1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the IslNodeBuilder, a class to translate an isl AST into
11 // a LLVM-IR AST.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslAst.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/LoopGenerators.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/CodeGen/Utils.h"
23 #include "polly/Config/config.h"
24 #include "polly/DependenceInfo.h"
25 #include "polly/LinkAllPasses.h"
26 #include "polly/Options.h"
27 #include "polly/ScopInfo.h"
28 #include "polly/Support/GICHelper.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "polly/Support/ScopHelper.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Verifier.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "isl/aff.h"
41 #include "isl/ast.h"
42 #include "isl/ast_build.h"
43 #include "isl/list.h"
44 #include "isl/map.h"
45 #include "isl/set.h"
46 #include "isl/union_map.h"
47 #include "isl/union_set.h"
48 
49 using namespace polly;
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "polly-codegen"
53 
54 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
55 
56 // The maximal number of dimensions we allow during invariant load construction.
57 // More complex access ranges will result in very high compile time and are also
58 // unlikely to result in good code. This value is very high and should only
59 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
60 static int const MaxDimensionsInAccessRange = 9;
61 
62 static cl::opt<bool> PollyGenerateRTCPrint(
63     "polly-codegen-emit-rtc-print",
64     cl::desc("Emit code that prints the runtime check result dynamically."),
65     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
66 
67 // If this option is set we always use the isl AST generator to regenerate
68 // memory accesses. Without this option set we regenerate expressions using the
69 // original SCEV expressions and only generate new expressions in case the
70 // access relation has been changed and consequently must be regenerated.
71 static cl::opt<bool> PollyGenerateExpressions(
72     "polly-codegen-generate-expressions",
73     cl::desc("Generate AST expressions for unmodified and modified accesses"),
74     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
75 
76 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
77     "polly-target-first-level-cache-line-size",
78     cl::desc("The size of the first level cache line size specified in bytes."),
79     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
80 
81 __isl_give isl_ast_expr *
82 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
83                               ICmpInst::Predicate &Predicate) {
84   isl_id *UBID, *IteratorID;
85   isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
86   isl_ast_op_type Type;
87 
88   Cond = isl_ast_node_for_get_cond(For);
89   Iterator = isl_ast_node_for_get_iterator(For);
90   isl_ast_expr_get_type(Cond);
91   assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
92          "conditional expression is not an atomic upper bound");
93 
94   Type = isl_ast_expr_get_op_type(Cond);
95 
96   switch (Type) {
97   case isl_ast_op_le:
98     Predicate = ICmpInst::ICMP_SLE;
99     break;
100   case isl_ast_op_lt:
101     Predicate = ICmpInst::ICMP_SLT;
102     break;
103   default:
104     llvm_unreachable("Unexpected comparision type in loop conditon");
105   }
106 
107   Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
108 
109   assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
110          "conditional expression is not an atomic upper bound");
111 
112   UBID = isl_ast_expr_get_id(Arg0);
113 
114   assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
115          "Could not get the iterator");
116 
117   IteratorID = isl_ast_expr_get_id(Iterator);
118 
119   assert(UBID == IteratorID &&
120          "conditional expression is not an atomic upper bound");
121 
122   UB = isl_ast_expr_get_op_arg(Cond, 1);
123 
124   isl_ast_expr_free(Cond);
125   isl_ast_expr_free(Iterator);
126   isl_ast_expr_free(Arg0);
127   isl_id_free(IteratorID);
128   isl_id_free(UBID);
129 
130   return UB;
131 }
132 
133 /// Return true if a return value of Predicate is true for the value represented
134 /// by passed isl_ast_expr_int.
135 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
136                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
137   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
138     isl_ast_expr_free(Expr);
139     return false;
140   }
141   auto ExprVal = isl_ast_expr_get_val(Expr);
142   isl_ast_expr_free(Expr);
143   if (Predicate(ExprVal) != true) {
144     isl_val_free(ExprVal);
145     return false;
146   }
147   isl_val_free(ExprVal);
148   return true;
149 }
150 
151 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
152   assert(isl_ast_node_get_type(For) == isl_ast_node_for);
153   auto Body = isl_ast_node_for_get_body(For);
154 
155   // First, check if we can actually handle this code.
156   switch (isl_ast_node_get_type(Body)) {
157   case isl_ast_node_user:
158     break;
159   case isl_ast_node_block: {
160     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
161     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
162       isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
163       int Type = isl_ast_node_get_type(Node);
164       isl_ast_node_free(Node);
165       if (Type != isl_ast_node_user) {
166         isl_ast_node_list_free(List);
167         isl_ast_node_free(Body);
168         return -1;
169       }
170     }
171     isl_ast_node_list_free(List);
172     break;
173   }
174   default:
175     isl_ast_node_free(Body);
176     return -1;
177   }
178   isl_ast_node_free(Body);
179 
180   auto Init = isl_ast_node_for_get_init(For);
181   if (!checkIslAstExprInt(Init, isl_val_is_zero))
182     return -1;
183   auto Inc = isl_ast_node_for_get_inc(For);
184   if (!checkIslAstExprInt(Inc, isl_val_is_one))
185     return -1;
186   CmpInst::Predicate Predicate;
187   auto UB = getUpperBound(For, Predicate);
188   if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
189     isl_ast_expr_free(UB);
190     return -1;
191   }
192   auto UpVal = isl_ast_expr_get_val(UB);
193   isl_ast_expr_free(UB);
194   int NumberIterations = isl_val_get_num_si(UpVal);
195   isl_val_free(UpVal);
196   if (NumberIterations < 0)
197     return -1;
198   if (Predicate == CmpInst::ICMP_SLT)
199     return NumberIterations;
200   else
201     return NumberIterations + 1;
202 }
203 
204 /// Extract the values and SCEVs needed to generate code for a block.
205 static int findReferencesInBlock(struct SubtreeReferences &References,
206                                  const ScopStmt *Stmt, const BasicBlock *BB) {
207   for (const Instruction &Inst : *BB)
208     for (Value *SrcVal : Inst.operands()) {
209       auto *Scope = References.LI.getLoopFor(BB);
210       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
211         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
212         continue;
213       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
214         References.Values.insert(NewVal);
215     }
216   return 0;
217 }
218 
219 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
220                                bool CreateScalarRefs) {
221   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
222 
223   if (Stmt->isBlockStmt())
224     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
225   else {
226     assert(Stmt->isRegionStmt() &&
227            "Stmt was neither block nor region statement");
228     for (const BasicBlock *BB : Stmt->getRegion()->blocks())
229       findReferencesInBlock(References, Stmt, BB);
230   }
231 
232   for (auto &Access : *Stmt) {
233     if (Access->isArrayKind()) {
234       auto *BasePtr = Access->getScopArrayInfo()->getBasePtr();
235       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
236         if (Stmt->getParent()->contains(OpInst))
237           continue;
238 
239       References.Values.insert(BasePtr);
240       continue;
241     }
242 
243     if (CreateScalarRefs)
244       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
245   }
246 
247   return isl_stat_ok;
248 }
249 
250 /// Extract the out-of-scop values and SCEVs referenced from a set describing
251 /// a ScopStmt.
252 ///
253 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
254 /// statement and the base pointers of the memory accesses. For scalar
255 /// statements we force the generation of alloca memory locations and list
256 /// these locations in the set of out-of-scop values as well.
257 ///
258 /// @param Set     A set which references the ScopStmt we are interested in.
259 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
260 ///                structure.
261 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
262                                          void *UserPtr) {
263   isl_id *Id = isl_set_get_tuple_id(Set);
264   auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
265   isl_id_free(Id);
266   isl_set_free(Set);
267   return addReferencesFromStmt(Stmt, UserPtr);
268 }
269 
270 /// Extract the out-of-scop values and SCEVs referenced from a union set
271 /// referencing multiple ScopStmts.
272 ///
273 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
274 /// statement and the base pointers of the memory accesses. For scalar
275 /// statements we force the generation of alloca memory locations and list
276 /// these locations in the set of out-of-scop values as well.
277 ///
278 /// @param USet       A union set referencing the ScopStmts we are interested
279 ///                   in.
280 /// @param References The SubtreeReferences data structure through which
281 ///                   results are returned and further information is
282 ///                   provided.
283 static void
284 addReferencesFromStmtUnionSet(isl_union_set *USet,
285                               struct SubtreeReferences &References) {
286   isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
287   isl_union_set_free(USet);
288 }
289 
290 __isl_give isl_union_map *
291 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
292   return IslAstInfo::getSchedule(For);
293 }
294 
295 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
296                                             SetVector<Value *> &Values,
297                                             SetVector<const Loop *> &Loops) {
298 
299   SetVector<const SCEV *> SCEVs;
300   struct SubtreeReferences References = {
301       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()};
302 
303   for (const auto &I : IDToValue)
304     Values.insert(I.second);
305 
306   for (const auto &I : OutsideLoopIterations)
307     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
308 
309   isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
310   addReferencesFromStmtUnionSet(Schedule, References);
311 
312   for (const SCEV *Expr : SCEVs) {
313     findValues(Expr, SE, Values);
314     findLoops(Expr, Loops);
315   }
316 
317   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
318 
319   /// Remove loops that contain the scop or that are part of the scop, as they
320   /// are considered local. This leaves only loops that are before the scop, but
321   /// do not contain the scop itself.
322   Loops.remove_if([this](const Loop *L) {
323     return S.contains(L) || L->contains(S.getEntry());
324   });
325 }
326 
327 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
328   SmallPtrSet<Value *, 5> Inserted;
329 
330   for (const auto &I : IDToValue) {
331     IDToValue[I.first] = NewValues[I.second];
332     Inserted.insert(I.second);
333   }
334 
335   for (const auto &I : NewValues) {
336     if (Inserted.count(I.first))
337       continue;
338 
339     ValueMap[I.first] = I.second;
340   }
341 }
342 
343 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
344                                       std::vector<Value *> &IVS,
345                                       __isl_take isl_id *IteratorID,
346                                       __isl_take isl_union_map *Schedule) {
347   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
348   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
349   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
350   isl_ast_expr_free(StmtExpr);
351   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
352   std::vector<LoopToScevMapT> VLTS(IVS.size());
353 
354   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain());
355   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
356   isl_map *S = isl_map_from_union_map(Schedule);
357 
358   auto *NewAccesses = createNewAccesses(Stmt, User);
359   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
360   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
361   isl_id_to_ast_expr_free(NewAccesses);
362   isl_map_free(S);
363   isl_id_free(Id);
364   isl_ast_node_free(User);
365 }
366 
367 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
368   auto *Id = isl_ast_node_mark_get_id(Node);
369   auto Child = isl_ast_node_mark_get_node(Node);
370   isl_ast_node_free(Node);
371   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
372   // it will be optimized away and we should skip it.
373   if (!strcmp(isl_id_get_name(Id), "SIMD") &&
374       isl_ast_node_get_type(Child) == isl_ast_node_for) {
375     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
376     int VectorWidth = getNumberOfIterations(Child);
377     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
378       createForVector(Child, VectorWidth);
379     else
380       createForSequential(Child, true);
381     isl_id_free(Id);
382     return;
383   }
384   if (!strcmp(isl_id_get_name(Id), "Inter iteration alias-free")) {
385     auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
386     Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
387   }
388   create(Child);
389   isl_id_free(Id);
390 }
391 
392 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
393                                      int VectorWidth) {
394   isl_ast_node *Body = isl_ast_node_for_get_body(For);
395   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
396   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
397   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
398   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
399 
400   Value *ValueLB = ExprBuilder.create(Init);
401   Value *ValueInc = ExprBuilder.create(Inc);
402 
403   Type *MaxType = ExprBuilder.getType(Iterator);
404   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
405   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
406 
407   if (MaxType != ValueLB->getType())
408     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
409   if (MaxType != ValueInc->getType())
410     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
411 
412   std::vector<Value *> IVS(VectorWidth);
413   IVS[0] = ValueLB;
414 
415   for (int i = 1; i < VectorWidth; i++)
416     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
417 
418   isl_union_map *Schedule = getScheduleForAstNode(For);
419   assert(Schedule && "For statement annotation does not contain its schedule");
420 
421   IDToValue[IteratorID] = ValueLB;
422 
423   switch (isl_ast_node_get_type(Body)) {
424   case isl_ast_node_user:
425     createUserVector(Body, IVS, isl_id_copy(IteratorID),
426                      isl_union_map_copy(Schedule));
427     break;
428   case isl_ast_node_block: {
429     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
430 
431     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
432       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
433                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
434 
435     isl_ast_node_free(Body);
436     isl_ast_node_list_free(List);
437     break;
438   }
439   default:
440     isl_ast_node_dump(Body);
441     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
442   }
443 
444   IDToValue.erase(IDToValue.find(IteratorID));
445   isl_id_free(IteratorID);
446   isl_union_map_free(Schedule);
447 
448   isl_ast_node_free(For);
449   isl_ast_expr_free(Iterator);
450 }
451 
452 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
453                                          bool KnownParallel) {
454   isl_ast_node *Body;
455   isl_ast_expr *Init, *Inc, *Iterator, *UB;
456   isl_id *IteratorID;
457   Value *ValueLB, *ValueUB, *ValueInc;
458   Type *MaxType;
459   BasicBlock *ExitBlock;
460   Value *IV;
461   CmpInst::Predicate Predicate;
462   bool Parallel;
463 
464   Parallel = KnownParallel || (IslAstInfo::isParallel(For) &&
465                                !IslAstInfo::isReductionParallel(For));
466 
467   Body = isl_ast_node_for_get_body(For);
468 
469   // isl_ast_node_for_is_degenerate(For)
470   //
471   // TODO: For degenerated loops we could generate a plain assignment.
472   //       However, for now we just reuse the logic for normal loops, which will
473   //       create a loop with a single iteration.
474 
475   Init = isl_ast_node_for_get_init(For);
476   Inc = isl_ast_node_for_get_inc(For);
477   Iterator = isl_ast_node_for_get_iterator(For);
478   IteratorID = isl_ast_expr_get_id(Iterator);
479   UB = getUpperBound(For, Predicate);
480 
481   ValueLB = ExprBuilder.create(Init);
482   ValueUB = ExprBuilder.create(UB);
483   ValueInc = ExprBuilder.create(Inc);
484 
485   MaxType = ExprBuilder.getType(Iterator);
486   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
487   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
488   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
489 
490   if (MaxType != ValueLB->getType())
491     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
492   if (MaxType != ValueUB->getType())
493     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
494   if (MaxType != ValueInc->getType())
495     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
496 
497   // If we can show that LB <Predicate> UB holds at least once, we can
498   // omit the GuardBB in front of the loop.
499   bool UseGuardBB =
500       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
501   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
502                   Predicate, &Annotator, Parallel, UseGuardBB);
503   IDToValue[IteratorID] = IV;
504 
505   create(Body);
506 
507   Annotator.popLoop(Parallel);
508 
509   IDToValue.erase(IDToValue.find(IteratorID));
510 
511   Builder.SetInsertPoint(&ExitBlock->front());
512 
513   isl_ast_node_free(For);
514   isl_ast_expr_free(Iterator);
515   isl_id_free(IteratorID);
516 }
517 
518 /// Remove the BBs contained in a (sub)function from the dominator tree.
519 ///
520 /// This function removes the basic blocks that are part of a subfunction from
521 /// the dominator tree. Specifically, when generating code it may happen that at
522 /// some point the code generation continues in a new sub-function (e.g., when
523 /// generating OpenMP code). The basic blocks that are created in this
524 /// sub-function are then still part of the dominator tree of the original
525 /// function, such that the dominator tree reaches over function boundaries.
526 /// This is not only incorrect, but also causes crashes. This function now
527 /// removes from the dominator tree all basic blocks that are dominated (and
528 /// consequently reachable) from the entry block of this (sub)function.
529 ///
530 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
531 /// the function/region it runs on. Hence, the pure need for this function shows
532 /// that we do not comply to this rule. At the moment, this does not cause any
533 /// issues, but we should be aware that such issues may appear. Unfortunately
534 /// the current LLVM pass infrastructure does not allow to make Polly a module
535 /// or call-graph pass to solve this issue, as such a pass would not have access
536 /// to the per-function analyses passes needed by Polly. A future pass manager
537 /// infrastructure is supposed to enable such kind of access possibly allowing
538 /// us to create a cleaner solution here.
539 ///
540 /// FIXME: Instead of adding the dominance information and then dropping it
541 /// later on, we should try to just not add it in the first place. This requires
542 /// some careful testing to make sure this does not break in interaction with
543 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
544 /// which may try to update it.
545 ///
546 /// @param F The function which contains the BBs to removed.
547 /// @param DT The dominator tree from which to remove the BBs.
548 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
549   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
550   std::vector<BasicBlock *> Nodes;
551 
552   // We can only remove an element from the dominator tree, if all its children
553   // have been removed. To ensure this we obtain the list of nodes to remove
554   // using a post-order tree traversal.
555   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
556     Nodes.push_back(I->getBlock());
557 
558   for (BasicBlock *BB : Nodes)
559     DT.eraseNode(BB);
560 }
561 
562 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
563   isl_ast_node *Body;
564   isl_ast_expr *Init, *Inc, *Iterator, *UB;
565   isl_id *IteratorID;
566   Value *ValueLB, *ValueUB, *ValueInc;
567   Type *MaxType;
568   Value *IV;
569   CmpInst::Predicate Predicate;
570 
571   // The preamble of parallel code interacts different than normal code with
572   // e.g., scalar initialization. Therefore, we ensure the parallel code is
573   // separated from the last basic block.
574   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
575                                  &*Builder.GetInsertPoint(), &DT, &LI);
576   ParBB->setName("polly.parallel.for");
577   Builder.SetInsertPoint(&ParBB->front());
578 
579   Body = isl_ast_node_for_get_body(For);
580   Init = isl_ast_node_for_get_init(For);
581   Inc = isl_ast_node_for_get_inc(For);
582   Iterator = isl_ast_node_for_get_iterator(For);
583   IteratorID = isl_ast_expr_get_id(Iterator);
584   UB = getUpperBound(For, Predicate);
585 
586   ValueLB = ExprBuilder.create(Init);
587   ValueUB = ExprBuilder.create(UB);
588   ValueInc = ExprBuilder.create(Inc);
589 
590   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
591   // expression, we need to adjust the loop blound by one.
592   if (Predicate == CmpInst::ICMP_SLT)
593     ValueUB = Builder.CreateAdd(
594         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
595 
596   MaxType = ExprBuilder.getType(Iterator);
597   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
598   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
599   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
600 
601   if (MaxType != ValueLB->getType())
602     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
603   if (MaxType != ValueUB->getType())
604     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
605   if (MaxType != ValueInc->getType())
606     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
607 
608   BasicBlock::iterator LoopBody;
609 
610   SetVector<Value *> SubtreeValues;
611   SetVector<const Loop *> Loops;
612 
613   getReferencesInSubtree(For, SubtreeValues, Loops);
614 
615   // Create for all loops we depend on values that contain the current loop
616   // iteration. These values are necessary to generate code for SCEVs that
617   // depend on such loops. As a result we need to pass them to the subfunction.
618   for (const Loop *L : Loops) {
619     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
620                                             SE.getUnknown(Builder.getInt64(1)),
621                                             L, SCEV::FlagAnyWrap);
622     Value *V = generateSCEV(OuterLIV);
623     OutsideLoopIterations[L] = SE.getUnknown(V);
624     SubtreeValues.insert(V);
625   }
626 
627   ValueMapT NewValues;
628   ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL);
629 
630   IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
631                                           SubtreeValues, NewValues, &LoopBody);
632   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
633   Builder.SetInsertPoint(&*LoopBody);
634 
635   // Remember the parallel subfunction
636   ParallelSubfunctions.push_back(LoopBody->getFunction());
637 
638   // Save the current values.
639   auto ValueMapCopy = ValueMap;
640   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
641 
642   updateValues(NewValues);
643   IDToValue[IteratorID] = IV;
644 
645   ValueMapT NewValuesReverse;
646 
647   for (auto P : NewValues)
648     NewValuesReverse[P.second] = P.first;
649 
650   Annotator.addAlternativeAliasBases(NewValuesReverse);
651 
652   create(Body);
653 
654   Annotator.resetAlternativeAliasBases();
655   // Restore the original values.
656   ValueMap = ValueMapCopy;
657   IDToValue = IDToValueCopy;
658 
659   Builder.SetInsertPoint(&*AfterLoop);
660   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
661 
662   for (const Loop *L : Loops)
663     OutsideLoopIterations.erase(L);
664 
665   isl_ast_node_free(For);
666   isl_ast_expr_free(Iterator);
667   isl_id_free(IteratorID);
668 }
669 
670 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
671   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
672 
673   if (Vector && IslAstInfo::isInnermostParallel(For) &&
674       !IslAstInfo::isReductionParallel(For)) {
675     int VectorWidth = getNumberOfIterations(For);
676     if (1 < VectorWidth && VectorWidth <= 16) {
677       createForVector(For, VectorWidth);
678       return;
679     }
680   }
681 
682   if (IslAstInfo::isExecutedInParallel(For)) {
683     createForParallel(For);
684     return;
685   }
686   createForSequential(For, false);
687 }
688 
689 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
690   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
691 
692   Function *F = Builder.GetInsertBlock()->getParent();
693   LLVMContext &Context = F->getContext();
694 
695   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
696                                   &*Builder.GetInsertPoint(), &DT, &LI);
697   CondBB->setName("polly.cond");
698   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
699   MergeBB->setName("polly.merge");
700   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
701   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
702 
703   DT.addNewBlock(ThenBB, CondBB);
704   DT.addNewBlock(ElseBB, CondBB);
705   DT.changeImmediateDominator(MergeBB, CondBB);
706 
707   Loop *L = LI.getLoopFor(CondBB);
708   if (L) {
709     L->addBasicBlockToLoop(ThenBB, LI);
710     L->addBasicBlockToLoop(ElseBB, LI);
711   }
712 
713   CondBB->getTerminator()->eraseFromParent();
714 
715   Builder.SetInsertPoint(CondBB);
716   Value *Predicate = ExprBuilder.create(Cond);
717   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
718   Builder.SetInsertPoint(ThenBB);
719   Builder.CreateBr(MergeBB);
720   Builder.SetInsertPoint(ElseBB);
721   Builder.CreateBr(MergeBB);
722   Builder.SetInsertPoint(&ThenBB->front());
723 
724   create(isl_ast_node_if_get_then(If));
725 
726   Builder.SetInsertPoint(&ElseBB->front());
727 
728   if (isl_ast_node_if_has_else(If))
729     create(isl_ast_node_if_get_else(If));
730 
731   Builder.SetInsertPoint(&MergeBB->front());
732 
733   isl_ast_node_free(If);
734 }
735 
736 __isl_give isl_id_to_ast_expr *
737 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
738                                   __isl_keep isl_ast_node *Node) {
739   isl_id_to_ast_expr *NewAccesses =
740       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0);
741 
742   auto *Build = IslAstInfo::getBuild(Node);
743   assert(Build && "Could not obtain isl_ast_build from user node");
744   Stmt->setAstBuild(Build);
745 
746   for (auto *MA : *Stmt) {
747     if (!MA->hasNewAccessRelation()) {
748       if (PollyGenerateExpressions) {
749         if (!MA->isAffine())
750           continue;
751         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
752           continue;
753 
754         auto *BasePtr =
755             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
756         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
757           continue;
758       } else {
759         continue;
760       }
761     }
762     assert(MA->isAffine() &&
763            "Only affine memory accesses can be code generated");
764 
765     auto Schedule = isl_ast_build_get_schedule(Build);
766 
767 #ifndef NDEBUG
768     auto Dom = Stmt->getDomain();
769     auto SchedDom = isl_set_from_union_set(
770         isl_union_map_domain(isl_union_map_copy(Schedule)));
771     auto AccDom = isl_map_domain(MA->getAccessRelation());
772     Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext());
773     SchedDom =
774         isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext());
775     assert(isl_set_is_subset(SchedDom, AccDom) &&
776            "Access relation not defined on full schedule domain");
777     assert(isl_set_is_subset(Dom, AccDom) &&
778            "Access relation not defined on full domain");
779     isl_set_free(AccDom);
780     isl_set_free(SchedDom);
781     isl_set_free(Dom);
782 #endif
783 
784     auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule);
785 
786     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
787     NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr);
788   }
789 
790   return NewAccesses;
791 }
792 
793 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
794                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
795   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
796          "Expression of type 'op' expected");
797   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
798          "Opertation of type 'call' expected");
799   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
800     isl_ast_expr *SubExpr;
801     Value *V;
802 
803     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
804     V = ExprBuilder.create(SubExpr);
805     ScalarEvolution *SE = Stmt->getParent()->getSE();
806     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
807   }
808 
809   isl_ast_expr_free(Expr);
810 }
811 
812 void IslNodeBuilder::createSubstitutionsVector(
813     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
814     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
815     __isl_take isl_id *IteratorID) {
816   int i = 0;
817 
818   Value *OldValue = IDToValue[IteratorID];
819   for (Value *IV : IVS) {
820     IDToValue[IteratorID] = IV;
821     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
822     i++;
823   }
824 
825   IDToValue[IteratorID] = OldValue;
826   isl_id_free(IteratorID);
827   isl_ast_expr_free(Expr);
828 }
829 
830 void IslNodeBuilder::generateCopyStmt(
831     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
832   assert(Stmt->size() == 2);
833   auto ReadAccess = Stmt->begin();
834   auto WriteAccess = ReadAccess++;
835   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
836   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
837          "Accesses use the same data type");
838   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
839   auto *AccessExpr =
840       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId());
841   auto *LoadValue = ExprBuilder.create(AccessExpr);
842   AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId());
843   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
844   Builder.CreateStore(LoadValue, StoreAddr);
845 }
846 
847 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
848   LoopToScevMapT LTS;
849   isl_id *Id;
850   ScopStmt *Stmt;
851 
852   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
853   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
854   Id = isl_ast_expr_get_id(StmtExpr);
855   isl_ast_expr_free(StmtExpr);
856 
857   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
858 
859   Stmt = (ScopStmt *)isl_id_get_user(Id);
860   auto *NewAccesses = createNewAccesses(Stmt, User);
861   if (Stmt->isCopyStmt()) {
862     generateCopyStmt(Stmt, NewAccesses);
863     isl_ast_expr_free(Expr);
864   } else {
865     createSubstitutions(Expr, Stmt, LTS);
866 
867     if (Stmt->isBlockStmt())
868       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
869     else
870       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
871   }
872 
873   isl_id_to_ast_expr_free(NewAccesses);
874   isl_ast_node_free(User);
875   isl_id_free(Id);
876 }
877 
878 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
879   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
880 
881   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
882     create(isl_ast_node_list_get_ast_node(List, i));
883 
884   isl_ast_node_free(Block);
885   isl_ast_node_list_free(List);
886 }
887 
888 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
889   switch (isl_ast_node_get_type(Node)) {
890   case isl_ast_node_error:
891     llvm_unreachable("code generation error");
892   case isl_ast_node_mark:
893     createMark(Node);
894     return;
895   case isl_ast_node_for:
896     createFor(Node);
897     return;
898   case isl_ast_node_if:
899     createIf(Node);
900     return;
901   case isl_ast_node_user:
902     createUser(Node);
903     return;
904   case isl_ast_node_block:
905     createBlock(Node);
906     return;
907   }
908 
909   llvm_unreachable("Unknown isl_ast_node type");
910 }
911 
912 bool IslNodeBuilder::materializeValue(isl_id *Id) {
913   // If the Id is already mapped, skip it.
914   if (!IDToValue.count(Id)) {
915     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
916     Value *V = nullptr;
917 
918     // Parameters could refere to invariant loads that need to be
919     // preloaded before we can generate code for the parameter. Thus,
920     // check if any value refered to in ParamSCEV is an invariant load
921     // and if so make sure its equivalence class is preloaded.
922     SetVector<Value *> Values;
923     findValues(ParamSCEV, SE, Values);
924     for (auto *Val : Values) {
925 
926       // Check if the value is an instruction in a dead block within the SCoP
927       // and if so do not code generate it.
928       if (auto *Inst = dyn_cast<Instruction>(Val)) {
929         if (S.contains(Inst)) {
930           bool IsDead = true;
931 
932           // Check for "undef" loads first, then if there is a statement for
933           // the parent of Inst and lastly if the parent of Inst has an empty
934           // domain. In the first and last case the instruction is dead but if
935           // there is a statement or the domain is not empty Inst is not dead.
936           auto MemInst = MemAccInst::dyn_cast(Inst);
937           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
938           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
939                              SE.getPointerBase(SE.getSCEV(Address))) {
940           } else if (S.getStmtFor(Inst)) {
941             IsDead = false;
942           } else {
943             auto *Domain = S.getDomainConditions(Inst->getParent());
944             IsDead = isl_set_is_empty(Domain);
945             isl_set_free(Domain);
946           }
947 
948           if (IsDead) {
949             V = UndefValue::get(ParamSCEV->getType());
950             break;
951           }
952         }
953       }
954 
955       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
956 
957         // Check if this invariant access class is empty, hence if we never
958         // actually added a loads instruction to it. In that case it has no
959         // (meaningful) users and we should not try to code generate it.
960         if (IAClass->InvariantAccesses.empty())
961           V = UndefValue::get(ParamSCEV->getType());
962 
963         if (!preloadInvariantEquivClass(*IAClass)) {
964           isl_id_free(Id);
965           return false;
966         }
967       }
968     }
969 
970     V = V ? V : generateSCEV(ParamSCEV);
971     IDToValue[Id] = V;
972   }
973 
974   isl_id_free(Id);
975   return true;
976 }
977 
978 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
979   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
980     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
981       continue;
982     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
983     if (!materializeValue(Id))
984       return false;
985   }
986   return true;
987 }
988 
989 bool IslNodeBuilder::materializeParameters() {
990   for (const SCEV *Param : S.parameters()) {
991     isl_id *Id = S.getIdForParam(Param);
992     if (!materializeValue(Id))
993       return false;
994   }
995   return true;
996 }
997 
998 /// Add the number of dimensions in @p BS to @p U.
999 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) {
1000   unsigned *NumTotalDim = static_cast<unsigned *>(U);
1001   *NumTotalDim += isl_basic_set_total_dim(BS);
1002   isl_basic_set_free(BS);
1003   return isl_stat_ok;
1004 }
1005 
1006 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1007                                               isl_ast_build *Build,
1008                                               Instruction *AccInst) {
1009 
1010   // TODO: This check could be performed in the ScopInfo already.
1011   unsigned NumTotalDim = 0;
1012   isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim);
1013   if (NumTotalDim > MaxDimensionsInAccessRange) {
1014     isl_set_free(AccessRange);
1015     return nullptr;
1016   }
1017 
1018   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1019   isl_ast_expr *Access =
1020       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1021   auto *Address = isl_ast_expr_address_of(Access);
1022   auto *AddressValue = ExprBuilder.create(Address);
1023   Value *PreloadVal;
1024 
1025   // Correct the type as the SAI might have a different type than the user
1026   // expects, especially if the base pointer is a struct.
1027   Type *Ty = AccInst->getType();
1028 
1029   auto *Ptr = AddressValue;
1030   auto Name = Ptr->getName();
1031   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast");
1032   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1033   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1034     PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
1035 
1036   // TODO: This is only a hot fix for SCoP sequences that use the same load
1037   //       instruction contained and hoisted by one of the SCoPs.
1038   if (SE.isSCEVable(Ty))
1039     SE.forgetValue(AccInst);
1040 
1041   return PreloadVal;
1042 }
1043 
1044 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1045                                             isl_set *Domain) {
1046 
1047   isl_set *AccessRange = isl_map_range(MA.getAddressFunction());
1048   AccessRange = isl_set_gist_params(AccessRange, S.getContext());
1049 
1050   if (!materializeParameters(AccessRange)) {
1051     isl_set_free(AccessRange);
1052     isl_set_free(Domain);
1053     return nullptr;
1054   }
1055 
1056   auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace()));
1057   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1058   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1059   isl_set_free(Universe);
1060 
1061   Instruction *AccInst = MA.getAccessInstruction();
1062   Type *AccInstTy = AccInst->getType();
1063 
1064   Value *PreloadVal = nullptr;
1065   if (AlwaysExecuted) {
1066     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1067     isl_ast_build_free(Build);
1068     isl_set_free(Domain);
1069     return PreloadVal;
1070   }
1071 
1072   if (!materializeParameters(Domain)) {
1073     isl_ast_build_free(Build);
1074     isl_set_free(AccessRange);
1075     isl_set_free(Domain);
1076     return nullptr;
1077   }
1078 
1079   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1080   Domain = nullptr;
1081 
1082   ExprBuilder.setTrackOverflow(true);
1083   Value *Cond = ExprBuilder.create(DomainCond);
1084   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1085                                               "polly.preload.cond.overflown");
1086   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1087   ExprBuilder.setTrackOverflow(false);
1088 
1089   if (!Cond->getType()->isIntegerTy(1))
1090     Cond = Builder.CreateIsNotNull(Cond);
1091 
1092   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1093                                   &*Builder.GetInsertPoint(), &DT, &LI);
1094   CondBB->setName("polly.preload.cond");
1095 
1096   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1097   MergeBB->setName("polly.preload.merge");
1098 
1099   Function *F = Builder.GetInsertBlock()->getParent();
1100   LLVMContext &Context = F->getContext();
1101   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1102 
1103   DT.addNewBlock(ExecBB, CondBB);
1104   if (Loop *L = LI.getLoopFor(CondBB))
1105     L->addBasicBlockToLoop(ExecBB, LI);
1106 
1107   auto *CondBBTerminator = CondBB->getTerminator();
1108   Builder.SetInsertPoint(CondBBTerminator);
1109   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1110   CondBBTerminator->eraseFromParent();
1111 
1112   Builder.SetInsertPoint(ExecBB);
1113   Builder.CreateBr(MergeBB);
1114 
1115   Builder.SetInsertPoint(ExecBB->getTerminator());
1116   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1117   Builder.SetInsertPoint(MergeBB->getTerminator());
1118   auto *MergePHI = Builder.CreatePHI(
1119       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1120   PreloadVal = MergePHI;
1121 
1122   if (!PreAccInst) {
1123     PreloadVal = nullptr;
1124     PreAccInst = UndefValue::get(AccInstTy);
1125   }
1126 
1127   MergePHI->addIncoming(PreAccInst, ExecBB);
1128   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1129 
1130   isl_ast_build_free(Build);
1131   return PreloadVal;
1132 }
1133 
1134 bool IslNodeBuilder::preloadInvariantEquivClass(
1135     InvariantEquivClassTy &IAClass) {
1136   // For an equivalence class of invariant loads we pre-load the representing
1137   // element with the unified execution context. However, we have to map all
1138   // elements of the class to the one preloaded load as they are referenced
1139   // during the code generation and therefor need to be mapped.
1140   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1141   if (MAs.empty())
1142     return true;
1143 
1144   MemoryAccess *MA = MAs.front();
1145   assert(MA->isArrayKind() && MA->isRead());
1146 
1147   // If the access function was already mapped, the preload of this equivalence
1148   // class was triggered earlier already and doesn't need to be done again.
1149   if (ValueMap.count(MA->getAccessInstruction()))
1150     return true;
1151 
1152   // Check for recursion which can be caused by additional constraints, e.g.,
1153   // non-finite loop constraints. In such a case we have to bail out and insert
1154   // a "false" runtime check that will cause the original code to be executed.
1155   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1156   if (!PreloadedPtrs.insert(PtrId).second)
1157     return false;
1158 
1159   // The execution context of the IAClass.
1160   isl_set *&ExecutionCtx = IAClass.ExecutionContext;
1161 
1162   // If the base pointer of this class is dependent on another one we have to
1163   // make sure it was preloaded already.
1164   auto *SAI = MA->getScopArrayInfo();
1165   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1166     if (!preloadInvariantEquivClass(*BaseIAClass))
1167       return false;
1168 
1169     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1170     // we need to refine the ExecutionCtx.
1171     isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1172     ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1173   }
1174 
1175   // If the size of a dimension is dependent on another class, make sure it is
1176   // preloaded.
1177   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1178     const SCEV *Dim = SAI->getDimensionSize(i);
1179     SetVector<Value *> Values;
1180     findValues(Dim, SE, Values);
1181     for (auto *Val : Values) {
1182       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1183         if (!preloadInvariantEquivClass(*BaseIAClass))
1184           return false;
1185 
1186         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1187         // and we need to refine the ExecutionCtx.
1188         isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1189         ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1190       }
1191     }
1192   }
1193 
1194   Instruction *AccInst = MA->getAccessInstruction();
1195   Type *AccInstTy = AccInst->getType();
1196 
1197   Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx));
1198   if (!PreloadVal)
1199     return false;
1200 
1201   for (const MemoryAccess *MA : MAs) {
1202     Instruction *MAAccInst = MA->getAccessInstruction();
1203     assert(PreloadVal->getType() == MAAccInst->getType());
1204     ValueMap[MAAccInst] = PreloadVal;
1205   }
1206 
1207   if (SE.isSCEVable(AccInstTy)) {
1208     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst));
1209     if (ParamId)
1210       IDToValue[ParamId] = PreloadVal;
1211     isl_id_free(ParamId);
1212   }
1213 
1214   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1215   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1216                                 AccInst->getName() + ".preload.s2a");
1217   Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
1218   Builder.CreateStore(PreloadVal, Alloca);
1219   ValueMapT PreloadedPointer;
1220   PreloadedPointer[PreloadVal] = AccInst;
1221   Annotator.addAlternativeAliasBases(PreloadedPointer);
1222 
1223   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1224     Value *BasePtr = DerivedSAI->getBasePtr();
1225 
1226     for (const MemoryAccess *MA : MAs) {
1227       // As the derived SAI information is quite coarse, any load from the
1228       // current SAI could be the base pointer of the derived SAI, however we
1229       // should only change the base pointer of the derived SAI if we actually
1230       // preloaded it.
1231       if (BasePtr == MA->getBaseAddr()) {
1232         assert(BasePtr->getType() == PreloadVal->getType());
1233         DerivedSAI->setBasePtr(PreloadVal);
1234       }
1235 
1236       // For scalar derived SAIs we remap the alloca used for the derived value.
1237       if (BasePtr == MA->getAccessInstruction())
1238         ScalarMap[DerivedSAI] = Alloca;
1239     }
1240   }
1241 
1242   for (const MemoryAccess *MA : MAs) {
1243 
1244     Instruction *MAAccInst = MA->getAccessInstruction();
1245     // Use the escape system to get the correct value to users outside the SCoP.
1246     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1247     for (auto *U : MAAccInst->users())
1248       if (Instruction *UI = dyn_cast<Instruction>(U))
1249         if (!S.contains(UI))
1250           EscapeUsers.push_back(UI);
1251 
1252     if (EscapeUsers.empty())
1253       continue;
1254 
1255     EscapeMap[MA->getAccessInstruction()] =
1256         std::make_pair(Alloca, std::move(EscapeUsers));
1257   }
1258 
1259   return true;
1260 }
1261 
1262 void IslNodeBuilder::allocateNewArrays() {
1263   for (auto &SAI : S.arrays()) {
1264     if (SAI->getBasePtr())
1265       continue;
1266 
1267     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1268            "The size of the outermost dimension is used to declare newly "
1269            "created arrays that require memory allocation.");
1270 
1271     Type *NewArrayType = nullptr;
1272     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1273       auto *DimSize = SAI->getDimensionSize(i);
1274       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1275                                      ->getAPInt()
1276                                      .getLimitedValue();
1277 
1278       if (!NewArrayType)
1279         NewArrayType = SAI->getElementType();
1280 
1281       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1282     }
1283 
1284     auto InstIt =
1285         Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator();
1286     auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1287                                         SAI->getName(), &*InstIt);
1288     CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize);
1289     SAI->setBasePtr(CreatedArray);
1290   }
1291 }
1292 
1293 bool IslNodeBuilder::preloadInvariantLoads() {
1294 
1295   auto &InvariantEquivClasses = S.getInvariantAccesses();
1296   if (InvariantEquivClasses.empty())
1297     return true;
1298 
1299   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1300                                      &*Builder.GetInsertPoint(), &DT, &LI);
1301   PreLoadBB->setName("polly.preload.begin");
1302   Builder.SetInsertPoint(&PreLoadBB->front());
1303 
1304   for (auto &IAClass : InvariantEquivClasses)
1305     if (!preloadInvariantEquivClass(IAClass))
1306       return false;
1307 
1308   return true;
1309 }
1310 
1311 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1312   // Materialize values for the parameters of the SCoP.
1313   materializeParameters();
1314 
1315   // Generate values for the current loop iteration for all surrounding loops.
1316   //
1317   // We may also reference loops outside of the scop which do not contain the
1318   // scop itself, but as the number of such scops may be arbitrarily large we do
1319   // not generate code for them here, but only at the point of code generation
1320   // where these values are needed.
1321   Loop *L = LI.getLoopFor(S.getEntry());
1322 
1323   while (L != nullptr && S.contains(L))
1324     L = L->getParentLoop();
1325 
1326   while (L != nullptr) {
1327     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1328                                             SE.getUnknown(Builder.getInt64(1)),
1329                                             L, SCEV::FlagAnyWrap);
1330     Value *V = generateSCEV(OuterLIV);
1331     OutsideLoopIterations[L] = SE.getUnknown(V);
1332     L = L->getParentLoop();
1333   }
1334 
1335   isl_set_free(Context);
1336 }
1337 
1338 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1339   /// We pass the insert location of our Builder, as Polly ensures during IR
1340   /// generation that there is always a valid CFG into which instructions are
1341   /// inserted. As a result, the insertpoint is known to be always followed by a
1342   /// terminator instruction. This means the insert point may be specified by a
1343   /// terminator instruction, but it can never point to an ->end() iterator
1344   /// which does not have a corresponding instruction. Hence, dereferencing
1345   /// the insertpoint to obtain an instruction is known to be save.
1346   ///
1347   /// We also do not need to update the Builder here, as new instructions are
1348   /// always inserted _before_ the given InsertLocation. As a result, the
1349   /// insert location remains valid.
1350   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1351          "Insert location points after last valid instruction");
1352   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1353   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1354                        InsertLocation, &ValueMap,
1355                        StartBlock->getSinglePredecessor());
1356 }
1357 
1358 /// The AST expression we generate to perform the run-time check assumes
1359 /// computations on integer types of infinite size. As we only use 64-bit
1360 /// arithmetic we check for overflows, in case of which we set the result
1361 /// of this run-time check to false to be cosnservatively correct,
1362 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1363   auto ExprBuilder = getExprBuilder();
1364   ExprBuilder.setTrackOverflow(true);
1365   Value *RTC = ExprBuilder.create(Condition);
1366   if (!RTC->getType()->isIntegerTy(1))
1367     RTC = Builder.CreateIsNotNull(RTC);
1368   Value *OverflowHappened =
1369       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1370 
1371   if (PollyGenerateRTCPrint) {
1372     auto *F = Builder.GetInsertBlock()->getParent();
1373     RuntimeDebugBuilder::createCPUPrinter(
1374         Builder,
1375         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1376             " __RTC: ",
1377         RTC, " Overflow: ", OverflowHappened, "\n");
1378   }
1379 
1380   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1381   ExprBuilder.setTrackOverflow(false);
1382 
1383   if (!isa<ConstantInt>(RTC))
1384     VersionedScops++;
1385 
1386   return RTC;
1387 }
1388