1025     create(isl_ast_node_list_get_ast_node(List, i));
1026 
1027   isl_ast_node_free(Block);
1028   isl_ast_node_list_free(List);
1029 }
1030 
1031 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
1032   switch (isl_ast_node_get_type(Node)) {
1033   case isl_ast_node_error:
1034     llvm_unreachable("code generation error");
1035   case isl_ast_node_mark:
1036     createMark(Node);
1037     return;
1038   case isl_ast_node_for:
1039     createFor(Node);
1040     return;
1041   case isl_ast_node_if:
1042     createIf(Node);
1043     return;
1044   case isl_ast_node_user:
1045     createUser(Node);
1046     return;
1047   case isl_ast_node_block:
1048     createBlock(Node);
1049     return;
1050   }
1051 
1052   llvm_unreachable("Unknown isl_ast_node type");
1053 }
1054 
1055 bool IslNodeBuilder::materializeValue(isl_id *Id) {
1056   // If the Id is already mapped, skip it.
1057   if (!IDToValue.count(Id)) {
1058     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
1059     Value *V = nullptr;
1060 
1061     // Parameters could refer to invariant loads that need to be
1062     // preloaded before we can generate code for the parameter. Thus,
1063     // check if any value referred to in ParamSCEV is an invariant load
1064     // and if so make sure its equivalence class is preloaded.
1065     SetVector<Value *> Values;
1066     findValues(ParamSCEV, SE, Values);
1067     for (auto *Val : Values) {
1068       // Check if the value is an instruction in a dead block within the SCoP
1069       // and if so do not code generate it.
1070       if (auto *Inst = dyn_cast<Instruction>(Val)) {
1071         if (S.contains(Inst)) {
1072           bool IsDead = true;
1073 
1074           // Check for "undef" loads first, then if there is a statement for
1075           // the parent of Inst and lastly if the parent of Inst has an empty
1076           // domain. In the first and last case the instruction is dead but if
1077           // there is a statement or the domain is not empty Inst is not dead.
1078           auto MemInst = MemAccInst::dyn_cast(Inst);
1079           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
1080           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
1081                              SE.getPointerBase(SE.getSCEV(Address))) {
1082           } else if (S.getStmtFor(Inst)) {
1083             IsDead = false;
1084           } else {
1085             auto *Domain = S.getDomainConditions(Inst->getParent()).release();
1086             IsDead = isl_set_is_empty(Domain);
1087             isl_set_free(Domain);
1088           }
1089 
1090           if (IsDead) {
1091             V = UndefValue::get(ParamSCEV->getType());
1092             break;
1093           }
1094         }
1095       }
1096 
1097       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
1098         // Check if this invariant access class is empty, hence if we never
1099         // actually added a loads instruction to it. In that case it has no
1100         // (meaningful) users and we should not try to code generate it.
1101         if (IAClass->InvariantAccesses.empty())
1102           V = UndefValue::get(ParamSCEV->getType());
1103 
1104         if (!preloadInvariantEquivClass(*IAClass)) {
1105           isl_id_free(Id);
1106           return false;
1107         }
1108       }
1109     }
1110 
1111     V = V ? V : generateSCEV(ParamSCEV);
1112     IDToValue[Id] = V;
1113   }
1114 
1115   isl_id_free(Id);
1116   return true;
1117 }
1118 
1119 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
1120   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
1121     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
1122       continue;
1123     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
1124     if (!materializeValue(Id))
1125       return false;
1126   }
1127   return true;
1128 }
1129 
1130 bool IslNodeBuilder::materializeParameters() {
1131   for (const SCEV *Param : S.parameters()) {
1132     isl_id *Id = S.getIdForParam(Param).release();
1133     if (!materializeValue(Id))
1134       return false;
1135   }
1136   return true;
1137 }
1138 
1139 /// Generate the computation of the size of the outermost dimension from the
1140 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
1141 /// contains the size of the array.
1142 ///
1143 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
1144 /// %desc.dimensionty = type { i64, i64, i64 }
1145 /// @g_arr = global %arrty zeroinitializer, align 32
1146 /// ...
1147 /// %0 = load i64, i64* getelementptr inbounds
1148 ///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
1149 /// %1 = load i64, i64* getelementptr inbounds
1150 ///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
1151 /// %2 = sub nsw i64 %0, %1
1152 /// %size = add nsw i64 %2, 1
1153 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
1154                                              PollyIRBuilder &Builder,
1155                                              std::string ArrayName) {
1156   assert(GlobalDescriptor && "invalid global descriptor given");
1157 
1158   Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1159                       Builder.getInt64(0), Builder.getInt32(2)};
1160   Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
1161                                             ArrayName + "_end_ptr");
1162   Type *type = cast<GEPOperator>(endPtr)->getResultElementType();
1163   assert(isa<IntegerType>(type) && "expected type of end to be integral");
1164 
1165   Value *end = Builder.CreateLoad(type, endPtr, ArrayName + "_end");
1166 
1167   Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1168                         Builder.getInt64(0), Builder.getInt32(1)};
1169   Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
1170                                               ArrayName + "_begin_ptr");
1171   Value *begin = Builder.CreateLoad(type, beginPtr, ArrayName + "_begin");
1172 
1173   Value *size =
1174       Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
1175 
1176   size = Builder.CreateNSWAdd(
1177       end, ConstantInt::get(type, 1, /* signed = */ true), ArrayName + "_size");
1178 
1179   return size;
1180 }
1181 
1182 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
1183   for (ScopArrayInfo *Array : S.arrays()) {
1184     if (Array->getNumberOfDimensions() == 0)
1185       continue;
1186 
1187     Value *FAD = Array->getFortranArrayDescriptor();
1188     if (!FAD)
1189       continue;
1190 
1191     isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
1192     assert(ParametricPwAff && "parametric pw_aff corresponding "
1193                               "to outermost dimension does not "
1194                               "exist");
1195 
1196     isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
1197     isl_pw_aff_free(ParametricPwAff);
1198 
1199     assert(Id && "pw_aff is not parametric");
1200 
1201     if (IDToValue.count(Id)) {
1202       isl_id_free(Id);
1203       continue;
1204     }
1205 
1206     Value *FinalValue =
1207         buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
1208     assert(FinalValue && "unable to build Fortran array "
1209                          "descriptor load of outermost dimension");
1210     IDToValue[Id] = FinalValue;
1211     isl_id_free(Id);
1212   }
1213   return true;
1214 }
1215 
1216 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1217                                               isl_ast_build *Build,
1218                                               Instruction *AccInst) {
1219   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1220   isl_ast_expr *Access =
1221       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1222   auto *Address = isl_ast_expr_address_of(Access);
1223   auto *AddressValue = ExprBuilder.create(Address);
1224   Value *PreloadVal;
1225 
1226   // Correct the type as the SAI might have a different type than the user
1227   // expects, especially if the base pointer is a struct.
1228   Type *Ty = AccInst->getType();
1229 
1230   auto *Ptr = AddressValue;
1231   auto Name = Ptr->getName();
1232   auto AS = Ptr->getType()->getPointerAddressSpace();
1233   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1234   PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load");
1235   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1236     PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());
1237 
1238   // TODO: This is only a hot fix for SCoP sequences that use the same load
1239   //       instruction contained and hoisted by one of the SCoPs.
1240   if (SE.isSCEVable(Ty))
1241     SE.forgetValue(AccInst);
1242 
1243   return PreloadVal;
1244 }
1245 
1246 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1247                                             isl_set *Domain) {
1248   isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1249   AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1250 
1251   if (!materializeParameters(AccessRange)) {
1252     isl_set_free(AccessRange);
1253     isl_set_free(Domain);
1254     return nullptr;
1255   }
1256 
1257   auto *Build =
1258       isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1259   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1260   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1261   isl_set_free(Universe);
1262 
1263   Instruction *AccInst = MA.getAccessInstruction();
1264   Type *AccInstTy = AccInst->getType();
1265 
1266   Value *PreloadVal = nullptr;
1267   if (AlwaysExecuted) {
1268     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1269     isl_ast_build_free(Build);
1270     isl_set_free(Domain);
1271     return PreloadVal;
1272   }
1273 
1274   if (!materializeParameters(Domain)) {
1275     isl_ast_build_free(Build);
1276     isl_set_free(AccessRange);
1277     isl_set_free(Domain);
1278     return nullptr;
1279   }
1280 
1281   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1282   Domain = nullptr;
1283 
1284   ExprBuilder.setTrackOverflow(true);
1285   Value *Cond = ExprBuilder.create(DomainCond);
1286   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1287                                               "polly.preload.cond.overflown");
1288   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1289   ExprBuilder.setTrackOverflow(false);
1290 
1291   if (!Cond->getType()->isIntegerTy(1))
1292     Cond = Builder.CreateIsNotNull(Cond);
1293 
1294   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1295                                   &*Builder.GetInsertPoint(), &DT, &LI);
1296   CondBB->setName("polly.preload.cond");
1297 
1298   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1299   MergeBB->setName("polly.preload.merge");
1300 
1301   Function *F = Builder.GetInsertBlock()->getParent();
1302   LLVMContext &Context = F->getContext();
1303   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1304 
1305   DT.addNewBlock(ExecBB, CondBB);
1306   if (Loop *L = LI.getLoopFor(CondBB))
1307     L->addBasicBlockToLoop(ExecBB, LI);
1308 
1309   auto *CondBBTerminator = CondBB->getTerminator();
1310   Builder.SetInsertPoint(CondBBTerminator);
1311   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1312   CondBBTerminator->eraseFromParent();
1313 
1314   Builder.SetInsertPoint(ExecBB);
1315   Builder.CreateBr(MergeBB);
1316 
1317   Builder.SetInsertPoint(ExecBB->getTerminator());
1318   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1319   Builder.SetInsertPoint(MergeBB->getTerminator());
1320   auto *MergePHI = Builder.CreatePHI(
1321       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1322   PreloadVal = MergePHI;
1323 
1324   if (!PreAccInst) {
1325     PreloadVal = nullptr;
1326     PreAccInst = UndefValue::get(AccInstTy);
1327   }
1328 
1329   MergePHI->addIncoming(PreAccInst, ExecBB);
1330   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1331 
1332   isl_ast_build_free(Build);
1333   return PreloadVal;
1334 }
1335 
1336 bool IslNodeBuilder::preloadInvariantEquivClass(
1337     InvariantEquivClassTy &IAClass) {
1338   // For an equivalence class of invariant loads we pre-load the representing
1339   // element with the unified execution context. However, we have to map all
1340   // elements of the class to the one preloaded load as they are referenced
1341   // during the code generation and therefor need to be mapped.
1342   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1343   if (MAs.empty())
1344     return true;
1345 
1346   MemoryAccess *MA = MAs.front();
1347   assert(MA->isArrayKind() && MA->isRead());
1348 
1349   // If the access function was already mapped, the preload of this equivalence
1350   // class was triggered earlier already and doesn't need to be done again.
1351   if (ValueMap.count(MA->getAccessInstruction()))
1352     return true;
1353 
1354   // Check for recursion which can be caused by additional constraints, e.g.,
1355   // non-finite loop constraints. In such a case we have to bail out and insert
1356   // a "false" runtime check that will cause the original code to be executed.
1357   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1358   if (!PreloadedPtrs.insert(PtrId).second)
1359     return false;
1360 
1361   // The execution context of the IAClass.
1362   isl::set &ExecutionCtx = IAClass.ExecutionContext;
1363 
1364   // If the base pointer of this class is dependent on another one we have to
1365   // make sure it was preloaded already.
1366   auto *SAI = MA->getScopArrayInfo();
1367   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1368     if (!preloadInvariantEquivClass(*BaseIAClass))
1369       return false;
1370 
1371     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1372     // we need to refine the ExecutionCtx.
1373     isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1374     ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1375   }
1376 
1377   // If the size of a dimension is dependent on another class, make sure it is
1378   // preloaded.
1379   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1380     const SCEV *Dim = SAI->getDimensionSize(i);
1381     SetVector<Value *> Values;
1382     findValues(Dim, SE, Values);
1383     for (auto *Val : Values) {
1384       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1385         if (!preloadInvariantEquivClass(*BaseIAClass))
1386           return false;
1387 
1388         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1389         // and we need to refine the ExecutionCtx.
1390         isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1391         ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1392       }
1393     }
1394   }
1395 
1396   Instruction *AccInst = MA->getAccessInstruction();
1397   Type *AccInstTy = AccInst->getType();
1398 
1399   Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
1400   if (!PreloadVal)
1401     return false;
1402 
1403   for (const MemoryAccess *MA : MAs) {
1404     Instruction *MAAccInst = MA->getAccessInstruction();
1405     assert(PreloadVal->getType() == MAAccInst->getType());
1406     ValueMap[MAAccInst] = PreloadVal;
1407   }
1408 
1409   if (SE.isSCEVable(AccInstTy)) {
1410     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1411     if (ParamId)
1412       IDToValue[ParamId] = PreloadVal;
1413     isl_id_free(ParamId);
1414   }
1415 
1416   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1417   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1418                                 AccInst->getName() + ".preload.s2a",
1419                                 &*EntryBB->getFirstInsertionPt());
1420   Builder.CreateStore(PreloadVal, Alloca);
1421   ValueMapT PreloadedPointer;
1422   PreloadedPointer[PreloadVal] = AccInst;
1423   Annotator.addAlternativeAliasBases(PreloadedPointer);
1424 
1425   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1426     Value *BasePtr = DerivedSAI->getBasePtr();
1427 
1428     for (const MemoryAccess *MA : MAs) {
1429       // As the derived SAI information is quite coarse, any load from the
1430       // current SAI could be the base pointer of the derived SAI, however we
1431       // should only change the base pointer of the derived SAI if we actually
1432       // preloaded it.
1433       if (BasePtr == MA->getOriginalBaseAddr()) {
1434         assert(BasePtr->getType() == PreloadVal->getType());
1435         DerivedSAI->setBasePtr(PreloadVal);
1436       }
1437 
1438       // For scalar derived SAIs we remap the alloca used for the derived value.
1439       if (BasePtr == MA->getAccessInstruction())
1440         ScalarMap[DerivedSAI] = Alloca;
1441     }
1442   }
1443 
1444   for (const MemoryAccess *MA : MAs) {
1445     Instruction *MAAccInst = MA->getAccessInstruction();
1446     // Use the escape system to get the correct value to users outside the SCoP.
1447     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1448     for (auto *U : MAAccInst->users())
1449       if (Instruction *UI = dyn_cast<Instruction>(U))
1450         if (!S.contains(UI))
1451           EscapeUsers.push_back(UI);
1452 
1453     if (EscapeUsers.empty())
1454       continue;
1455 
1456     EscapeMap[MA->getAccessInstruction()] =
1457         std::make_pair(Alloca, std::move(EscapeUsers));
1458   }
1459 
1460   return true;
1461 }
1462 
1463 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1464   for (auto &SAI : S.arrays()) {
1465     if (SAI->getBasePtr())
1466       continue;
1467 
1468     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1469            "The size of the outermost dimension is used to declare newly "
1470            "created arrays that require memory allocation.");
1471 
1472     Type *NewArrayType = nullptr;
1473 
1474     // Get the size of the array = size(dim_1)*...*size(dim_n)
1475     uint64_t ArraySizeInt = 1;
1476     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1477       auto *DimSize = SAI->getDimensionSize(i);
1478       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1479                                      ->getAPInt()
1480                                      .getLimitedValue();
1481 
1482       if (!NewArrayType)
1483         NewArrayType = SAI->getElementType();
1484 
1485       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1486       ArraySizeInt *= UnsignedDimSize;
1487     }
1488 
1489     if (SAI->isOnHeap()) {
1490       LLVMContext &Ctx = NewArrayType->getContext();
1491 
1492       // Get the IntPtrTy from the Datalayout
1493       auto IntPtrTy = DL.getIntPtrType(Ctx);
1494 
1495       // Get the size of the element type in bits
1496       unsigned Size = SAI->getElemSizeInBytes();
1497 
1498       // Insert the malloc call at polly.start
1499       auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
1500       auto *CreatedArray = CallInst::CreateMalloc(
1501           &*InstIt, IntPtrTy, SAI->getElementType(),
1502           ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1503           ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1504           SAI->getName());
1505 
1506       SAI->setBasePtr(CreatedArray);
1507 
1508       // Insert the free call at polly.exiting
1509       CallInst::CreateFree(CreatedArray,
1510                            std::get<1>(StartExitBlocks)->getTerminator());
1511     } else {
1512       auto InstIt = Builder.GetInsertBlock()
1513                         ->getParent()
1514                         ->getEntryBlock()
1515                         .getTerminator();
1516 
1517       auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1518                                           SAI->getName(), &*InstIt);
1519       if (PollyTargetFirstLevelCacheLineSize)
1520         CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
1521       SAI->setBasePtr(CreatedArray);
1522     }
1523   }
1524 }
1525 
1526 bool IslNodeBuilder::preloadInvariantLoads() {
1527   auto &InvariantEquivClasses = S.getInvariantAccesses();
1528   if (InvariantEquivClasses.empty())
1529     return true;
1530 
1531   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1532                                      &*Builder.GetInsertPoint(), &DT, &LI);
1533   PreLoadBB->setName("polly.preload.begin");
1534   Builder.SetInsertPoint(&PreLoadBB->front());
1535 
1536   for (auto &IAClass : InvariantEquivClasses)
1537     if (!preloadInvariantEquivClass(IAClass))
1538       return false;
1539 
1540   return true;
1541 }
1542 
1543 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1544   // Materialize values for the parameters of the SCoP.
1545   materializeParameters();
1546 
1547   // materialize the outermost dimension parameters for a Fortran array.
1548   // NOTE: materializeParameters() does not work since it looks through
1549   // the SCEVs. We don't have a corresponding SCEV for the array size
1550   // parameter
1551   materializeFortranArrayOutermostDimension();
1552 
1553   // Generate values for the current loop iteration for all surrounding loops.
1554   //
1555   // We may also reference loops outside of the scop which do not contain the
1556   // scop itself, but as the number of such scops may be arbitrarily large we do
1557   // not generate code for them here, but only at the point of code generation
1558   // where these values are needed.
1559   Loop *L = LI.getLoopFor(S.getEntry());
1560 
1561   while (L != nullptr && S.contains(L))
1562     L = L->getParentLoop();
1563 
1564   while (L != nullptr) {
1565     materializeNonScopLoopInductionVariable(L);
1566     L = L->getParentLoop();
1567   }
1568 
1569   isl_set_free(Context);
1570 }
1571 
1572 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1573   /// We pass the insert location of our Builder, as Polly ensures during IR
1574   /// generation that there is always a valid CFG into which instructions are
1575   /// inserted. As a result, the insertpoint is known to be always followed by a
1576   /// terminator instruction. This means the insert point may be specified by a
1577   /// terminator instruction, but it can never point to an ->end() iterator
1578   /// which does not have a corresponding instruction. Hence, dereferencing
1579   /// the insertpoint to obtain an instruction is known to be save.
1580   ///
1581   /// We also do not need to update the Builder here, as new instructions are
1582   /// always inserted _before_ the given InsertLocation. As a result, the
1583   /// insert location remains valid.
1584   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1585          "Insert location points after last valid instruction");
1586   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1587   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1588                        InsertLocation, &ValueMap,
1589                        StartBlock->getSinglePredecessor());
1590 }
1591 
1592 /// The AST expression we generate to perform the run-time check assumes
1593 /// computations on integer types of infinite size. As we only use 64-bit
1594 /// arithmetic we check for overflows, in case of which we set the result
1595 /// of this run-time check to false to be conservatively correct,
1596 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1597   auto ExprBuilder = getExprBuilder();
1598 
1599   // In case the AST expression has integers larger than 64 bit, bail out. The
1600   // resulting LLVM-IR will contain operations on types that use more than 64
1601   // bits. These are -- in case wrapping intrinsics are used -- translated to
1602   // runtime library calls that are not available on all systems (e.g., Android)
1603   // and consequently will result in linker errors.
1604   if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
1605     isl_ast_expr_free(Condition);
1606     return Builder.getFalse();
1607   }
1608 
1609   ExprBuilder.setTrackOverflow(true);
1610   Value *RTC = ExprBuilder.create(Condition);
1611   if (!RTC->getType()->isIntegerTy(1))
1612     RTC = Builder.CreateIsNotNull(RTC);
1613   Value *OverflowHappened =
1614       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1615 
1616   if (PollyGenerateRTCPrint) {
1617     auto *F = Builder.GetInsertBlock()->getParent();
1618     RuntimeDebugBuilder::createCPUPrinter(
1619         Builder,
1620         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1621             "RTC: ",
1622         RTC, " Overflow: ", OverflowHappened,
1623         "\n"
1624         "  (0 failed, -1 succeeded)\n"
1625         "  (if one or both are 0 falling back to original code, if both are -1 "
1626         "executing Polly code)\n");
1627   }
1628 
1629   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1630   ExprBuilder.setTrackOverflow(false);
1631 
1632   if (!isa<ConstantInt>(RTC))
1633     VersionedScops++;
1634 
1635   return RTC;
1636 }
1637